Lesson time, days, and location:
Instructor: Theodore G. Cleveland, Ph.D., P.E., M. ASCE, F. EWRI
Email: theodore.cleveland@ttu.edu (put CE 5319 into the subject line for email related to this class)
Office location: CECE 203F
Office hours: 1630-1730 M,T,W,Th ; CE 203F
Teaching Assistant: none authorized
Email :
Office location:
Office hours:
Date | Lesson | Readings | Homework |
---|---|---|---|
Machine Learning Concepts | |||
25 AUG 2022 | 0. Introduction - Jupyter Notebooks - iPython |
- Installing Anaconda - Google Collaboratory - Build your own JupyterHub |
- Get a JupyterLab/Hub/Notebook iPython computation environment built and tested |
30 AUG 2022 | 1. Overview - What is Machine Learning? - A Prediction Engine Example - Machine Learning Workflow |
- Machine Learning Theory and Algorithms pp 19-22 - Machine Learning Techniques for Civil Engineering Problems |
EC1 Due (allocate about 10 hours) |
01 SEP 2022 | 2. Prediction Engines - A Simple Linear Engine - Discrete Choice |
- StructuraL Response Prediction Engine to Support Advanced Seismic Risk Assessment - Two-Stage Degradation Assessment and Prediction Method for Aircraft Engines... - Machine Learning Theory and Algorithms pp 22-27 - Applying Regression Analysis to Predict and Classify Construction Cycle Time |
|
06 SEP 2022 | 3. Classification Engines - A Simple Classification Engine -subtopic 2 |
- Applying Regression Analysis to Predict and Classify Construction Cycle Time - subtopic 2 |
|
08 SEP 2022 | 4. Supervised Learning - Description -subtopic 2 |
Ch 2 - 2.3-2.7 - subtopic 2 |
|
13 SEP 2022 | 5. Unsupervised Learning - Description -subtopic 2 |
Ch 2 - 2.8 -subtopic 2 |
|
15 SEP 2022 | 6. Reinforcement Learning - subtopic1 -subtopic 2 |
Ch 3 - Applied Dynamic Programming Bellman and Dreyfus (1962) pp. 1-21 -subtopic 2 |
|
20 SEP 2022 | 7. Exploratory Data Analysis - Common Data Types - Visual Exploration - Downloading data |
- -subtopic 2 |
|
22 SEP 2022 | 8. Probability Distributions - subtopic1 -subtopic 2 |
- subtopic1 -subtopic 2 |
|
27 SEP 2022 | 9. Optimization Principles - subtopic1 -subtopic 2 |
||
29 SEP 2022 | 10. Linear Regression - subtopic1 -subtopic 2 |
||
04 OCT 2022 | 11. Non-Linear Regression - subtopic1 -subtopic 2 |
||
06 OCT 2022 | 12. Logistic Regression - subtopic1 -subtopic 2 |
||
11 OCT 2022 | 13. KNN Classification - subtopic1 -subtopic 2 |
||
13 OCT 2022 | 14. Decision Tree Classification - subtopic1 -subtopic 2 |
||
Machine Learning by Example | |||
18 OCT 2022 | 15. Ensemble Learning - subtopic -subtopic 2 |
||
20 OCT 2022 | 16. Solution Stacking - I - Bagging -subtopic 2 |
||
25 OCT 2022 | 17. Random Forests - subtopic1 -subtopic 2 |
||
27 OCT 2022 | 18. Solution Stacking - II - Boosting -subtopic 2 |
||
01 NOV 2022 | 19. Topic - subtopic1 -subtopic 2 |
||
03 NOV 2022 | 20. Neural Network Perceptron - Biological Analogy - Activation Functions |
||
08 NOV 2022 | 21. Multi-Layer Perceptrons (MLP) - subtopic1 -subtopic 2 |
||
10 NOV 2022 | 22. Multinomial Classification by MLP - subtopic1 -subtopic 2 |
||
15 NOV 2022 | 23. Regression by MLP - subtopic1 -subtopic 2 |
||
17 NOV 2022 | 24. Image Processing - subtopic1 -subtopic 2 |
||
22 NOV 2022 | 25. Convolution Neural Networks - I - subtopic1 -subtopic 2 |
||
29 NOV 2022 | 26. Convolution Neural Networks - II - subtopic1 -subtopic 2 |
||
01 DEC 2022 | Project Presentations - subtopic1 -subtopic 2 |
topic name - subtopic1 -subtopic 2 |
|
06 DEC 2022 | Project Presentations - subtopic1 -subtopic 2 |
topic name - subtopic1 -subtopic 2 |
|
13 DEC 2022 | Exam 3 Due | Submit on Blackboard |