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Summary and Introduction

In the period following World War IT, it hegan to be recognized that
there were a large number of interesting and significant activities which
could be classified as multistage decision processes. It was soon seen that
the mathematical problems that arcse in their study stretched the con-
ventional confines of analysis, and required new methods for their
successful treatment. The classical techniques of caleulus and the caleulus
of variations were occasionally valuable and useful in these new areas, but
were clearly limited in range and versatility, and were definitely lacking
as far as furnishing numerical answers was concerned.

The rocognition of these facts led to the creation of a number of novel
mathematical theories and methods. Among these was the theory of
dynamic programming, a new approach based on the use of functional
equations and the principle of optimality, with one eye on the potenti-
alities of the burgeoning field of digital computers.

The first task we set ourselves in the development of the theory was the
examination of a variety of activities in the engineering, economie,
industrial, and military domains with the aim of sesing which could be

“formulated in dynamic.programming terms and with what level of
complexity. This is not always a routine operation, since in the deseription
of an optimization process there is a good deal of leeway permitted in the
choice of state variables and criteria. It often happens that one type of
mathernatical model is well suited to one type of analytic approach and
not to ancther. Generally, tho three principal parts of a muathematical
model, the coneeptual, analytie, and computational aspeets, must be
considered simultaneously and not separately. Conseguently, a certain-
amount of effort is involved in transiating verbal problems posed in such
vegue terms of efficiency, feasibility, cost, and so on, into precise analytic
problems requiring the solutions of equations and the determination of
extrema.

Once various translations had been effected, it was essential to study
the relation between the solutions of the functional equations obtained
and the optimal policies of the original decision process. This study of the
existence and uniqueness of solutions is required before one can engage in
any computational solution or structural analysis. Fortunately, in a
number of significant cases, the demonstration of existence and uniquenessg
was readily carried out so that we could, with confidence, turn to the study
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of the nature of optimal policies and of the maximum return, using the
basic functional equations.

Initially, we focussed on those processes which were specifically posed
as multistage decision processes. Subsequently, we indulged in the mathe-
matical Jicense of studying any process which could be considered to be a
multistage decision process. In this way we became extensively involved
. in the study of various parts of the calculus of variations, and, in par-
ticular, with trajectory processes and feedback control.

After this initial pericd of exploration and consclidation of territory, we
felt that it was time to perform some computational studies. Although we
had had this goal in mind from the very beginning, and had constantly
examined the feasibility of our procedures from this viewpoint, it was
absolutely necessary to carry out detailed numerical solutions. Those who
have had even brief encounter with digital computers soon learn to be
wary of proposed solutions, no matter how elegant. Until every single part
of & numerical solution of a problem is earefully checked and tested in
practice, one cannot be sure that considerations of accuracy and stability,
storage or time, will not block a complete solution.

Secondly, it is soon realized that no solution of a particular problem is
routine, Taking advantage of individual structural features, omne can
always cut down on the time required, increase the accuracy, add more
realistic features at no cost in time, and so on. The theory of dynamic
programming is specifically designed to exploit the idiosyncrasies of
specific processes.

In 1855, we began a systematic study of the computational feasibility
of dynamic programroing. We collected a number of optimization problems
from many different fields and applied our methods in many different
ways.

Pursuing this course, we showed that dynamic programming could
indeed be used to resolve a number of vexing variational and cptimization
problems of some interest and significance in applications. Some of these
could be handled oniy with difficulty by other techniques, some only on a
trial-and-error and “educated guess” Dbasis, and some seemed completely
to escape alternative methods.

The advantage of having a reasonably “‘turn-of-the-crank’ technigue
for some large classes of problems in the fields of pure and applied mathe-
matics is multiple. Tu the first place, in connection with guidance and
contral, or in scheduling and inventory control, we have a systematic
means of oblaining precise numerical answers to specific numerieal
questions. Secondly, we have a means of getting exact answers which can
be used as vardsticks for the approximate results obtained in other,
perhaps simpler and quicker, ways. Thus, we can test the efficacy of
approximate techniques.

iv
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When facing new classes of mathematical problems which cannot
initially be treated by means of existing analytical devices, it is extremely
important to he able to examine classes of numerical solutions in the hope
" of discerning patterns of behavior. These may furnish valuable clues to
the analytie structure of the solutions, and so guide our investigation into
profitable directions, After all, mathematics started as an experimental
field. If we do not wish to suffer the usual atrephy of armchair philoso-
yhers, we must cceasionally roll up our sleeves and do some spadework.
With the aid of dynemic programming and digital computers we can
methodically engage in mathematical experimentation.

Finaliy, let us note that in many cases we are more interested in the
nature of optimal polictes than we are in the precise numerical values
which furnish the maximum or minimum of the eriterion function. The
exact optimal policies obtained in the study of simple decision processes
can be used to furnish simple approximate policies fof more complex
decision processes,

Let us now sketeh the contents of the various chapters,

The basic functional equation of dynamic programming has the form

(n flg) = max (H{p, ¢, {T{p, O)]-
g

The subject can be partitioned in several ways, either with respect to the
precise form of (1), or with respect to the type of process giving rise to (1),
or with respect to deterministic, stochastic, or adaptive features, and so omn.
For the purposes of computational study, it is convenient initially to pay
attention to the dimension of the state vector p.

In Chapter I, in order to introduce the reader to both the basic ideas
of dynamie programming and the routine fechnigues of the computational
method we shall repeatedly employ, we consider some simple proeesses
which give rise to sequences of functions of one variable.

In Chapter II, with the preliminaries disposed of, we consider some
interesting problems giving rise to sequences of functions of two variables.
After a discussion of the dimensionality difficulties that begin to loom
large on the horizon, we show how they may be subdued in a number of
“cases by the use of a Lagrange multiplier.

In Chapter III, we group our efforts according to subject makter and
present some analytic and computational solutions to various classes of
smoothing and scheduling processes.

Chapter IV is devoted to the study of dynamic-programming problems
that arise in the course of the computational solution of dynamic-
programming problems. As will be noted, the equation in (1) requires the
determination of the maximum over ¢. Since we do not wish to employ
caleulus, for a range of reasons described in the text, we must use a search
process to obfain the maximizing ¢. In some cases, we can endure a

¥
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straightforward process of enumeration; in other cases, it is essential to
use a sequential method. This chapter is an introduction to this very
difficult and entertaining problem area.

Bo far we have considered discrete processes over time. In Chapter V,
we show how the theory of dynamic programming may be used to provide
& very simple treatment of the theory of variational problems involving
functions of one independent variable. The principle of optimality yields
a nonlinear partial differential eguation from which all of the classical
results are quickly obtained.

In Chapter VI. we turn o one of the most interesting eurrent applica-
tions of dynamic programming, the determination of optimal trajectorics.
Specifie problems are discussed and their numerical solutions are given.

The next chapter, VII, is a brief foray into the domain of mathematical
economics. Employing the type of input-output model made famous by
the work of Leontieff, we consider the optimal utilization of a complex
of interdependent industries,

In Chapters VIII and IX we discuss different aspects of the flowering
theory of control processes. The first chapter is devoted to the formulation
of various types of deterministic, stochastic, and adaptive processes; the
second, following the work of Masanao Aoki, is devoted to some compu-
tational results.

Chapter X is a brief introduction to a very interesting and rewarding
study of optimization processes with linear equations and quadratic
eriteria. The results are not only of importance in themselves, but also in
connection with the use of successive approximations,

Following this, we discuss in some detail Markovian decision processes
and give a number of applications. Some significant parts of this chapter
are based on the work of R. Howard,

The final chapter is devoted to some preliminary results on the aceuracy
and stability of dynamie-programming techniques. This field of study is
relatively uneultivated and many important problems remain to be
investigated.

At the end of the text will be found four appendices containing some
more detailed results, as well as some more recent results, due to Q. Gross
and M. Freimer and W. Karush in collaboration with several of the
suthors. A fifth appendix contains a description of the computer used
during our researches, the RAND Johnniac.

As far as possible, we have tried to make this book self-contained. The
reader desiring a broader background in dynamic programming may wish
to consult R. Bellman, Dynamic Programming, Princeton University
Press, 1957; a detailed discussion of the modern theory of control
processes will be found in R. Bellman, ddaptive Control Processes: A
Guided Tour, Princeton University Press, 1961. Numerous references

vi
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toe applications and original research papers will be found at the ends of
the chapters. For those who wish a comprehensive bibliography. we
recoramend V. Riley and 8. Gass, Linear Programming and Associgied
Technigues, Operations Research Office, Johns Hopkins Press, 1955,

A number of the results that follow were derived in ecllaboration with
other mathematicians, or are based on their individual efforts. For the
use of this research, we should like particularly to thank M. Aoki, T.
Cartaino, M. Freimer, O. Gross, R. Heward, S. Johnson, R. Kalaba, and

W. Karush.
Richard Bellman

Stnart Drevius
The RAND Corporation
Banta Moniea, July 1961 _
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CHAPTER 1

One-dimensional Allocation Processes

1. Introduction

We shall begin our discussion with an investigation of a simnple class of
allocation processes arising in mwathematical economics and operations
research. The basie question is that of using resources of various types in
efficient ways. In order to permit the reader to assimilate the techniques
we shall employ throughont, we initially shail consider some rudimentary
models involving a minimum of mathematical difficulties.

The simplicity of these preliminary problems permits us to examine and
analyze methods which will be applied in later pages to study more rezlistic
aud complex matters. As we shall see, processes of significanee in applica-
tions possess 4 number of simultaneous features of difficulty. Generally
speaking, these require & variety of methods applied in unison, and often
some amount of {ngenuity. All our efforts will be directed towards the
primary goal of obtaining numerical answers to numerical questions.

The first computation we perform is directed towards the determination
of the mazimum of the function of ¥ variables ’

(1) .R(fb Xy, oo,y = gy(2)) A+ galzy) 00 3 ga{Ey)
taken over the region of values determined by the relations
2 (a) T +xy b Fay =1,

(b) z; > 0.

There are many difficulties encountered in treating this apparently
simple and straightforward problem. In the conrse of a careful and detailed
examination of these obstacles, we shall generate sufficlent motivation to
present a new approach—the functional equation technigue of dynamic
programming,

The allocation process giving rise to the foregoing optimization will
be used to introduce the basic ideas of dynamic programming and to
illustrate the computational aspects in detail. In this discussion, and
througheut, we shall provide the reader with basic information concerning
coding times, running times, accuracy, stability, and flow charts.
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ONE-DIMENSIONAL ALLOCATION PROCESSES

Two further problems leading to analytic questions of the type appear.
ing above will be treated, one arising from cargo-loading and the other
conneected with the reliability of a multicomponent device.

2. Verbal Description of an Allocation Process

Before any analytic formulation, let us present in purely verbal terms
the category of processes we wish fo study. Suppose that we have availahle
a certain quantity of an economic resource. This abstract term may repre-
gent men, money, machines, fissionable material for nuclear reactors,
water for agricultural and industrial purposes or for the generation of
hydroelectric power, fuel for a space ship, and so on. A conflict of interests
arises from the fact that a resource can be used in a number of different
‘ways. Each such possible application we call an activity.

Ags a result of using all or part of this resouree in any single activity, a
certain refurn is derived. The return may be expressible in terms of the
resource itself, i.e., money may beget more money, machines may produce
more machines, or it may be measured in entirely different units, i.e., fuel
produces velocity, money produeces reliability, and so on. The magnitude of
the return depends both upon the magnitude of resource alloecated and
upon the particular activity.

Qur basic assumptions will be:

{1) (2) Thereturns from different activities can be measured in a common
unit.
(b) The return from any activity is independent of the allocations to
the other activities.
(¢} The total return can be obtained as the sum of the individual
returns.

In economic terms, the utility of the entire allocation process can be
calculated by adding together the utilities of the individual activities.

The fundamental problem is that of dividing our resources so as to
maximize the total return. This simple mathematical maodel of an alloca-
tion process furnishes useful information in a number of situations.

3. Construction of a Mathernatical Model

Let us now formulate the foregoing optimization problem as a precise
mathematical question. The number of different activities will be desig-
nated by ¥ and enumerated in a fixed order, 1, 2,....¥. When we say
that there are two activities under consideration, we shall mean that
activities 1 and 2 are available; when five activities are designated, we
shall mean activities 1, 2, 3,4, 5, and sc on. The way in which the activities
are enumerated is unimportant, but once decided, must be adhered to
thereafter,



DISCUSSION

Aassociated with each activity is a utility function. This function raeasures
the dependence of the return from this activity upon the quantity of the
resource allocated. 1f2; denotes the quantity of resources assigned to the
ith activily, we let g,(z;) denote the return from the ith activity. The
utility funetion g,(z.) is shown in Fig. 1. The shape of this curve is a
consequence of two irnportant ecanomic conditions. The first is that small
allocations lead to essentially zero returns and the second is the saturation
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Figure 1

effect of large alloeations, the “law of diminishing returns.” As mentioned
above, z, and g{x,} will often be in different units.

The assumptions concerning independence of the activities and addi-
tivity of the associated utilities leads to the expression

(1) Blzy, 2 00, 2y) = gul2) + goloy) + - - + gxlen)
for the total utility of the allocation provess.

The maximization problem arises from the fact that we have only a
limited quantity of resources available. Calling this quantity z, we are led
to a constraint of the form '

(2) Tyt Xy -2y =z,

with z; > 0. We wish then to maximize the function R{z,, z,, ..., zy)
over all x; subject to the foregoing constraints.

4. Discussion .

Let us point out in passing that one of the major dificulties encountered
in any study of economie, industrial, or military processes is that of deter-
mining the individual and collective utility functions. In many situations
we neither know the precise form of the functions involved, nor even
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precisely what quantities should be maximized. This is particularly the
case in processes involving human beings.

In many investigations of this nature, simulation processes play useful
roles,

5. Calculus

Caleulus can frequently be used to solve optimization problems of this
type. Using a Lagrange multiplier,! 1, we form the auxiliary function
(1) Sz, Tgr 2oy Ty} = gi(2) + golma) + 10 + Inley)

— Aoy +ap o + 2y),

and set the partial derivatives equal to zero. We obtain in this way the
equations
(2) g/z) —A=0, i=1,2 ., N.
Solving for , in terms of 2, say x; = (1)}, we determine 1 by means of the
constraint relation of (3.2),

(3) () + Ayl + - AR ==

This is the usnal pattern for determining the maximum of R.
For example, if we wish to minimize the function

(4) B=az® 1 amy® - - +ayxn® 6, >0,
over non-negative x; satisfying (3.2), the relations of (2) become
. A
5 ;==
G o
The equation of (3} then reads
N i
(6) 2=,
i=1 2
whence
A= '
]
B =1 QGi
z = (%/2a,) .
2a]
igl 2a,

The minimum value s thus

(8) @

! Considerable attention will be given to Lagrange multipliers in Chapter IT,
§13 et seq. where we shall combine this classical technique with dymamic prograroming.
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This is the type ol problem and solution appearing in the textbooks on
advanced caleulus. Unfortunately, the problems that arise in applications
of any significance are nsually less amenable to routine techniques and
require more sophisticated analvsis.

It is rather amusing to point out that most of the examples used to
illustrate the power of calculus, such as that given above, do not require
calculus at all and may, more efficiently and more rigorously, be resolved
by means of the much more elementary theory of inequalities.

6. Difhculties

Let us now examine in some detail the principal difficulties that arise
when we attempt to apply the foregoing method to the alincation problem
deseribed in §2 and §3,

Relative maximum,
g'{a)=0

gix)

| .
(o] o x

Figure 2

A, Relative Eztrema. The observation that the slope of the tangent to
a curve is equal to zero at a relative maximum or a relative minimum
permits us to use calenlus in the solution of optimization problems {see
Fig. 2).

A corresponding result holds for functions of several variables, replaciug
the phrase “tangent to a curve” by “tangent plane to a surface.”

Unfortunately the vanishing of the derivative is a necessary but not
sufficient condition for an internal extremum. Not only is the derivative
equal to zero at relative maxima and relative minima, but it also can be
zero at points which are not relative extrema, such as horizontal points of
inflection.

Consider, for example, the curve appearing in Fig. 3. The derivative,
g'(x), will vanish at the points &, and b,, relative maxima, at the points a,
and a,, relative minima, and at point ¢, which is a horizontal point of
inflection, :

7
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This difficulty, whick is in the nuisance class in dealing with functions
of one variable, becomes an almost insuperable barrier to the successful
use of calculus in multidimensional maximization problems. This is
particulatly the case when the number of independent variables is large.

Consider, for example, the problem of maximizing the function
8(xy, %y, . . ., #y), appearing in (5.1}, when each function g(x) has the
form given in Fig. 1. In this case, each of the equations of (5.2) can have
two roots. Since it is not clear a priori which root corresponds to the

Herizontal point of inflection

gfx)

! -—

o ¢y A

Figure 3

absolute maximum, we must try all combinations of values. This procedure
requires an evaluation of 2¥ cases. If ¥ = 10, this number is 1024, a not
unreascnable quantity; if & = 20, this number is slightly in excess of 108,
a number which commands a certain respect.

With utility functions of still more complex nature, far larger sets of
pusiibilities will occur. This is uot only a theoretical embarrassment, but
what is worse, a computational roadblock.

B. Constraintgs. In what has preceded we have applied the method of
caleculus in a routine fashion without paying attention to the fact that in
many situations we actually seek 2 maximum over a finite region. Setting
derivatives equal to zero yields internal extrema, as noted above, but it in
general does not indicate extrema which are situated on the boundary of
the region of variation. Consider, for example, a function of one variable
g(x) which has the form of Fig. 4. The derivative §'(z) is equal to zero at
a, and b, relative minima and maxima respectively, but not at x = 0, the
point at which g(x} assumes its absolute maximum over [0, z,]-

This phenomenacn is distressingly common in the study of economic and
engineering control processes in which constraints such as

4§ a, <x, <b
8
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arc natural and sensible. In problems involving the maximization of
fonetions of many variables, a combination of all of the possibilities
resulting from relative extrema, stationary points of more complex nature
and end-point values results in a prohibitive enumeration of cases.

It is important to realize that in optimization problems that reduce to
combinatorial problems requiring a search over a number of cases, the
number of cases usually increases in an exponential fashion, or worse, with
the increase in dimension. If, for example, the total number of cases is 2V,

gix)

] I !
0 ay 2 Xq

Y

Figure 4

we do not double the time reguired when we go from ¥ to 2V, rather we
completely change the order of magnitude. We discuss this in detail in §15.

Again, this multiplication of times may be merely a nuisance. To spend
100 minutes in calenlation rather than 10 minutes is a matter of no eon-
sequence if the answer is of any importance. To be reyuired, however, to
devote 100 hours to a computational solution rather than 10 hours, may
mean the difference between continuing a significant line of research or
giving it up in favor of a more feasible investigation. Today, more than
ever before In the history of science, theoretical formulation goes hand-in.
hand with computational feasibility. :

C. Maximization over Discrete Sets. The tool of caleulus is directed at
the optimization problem which involves continuous variaiion of the
independent variables. Generally it is reasonable to take this type of
varialion as an approximation to the actual situation. In some cases,
however, the accuracy of the solution is seriously affected by this smooth-
ing. An extreme case is that where each variable takes only two distinct
values, O or 1,

In a number of cases, by means of one artifice or another, continuous
variation can be introduced. In the main, optimization over discrete sets

9
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of values requires new tools. At the present timze, many significant classes
of problems are far outside our reach.

D. Nondifferentighle Functions. We know that there exist continuous
functions defined over an interval which possess no derivative at any point
of the interval. We do not, of course, expect to encounter any functions
of this nature in the course of a physical investigation, Whenever we appear
to conjure up these frightening apparitions, a closer study generally reveals

gi{x)

xy x5 Xy
Stap function

Figure &

that certain unphysical assumptions have introduced these “pathological”
functions.

We can, however, expect to meet functions possessing varfous minor
inconveniences and handicaps, such as discontinuities at a finite set of
points, or one-sided derivatives, Step functions are the simplest example of
funetions of this nature, serving as such usefu] approximations of smoother
but far more complicated functions; see Fig. 3.

Another interesting and helpful class of functions is the set of polygonal
functions generated by expressions of the following form (see Fig. 6}

2) ¢(z) = max (ax + by, oyt + by, . .., & + B

In dealing with functions of this type, we can take derivatives, provided
that we know the interval of interest. If this fact is unknown, we encounter
many of the unpleasant features of the combinatorial search problem
already mentioned. Quite often the position of the singularities is an
essential part of the solution.

E. Linearity. At the opposite end of the difficulty spectrum are the
problems in which all the functions appearing are linear. All derivatives

10
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exist in this case and yield little information, since we know a priori that
the extrema are sitnated at boundary points of the region of variation.
The theory of linear inequalities, with its offshoot, linear programming, is
specifically designed to treat the question of maximizing a linear form

N
(3) Ly =X cx,
iT1
over all =, subject to the constraints x; > 0 and
[
(4) Sax,<b, i=12..., M.
i=1

It is, however, an all-purpose tool, which pays little attention to the
underlying structure of the process under investigation. We can expect

gin}

0 x
Figure 6

then in specific situations to devise much more efficient techniques for the
solutions of the associated optimization problems, and this is indeed the
case.

F, Stebility. As we have pointed out above, calculus is based upon
continuous variation of the independent variables. It follows that the
results obtained in this wav are very sensitive to local variations and
therefore to smell errors.

Consider two functions ¢z} and %(z) shown in Figs. 7 and 8; the first is
an idealized mathematical function and the second a “phrsical” function.
The meaning of Fig. 8 is the following. 1f k({z) is determined as a result of
measurement or caleulation, its value at any particular point x is not a
number A{z}; rather, it has a distribution of values,

Consequently, although we may be willing to assign a value to Afz) with
& high probability of accuracy, we should be quite reiuctant to assign a

I1
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direction at any particular point. It follows that we do not wish to rely
upon optimization techniques which require differentiation.

F 3

g(x})

0 X
Figure 7

More specifically we wish to use a technique which guarantees that the
error in the answer is no worse than the errors in the initial data. This
is what we mean by siabilily.

The study of the stability of computational algorithms is one of the
fundamental activities of the modern theory of numerical analysis. It is a

Alx)

4] X

Figure &

very difficult area, made more diffieult by the fact that it is not generally
realized as vet that the computational stability is intimately bound np
with the original mathematical formulation of the physical process.
Clonsequently, many numerical investigations are extraordinarily com-
plicated by physically insignificant details of the original mathematical
model.

I2
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7. Conclusion

The foregoing discussion leads us to the conclusion that powerful and
versatile as caleulus is, it is not uniformly suecessful in the treatment of
optimization problems. In some cases it is completely inapplicable, and in
other cases its uncritical use can lead to incorrect results. If we wish to
guarantee a numerical solution to the simple allocation problem posed
above, we must introduce some new mathematical methods.

B. Sensitivity Analysis

How should we measure the utility of a computational scheme? QOne
approach is the following. If we are required to perform the same type of
caleulation repeatedly for different values of the basic parameters, can we
use the infoermation gained from one computation to aid in the following
computation, or must we start each computation over again from the
ground up? If an entirely new computation must be made for each set of
parameters, it becomes extremely expensive to obtain all the desired
information.

All of this is intimately related to the concept of a sensitivity analysis. It
is generally true that in an investigation of a physical system, we are not
content with the determination of the optimal behavior of the system for
any single set of parameter values. Rather, we wish to allow the parameters
to vary over a critical range of values, and then to observe how the optimal
policy is affected by these changes. It is by observing the change in the
structure of these policies as the pararmeters change that we gain the most
vitel information.

This idea holds uniformly in the intellectual realm and accounts for the
success of Comparative Anatomy, Comparative Philology, Comparative
Religion, and so on.

9. Dyn-amic Programming

These ideas are made explicit in the theory of dynamic programming.
We shall start with a discussion of some simple problems in order to illus.
trate both the conceptual and computational aspects as clearly as possible.

As will be demonstrated, the functional equation technique overcomes alt
of the difficulties cited above—at least as far as one-dimensional allocation
processes are concerncd. Why difficulties arise in the treatment of more
complicated processes, what these difficulties are, and what ean be done to
circumvent them will be the concern of subsequent chapters.

We may as well encourage the reader now with the frank admission
that we by no means completely overcome or circumvent all the difficulties
that arise and that there are thus ample opportunities for research in the
application of these new techniques,

13
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10. Functional Equations

To treat the particular problem of maximizing the funetion
1) B(wy, Tg, - . o 2y) = g1(%)) + Fo(®) + -+ - + galzy)

over the region x; = 0, 3 | 2, = z, we imbed it within a family of alloca-
tion processes. In place of considering a particular qumantity of resources
and a fixed number of activities, we consider the entire family of such
problems in which  may assume any positive valne and ¥ may assume
any integer value.

What seems at first sight to be a static process we artificiallv imbue with
a time-like property by permitting, and indeed requiring, the allocations
to be made one at a time. First a quantity of resources is assigned to the
Nth activity, then to the (¥ — 1)th activity, and =0 on. Viewed in this
fashion, we have a dynamic allocation process.

Now to the analytic treatroent! Since the maximum of Rz, 14, ..., Ty)
over the designated region depends upon x and N, we make this dependence
specific by introducing the sequence of functions {fy(z)} defined for
N=12 ..., =0, as follows:

{2) i) = I?:.}x Bz, 25, .. .5 2y),
where z;, > 0, 37, a; = 2, as above.

The function fy(x) is then the optimal return from an allocation of the
quantity of resources x to N activities. In two particular cases, the elements
of the sequence {f(z)} assume particularly simple values. It is clear that

(3) fvOy=90, ¥N=1,2,...,

provided that g{((} = O for each i, a sensible assumption, and also clear
that

- hHim) = a2,

forz = 0.

To obtain a recurrence relation connecting f\.(z) and f_, (x} for arbitrary
N and =z, we proceed as follows. Let x, 0 =< z, < =z, be the allocation
made to the Nth activity. Then, regardless of the precise value of zy, we
know that the remaining quantity of resources, z — zy, will be used to
obtain & mazimum return from the remaining (V — 1} activities.

Since this optimal return for ¥ — I activities starting with quantity
x — zy is, by definition, fy_;(x — &), we see that the initial aliocation of

z, to'the N¥th activity results in a total return of
(8) - T gniEy) + fyale — 2y)
from the N-activity process, ’
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An optimal choice of &, is obviously one whieh maximizes this function.
We thus obtain the basic funetional equation

(6) fxiz) = max [gy(m) + fv—1lz — 28,
0=z, =z
for N =2,3,..., x =0, with fj{z) determined by (4).

11. FThe Principle of Optimality
We have applied a very general technique in deriving the foregoing

relation. It is called:

The Principle of Optimality. An optimal policy has the property that
whatever the inilial state and inilicl decision are, the remaining decisions
must constitule an oplimal policy with regard lo the state resulting from the
Jirst decision.

All of our subsequent work will be based upon the application of this
simple property of mmitistage decision processes. In this particular case,
the property is readily established by a combination of induetion and proof
by contradiction.

12. A Direct Derivation

For those who may at this stage mistrust the optimality principle, let
us present the following derivation of (10.6). Observing that

{1} . max = max [ max :r,
T +xat c FEy=r O5IvES | Bptaztcrr RrNagsr-xy
0 #iZ0
we can write
(2) fulx) = max [oxzy) - gy-glzy—) + - + gulayd]
z1tzpt -1 tay=x
220
= max [ max gyl@s) + gyaley-p + - + 91(31)}]
OZSzy=r|x +xatr +EX_ 3 =x2—Ix
=
= max [gx(xx) + max GxaEv-D + 0 + glfxln]-
0=ry=<x g1+t "‘;+z_v_1'==—zy
2

= max [gylzy) + fv_1{z — =31,
Sz

the desired result.

13. Discussion

The recurrence relation of (10.6} yields a theoretical method for obtain-
ing the sequence {f,(x)} inductively, once f,(z) is known. We see that f)(z}
determines f,(x), that fi{x) leads to an evaluation of f3(x}), and so on. The
major prohlem we must face squarely is that of assessing the feasibility of

15
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new method; then we mnst ascerfain whether or not it overcomes the
difficulties encountered by the traditional techniqgues.

As we shall demonstrate, the method is quick and cfficient. By means of
examples we shall iliustrate its efficacy. Wec can thus assert on the
basis of some experience that the technique of dynamie programming
yields a simple, quick and accurate solution to the general problem posed

in §3.

14, Computational Scheme

Let us now examine carefully the way in which the recurrence relation
of (10.8} can be used to determine the sequence {f,(z)} computationally.
Although initially we shall discuss guite naive and direct techniques,
subsequently we shall present some more sophisticated technigues.

Sinece we have renounced caleulus and thus, in effect, analytic representa-
tions, we must first clearly understand what is meant by the statements
that we are given the functions g,(x), 1 = 1, 2, .. ., and that we are comput-
ing the elements of the sequence {f\{z}}.

By a function defined over 2 0, such as g,{x} or f,(z), we shall mean
the set of values assumed as x assumes all non-negative values—the usual
definition. It is clearly impossible to tabulate all values of a funetion, or
even any very large finite set of values. Consequently, we must use some
type of interpoiation scheme which permits us to recreate a general value
from a few carefully chosen values. '

There is very little sophistication involved in the choice of the values
which we will tabulate to represent the function. Experience, memory
requirements, accuracy requirements, and eost in time play major roles
in the selection of the method used. Initially, we shall consider a simple and
direet idea. Subsequently, we shall discuss a more advanced method.

To represent the entire set of values of fy{z} in the interval [0, z,], let
us use the values assumed at the finite grid of values

n z=0,A2A,...,RA =12z,

Tt is agreed then that each element of the sequence {f,{(z)} will be evaluated
and tabulated at each of these points and only at these points.

Values of f{z) for x-values distinet from these grid points will be
obtained by interpolation. The type of interpolation used will depend upon
the accuracy required and upon the time required to furnish this accuracy.

If

(2) - o EA <2 < (k+ 1A,
the simplest.approxima.te value of () is cbtained by setting
5 [ulz) = fx(BA).
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The next simplest approximation is furnished by a linear interpolation
formula

{4) Sal®) = fulkA) 4 (2 — EA) Sk £ 1)A) — fulkA)I/A.

If we wish, we can use more aceurate interpolation formulas based upon
polynomials of higher degree.

In the allocation problem posed above, it is particularly convenient to
allow the allocation variable x, to range over precisely the same set of grid
points as that preseribed for z. Hence in the maximization process, r - can
assume only the values given in (I},

The maximization in {10.6) is performed by a direct enumeration of
cascs, and comparison of values with no dependence upon calewius. In
subsequent chapters we shall discuss technigues which in sorue cases permib
an enormous simplification in the search procedure and thus a great
saving in computing time. At the moment we shall consider the general
case in which the funections considered possess no speeial strneture which
can be utilized to facilitate the search.

Let, us now discuss the steps in greater detail. When N = 1, the function
Fi(z) is determined immediately by the relation

(3) A=) = gifz).

The set of values {f,(kA)}, £ — 0,1, ..., R, is at this point stored in the
memory of the computer.? We are now ready to compute fy(z) by means of
the relation of (10.8) for ¥ = 2, namely

{6) Jol#) = max [gy{x) + file — )L,
0= vy a
where z assumes only the values 0, A, 24, ..., RA. Since no enumerative

process can yield maximization over a continuous range of values, we must
replace-the interval (0, =] by a diserete set of values. Consequently, the
reletion in (6} is replaced by the approximating relation
(7} ey = max  [go(kA) — fylx — kA)].

=01, K]

The funetion g,(), in the form of the sequence {g,(kA)}, has been stored
in the memory of the computer. To begin the maximization process, the
computer evaluates g,{0) - fi(x) and g,(A) + fi(z — A) and then com-
pares them, keeping the larger quantity. The value g,(2A) + fi{z — 21} is
then computed and compared with the previously obtained larger quantity,
with the larger of these quantities retained. This process now continues
until % has traversed all of the allowable values. This process yields f,(z}
for a particular value of x.

t Unless otherwise specified, “rncmér‘y“ will be synonymouns with *“fast memory."™
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In the course of this search proeess, the computer determines not only
the value of f,(z) at the z-values 0, A, ..., BA, but also the value, or
values, of 2, at which the maximum is obtained in (8). Let us for the
morent assume that the absolute maximum is attained at only a single
z-value. We shell discuss the general case Lelow.

Sinee this unique value will depend upon z, let us denote it by the func-
tien xy{x). For each value of @, the computer will store ay(x) and f,(),

The resulf is that after two stages of this process, we ean exhibit a table
of values that looks like Fig. 9.

x Jilz) (%) Salz) Zyl)

RA

Figure 9

In this case, f,{z) = g,(z) and x(z} = =.

This table yields the solution to the two-stage maximization problem
in the following sense. Given a particular value of , we scan the table of
values of @y(x) until we find the corresponding value of z,. Once this value
has been determined, we are reduced to the problem of determining the
optimal allocation in a one-stage process with resources » — x,(z), for
which the solution is trivial.

This search operation ean, of course, be done by the computer itself.
Continuing this process for X stages, the result is that we can obtain the
solution either in the form of the foregoing table, or in the form of the
choices of xy, xy 1, ..., Zp %, associated with each valne of .

15, Nonuniqueness of Maximum

Numbers stored in the computer’s memory are usually correct to ten
or more significant decimal figures, depending upon what is desired.
Conscquently, it is extremely unlikely that two values of x, will ever yield
exactly the same maximum value. Nevertheless, the actual decision process
may possess several alternative optimal policies. In some cases, we want
merely the maximum return and a particular optimal policy; in other
cases, we vory much want all optimal policies and we may prize these more
highly than the maximum return itself.
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Furthermore, approximate optimal policies which vield returnz to
within some such figure as one percent of the actual masimom may be as
important as the solution and even be more important in furnizhing simple
approximations for more complex situations, These near-optimal policies
may be readily obtained by requiring the computer to retain not only the
maximum value and the value of the z,’s which rield it, but also the value
of the x,’s which yield values within a certain neighborhoed of the maxi-
mum. This increases the memory requirements, and the time involved, but
generally not in any prohibitive fashion.

16. Dynamic Programming versus Direct Enumeration

Once the original continuous variational problem has been replaced by
a discrete variational problem, we can think in terms of determininz the
maximum value by a sheer enumeration of cases. There is no particular
elegance or appeal in such a method, but it may work where more sophisti-
cated approaches fail. As far as hand computation is eoncerned, time and
accuracy considerations usually rule out this method. Once a digital com-
puter with its miraculous speed isavailable, enumerative methods assume
a certain feasibility.

Let us consider some simple allocation processes and see what would be
involved in a straightforward examination of all possibilities. To tegin,
consider a simple situation where each of the independent variables r, can
run over ten diffcrent values, The N-variables maximization process will
then involve 19+ different sets of choices.

In this process, the total nember of possibilities is actually considerably
less, since a choice of x immediately restricts the possible ranges of the
other z,. Let us ignore this point for the moment. As we shall see, it will
not change some of the basic conclusions.

For a ten-stage process, we will then have 10! cazes to examine. This
may not seem to be a very large quantity, but a small amount of calcnla-
tion gives some idea of its true magnitude. At the rate of examination of
one set of z-values per millisccond, 107 seconds wonld be required. This
is something more than 10° hours, and thus of the order of magnitude of
ten years. This is an unreasonable amount of time to spend on the numer-
feal solution of a problem which represents reality as crudelr as the one
we have posed.

Buppose that we wish to consider a slightly more complex problem in
which there are twenty different activities. Arguing looselv, as above,
assume that this involves 102 different possibilities. Since thiz quantiry is
1010 times as large as 1039, we see that no matter how much we reduce the
time of the search process, this exponential growth in the number of
possibilities as the dimension of the proeess increases renders enumeration
of cases impossible.
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We see then why we can argue so freely about the total number of cases.
If we allow 100 or 1000 choices for each variable, a change in the order of
magnitude of the number of possibilities for @ ten-stage allocation process
by 2 factor of 101? does not materially affect the validity of our argument.

So much for naive approaches to optimization problems. It must be
realized that large-scale processes will require both electronic and mathe-
matical resources for their solution.

How is it, nonetheless, that the technique of dynamie programming
enables one to easily and quickly resolve problems of far more complex
nature than the type described above? From the estimates given, we see
that the answer must reside in the fact that application of the functional
equation technique is equivalent to using a search process that is far more
efficient than the brute force examination of all eases,

Tt is the principle of optimality that furnishes the key. This prineiple telis
us that having chosen some initial z,, we do not then examine il policies
involving that particular choice of z. but rather only those policies which
are optimal for an N — 1 stage process with resources z — zy. In this
magical way, we keep operations essentially additive rather than multi-
plicative. The time required for a twenty-stage process is now almost
precisely twice the time required for a ten-stage process.

17. What Difficulties Have We Overcome?

In §6, we discussed the major difficulties in the path of the application of
calewlus methods to maximization problems. Let us now see to what extent
the technigue of dynamic programming removes these obstacles.

In the first place, it is clear by a simple induetive argument that. the
method always vields the absclute maximum, rather than relative maxima.
Secondly, ohserve that constraints of the t¥pe we have so far introduced
greatly simplify the problem rather than complicate it. Any restriction
such as g, < z, < b, which restricts the number of possibilities at each
stage simplifies the search process and so reduces the computing effort. In
other words, the fewer available policies at each stage, the quicker the
calculation.

Precisely the same comment applies to maximization problems over
discrete sets. The smaller the number of allowable choices, the simpler the
computation. The simplest problems will be those where each z; can assume
only a few values such as O or 1.

Since we are using only tabulated values of the functions involved, their
precise analytic structure is of no interest to us. This means that peculiati-
ties of derivatives of any order need not concern us at all, and linearity is
not & handicap. Let us again, however, point out that when certain
structural features such as convexity, concavity, monotonicity, and so on
are present, they may be used very effectively to simplify the search
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process. Matters of this nature will be discussed variously in subsequent
chaptera.

Finally, we come to the question of sensitivify analysis raised in §8.
Two essential parameters in allocation processes of the type we have been
discussing are the quantity of resources available and the number of
activities in which we can engage. Our sclution, expressed by the two
functions fy(x) and z{x), is obtained directly as a function of these basic
parameters.

Questions that naturally arise in the course of formulation and solution
of allocation problems of the type we have been discussing are;

(a) How do the return and policy depend upon initial eonditions?

(b} Using an optimal policy, what is the value of changing the initial
state?-

{¢) What is the advantage of adding one more activity, or of carrying
on the process for one more stage!?

Unless one possesses a very simple explicit analytic solution, information
of this type is guite difficult to obtain from the conventional formulation.
" The dynamic programming formulation, however, autoratically imbeds
the original problem within a family of analogous problems in which the
basic parameters x and N assume sets of values which permit us to respond
to these fundamental guestions. In the allocation process, for example,
sclutions are found for activities ranging in number frem I to A, and for
quantities of resources from 0 to x. Consequently, after the computational
solution for an ¥-stage process has been obtained, we are in & position to
determine the trade.off between the state variable, z, and number of
stages, NN, for an immense variety of sub-problems. Since the optimal
return is given as a fnnction of the fundamental paramecters x and N, a
sensitivity analysis automatically accompanies the solution.

It thevefore follows that the method we have presented overcomes all of
the obstacles we have deseribed. Why it is that with all these advantages
we do not have a routine solution to all types of allocation processes will
be discussed below. It can safely be said that there is still great need for
ingenuity, and that much fascinating research remains to be done before a
large number of significant processes can be treated effectively.

In this chapter, we wish to consider some simaple problems in detail so
that by the time we attack the more difficult problems there will be no
questions remaining as to the basic ideas.

18. Flow Chart for General Allocation Process

In the-discussion of the reduction of pr.oblems from mathematical
formulation to computer code, which will occupy a large portion of our
subsequent attention, we shall make frequent reference to “flow charts.”
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These are diagrams resolving a computational process into its component
parts and exhibiting these sections in sufficient detail to be easily pro-
grammed by someone who is not necessarily familiar with the original
mathematical problem or technique. By following one of these charts one
candeduce exactly how the problem isto be solved numerically; see Fig. 10.

Since the present example is introductory, we shall now explain the
rationale of the various steps in considerable detail. Later flow charts will
follow a similar pattern and will be assumed to be self-explanatory.

Step I The basic code will use the recurrence relation (16.6) to compute
a tabular function f,{x) using f,_,(z). In order to inclnde the initial step
of the calculation—E«quation (10.4) which yiélds f,{x) within the general
procedure—we define fy() to be identically zero. We thereby avoid writing
a separate routine for the determination of f{x). In practice, the storing
of zeros is accomplished by merely setting all memory to zero prior to
loading the program deck. Then the region designated as fy{x} is automati-
cally zero. We can now have the computer determine f)(x) using f,({z) in the
same manner ag it determines f(z) from f,_,(z). While f,(x} could be
computed more quickly using Equation (10.4} directly, the savings in
space and programming time obtained in this way easily offset this con-
gideration. The intuitive justification of f,{z) being zero is that there can
be no return from no activities, regardless of the quantity of imitial
resources, x. In some other processes unallocated resources will have a
valne, and this value will be taken as fo(z}.

Step 2. The index k will denote the number of activities that we are
considering, as discussed above. Initially we shall consider a problem
involvingonly one activity. The index & will be increased as the calculation
progresses (see Step 16).

Step 3. We shall compute a table of values representing the function
J\(z) at discrete points. The initial argument for which we compute f(2) is
z = 0. After computing and storing £,(0), we compute f3(A), and then
71(2A), and so on until the table is complete.

Step 4. The internal working location 8 will contain the “‘best return so
far’” as we tesi various policies secking that which maximizes. Setting this
cell initially to a large negative number (denoted by — oc, but, of course,
not actually infinite) we guarantee that the first policy decision tested will
be accepted as the “hest so far”” As in Step 1, this is an artificial device
introduced to avoid treating the first step of a process as a special case.

Step 5. 'We use z,.(x) to denote our allocation decision given a quantity
of initial resource z at stage k. Since, to begin with, & =1 and x = 0, we
test 0 as-the initial candidate for =,{0).

Step 6. This i3 the body of the calculation. We have now specified the
stage k; the resource z; and the allocation z,{x). Using the return function
g.(2,) and optimal (£ ~ 1)-stage return, f,_,(z — z,), we compute the total

22



_’{gk(xk} +f;¢..1:{$ —x,) - a—l
1

ac-—»ﬁ

Block bransfer
Jel#) — fia(z)
I

Yes

Figure 10
23




ONE-DIMENSIONAL ALLOCATION PROCESSES

return associated with the given decision in the given state and store this
number in location «.

Step 7. Compare this number with the number in cell 8, the best return
from all previously tested policies for this particular state and stage. Jf
the current decision yields a smaller return than for some previcus one, go
on to Step 9. If this is the best allocation decision tested thus far, perform
Step 8.

Step 8. Replace the contents of cell § by the greater return that has
just been stored in cell . {Where the meaning is obvious we shall not
atltempt to distinguish notationally between the name of a cell and its
contents.) Cell y is to contain the ““best policy so far,’” hence we place z, in
cell .

Step 8. Having examined the effect of the allocation of quantity x, to
the kth activity, we now prepare to test the larger allocation #, + A.

Step 19, s this allocation greater than our initial resouree, z? If so, this
decision is not permissible and we go on to Step 11. If x, + Ais an admis.
sible decision, return to Step 6 to evaluate this decision, and to compare it
with the previous decisions.

Step 1I. We have now compared all decisions for a specific initial
resource x. Store the maximum attainable return, f,{x), and the decision
yielding this return, =, {z).

Step 12.  Increase the initial resource by amount A, We now have a new
problem involving the same number of activities but with a slightly
greater initial resource.

Step I3. If the new problem involves a resource greater than that with,
which we began the N.activity problem, we clearly cannot reach the
k-activity problem with that large a resource and we need not compute
this result. We have thus compieted the computation of the table of values
of fy(z} and go on to Step 14. If this new x is admissible, we begin the entire
maximization process over again by returning to Step 4.

Step I4.  ""Output” the results of the current step. These results, and in
particular the policy decision as a functiom of resource, will be used later to
determine the actual optimal policy and should therefore be stored on tapse
or punched into cards.

Step 15. The code refers to certain memory loeations wherein it expects
to find f,_;{x) and other locations where it stores the new table, f,(z}. At
this point in the code, we have completed the use of the old table to com-
pute the new. From this point on, we shall use the newer table, f,(z}, to
compute f, ., (z}. Since f,(z) is now to play the role of the ““o0ld” table, it is
much easier and more efficient to relocate it in memory than to modify the
addresses of all references to it in the code. This relocation of a whole
gection of memory is called a “'block transfer’’ and is accomplished in a
fraction of a second.
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Step 16. We now proceed to the next activity and prepare to solve a
family of problems involving (¥ + 1) rather than k activities.

Step 17. If we have just computed fy(z), then k=N and k -1 =
N -+ 1is greater than N. We then stop and declare the calculation com-
pPlete. If the new & is less than or equal to N, we return to Step 3.

This completes our analysis of the actuzl operations within the com-
puter,

We shall often, throughout the text, refer to computing statistics based
on aur experience with the RAND.Johnniac computer. Appendix 5 contains
a description of the machine.

19. Numerical Results

In the preceding section we have described the actual steps of 2 com-
putational solution of a general allocation problem. In the course of the
solution, we have generated a series of N tables, each of which furnishes
the total return and initial policy decision of a fixed number of activities
for a range of initial resources.

The use of these tables to determine the solution of a partieular problem
(i.e., o specific number of activities and a given initial supply) constitutes a
second and different phase of the caleulation.

This technique is mentioned briefly in the latter part of §14. Here we
wish to discuss the method in further detail and incidentall¥ to provide a
flow chart for the calculation.

The basic observation which guides us is the fact that the lust table
generates the optimal ¢nitial allocation for a process involving & activities,
which in turn determines the initial supply for problems involving (¥ — 1)
activities. The next-to-last table then determines the optimal second
decision.

In this manner, all output policy tables are processed in the reverse of
the order in which they were calenlated. The only information used at this
stage is the set of policy tables {x.(2)}. The return tables, {f.{z}}, were vital
to the generation of the sequence of results but are not necessary in this
second phase of the eomputation.

A detailed explanation of the flow chart (Fig. 11) for this second phase of
the zolution of the allocation problem follows,

Step 1, We begin by considering a problem invelving ¥ activities with
initial resource z,. The cell & contains the variable denoting the number of
activities, and x denotes the magnitude of the rescurce.

Step 2. Determine the policy associated with the above situation. This
involves a table look-up using the x,(z)-table generated in phase 1. The
sequence {z,(x)} of these policy tahles, generated in phase I, is usually
stored on tape or punéhed cards, and hence must be read into high-speed
storage as needed. The appropriate policy i stoved in cell .
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Step 3. The number of the aectivity considered and the policy are
printed. This is one line of the final result table.

Step 4. The quantity of available resouree is reduced by the amount
allocated, a, and the number of activities under consideration is reduced
by 1.

Step 5. If any activities are left, return to Step 2. This will involve
reading a new policy table into memory. If no activitics are left. stop.

This completes the analysis of how a solution for a particular value of z
and a particular value of ¥ is obtained from the dynsmic programming
solution.

20. A Useful Device

Note that in the foregoing the results of phase 1 are processed in the
opposite order from their generation. If tape storage ig available, this is
easily accomplished by the “‘read backwards” instructions.

For machines with limited secondary storage, stage-by-stage results
must be punched onto cards. The following programming device, used
successfully on the Johnmniac, is then recommended,

Choose, or construet, a card format that can be inserted upside-down
{ie., face up, 12's edge first on mest computers) without affecting the data
read from the card. An example of such a card, part of a standard Johnniac
input system, is shown in Fig. 12. When the card is turned over {with the
address stjlt on the left half of the card), the top rather than the bottom
row is read first. However, after all twelve rows are read, the same data
appears in the same cell as it would originally have appearced in if the
card had heen inserted conventionally. This allows us to place the entire
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output of phase 1 in the read unit, last card first {i.e., face up), achieving
the desired inversion of ordering for phase 2.

If card storage is required, each of the ¥ output tables of phase I should
be preceded {i.e., followed when the order is reversed) by a transfer card, to
be recognized as an end-of-table indicator in the course of phase 2 of the
calculation.

Address fleld Data fleld
{12 binary address) {12 binary words)

Figure 12

21. Stability

A number of very interesting mathematical questions arise in connection
with the type of approximate technique we have employed. Not only are
they of interest to the analyst, but they are of prime importance in connee-
tion with the snceessful application of these numerical methods. They are
all related to the concept of stability.

We have taken an equation and replaced it by a related equation in
which the maximization is performed over a smaller, finite range of values,
and in which the funetions involved are evaluated only at a finite set of
points, Sinee both of these operations in general introduce inaccuracies,
the question immediately arises as to the magnitude of the errors at each
stage, and as to how these errors grow as the number of stages increases.

Problems of this general nature have been extensively investigated for
ordinary and partial differential equations, but very little has been done as
far as the funectional equations of dynamic programming are concerned. We
shall return briefly to this problem in Chapter X1I.

22. A Cargo-loading Process

As a first illustration of the general techniques discussed in the preceding
pages, let us consider a simple prototype of problems such as often arise in
eargo-loading and packing. )

Let us suppose that we are engaged in leading a vessel with a cargo
composed of different types of items. Since these different items have
various weights and wvalues, the problem arises as to how to load a ship ef
limited capacity with the most valuable cargo. The reader, by means of a
simple transformation of situations, will be able to conceive many questions
of similar nature. :
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23. Mathematical Formulation
Let us assume that we have a vessel whose maximum capacity is 2, and
whose cargo is to consist of different quantities of N different items. Let

(1) v, == the value of the ith type of item,
w; = the weight of the ith type of item,
z; = the number of items of type { which are taken.

Then the problem of determining the most valuable cargo is that of
maximizing the linear form

N
2 Lylz) =3 zp,
=
subject to the constrainta

N
(3) (a‘} ray; =z,
i=1 .
) 2, =012, ....

The values {v,, w,} are naturally taken to be positive.

24, Discussion

Were the constraint in (23.3b) merely that of z; > 0, the problem would
be a very simple one whose solution could be determined in the following
way. Consider the ratios, v, fw,, i =1,2,..., N,andleta be anindex for
which the ratio assumes its maximum value. Then, choose only items of
typea, with the resnit that the maximum value of the cargo will be given by

(1 Vy = 2a,

. .

It is easy to show that in the presence of the constraint of {23.3b), which
allows only a discrete set of values, the preceding solution is no longer
generally valid. At the present time there exists no exact solotion to the
foregoing problem which has a simple analytic form.

Rounding of the solution for continuous variation to the nearest integer
can be far from optimal. As an example, consider the following problem
involving three items:

{2} z = maximum capacity = 100,
wy = 49, v = 20,
wy == 50, vy = 153,

wy = 5i, vy = 102,

‘Were it not for the integer constraint, we would load 100/51 a+ 1.96 of item
3 with a value of 100 - 102/51 — 200. Since this is not allowed because of
the integer constraint, we may be tempted to round 1.96 down to 1 and
take one of item 1 to fill the remaining 49 lbs. The value of this policy iz
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122, Yet the true optimum, easily determined by a quick enumeration, is
150, and is obtained by loading two units of item 2.

In view of the obscure nature of the precise analstic solution, it is of
interest to present a simple algorithm, based upon the previous treatment
of general allocation processes, which rapidly vields the solution.

25. Recurrence Relations
let us define, for 2 =0 and ¥ = 1,2, ..., the function

(1} fN(z} = mAax LN{IJ,

iz

where the maximization is over the set of x,-values determined by (23.3).
Then

2 -
o wo=I=ln
fat}
where [w] denotes the greatest integer less than or equal to 2.
Proceeding as in §10, where the general recurrence relation max be
found, we obtain the simple relation

3 Ful?) = max {zyvy + fyo1z — aywy)},

N

with the maximization with respect to xy is over the set of values

) xN=0,1,2,...,[i].

Wy

In the next section, we shall present the actual routine used to compute
both the sequenee {fy(z)} and the optimal choice of the =,.

26. Discussion of Computational Procedure

The basic computation can be accomplished in about 25 instructions.
Since this small section of code is traversed thousands of times, it mirht
well be said that a millisecond saved is a second earned. In fact, except for
the input-output tires, the entire calculation time is essentially achieved
by these 25 orders. They accomplish:

(1) The evaluation @2, of a choice to load x, items of the ith fype.

(2} Table look-up for the optimal return f;_;(z — w,r;) obtainable
from items of the (¢ — 1) previous types, with remaining capacity
—wr)

{3) The maximization of (1) + (2) over all z, where = is integral,
non-negative, and not greater than the greatest integer in = ir,.

29
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The computation time depends on the distribution of the weights w,.
However, the following is a good estimate:

If
N = number of types of items,
z = maximum cargo weight allowable,
W = average w,,
005 = time used in evaluating am, 4 f,_,(z — z;w;) for given
values of 2, v, w;, z and f,_,,
then

z
computing time = .003 (2—_-) =N seconds.
T

Input-output time is a function of the quantity of information desired.
Printing takes about one minute per item, while punching requires a similar
amount of time. However, no printing except the final optimal policy is
necessary, and the data punched can be stored on drum in a negligible time.

Input Table of
w; and v,

:O-—;-z.
—l’—l

Determine Greatest

z
Integer in — = x
0.

i

Maximize: vx; + f;_,{z — w.z,),
where z; < o and f; = 0.
Store f,(z) and the maximizing =,.

T
+

z4+1—z N0 Doesz= w? I
¢ Yes
Print Table of
Ji(2) and z’s.
Jiz) —fi4(2)
T
Does i = total Xo
number of items?
Fea

-1

l

Figure 13. Flow char$ for numerical solution of cargo-loading
problem.
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The flow chart uscd for the computer program is presented in Fig, 13.
The numerical data for a small hypothetical problem involving eight
types of items and a vessel of capaeity 100 appears as Table 1, Table 2 then

TABLE 1
Type .
Number Wit. Value
1 20 72
2 18 60
3 14 40
4 12 27
5 10 20
6 16 50 |
7 22 85
8 24 96
TABLE 2
z fiz) No. of items of ith type loaded
100 384 g =4
95 373 Tq = 1 Ty = 3
91 351 T,=3 zg=1
.89 340 x, =4
87 328 =1 2,=3
- 8B 37 =1 2, =1 2,=2
.83 308 ;=1 z2,=23
81 297 #g =1 z; =1 zz=2

gives the optimal solution to this problem. In Fig. l4a we see how the
optimal return depends upon the capacity of the vessel. Figure 14b shows
how irregular the optimal policy may be when viewed as a function of the
capacity variable. This is a result of the restriction to integer solutions.

Because improvements are being made so rapidly, the specific times
given above will naturally appear rather “‘horse and buggyish” by the time
this book appears in print. The reader familiar with the properties of the
latest digital computer can readily make the necessary changes.

27. Reliability of Multicomponent Devices

Let us now turn to the discussion of a problem from an entirely different
field. We choose this problem to illustrate an allocation process in which
the criterion function is not additive.
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Figure 14b. Numerical solution of a small hypothetical cargo-loading
problem involving 8 types of items of given weights and values
and & vessel of capacity 100

One of the basic problems confronting the designer of anv piece of
complex equipment is that of reliability. The situation is particularly
serious in connection with the manufacture of devices such as digital
computers. One malfunction in any of thousands of vacuum tubes,® one

* This rather antiqt-mted and clumsy element by the standards of current trans-

istors and solid-state devices was used for want of better by the pioneers in the fisld
of digital computers.
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RELIABILITY VIA COMPONENT DUPLICATION

mistake in any of millions of operations, and the entire caleulation is
useless.

In many cases, the problem can be posed as one involving the constroe-
tion of & reliable device from less reliable components. A standard way of
handling the problem is by means of duplication of components. For
certain types of simple circuits, the resulting mathematical problem
can be treated by means of dynamie programming technigues, as we
shall see.

28. Reliability via Component Duplicat®on

Let us suppase that the deviee we wish to construct can be considered to
consist of a number of stages in series, as in the Fig. 13. The refiability of

f—r— W &

Stage | Stage 2 Stage A

Figure 15

the device will be defined as the probability that it will operate successfully
Considering the series arrangement, this overall probability can be taken
to be the produet of the probabilities of successful operation of the indivi-
dual stages.

If the reliability is too small for efficient utilization, we can remedy the
situation by putting duplicate components in parallel at each stage, The
result is that the block diagram of the device looks like Fig. 16.

We assume that the units in each stage are supplied with switching
circuits which have the property of shunting a new component into the
circuit when the old one fails. The reliability of an individual stage now
depends in a somewhat complicated way upon the number of components
in parallel and the tvpe of switehing circuit employed.

Practical constraints of cost, weight, and size, and perhaps the additional
errors introduced by switching circuits, prevent us from using an arbitrarily
large number of duplicate components at each stage, and thus obtaining
arbitrarily accurate operation.

The problem that we wish to consider here is that of determining the
most efficient design utilizing duplication, taking into aceount eonstraints
of the foregoing type.

We shall consider only a simple version at this time. A more complicated
model will be considered in Chapter 11 in connection with two-dimensional
allocation processes.
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Stage | Stage 2

Figure 16

.29, A Mathematical Model
Forj=1,2,... N, let

(1) 1 + m; = the numher of duplicate components used at the jth stage,
where m; = 0,1,2,..., and

(2) ;{m,) = the probability of snccessful operation of the jth stage when
1 -+ m; components are used at the jth stage.

We shall suppose that the functions ¢,{m,) have been given to us and not
concern ourselves with their specific forms.
The reliability of the N-stage device is then given by the expression

N
3) - Py = E $ilm;).
Let T
(4) ¢, = the cost of a2 single component at the jth stage.
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Agreeing to ignere the cost of the switching aystems, the problem we
wish to resolve is that of maximizing p - subject to the constraints

(3) f(a) . E me; < ¢,
. i=1

{b) my=0,1,....

In writing the constraint equation immediately above, let us suppose
that we have already taken account of the fact that at least one com ponent
must be used at each stage,

Let us denote by f(c} the value of p., as defined in {3}, obtained using
an optimal policy. Then, for ¥ > 2,

{6) Fule) = max [$ {my)fx_ (e — myey)],

where m is constrained by the relations

(7) (a) my =0, 1,,..,
(b) Myty < c.

For N =1, we have

(8) file) = llefmy)).

There will be a detailed discussion in §27 of Chapter IT of the numerical
solution of the case in which weight restrictions are also taken into account.

-30. Parallel Operations

If two digital computers are available, or if one of the mare modern
computers allowing parallel operations to be performed simultaneously is
obtainable, we can materially improve upon the foregomg procedures,
Suppose that we wish to maximize the function

(1) By =gim) + golz) + -+ + FaniTay)
over the region
{2) 9:1-}—3:2—]—---—]—a:‘\--_'—.'r,“\,+1—]----+x2_v~_—x,
with z; = 0. Set
3 nt+a+ Iy =y,
Eypt Taga + 00 Tay = Yo,
and
4 Faln) = max lg:(z) + galta) 4+ - - -+ gylz )l
mtza+--- tzy=n
hlys) = max Wxal@yar) + - 4 gonleay)]

ZTxplt S Tany =g
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The functions fx{y,) and ky{y,) can be computed recursively by means of
the algorithm discussed above. Once this has been done, we may determine
the solution to the original maximization problem by maximizing
Falyn) + Bylys) over the set of values yp + ¥ = % 41, 32 2 0.

The point is that fy(y,) and ky{y,} can be calculated simultaneously.
This process can, of course, be continued further, dependent upon the
parallel facilities available, memory capacity, and so on.

If we know in advance that the optimal choices of i, and g, will be in the
neighborhood of /2, we can reduce the memory requirements by approxi-
mately one-half, and alse the total time required. This is an important
point in conneetion with cur later work where the problem of memory
capacity becomes acute,

" - If the g,(z) are all identical, an enormous reduction in computing time
can be effected if only the solutions of particular problems are desired.
Thus, to calculate fi5.,(z), we would write

(3 Fioaa{®) = max [ fooly) + fopolr — ¥)),
Osy<s
Soro(@) = max [fos(y) + fosel® — )
0Zp<r
and so on. The function f;,,(z) can thus be ealculated in ten steps.

31. Conclusion

The purpose of this chapter has been to introduce .the reader to the .
methodology of dynamic programming. including both computational and
theoretical aspects. In order to acquaint the rcader with the steps followed
in the numerical treatment of optimization problems using the funetional
equation technigue, we have considered two partivular problems in
detail—a general allocation problem and then a specific cargo-loading
process.

The conclusion we can draw from this analysis is that the problem of
determining the maximum of the function

1 Bz, g, . .., 2y) = gy{2)) + gal@a) + -7 + gxl(Ty)

over the set of z;-values determined by the relations

N
2) (2) Sz,=2 x>0,
i=1
{b) a, < <h,
(e) - . .- Ty = Ty Ty - - oo T

is a routine problem readily and quickly resolved by meansof the algorithm
furnished by means of dynamie programming.
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CONCLUSION

The computing time required is essentiaily directly proportional to Y.
For most problems of this type, the time for each stage will be of the order
of seconds.
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CHAPTER 11

Multidimensional Allocation Processes

I. Introduction

In the previous chapter, we computed the optimal policies for some
allocation processes in which only one type of resource was available and
where only one constraint was imposed upon the use of this resource. In
this chapter we wish to consider a variety of more complex problems arising
from more realistic descriptions of economic processes.

As we shall see, the basie formalism of dynamic programming carries
over without a change. Nevertheless, formidable and challenging difficulties
bar the way to the type of routine solution obtained in Chapter I. To over-
come these difficulties, wholly or in part, we shall invoke a number of
powerful and sophisticated mathematical devices.

One of the most powerful of these devices is the Lagrange multiplier.
Although the multiplier is usually considered to be tightly bound to the
caleulus, we shall show that this is not necessarily its fundamental aspect.
A synthesis of the functional equation technigue of dynamic programming
and the Lagrange multiplier yields a decomposition of complex processes
into simpler parts. This decomposition enables us tc resolve general
classes of optimization problems.

We shall also use various forms of the method of successive approxi.
mations. One of the assets of the theory of dynamic programming is the
fact that successive approximation techniques can be applied directly to
the funetional equations which arise, and also to the determination of
optimal policies. The latter use is called “‘approximation in poliey space.’™
It always yields monotone approximation, if not monoctone convergenee.
The classical application of successive approximations is to the functional
equations, and does not necessarily involve monotone approximation.

As in the first chapter, we shall present many numerical results. Much
of the work in thiz chapter is experimental, and thus in no sense to be
considered final or optimal. As the reader will realize thers is both reom
and need for considerable research in these areas.

2. Allocation Processes Involving Two Types of Resources
A straightforward extension of the simple alloeation process described in
§2 of Chapter Lis a process requiring the 2llocation of two different tvpes of
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regources into portions designated for a number of independent activities,

Let the two. types of resonrces be present in quantities x and y re-
gpectively, and let =, and y, be respectively the quantities of these resources
allocated to the ith activity. As before, we postulate the existence of a
utility function

() g.(z;, ¥,) = the return from the ith activity due to respective alloca-
tions of z; and y,.

The mathematical problem that confronts us in the choice of a most
efficient utilization of our resources is that of maximizing the function of

2N wvariables
x

2 Ry, @y, ..., Ty Yy le -2 ¥N) =Egi(xi! )
£=1

subject to the constraints

3 {a)

M

T =z, z =0,
1

1.!/.— =y ¥ =0

M =

(b)

fl

We call this a two-dimensional alloeation process, regardless of the value
of N, due to the fact that there are two different types of resources. As will
be shown, the computational solution will be based on the calculation of
sequences of functions of two variables.

3. Recurrence Relations

Following the same approach as in the previous chapter, we introduce
the sequence of functions {fy(z, y)} defined by the relation

(1 Swlw, yy = max Bylw, 2 sy U Yoo - - -5 Un)

where the maximization is over the region of z; and y, values defined by
{2.3). The integer N takes the values I, 2, ..., while x and y assume all
non-negative values, '

For N = 1, we have

(2) Sz y) = g1z, y),

and for N = 2, we have the reeutrrence relation

3) fulzy) = pmax  max fgy{zy, yn} + fy-1l& — 2y ¥ — )],

Zrysr 0=y <y

an immediate consequence of the principle of optimality. Before an investi-
gation of the computational feasibility of this algorithm, let us discuss
another way in which funetions of two variables arise.
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4. Allocation Processes Involving Two Types of Constraints

In many situations we encounter the problem of allocating one type of
resource sibject to two sets of constraints. The cargo-loading problem with
both weight and size restrictions is an example of this. This type of problem
may be considered to be a special case of the foregoing in which z, and y;
are connected by a relation of the form y, = A,(x,).

The analytic problem that arises is then that of maximizing the function

4] By, @y, - 2y) = G1{®0) + 9o(2) 1+ -+ + gylzx)
subject to the consiraints
(2} (a} x>0,
N
(b) afz) <z,
i=1 -
N
(e} 2.5x) <y
i=1

Assuming that the a,(z,} and b,(x;) are monotone increasing functions of
the x; which approach © as =, — o0, we could, if we z0 desired, make a
change of variable which replaces a.(x,) by z,, provided that the z, are
allowed to vary continuously. If x; is restricted to discrete values such
a3 0,1,2, ..., this change of variable is not possible.

Observe that we have replaced the equality constraints of (2.3) by
inequalities. As far as both the process and the computational solution are
concerned, this inessential change eliminates some delicate mathematical
questions.

5. Recurrence Relations

Following the approach of §3, we set

1) iz, y) = max [gy(m) + goleg) + - - - + gx(@y)l,
where the variation is over the set of z, determined by (4.2a, b, ). We have
2) filx, ¥} = mex gy{zy),

ajhxy) =2

Biz <y

and the general recurrence relation

(3} fN(x: y) = max [gyizy) + f;\f-),':-""' — ax(®y), ¥ — dylz L
En s

6. Computﬁiional Aspects
The recurrence relations we have derived in the preceding sections may
be used to obtain the computational solution in very much the same way
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as described in Chapter 1. Although gqualitatively there is absolutely no
difference in technique, we encounter startling quantifalive differences,
when we examine the operation from the standpoint of memory require-
menta, i.e., storage of data, and computing time. This theory furnishes a
nice example of the classic precept that a major difference in magnitude can
engender a significant difference in type.

In the computations discussed in Chapter I, we were required to store
the valuaes of a funiction of onc variable, fy(z), 2t a set of grid-points {kA}.
Let us now approach (5.3} in the same spirit. To determine fy{z, ¥} in a
region such as 0 < z < M, 0 < y < M, we agree as before to ask only for
the values of the function at a set of lattice points, say the pointsx = kA4,
y=EfAk{=01..., M

Observe that whereas previcusly to speeify fy_,() we needed a storage
capacity of only (M — 1) points, we now require a storage capacity of
(M -+ 1)? values in order to retain knowledge of fy_{x, »). If 0 <z = ],
0 < ¥ < 1 is our fundamental domain, and we take intervals of .0l In x
and y; this means a change from about 102 points to essentially 104 points.
Actually, the requitements are at least three times this, since we musat
simultaneously retain the function fy_,{z, ) and compute the new func-
tions, the return function, fy{z, ¥) and the policy function =, — zy{z, ¥}

7. Discussion

It is clear from the foregoing discussion that as we increase the number
of resources and the number of constraints, we inerease the number of
independent variables appearing in the return function. Any attempt to
tabulate these functions of many variables in a straightforward way
is barred by the huge memory recquirements which far outstrip contem-
porary machines, and, in some cases, any contemplated for the forseeable
future.

Before describing various ways in which mathematical ingenuity can
be used to resolve this dilemma of dimensionality—in carefully chosen
cases—we shall present a routine application of the foregoing technique.

The problem treated below will also furnish an illustration of how pro-
cesses involving random effects can be treated mathematically.

8. The Flyaway-kit Problem

Let us assume that we are about to dispatch a transport plane to an
overseas base with a cargo which is to consist of replacement parts for
airplanes, Suppose that there are ¥ types of replaceable parts, and that
each has associated with it a cost that is incurred if that part is needed at
the base, but not available. Let us further assume that the demand for
each part can be described by a known Poisson distribution. As gonstrained
by the weight capacity W and space availability § of the eargo vehicle,

42



DYNAMIC PROGRAMMING APPROACH

how many items of each type shall be loaded so as to minimize the expected
cost due to shortages at the base?

This problem is typical of many that are met in the study of inventory
and equipment replacement processes.

9. Stochastic Aspects

. Observe that for the first time we are treating a problem with stochastic
features. As we shall see, once we have decided to minimize some arerage
cost, the formulation along dynamiec programming lines, and the computa-
tional solution follows the same path as before.

This is one of the great advantages of the techniques of dynamic pro-
gramming—the fact that deterministic and stochastic processes can be
treated by means of a unified approach.

10. Dynamic Programming Approeach

Let w, denote the weight of an item of the ith type, s, its volume, i, the
mean value of the Poisson distribution representing the demand for items
of the ith type, and &, the cost per item incurred in not fulfilling the
demand. Finally, iet us assume that we wish to determine the loading
which minimizes the total expected cost, subject to the weight and volume
restrictions.

If z, is the number of items of the ith type which are loaded, and P(z)
represents the probability of 2 demand for 2 items, the expected cost due to
unfulfilled demand will be

=]

(1) 2 (2 — z)P).

z=z,+1
This expression is valid regardless of the form of the demand distribution.
We carried out the calculation for a Poisson distribution sinee this type of
distribution is frequently an excellent approzimation to the observed
distribution and its parameter, 1, ean be estimated with comparative ease.
If Pfz, 4,) denotes the Poisson distribution for the ith item, the total
expected cost takes the form

N @
(2) Ey=3 CeL Dz —x)Pl, ﬂ;)}-

i=1 =1
The mathematical problem is that of minimizing Ey over all z; satisfring
the three constraints

(8} (a) z=0,1,2,...,
N
() Z T, =W,
- i=1
N
(c} xS £ 8.
. i=1
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We now define f.(1’, 5’) as the cost associated with an optimal choice
of items of the first £ types, where the cargo-vehicle weight resiriction is w’
and its space limitation is §', for w’ and &' ranging over ! =< »' < w and
0 < 3 < s respectively.

Our basic recurrence relation is then

o

4) Jilw', 8') = min [Gk > (2 — 2Pz, 4
E 2=+l
F S’ — zowy, & — “'Hst)je

where z, is taken over the region

oen<mnl(Z] )

As before, [x] denotes the greatest integer less than or equal to z.
In the next section we shall discuss the solution of equation (4} subject
to the Restriction (3).

11. Computational Procedure

As each type of item is considered, the initial step is the eomputation
of the expected cost of including 0, 1, 2, . . . items of that type in the kit.
The assumption of a Poisson distribution plus the knowledze of the mean
number required and the cost per unit of shortage determines this table.
As different policies are considered, the immediate or present cost of each
choice is then determined by referring to the table, This cost is added to the
expected cost associated with the remaining types of items in order to
determine the total cost of the policy. The minimizing poliey is then
chosen on this basis.

Both a one-dimensional and a two-dimensional formulation were coded.
In the first case, only a weight constraint was considered. Computation
consumed about one minute per item when the total weight capacity was
1000 pounds and ifem weights were taken as small integers. In the two-
dimensional formulation, both weight and size constraints were imposed.
An upper limit of 30 on both weight and size resulted in a grid of 900 points
and again consumed about one minute per item. The resiriction to 30
values in each dimension means that small items must be grouped into
larger units (as they generally are in practice) in order to make the compu-
tation meaningful. The bound of 30 could be increased to 100 with
present memory capacity, with the result that the computation would take
about ten times as long. The number “‘ten’ is derived from the ratio
1002/302,

12, Example .

In this section some typical results are displayed. Ther concern the

optimal loading of ten types of items. Each type has four items ag its
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expected demand, and an item of any type has 3 as its cost-of-shortage

penalty value. The weight and size categorics are shown in Table 1,
Sections of the table of values of the two-dimensional function f, (i, 4),

which represents the minimum cost associated with a kit of weight

25 2 27 28 29 30

896 B8.8 888 |30
89.8 B9.7 B88 |29
905 888 838 |28
91.2 906 505 |27
812 9512 91.2 )26
920 920 920 |25

927 920 920 |24
9 937 935 935 |23
8 " 22
rli20 120 U6 21
w6120 120 116.1
®s|120 120 1161 Hi6
g 4| 120 120 1i6.1 1186.¢
t 3|120 120 U6 16t
2|20 120 6.l 116.1
1120 120 1200 1200
0120 120 1200 120.0
0 | 2 3 4 5
Size

Figure 17. Sections of the table of values of the tanction f,,{uz, 4),
representing the niinimum cost associated with a kit of weight
w and size # in whieh 1{ types of items are considered.

capacity w and size capacity s when all fen types of items are considered,
are shown in Fig. 17,

Figure 18 displays the policy associated with the entries in Fig. 17.
Each entry in Fig. 18 is the optimal number of items of type 10 loaded sub-
jeet to weight and size restrictions {w, ).

Table 2 is a reproduction of the final printout resulting from phase 2 of
the calculation (see §19 of Chaptcr I) and represents the solution of the
problem,
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TABLE 1
Weight and Size Categories
Item Weight Size
1 3 5
2 5 4
3 2 7
4 5 4
L] ) 6
8 2 2
T 4 5
8 7 ¥
9 5 3
10 3 4
TABLE 2
Solution of Problem
Type Number . . .
g )
of | Weight | Size | to | Cost C“%‘;lit“e Wﬂﬂ“ Lo
Ttem Load S
- 1 3 4 2 5.0 590 24 22
g & 3 1 8.1 13.1 19 19
8 7 i 0 12.0 251 19 19
7 4 o 0 12,0 371 19 19
6 2 2 3 2.6 39.7 13 13
5 6 6 0 12.0 51.7 13 13
4 5 4 1 18.1 59.8 8 9
3 2 T 1 12.0 718 8 9
2 5 4 1 8.1 799 3 3
1 3 5 1 8.1 83.0 0 0
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24 25 26 27 28 29 30

| z 2
2 i !
2

3]

30
29
28
27
26
25
24
23
a2
2!

20
19

18

n

- —-aE
O =N W b oo g0
O 000 0O OO0 OO

O]O0O O QOO OO OO0 O
Wwlo OO0 0o 000
Bl o O O O

Q
o
4]
2]
Q
s)
0
)
2
8

ize

Figure 18. Bections of the table of values of the function z, (i, #),
representing the optimal number of iterns of type i0 to be loaded
subject to weight and size reslrictions {w, 3,

13. The Lagrange Multiplier

L&t us begin our discussion of the Lagrange multiplier by describing the
way in which it oceurs in the treatment along the lines of calculus of -
maximization of a function of several variables subject to constraints, As
we shall see subsequently, the technique has a simple geometric origin and
thus is of much wider scope.

In order to keep the algebraic, analytie, and geometric details to a
minimum, we shall consider the problem of maximizing the function of
two variables, F{z, y), over all # and y lying on the curve G{z, y} — 0,
Proceeding formally, let (2, ¥,) be an extremum point and set

(1) x =2, | €8, ¥ = ¥, + €,
where s and ¢ are real parameters and ¢ is an infinitesimal. Then the
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condition that (z;, ¥,) be an extremum yields in the usual way the relation

(2) 8 oF + ta—F =0,

Oz, 9y
while the condition that (z, ¥} lic on G{z, ¥) = 0 similarly yiclds the relation
3) 3 2 + t-a-q =1

oz, B,

Bince these two equations are to hold for all s and ¢, we must have the
determinantal relation

oF oF

) 0 %ol g,
9 o6
oz, oy, ’

From this, it follows that there exists a quantity 1 such that the two
simultaneous equations

~ + AT = 0)
®) 0z, éx,
oF a6
— 4t i —=10
%%, ¥y
are valid.

These, however, are precisely the variational equations we would obtain
if we looked for the extremumn points of the new function

{6) Hz, y) = Fiz, y) + 40(z, y),

without regard to the constraint Gf{x, y} — 0. The parameter i is the
Lagrange parameter.

‘To determine 4, we ean proceed as follows.! Using (5), we solve for z, and
¥, In terms of A, and then use the relation G{z, ¥) = 0 to determine 4. In
carefully chosen cases, this method works well. In general, we encounter
many points of difficulty.

It is easy to see that the same method can be used to treat the problem
of maximizing Flz;, 2, ..., sy} subject to a set of constraints
Qi &9y - .., 2 =0, 1=1,2,...,k

14. Geometric Origin
In the foregoing section, we have briefly sketched how the Lagrange
multiplier arises in the study of variational problems involving continuons
variation of the independent variables when the techniques of calculus are
1 Compare the discussion of a specific example in §3 of Chapter 1.
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employed. Since we wish to treat more general variational questions, it is
essential that we provide a broader setting for the Lagrange multiplier.

Consider the problem of determining the maximum of the function
Flry, xy, . .., zy) over all sets of z; belonging to a set 8 and subject to a
relation of the form G(x,, =, ...,%y} < 1. As the z, range over all
elements of 8, let us compute the values of the quantities

= Fle, 2, ..., 24,
(n
Y = Gz, 2p - - -, Zy)-
This provides a mapping from a subset of the N-dimensional x,-space to
a part of the two-dimensional y;-space. This region of the y,-space is often

¥Ye

Bounduer
\ "

Figure 19

called a moment space for reasons which would take us too far afield to
elaborate.

In order to motivate the simple geometric method we shall emploxr, let
us assume that the set of points (3, y,) traced out as (), @y, ..., 2y}
ranges over § constitute a convex set of points in the y.-plane. We may
think of this set as the interior of an oval, together with its houndary.

To solve the original maximization problem, requiring the extreme value
of i, when y, has a fixed value (or is constrained above and below), we must
determine points on the boundary of the oval (Fig. 19). Consequently, the
original maximization problem is equivalent to the {ask of determining the
boundary of the oval.

This boundary can be determined geometrically in the following fashion.
Take a line in the (y;, ¥,)-plane, say

@ ' oy + by = £,
and move it parallel to itself nntil it Is tangent to the oval, This geometric
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operation is clearly equivalent to the analytic operation of letting % vary
over an interval of values.

The points of tangency are precisely the boundary peints of the oval, as
indicated in the Fig 20.

If we repeat this operation with different values of @ and b, which is to
say, take lines in all directions, we sweep out the boundary. Observe that
we are exploiting the basic duality of two-dimensional figures—the fact
that & locus of points can be regarded as an envelepe of tangents.

ayp + by = & Point of
tanganty

ary + bra =k

/

Point of
rangancy

ay Fy, =k,

Figure 20

In order to use these ideas constructively to cbtain specifie analytic
results, we note that the points of tangency are determined by the con-
dition that the distance of the line ay, + by, = & from the origin has an
extreme value, a maximum or 3 minimum. For fixed o and b, the distance
from the origin is proportional to k. Thus, maximization or minimization
of the quantity &, which is given by

(3) aly + byE = C&F{Il, Tas v e n s :ENJ + bG(:'-“]r Tgs o v oy x_\')

¥
yields boundary points.
If 2 is not equal to zero, we can divide through and consider the equiva-
lent problem of determining extreme values of the expression

(4) Fly Ty, - @) -+ A0(y - -, ),

where we have seb bja — 4. We ses then the true origin of the Lagrange
multipbier, and how fo extend these ideas to handle cases where several
constraints occur. '
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Although the ideas are quite simple, some of the rigorons details rely
upon a quite advanced concept, namely that of conwezity. Consequently,
we shall continue along our formal, intuitive road and refer the reader who
is interested in proofs and extensions of these ideas to several references.

. 15. The Lagrange Multiplier as a Price

If we think of Flz,, %, ..., zy) as representing our “return” due to an
“allocation” (xy, 2y, ..., zy} and Gz, 5, . .., zy) as representing the
*cost”” of this allocation, then 4, or its negative, has the significance of a
price. This intnitive econcept can be made quite precise and is of funda-
mental import in mathematical economies in general and the theory of
linear programming in particular,

In Appendix I1 at the end of the book, these ideas are discussed in
some detail.

16. Use of the Lagrange Multiplier—I

Lot us now return to the maximization problem discussed in §2 and see
how we would treat it using a Lagrange multiplier. in place of the problem
of maximizing

(1
B(ry ooy Yo ¥y = 0130 1) + a2 v 00 A+ galE ga)
subject to the constraints
2) @) 2yt omt-tay=rz x>0,
() ntwt - tuv=y5 %29
we consider the problem of maximizing the modified funetion
() gl ¥0) + Jala, y2) + - b gl ) — Ay s 4 oy
subject to the constraints
4} (a) Ttz fay = x >0,
(b) ¥ =0,

where A is for the moment a fixed parameter.
The maximization over ¥, can be done independently of the maximiza.
tion over the z,. Let us then write

& bz, 1) = hlx) = Max [g{x,, v,) — A
- wEH
Tn order that this defihition he meaningful, we want to assume that

(6) ¢l ¥y, >0 as gy, — .
If this is not the case, this method fails, Since in applications thistesult is &

51



MULTIDIMENSIONAL ALLOGATION PROCESSES

eonssquence of the “law of diminishing returns,” we shalt continue on the
assumption that it is valid.

The problem that remains is that of maximizing the function
" o Ry{m) o Ralas) 4 4 Rl

subjeet to the constraint of (4u). This problem is readily attacked by means
of the functional equation technigue presented in Chapter T.

The solution, z{i;x), =1,2,..., XN, to this optimization problem
will naturally depend upon A, and the values of ¥; = y,(4) which will yield
k,(x), following (5), will also depend upon 1. Let us then vary 4 until the
Testriction

x
® 2 wh =y

is met. We shall, several sections below, examine the validity and feasi-
bility of this approach. Meanwhile, let us contifiue our discuszion of the
formal procedure.

17. Use of the Lagrange Multiplier—II

In the same general fashion, we consider the problem of maximizing the
function _
1) gilzy) + galmg) + -0+ gxlzy)

subject to the constraints
2) (a) @ T Gg%y 0 b Gy S8
(b) bygy + boxy + -+ - + bazy <9, z, =0

Form the new function
(3) gulmy) + golzn) + - - -+ gafry) — Abgzy + by + ¢ - - + byay]

and consider the problem of maximizing it over the region determined by
{2a).

The associated recurrence relation has the form

(4) fplz) = max  [gylwy) — Abyzy -+ fyoale — ayzy)l

D =zfay

- The solution, x; = z,{2; ), depends upon 4, as well as the return functions,
Ful).
The quantity 4 is now varied until the constraint of {2b) is met.
18. Reduction in Dimensionality

Before proceeditig to theoretical justification, and then some applica-
tions, let us emphasize the reduction in dimensicnality that the method
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permits. Given the problem of determining the maximum of a fanetion
N gilmy) + glas) + - -+ 3 gafan)

over the set of z,-values determined by

N
2} Yer <¢ i=1,2,...,M,
i51
and possibly by other relations such as
3) {a) z,=0,1,2 ...,
(b a, <z, < b, i=1,2...,N,

we can transform it into the problem of determining a sequence of functions
of the M variables ¢y, ¢, . .., ¢37 {fxlcy, €9 -+ .5 €3p)}, by means of what
should be by now a familiar algorithm. -
Introducing & Lagrange multipliers, we can pose the mew problem of
maximizing
N

4) Z o) — Z 4 ( i a.-m)

subject to the M — E constraints

17y

(5) Zaw <e, t=4&+1,k32, ...,
i=

In this way, the problem is reduced to that of determiuing a sequence of
functions of M — ¥ variables, together with a search over the k-dimen-
sional A-space. Since the restriction on the memory capacity of computers
is such that it is preferable to carry out a large number of one-dimensicnal
problems rather than one multidimensional problem, this procedure very
often permits us to treat problems which would otherwise escape ns.

Furthermore, it may turn out in many cases that a parametric represen-
tation of the solution in terms of the A; (the “'prices”) is just as valuable
28 one in terms of the resources, ¢,.

What choice of £ is made depends upon the individual problem, the type
of computer available, and the time available for computation.

19. Equivalence of Variational Problems

We now wish to examine the connection between the variational problem
in its original form and the problem arising from the use of the Lagrange
multiplier. It is sufficient to consider a particular problem to indicate the
type of result which can be obtained.

Consider the problem of maximizing

(1) Rlx, ..., Tps Y Yar « oo Y = a7 ) + olxs, Ya) + -
+ gnlEy ¥xd — Ay + Yo+ "+ ¥y)
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subject to the constraints

{2) (a) ntrmttay=2x  5,z=0
{b) y, =0.
Let £(A), #.44), s+ = 1, 2,..., N be a set of maximizing values in the

foregoing problem. Then we wish to show that these values yield the
maximum of the function

(3) gi(21, 1) + galts, #9) + 7 70+ gxlEy, ¥3)
subject to the constraints
4) (a) Gttt Ey=2

(b) Nttt Tuv=y

where y = 3 &, 7(A)

The point of this result is that no calculation is wasted. Every time that
the problem in (1) is solved for a particular value of 4, we solve the original
variational problem for a corresponding value of y.

The proof is by contradiction. Suppose there is a point {z,, ¥,} satisfying
the constraints of (4) such that

N N
{5) . izl (% ¥;) > Zl 7%, 7).
Then, since. ’ .
N N

®) Su=35-v
we have '

N N N N
N El gl w) — A zl'yi = iz gilT, ) — 4 7

i= = =1 i=1

This, however, contradicts the assumption that
{El’ Eﬁ; I ] EN; gl! .‘)_(2$ LRI .':_’_\’]

is a maximizing set for the function in (1), subject to the constraintsin (2).

20. Monotonicity in A

‘What is to be expected in all applications is that as i traverses the
interval [0, o], ¥ will do likewise. To prove this rigorously, however.
requires a certain amount of effort, and a number of assemptions concern-
ing the functions g {x, y).

Let us show quite simply that as A increases from 0 to o, the quantity
¥ 1A decreases monotonically. Thisis what we would expect from the
fact that A may be regarded as a price. Since, however, we are imposing very
slight restrictions on the set of values that the z, and y, Tun over, we cannot
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expect to establish strict monotonicity of 33, #,(4), or continuity of this
funetion as a funetion of 1.

Write
N
(l) Jllr’.l. - ‘21 gi(ii(;”’ gx(‘qvj)!
N
P = ;1 37,(3-)

Then, if 0 < A < g, by virtue of the maximization properties we have
2} (&) u, — Aoy, 2w, — A,
(b) : U, — HY, = Uy — s
Hence, using both sides of (22) and {2b), we have

(3) wy — Avy =w, —pw, + (p— D,
= uy — v, + (u— Do,

Thus,

(4) (g — Aoy = (p— A,

Since & — A > 0, we cbtain the desired result,
(5) v >,

Comhmmg this result and (2a), we have

{G) u; — dvg = u, — v,
vy = iv,,

whence

{n . U = U,

This monotonicity greatly siraplifies the determination of a A-value
which yields a given y-value. The search techniques discussed in Chapter
IV, or simpler methods, can now be used to reduce the time required to
solve a specific problem. '

21. Application of Lagrange Multiplier Technique—
Advertising Campaign

Let us consider a situation in which an organization's production
facilities are to be shared by a number of different product-divisions. Each
of these divisions has submitted its estimate of potential earnings as a
function of the manufacture of its particular item. In these circumstances,
one might expect to encounter individual return curves having the familiar
s-shape appearing in Fig. 21.
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Let us use the equation
Y ri) = o1 — (1 — & %]

to generate a utility function of the required shape.

Here, v, represents the maximum potential profit that can be realized
from the market, and @, the level of competition for the market. A small
allocation then yields little prospect for snccess, while a large allocation of
production facilities produces a state of market saturation, A general
discussion of the computation involved in the soluticn of such a problem,
and numerical results, will be contained in a later section.

Return, r;{x}

Q Production facilfties, «
Figure 21

We bave seen how a maximization problem involving one resonree and
N activities can be transformed into a sequence of one-dimensional
maximization problems. Buppose, however, that it is required to allocate
geveral resources, which means that the total payoff is now a function of
several variables. We must then deal with a sequence of functions of several
variables and face all the associated computational difficulties which come
from this venture into the more realistic world. '

As an example of such & process, let us suppose that the foregoing
company with limited productive facilities also has limitations ou its
advertising budget. The return from a particular product-division is then
taken to be

(2) - rlz, y) = o[l — (1 — g W@t0)7)

where z is the production budget and y is the advertisement budget. This
equation has the property that without production no profit can be
realized regardless of advertising allocation, but in conjunction with
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production, the greater the advertising, the greater the return. Qur prob-

lem is to choose z; and y,, 1 = 1,2, ..., N, so as to maximize
N
@) Ry= 2 rdz, %)
i=1
over all z, and y,, subject to the relations
N
(4) 2 %<z,
i=1
N
2 yi = ¥,
i=1
z,y, =0,

Betting fy{x, ¥) equal to the maximum of R, over this region, the
functional equation obtained in the usual way is

)  Sfylwy)= max  [ryley, yz) + fyoalz — 2y — w3l

L e

O=yy=y

22. Lagrange Multiplier Technique

As we know, problems of large dimension easily exhaust computer
memory facilities and consume excessive time. While the dynamic pro-
gramming approach has the merit of effecting a considerable reduction in
dimension, we have seen that we may still be overwhelmed by the diffi-
culties attendant upon multidimensional functions. The use of Lagrange
multipliers reduces these problems to & manageable size in many cases.

Let us assume that we have an infinite advertising budget, but that each
dollar spent for publicity results in A dollars being subtracted from our
overall return, Clearly if 2 is zero, we will advertise in an unlimited fashion,
while if 1is large, we will not advertise ut all. Each choice of A will result in
some value for 377, 7, between 0 and oo where §, = §7,(4) is a maximiz-
ing choice of ;. If we choose A so that Ly, = y, as indicated above, we
bave solved the original two-constraint problem without explicitly intro-
ducing the second constraint. Our functional equation associated with
the problem of maximizing the function 37, r,(z, ¥} — A X7, ¥, is now

Q) Ia@) = max [ryey, ¥y} — Ay + fyoale — 23]

Ofry=zx

0=y y<ow
The original problem is solved by fixing A, solving a one-dimensional
problem, examining the resulting Zg,, adjusting 2 to make Ty, approd-
mately equal to , and resolving the problem for the new . We repeat this
cycle until the 4 yielding Zj, = 7 is found. Usually three or four iterations
suffice, depending on the effort expended in determining the new 1 at each
iteration, This iterative procedure will be discussed in some detail in a
following section,
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One two-dimensional ealculation would yield the returns and optimal
policies for all combinations of x and # less than or equal to their upper
bounds. In the course of solution of this nature we calonlate a function of
two variables over a region of the {z, y) plane. Using the Lagrange
multiplier approzch we calculate a space eurve giving the returns and
policies over a curve in the (z, ¥) plane for each particular i. Several values
of A result in several such ¢urves in space. From these curves, one can
deduce the general form of the complete function of two variables. This
technique will be illustrated in the following section.

23. Computational Results

Consider first the one resource process discussed in §21—the simplest
type of dynamic programming process. The coding of such a problem, for
a high-speed digital computer such as the Johnniac or the IBM-709, can
be accomplished in a couple of days using Fortran. The flow chart for this
problem is shown in Fig. 22. To allocate 100 production units to 20
activities in an optimal fashion would require about ten minutes of com-
puting time. Where activities 1 through 20 have values {potential markets)
of 1 through 20 and competition is proportional to market values
{(ay = vy = N), there results the allocation shown in Fig. 23. Figure 24
shows that though the individval return funetions are highly nonlinear,
the optimal return function for 20 activities is an aimost linear function of
total production. :

Consider now the production-advertisement model of §§21-22. Tsing the
Lagrange multipler technique, we have a one.dimensional problem for each
fixed A. We find that for 0 < = < 200 the computation takes about twn
minutes per activity. Rewriting equation {22.1) as follaws,

(1) fylz) = og:l:ai: %(??{xw (rylzy yy) — 2yy) + fyoafz — 23]

= omax [0y + fyaale - =),

we see that we can first calculate the return as a function of z,, and then
maximize over the xy. We shall elaborate upon this idea in a following sec-
tion. Computing time is greatly reduced by proving that if 7y >0
maximizes 7y — Ayy for 2 = &y, then for # > &, the maximizing y will
be less than g,.2

Figure 25 shows the function ry{z\, ¥y} — Ayy as a function of yy for
two fized values of xy, when 2l > 2.

1 This is a consequence of a knowledge of the structure of the Function appearing
in {21.2). S8es Appendix I by O. Gross.
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13
1

' [ Compute (or input) ri(X)—Iﬂ——*
I

60— X

O—r:.'c'-

(7030 + falX — ) > 08 J— —

4
No Maximize sum of
M= M7 .
> - return from ith
,I,h" activity and
MM return from
ining © — 1
. g remaining ¢
N — activities.

ETIOS ErsEeys

i}.eﬂ

Compute .
value of M _pfl{X) Store anawer and
JFX) for 8~ aiX) asa?ciated optimal
next value poliey.
of X,
X+1—-X I
0—xy =—x = Tax?

Print
Optimal return: f,(X)
Allocation: a,(X)

i +

i l—1

Go on to
naxt.activity,

. Figure 22, Flow Chart for 1-Lhinensional Allocation Problem.

Activity [1thru 91011 12113 |14 [15|16 (1718} 19|20

Allocation | o | 7| 7] 8] 8| of 9]10]10]10|11 |02
Figure 23. Opt-.ims.l Allocation of 100 Units of Production to 20

Activities Where R,{X) = {[1 (1 —eZ}].
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Figure 24, Total Return as Function of Production Ynits Where
Optimal Policy s Used.

Yu \Fixed x‘ﬁl
' )

Fixed x,

A5 42

Figure 25, For Fixed 4, Optimal Allceaticn to Advertising, §x.
Decreases as Allocation to Production, zy, Increases.
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CALCULATION OF THE LAGRANGE MULTIPLIER

In Fig. 26 we see how the resulting sum Zy, for optimal choice of y,
varies as x varies for fixed 4. The discontinnities result from the fact t=at,
for small z, an increase in x results in the optimal allocation incladic.z an
additional activity at nonzero level, and a jump in advertising.

Corresponding to each point of the curve in the {z, ¥) plane of the t=pe
shown in Fig. 26, the caleulation also yields a return associated with the

Advertising expansa
7/

Production units, x

Figure 26. Amount Spent for Advertising, if Optimal Policy Is
Used, for Fixed A.

optimal allocation of x units to production and y to advertisernent. After
obtaining several such space curves using various values of A, we can draw
the contours of the two-dimensional return function (see Fig. 27).

We have analyzed a two-dimensional process. The straightforward
two-dimensional dynamic programming approach for such an analrsis
would involve function tables of 200 x 600 = 120,000 values, and, consa-
quently, hundreds of hovrs of computing time. The introduction of the
Lagrange multipler approach enables us to obtain equivalent results using
1000 memory eells in about three hours,

24. Calculation of the Lagrange Multiplier

If the Lagrange multiplicr can be reasonably interpreted as a price. and
if dollars are the dimension of both the objective function and the
restricted variable, then the approximate value of the dimensionless
multiplier can often be ascertained by cost analysis techniques prior to the
digital computation.
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MULTIDIMENSIONAL ALLOCATION PROCESSES

In most cases, however, the multiplicr, while still a ““price,” measures
the trade-off between scemingly incommensurate quantities. For example,
in & filyaway-kit problem with a sizc and weight restriction, elimination of
the volume constraint via a Lagrange multiplicr results in the multiplier
baving the unintuitive dimensions “‘outage cost/eubic foot.” To determine

600
160
© {20
(=
k]
2
E=] -
B8O
2300}
»
> 40
b
k-
o
. ]
0
0 100 200
Praduction

Figure 27. Total Return Obtained by Optimal Allocation of Verious
Combinations of Initial Resources,

a priori the numerieal value of the multiplier, we would need to know how
much an additional unit of volume would save in expected shorta ge cost
using an optimal policy. Obviously, to knaw this would be to possess the
answer to the original problem,

Our way ont of this dilemma is an iterative one, We successively guess
values of the multiplier until the correct one is found. The correct value is
that price leading to-an optimal solution exactly satisfying the constraint
in question.

Let ws consider the problem of actually carrying out this multiplier-
guessing. Since each guess entails the complete solution of a dymamic
programming problem, some effort can profitably be spent on an a priori
analysis of this operation,
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CALCULATION OF THE LAGRANGE MULTIPLIER

To give concreteness to our discussion, let us suppose that we wish to
solve the problem of maximizing the function

N
M 3 4tz
over all z; subject to '
N
@) (@ 2 a=s
N
(b) > hiz) = .

Suppose further that we have replaced the obvicus two-dimensional
formulation

(3} Jule, k) = max [glzy) + fy il — 2y, b — bzy))],
TN .
where (¢ < 2y < zand ky{zy) < b by the one-dimensional version
(4) i) = max [gy{ey) — Ahylzy) + fyoal® — 23l
=y

where 4 is the Lagrange multiplier, to be determined such that

) S hiiz) =k,
=1

for the maximizing =,.

No precise prescription exists for the first choice of 2. An intelligent
guess must be made based on the individual problem. '

In many cases, however, there does exist an efficient scheme for detes-
mining the third and subsequent guesses, This is based on an interpolation
scheme. If two values of A have been tried, one can caleulate two sets of
values for the following table: '

{6) A | fyiz) | Optimal Policy {z,}| Dh{z;)

Then, knowing i, 4;, and the associated values of Zh{z,). one can fit this
data linearly to estimate 4, so that Zh(x,) will equal ». The formula,
i

denoting the values of Z‘}ki(a:,.) by h, and A, respectively, is

I el
(7) j’*‘kl_ko(h ko) -1+ A
If more than two values of A have been evalnated, the two most recent can
be used, or One can USe & MOre accurate interpolation formula.
Since it is usually possible to determine a2 priori the result of choosing
A = 0, this information can be used without the time and expense of an
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actual computation. If this approach fails, it may be necessary to start the
computation with two arbitrarily chosen values.

After using a linear fit to determine 4,, it may be preferable to use all
three results 4;, A;, and i, te determine i, by fitting & cubic equation.
Whether the additional programming required for this more sophisticated
interpolation is warranted should be determined by the size of the probiem.

Finally, it has heen found to be efficient not to store poliey information
during the preliminary calculations designed to determine the correet value
of the multiplier. After the correct multiplier has been determined, the
ealeulation is redone, storing on tape or punched cards the optimal policy
tables. Since output, even onto tape, slows a computer tremendously, the
need for repeating one calenlation does not render this scheme inefficient.
During a calculation for a fixed 1, a table giving the optimal value of
>% . k(z;) = H (x)is constructed as well as the usnal f;{x) table. This table
ia & cumulative one and is updated at each stage by means of the relation

(8) Hyz) = kylay) + Hyfe — 2)

where the 2, is, as usual, the maximizing policy associated with the
recurrence relation

® filx) = m;'ix (gl + fk—-l(x — z)].

It is important te observe that the H,(x) table is one continually updated
table, similar to f,(z), not a set of tables such as the policy tables, In this
way, it can always be stored in high-speed memory. The number H \.(x} is
the valuc of 33 ,2(x,) used to determine the next A value. The quantity
Sulz) 4 AH y(x) is the actual return from a policy optimal with respect to
the Lagrange multiplier A.

25. Pyramided Problems

The problem we have just discussed illustrates an interesting aspect of
the formulation of dynamic programming problems. Due to the essential
dependence of the difficulty of sélution upon the number of state variables,
some problems that appear extremely difficult from the conventional
viewpoint are in fact simple from the dynamic programming standpoint,
and conversely. :

Two levels of policy decision preoblems are encountered in the abave
analysis. The apparently more simple problem is the optimal allocation
of fixed production and advertising budgets to profit making. What would
seem more diffienlt would be the problem of optimally dividing a fixed
capital resource between production and advertising in such a way that
the optimal use of the budgeted amounts maximizes profit. Yet this is not
the case.
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THE RELIABILITY PROBLEM

The first formulation leads to 2 two-dimensional problem. This problem
was solved by the reduction to a sequence of one-dimensional preblems by
means of a Lagrange multiplier. Each one-dimensional problem solved
was actually one of the second type above. By choosing the multiplier
A = 0 and maximizing over the range

(1) 0 <2yt Yy <7,

we can attain a solution of the two-level allocation problem. The one-
dimensional formulation would take the form
(2) fole) = max [ry(zy; yxy + fyoale — 2 — ¥l
DXz, ¥y <z

This ohservation holds true for a wide range of pyramided problems,
Later in this chapter we shall discuss transportation problems involving
the optimal shipment from a few sources to many demand points. The
reasoning we have applied above shows that the problem of optimal
shipment from one manufacturing source to a few storage depots, and then
to the demand points, leads to a problem which is of no greater difficulty.

26. Multidimensional Policy Space

In the advertising model we wished to maximize a function over two
variables. In §23 we mentioned the fact that the equation

n fyle) = max [ralZas Yn) — iy + fa-alz — 251
Dgy;rzm

could be replaced by

{2) _ Fyla) = o-g::aiz [@lzy) + fyalz — zy ),
where o
(3) Eylzy) = off'_‘im (ry(z ¥l — Ay

This viewpoint is of more than passing interest. If Equation (1) were
programmed directly, for each value of z, all admissible pairs {xy, yy)
would be evaluated, and as a result 7 (% y, ) — Ay would be re-eval vated
for the same zy and yy many times. By first evaluating the function
Qu{xy), we avoid this needless duplication of effort.

This simplification comes about because the variable ¥, appears enly in
the objective function and not in the argument of the function fy_,(z).

We will see this device used many times. It is of analytic as well as
computational value in the warehousing problem of Chapter TII.

27. The R-eliability Problem

Let us now consider in more detail the reliability problem we have
already discussed in §§27-28 of Chapter I. We shall suppose thatif 1 + m;,
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components are used at the jth stage, then the probability of successful
performance of this stage is given by the quantity ¢,(m,), a known function.

We ghall further supposc that we have two types of constraints, cost and
weight. Let ¢, be the cost of a single component at the jth stage, and w, be
its weight. The total weight and cost are then given by the expressions

N
{1) On= 3 cmy
=1
N
Wy= 2 wm,
i=1

The problem which we wish to investigate is that of maximizing the
overall reliability

N
2) Ry = 1_[1 $i{m;),
i= -
over all m; subject to the constraints
3 (= my=0,1,...,
N
(b) 2 emy <e,
i=1

M=

()

wim; < W

1

E]

28. Introduction of Lagrange Multiplier

In order to avoid dealing with sequences of functions of two variables,
we shall introduce a Lagrange multiplier. Consider the new problem of
maximizing the expression

¥
N —)..2 miwy
(1) [H ‘ﬁ:(m:)]e A=
i=1
over all m; satisfying only the first two coustraints of (27.3). Setting f(¢)
equal to this maximum value, where ¢ is as in (27.3b), we have the re-
currence relation

2} fuley = osmr:gfi;cyl [Pulmyle™ ™0 fy (e — myey])],
N=223...,with

— —~Admywy B
(3) fife) e [fy(my)e 1

Once again, let us note that each m, is constrained to assume only the .
values 0, 1,2, .. ..
29, A Numerical Example

A numerical solution of proeblems of the foregoing species can be obtained
quite easily. (A flow chart is given in §30.)
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A NUMERICAL EXAMPLE

For ibustrative purposes, consider a deviee containing five types of
components whose costs, weights, and probabilities of successful operation
are tabulated below:

Component Probability
Type Cost Weight of Success
1 5 8 0.90
2 4 9 0.75
3 9 6 0.65
4 7 7 0.80
b 7 8 0.85

We assume, as before, that one of each of these five types of components
must be used. Furthermore, if m; additional components of the jth type are
used, the probability of successful operation of the jih stage is given by

{1} $ilm;) =1 — (1 — p}mHL.

With a total quantity of 100 units of cost and 104 units of weight, we wish
to determine the number of components of each type that will maximize
the overall probability of szecessful operation, given as above, by the
expression

§=5
@ H $,(m;).
Beginning with the equation
3 Al = max  dy(mg)e” M,

0=m,; =lefe,]

we continue with the general relation

(4) file) = max [(Plme™ 4™ f,_ile — me)],
fori-:?, 3, ..., where
{5) 0 < m; < [efe;].

The quantity A is to be determined so that 3i2% ma; = 104.
Starting with 2 = 0.001, we obtain

i=5
(8) f5(200) = [T 4.(m,) exp (—Aman) — 0.8882,
i=1
and the va.lués my = 2; my =3, my =4, my =2, m, = 2, with a total

weight of 3723 mas; = 97. The probability of successful operation is
0.8882¢"* = 0.977,
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We now decrease A to .0008 so as to increase the total weight used. The
results are

{7) f5(100) = 0.9063,

my =2, m, =23, my =4, my =23, mg =2,

i=5
Y ma; = 104,
i=1

The probability of successful operation is (0.9063)e!%** = 0.984. This is the
solution to the problem. The computer time consumed in the ealeulation
was five minutes. It should be stressed that the same preoblem involving
fifty types of iterms would require approximately fifty minutes, since the
time required to solve the problem in this way is essentially proportional
ta the nummber of component types. The reason we do not say “directly
proportional’ lies in the search for the correct value of A

30. Flow Chart (See p. 69).

'31. An Extension

Let us now consider a realistic variant of the foregoing problem. In
* place of assuming that our only freedom of action lies in the duplication of
components, let us supposc that we have a choice of types of components
to be used at each stage, say between those of type 4 and those of type B.
Let ¢,(A), w,(A) denote the unit cost and weight for an A-type component
at the 7th stage, and ¢,(B), w,{ B} the corresponding quantities fora B-type
component. We could, if we so wished, allow combinations of type=of items
at each stage, without affecting the validity of the following treatment.

Given the overall restrictions on weight and cost, we wish as before 1o
determine which type of component to use at each stage and in what
quantity, so as to maximize the reliability of the device. Let

$ims ), $m;; B)
denote the reliability of the ith stage when m, components of types 4 and
B respectively are used in parallel.
As above, consider the sequence of functions {fy(c, «)} defined as the
maximum reliability of an ¥ -stage device subject to a cost constraint of e
and a weight restraint of w. Then

() f,(c, w) = max [max ¢ (my; A), max ¢,(m,; B)]
my my
where in the first expression we allow a range of choices
L l=m < min {fefe,(4)], [wiun (A},
and in the second a range

1 < m; < min {[¢fe,(B)], [wfw,(B)]}
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30. Flow Chart

Numerical Inputa:
Cmay = nitial amount of money
4 = Lagrangs multiplier

N puax = number of itpms
Outputs: N tables: L — fole) Input tables:
—_— forallc I — )

Probebilities for each item

table of optimal probabilities
table of optimal number of itams
table of cumulative weight

cost of each itam
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maximum number of vach item
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As in our previous discussion, m, can only assume the valnes 1, 2,....
For general N we have the recurrence relation

(2)
Jufe, w) = max {ma.x vy A fyeale — ep{d)mpy, w — wp{d)myl;

mazx ¢(my; B)fy-ilc — ey (Bymy, w— w‘v(B)mN]},

my
where, in the first expression,

3) 1 < my < min {{efoy(4)], lwiwy(4)]}
and in the second,
{4} 1 = my < min {[efey(B)], [eefwn{ B}

In both cases, my can assume only the integer values 1,2, .. ..

Having seen how to formulate the two-dimensional version of the
problem, we can now introdnce a Lagrange multiplier and proceed as
above to obtain a one.dimensicnal version.

32. The Hitchcock-Koopmans Transportation Problem

A problem of great significance in the field of mathematical economics is
that of moving resources from one location to another in an cfficient
manner. This is one particular version of the general problem of determin-
ing the structure of an ‘optimal network (where, of course, the notion of
“optimality” depends upon the use to which the network will be put).
Problems of this nature arise constantly in the economie, industrial,
crganizational, eommunication, electronic, and computing ficlds. Rela-
tively few of these fascinating topological problems have-been investigated
in any detail, and none of them yield to simple analysis.

The model we shall discuss at some length is called the Hitcheock-
Koopmans transportation model, although it was independently studied
by Kantorovich and Aronszajn.

This particular problem has been extensively examined and analyzed
with the resulé that there are now available a number of powerful and
ingenious techniques due to Dantzig, Flood, Ford, and Fulkerson for
treating some important special cases; references will ke found at the end
of the chapter. We shall consider here a different special case of the more
general probler; a case which is particularly susceptible to the functional
equation technique, With the restrictions we impose, we are able to treat
more Tealistic processes which cannot be handled by the methods developed
to treat linear models.

We shall show that the Hitchcock-Koopmans transportation problem
can be conceived of as an allocation procéss to which functional equation
techniques can be applied, directly and in conjunction with the Lagrange
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A MATHEMATICAL MODEL OQF A TRANSPORTATION PROCESS

multiplier. From the pedagogical point of view, this process affords vs an
opportunity to introduce ancther powerful mathematical technique, the
method of successive approzimations. We shall discuss these matters in
great detail below, together with the results of some numerical exXperi-
mentation. Combining these two factota of analysis—functional equations
and successive approximations—we can hope to tackle guite complex
- prablems.

33. A Mathematical Model of a Transportation Process

Let us call the sites where the resources are located the depots, ard the
sites where the demands for these resources exist the demand points.
Occasionally, and more pieturesquely, these are called, respectively,
sources and sinks.

We can envisage these as Iocated in the following way:

Depots Demand Points
i=1:D . j=1:P
2:D, 2:pP,
M: D, NPy

although, of eourse, such neat arrangement is neither necessary, nor to be
expected.

Althongh we shall formulate the process in general terms, we will be
interested in treating only the case where either the number of depots or
demand points is small. As long as one of these is small, the other number
can be arbitrarily large without affecting the feasibility of solution. We
shall further suppose that there is only one type of resource, and introduce
the following data:

(1) x; = the supply of this resource available at the ith depot,
i=1..., M

7y = the demand for this resource at the jth demand point,

j=1,..., N

Assuming that the total supply is equal to the total demand, so that the
problem is only one of distribution, we have the relation

2 ’ . Sa=r,
4 i

Although, as we shall see, the more general problem where supply
exceeds demand can be treated by means of the same techniques, an
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important simplification results in this case of equality. This wil be dis-
cussed in §37.
Let

(3) =z, = the quantity of the resource sent from the ¢th depot to the jth
demand point,
and let

(4} g,;(z,;) = the cost incurred by this operation.
The quantities x,; are subject to three constraints:
(5) (a) Non-negativity.

(b) Supply: the total quantity shipped from any depot mus=t equal
the supply there.

{¢} Demand: the total quantity shipped to any demand point must
equal the demand at this site.

Observe that we are not allowing any transskipment, which is 1o say, we
cannot ship from one depot to another and then to a demand roint, or
from one depot to a demand point and then to another demand point.

The foregoing verbal constraints yield the relations

(6} (a) %, >0,
I\r
(b) Sz,=z, i=12..., 1,
=1
M
(e} zz{j=r3‘: i=12,...,N.
=1

The problem that faces us is that of determining the gmantities z;
subject to the preceding constraints so as to minimize the total cost of
transporting the resources

M Can = Z ()

34. Discussion

This problem is cbviously of great complexity unless we impose some
further restrictions upon the form of the functions ¢,,(x), and even then, it
iz complicated if 3 and ¥ are large. A case of particular interest. in itself
and as a starting point for further investigations, is that in which the cost
of shipping from any depot to any demand point is directly proportional
to the quantity shipped, ie.,

{1) 9i; = dyty;e
The coefficient d;; may then be interpreted as a distance.
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DYNAMIC PROGRAMMING APPROACH

The minimization problem is then one within the domain of Hnear
programming, and, as noted above, many elegant and rapid algorithms
exist for its solution by hand and by Qdigital computer.

These methods are, however, inapplicable if the cost functions are
nonlinear, unless the functious g,{x) possess certain simple structural
properties which permit linear approximations to be made in one way or
another, in an efficient manner.

35. Dynamic Programming Approach

Let us begin with a discussion of the case where there are two depots and
an arbitrary number of demand points:

Depots Demand Points
Dz P, i
P, A
Dy, -
PN"]. M Y
N Tw

The key observation is that we can satisfy the demands one at a time
beginning with the demand at P, following with the demand at P,._,,
and =0 on. As usual, we convert a static process into a dynamic process in
order to apply the functional equation technique.

Let us then introduce the functions f(x, ), defined for ¥ =1, 2, ., ..,
xy, ¥; = 0, by the description

(1) falzy, ;) — the eost incurred using an optimal policy starting with
quantities x; and x, at the two depots, D, and D, respec-
tively, and fized requiremonts r, ro, ..., ry- at the ¥
demand points, Py, P,, ..., P\ respectively,

Supplying the demand at the Nth dernand point first, we incur a cost of
2 giv{Ty) + gan{@avh

and reduce the stocks of resources to a; — z, and #y — fp at the two
depots, [, and D, Using the principle of optimality, we obtain the
recurrence relation

AP Ful#y, %g). = min [graiey) + ganl®ay)
{Ry}

+ fu-1l® — Tow, 2z — 294},
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for N =2, where R, is the two-dimensional region determined by the
relations :

@ (a) T + Tay = 1
{b) 0 <z)y <z,
() 0 <o < 2,
For N = 1, we have
a) iz z2) = guleg) + gulz)-

36. Discussion

Tt is clear that the same technique may be applied to handle the
analogous problem involving any number of depots, Howerer, as far as
the computational solution is concerned, we encounter the usual dimension-
ality difficulties if 3f = 3.

In the following sections, we shall discuss a number of technigoes which
can be used to overcome this obstacle.

37. Reduction in Dimensionality

So far we have not used the additional bit of information that supply is
equal to demand, which is to say that v

(v z, dr, = r.
i=1
It follows that for a fixed set of requiremnents, the quantity z, is deter-

mined whenever z, is known. Consequently, we see that we may eliminate
the state variable x, and write quite simply

(2) Inlzy, 2) = filzy)-
The relation in (35.3) becomes
(3) Fule) = min [giyley) + Gay(ry — 71y}
TIN

+ Fvoaley — 23]
where x5 is constrained by the relations
(4) (a) G <z — oy, i
(b) Osry—ov=Srn—m
i=1
The range of the variable 2, in fy{z;) is [0, &, r,].

In the same fashion, the general problem involving M depots can be
reduced to the computation of a sequence of functions of If — I variables.
Hence, problems involving two depots are quite simple and thoze involving
three depots still directly approachable; those involving four or more are
dependent upon the use of special devices.

38. Increase in Grid Size

In connection with the foregoing remarks, let us note that one way to
circumvent the dimensionality problem is to increase the grid size. In a
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problem involving two state variables, we. can tolerate a range of one
hundred different values for each variable, since this means a total of 104
grid points. Current machines (circa 1960) can treat problems with memory
requirements of this order. It should be recalled that the effective dynamic
programming memeory is about one-third of the memory capacity of the
computer due to the fact that we are simultaneously dealing with the “old”
return fanction, fy_,(p), the “new’ return function, Jv(p), and the new
policy function, xy{p}. If there are several policy functions, the factor
one-third must be further redueced.

On the other hand, if three state variables are present, a similar range
for each variable would require & memory eapable of handling 105 values,
which is beyond present day capabilities. If, however, in place of one
hundred different values of each variable, we employ twenty differcnt
values, involving only 8 x 10% values, then we have & problem still within
our grasp. Hence we can elways handle functions of more variables if we
allow a smaller and cruder range for each variable.

Of course, we pay a price for this in the form of reduced accuracy.
Subsequently, we shall discuss ways of overcoming this reduction in
accuracy by using this approzch in conjunction with the method of
suecessive approximations.

39. Three Depots and a Lagrange Multiplier

As we have already observed, if there are three depots, we can treat the
problem computationally in terms of sequences of functions of two vari-
ables. If, however, we introduce a Lagrange multiplier, we can further
reduce the problem to that of computing a sequence of functions of one
variable. Let us now examine the details, ‘

Consider a three-depot problem in which therc is a quantity z; at the
first, and unlimited quantities at the sccond and third.

D orx I T "

D, :w P, r

Dy: 0 .

I Pryirna
PN T

We assume that shipping costs for the three sources to the various depots
are as before, and that, in addition, for every unit shipped from D, we
pay a quantity A, and for every unit shipped from D, we pay a quantity 1.

In these circumstaneces, the total cost is given by the expression

3 N N N
w 21 gl %iifx) + 4 Zl To; + _21 Ly
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At first thought, the reader might imagine that two Lagrange multipliers
should be used. The following argument shows that this ia not necessary,
Suppose that 4 iy varied until at the minimizing values of the z,; we have
> 71 23 = % Then, automatically we will have

N N
(2) Dy =xFT— 2T,
=1 i=1

o fixed quantity, since supply is equal to demand. Hence, we could if we
wished, eliminate the third term in (1) completely.

Let us set fy(x;) equal to the minimum value of the function in (1),
where the minimization is over the region

~
{3) (=a) 121 ;= 2y,
(b) Ty Tgps Xgy = 0.

To obtain a recurrence relation for fy, we, as before, satisfy the demand
at the Nth demand point first.
We then obtain the equation

4) Sulz) = n:?in [F13 %13+ FordTan) + FanlTand

+ Arpy 4 Ty + Sy-alr — 2l

where the B, is the region determined by the relations

(6) (a) ) Ty T ¥y + Tay = T
{b) 0 < L = Ty
(e Zons Tay 2 0.

The minimization over the variables z,, and xz,, can be carried out
explicitly, or computationally, in advance. Let

{6) galmys A) = min [goy(@y) + ganl(®sy) + Azey + Tayl
N
where S, is the new region determined by
(7) (=) Zoy + Tgy = Ty — Ty,
- (b) Zyns Tay 20

Then the recurrence relation of {(4) becomes

8) fylz) = 0521'10 . Gy &) + gulrws A -+ Syl — 2]

The parameter A is then varied between —oo and co until the total
quantity shipped from D, is x,, the original resource level at D,. The
quantity taken from D), will then automatically be 2 — E;—‘; LTy — T — Tp.

- 40. Eximple [—Two Depots, Ten Demand Points

As a first numerical example, let us assume gquadratic costs plus a
“get-up” cost for shipment from the two sources to the ten sinks, By a
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“set-up” cost, we mean a cost which is independent of the guantity
shipped, but which is not incwired if nothing is sent. The hypothetical
cost and demand tables are shown below.

To
Sink From Depot 1 From Depot 2 Demand
Seteup =z 22 Setup = a?
1 1.0 2 3.1 10
2 1 2.0 41 25
3 3.0 01 2.1 45
4 1.5 | 9 1 15
5 2.5 2.6 ]
6 10 50 —.01 3.0 15
T 3.0 & 1.0 2 - 20
8 6.0 20 15
9 8 60 —.05 20 10
10 6.0 5.0 01 20

This chart is to be interpreted in the following way. Each function Gis()
has the form
1) Fi47) = am + b5 £ cyyz),
where ¢,;(x) is what is often called a “set-up” cost, or “fixed charge,”
equal to zero if z = 0, and to a constant ¢,; for z > 0.

The coefficient of # is found in the eolumn under x, that of x% in the
column under 2%, and the set-up coefficient under Set-up,

Thus, the cost of sending « from Depot 1 to Sink 3 is.3x -} .012%; from
Depot 1to Sink 2,1 + 2zif 2 > 0, 0ifz = 0.

Suppose that 100 units are to be shipped from Depot 1 and 80 from
Depot 2. The eptimal solution is shown below.

To Sink  From Depot 1 From Depot 2 Cost Cum. Cost

1 10 6 10.00 10.00
2 25 ] 51.00 61.00
3 5 40 99.25 160.25
4 15 0 22 50 182.75
5 5 0 12,50 195.25
] 0 15 45.00 240.25
7 . 20 0 60.00 300.25
8 0 15 30.00 33025
9 0 10 - 2000 350,25

10 20 0 120.00 470.25
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This caleculation consumed twoe minutes computing time and four
minutes output time on the Rawp Johnniac computer.

41. Flow Chart, Two Depots (See p. 79).

42. Example II--Three Depots, Ten Demand Points

To FExample I, we add a third depot with the following shipment cost
characteristies.

To Sink From Depot 3 Demand
Bet-up

SEBER

30
35
30
25
40

155 additional units are placed at Depot 3 and the demands are inereased
to those shown above. Using the Lagrange multiplier technique, a choice
of 1 = 2.0 yields the desired result. The optimal solution follows.

To Bink Depot 1 Depot 2 Depot 3 Cost  Cum. Cost

(=R R
@
= T - I B ]

)

1 25 0 0 25.00  25.00
2 40 0 0 81.00  106.00
3 5 55 0 13075 236.75
4 0 0 30 30.00  266.75
5 0 0 20 20.00  286.75
6 0 0 20 63.00  351.75
7 30 0 5 110.00  461.75
8 0 0 . 30 96.00  537.75
9 0 25 0 5000 60775
10 0 0 40 240.00  847.75

The calculation took seven minutes for each value of 4.

43. Successive Approximations

One way to overcome the dimensionality diffienities that beset us on
every side is to invoke the aid of the most powerful of all tools of analysis,
the method of successive approximations.

78



41. Flow Chart, Two Depots
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Abstractly, the method has the following ontline, Given a functional
equation, we guess a solution. If the initial guess is not the actual solution,
we apply a correction, determined by the functional equation itself, and
obtain in this way what we hope is a better guess at the solution. Thke
process is continued until we either attain a solution, or come within
prescribed Limits of aceuracy.

One way to employ this approach is the following. Let the given equation
we wish to solve have the form

(1} T(u) =0,

and let the eguation S{u} = v be easier to solve. Write the original
equation in the form

(2} 8(u) = Sfw) — T(u),

and let our initial guess, u,, be a solution of S(u) = 0. Let the next
approximation, #,, be determined by the equation

(3) Suy) = Stug) — Tlu,),

snd generally, the (n 4 1)-th approximation obtained from the nth
approximation by means of the equation

(4) Sy} = Su,) — T{u,)-

If S{u) is carefully chosen, and T'(u) possesses appropriate properties, the
sequence {1} will converge to a solution of T'{z) = 0.

A great deal of work has been done in the application of this method
to the study of differential equations, both ordinary and partial, and scme
prefliminary effort in the direction of the functional equations of dynamie
programming has been made. References to results and methods will be
found at the end of the chapter.

Consistent with our general program, however, we shall proceed in a
formal manner, merely indicating various approaches. The results of some
numerical work will be given in order to illustrate an actual application of
the method.

There are many different ways in which the basic ideas can be applied,
and the field is virtually unexplared.

44. Approximation in Policy Space

A prototype equaticn for dynamice programming is, in abstract form,
{1y . J(p) = max [g(p, ) + F(T{p. )]
. a

Here o is the state variable and ¢ the decision variable. The classical way
to approach this equation in the usual situation in which an explicit
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APPROXIMATICN IN POLICY SPACE

analytic solution cannot be found is to guess an initial funetion, f,(p), and
then determine a sequence of functions by means of the recurrence relation

(2) fﬂ-l‘]'.(P) = max [Q{Pr q} +fn(T(p’ g}).L n=01,....

In general, it is not difficult to establish the convergence of this sequence
to a solution of (1), and usually the conditions which guarantee conver-
gence also ensure uniquensss of solution.

Observe that there are reaily two unknown functions appearing in {13,
the return function, f(p), and the policy function, ¢(p). They are, of course,
not independent, since one determines the other. (iven the return funetion,
J{(p), the policy function is determined by the maximization operation on
the right side of (1); given the policy function g(p), the function fip) is
determined as the solution of

(3) Sfip) = glp, 9) + A T{p. q)),

where ¢ = ¢(p). This equation is usually resolved by direct iteration.

The recognition of the parity of the twa functions, f{p) and ¢{p), enables
us greatly to increase the scope of the method of successive approximations.
In addition to the type of approximation presented above, in (2), we can
envisage a new type of approximation, peculiar to the theory of mul tistage
decision processes, approximation in policy space.

In place of starting with an initial guess as to the form of fip), we start
with an initial guess concerning the form of q(p).

The corresponding return function, Jol»), is determined as the solution of

4 Jol®) = g(p, q5) + fo{T(p, q,)),

where g, = g,{p). To obtain a better approximation, we determine
¢, = ¢;(p) 25 a function maximizing the function

(%) g(p, 9) + fo( T2, 9},
and then determine f;(p) by means of the relation
(6) APy = 9(p. @) + AT, 0))-

We continue in this way, obtaining thereby two sequences {g,(p)} and
{ f,,(p)}. In many cases, it is easy to demonstrate monetone convergence,

M fulp) <filp)y <---.

In general, approximation in policy gpace, in one guise or another, will
Yyield monotone approximation. What is interesting about this concept of
approximation is that it can be applied to many eguations not at all
connected with decision processes. In this form, it constitutes the backbone
of a technique called quasilinearization.

8:
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I the following pages we will discuss some examples of approximation
in policy space, with numerical results.

45. Successive Approximations—II

Let ws now return to the allocation process described above in §2. We
wish to maximize the function

N
ey fulz. ) = X gl %)
subject to the conditions
N
2) (a) Sa=a x>0
i=1
N
(b) Dy =Yy ¥ =0
i=1

Let 20 = {2} be an initial guess as to the set of z; values. This iz a guess
in “policy space.”” Then, determine the mazimum of
N
) Ry(zy) = Zodad vl

over all y, satisfying (2b), using the usual one-dimensional recurrence
relation

(4) Iy = oﬂax{y[gi\'(-"’.-\'o: yy) + fuily — ¥l
N=213_..,with
(5} Ll = 9’1(310, y).

This process vields, for each value of ¥, a set of ¥, ¥® = {y ). Using
these values of the y, which we call ,°, we consider the problem of maxi-
mizing the function

N
{6) > gd=, ¥,
i=1

over all values of the x, satisfying (2a). This problem is solved using a
recurrence relation similar to (4). _

In this way, we obtain a set of z;-values z* = {z}}. We now repeat this
process, obtaining in this way a pair of sequences {z"}, {#"},» = L 2, .. ..
It is clear that the sequence of values {Ry{z", ")} is monotone increasing.
But it is not necessarily true that this sequence converges to the absolute
maximur.

To see why this is so, consider, for example, a function of two variables,
2 = glx, y), represented by a surface such as is shown in Fig. 28.

Although the absclute maximum is ab (%, ¥o), if we make an initial
guess z = 0, we become ‘“‘stuck” (upon using the foregoing process invol-
ving maximization first over @ and then over ¥, then over x, and so on), at
the point (0, 0), 2 relative maximum. An example of this will be given in §51.
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On the other hand, if we start close enough to the point (z,, y,i. then
the foregoing method will converge to the desired point (x,, y,).

In any case, the method can always be used to test whether or not a
particular choice of x, and y, yields a relative mazimum, and if rot, to
eonverge upon the nearest relative maximnm. By starting with initial
vectors {z%, y°}, sufficiently distant from each other, we can expect to
- determine a number of relative maxima in this way, and, hopefulix, the
absolute mazimum.

T

{(¥o: ¥o)

Figure 28

The problem of distinguishing an absolute maximum from relative
maxima is one that plagues the optimization ficld. It cannot be expected
that it will ever be overcome at one blow. What we can hope to accornplish
is to add class after elass of problems to our zoo of tame specimens.

46. Successive Approximations—IH

Let us now discuss another use of suceessive approximations in which
we exploit the continuity of the location of the value which yields the
maxintum.

Consider the problem described in §2, and note the dependence of the
location of the maximizing point upon = and y. This dependence need not
be uniformly continuous as simple examples can show. Take the one-
dimensional case to illustrate this. Suppose that we have a function of z
and z,, g(z;, z;), which we wish to maximize over the region z, - ry = x,
*, %y = 0. Write f(r,) = g(z,, * — =) and consider its graph (Fig. 201 over
0 <2 <z Here the function possesses two relative maxima, one of
which is an absolute maximum.
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As z changes, if ¢ is continuous in 2, and #,, the location of r_, the point
vielding the absolute maximum, will change with = in a continuous fashion

until we hit a value of x where the graph has the form of Fiz. 30.
For this value of z, the relative maxima are equal In value.

Fixy)

Figure 29

flen)=flra)

| 1
Lm Y

»

Figure 30

Now suppose that for a neighboring value of z, f(y,,) is greater than
Jiz,). The result is that the location of the absclute maximuin shifts
abruptly from the neighborhood of «,, to the neighborhood of y_. Hence,
z,, considered as a function of x can possess points of discontinuity.

An interesting example of this phenomenon appears in connection with
the equation

(1) flx)= max lo{y} + Rz — y) + flay + b(z — yN]-
It _
@) gly) = 71,
h(y) = e70,
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the funetion f{z) has the smooth form of Fig. 31, while the policy function
#(x) has the form of Fig. 32. For certaip values of x, there is an abrupt
transition in the nature of the optimal policy.

We have delved into the rninutiae in order that the reader may be
properly forewarned of the difficulties contained in the method wé shall
now present. OQur aim is to combine the method of successive approxi-
mations described above and the method of continuity, another of the
fundamental tools of the analyst.

For x = 0, the only possible choice of the 2, i3z, =0, =1,2,..., N.
Hence, the problem of maximizing over the y,; is that of determining
the mazimum of

N
(5) Ry(0 ) = glg.-(ll ¥ih

a problem we solve by means of sequences of functions of one variable.
Suppose, for the moment, that this has a unique solution, ¥ = {3?}. Then
to solve the problem in which the constraints are now

N
® Sz =A =z >0,
i=1

N
> %=y,
i=1

where A is “‘small,” we start with the initial approximation »* = {7} and
proceed to maximize over the r,, as described in the foregoing sections.
Obtaining the solution in this way, we repeat the steps for the problem in
which the constraints are

T

I

2A,

M2

T

™
L]

1

s
N

I
=

=y

i

Our initial y-approximation in this problem is the y-soluticn to (6).
If we feel that this method may take too long to get started in this
fashion, we can use the straightforward technique to solve

(8}

N
I
8

Mz iM=

=
f

¥

s
i
™

for some larger z,, and a range of values of v, 0 < y < ¥, 2nd begin from
this point.
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COARSE GRID

47. Coupling Coefficients

Sometimes we can apply the method of suecessive approximations in a
different fashion, Suppose that we wish to maximize a function of the form

N N N
(1) iglgs(xi) + ‘2::1 hiy)+t Z]. kdx, o)

subject tc the constraints

N N
{2) ZI‘=Z, zy,-=3}, x;;y“éo-
i=1 =1

Here ¢ i3 a parameter which we allow to assume ali non-negative values. If
¢t =0, we can solve the problem readily in terms of two sequences of
functions of one variable,

Consequently, to solve the problem for small ¢, say ¢ = A, we use as an
initial approximation the solution {z?, 37} obtained for ¢ = 0, Taking
2% = {a?}, we can simplify the search problem by restricting our attention
to the neighborhood of y = {?}. Having obtained the solution corre-
sponding to ¢ = A, we use this for the initial approximation to ¢ — 24,
and S0 on.

This idea of decoupling by means of a suitable approximation can be
used in many ways, and affords many opportunities for ingenuity and
special techniques,

48. Coarse Grid

Another way to approximate to the solution of the maximization prob-
lem is to use a coarse grid initially. Suppose that we wish to maximize the
function

1) ' Fil®) + galze) + -+ gulza),
subject to the constraint
@ it atotay =

Let us begin by allowing = to assume a set of values 0, 8,28, ..., where §
is large compared to our usual grid size. 8imilarly, we allow the z; to assume
the same sct of values—although some other set of values would do as well,
The result is that the computation of the solution is speeded up in two
ways. There are fewer values of fy(z) to tabulate and the zearch process
for maximizing zy at each stage is shorter.

We obtain in this way a set of functions {edm)). 1 =1,2,. .., N, the
maximizing values, tabulated at the points = = 0, 8, 25, . . . .

The risk one faces in using a coarse grid is that one may miss a very
sharp absolute maximum and obtain instead a flat relative maximum,
Consider, for example, a function of the type shown in Fig. 33.
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A search at the values 0, 8, 25, . .. will pick up the relative maximum
at 28, but not the absolute maximum between 45 and 53. Examples as
drastic as this are, of eourse, unlikely. Nonetheless, we must always keep
such possibilities in mind.

Let us suppose that we have actually determined the location of the
actual z, = z,(x) = x,(x; J) to within £ &, of the maximum position. Then,

4
=
-
1 1 ! i ! i
o 3 28 38 a8 53 €3
X
Figure 33

when using the finer grid, say 0, &, 24, . .., where § = 10A or 100A, we
add the constraints

(3) zfe; ) — 0 < zfr) < 2w 8) + 6, i=1,2...,N,

where z{z; 8) are the functions determined initially by use of the coarser
grid.

Restrictions of this type cut down on the memory requirements and
greatly reduce the time required in the determination of the mazimum via
a search process. An application of this idea will be referred to in §11 of
Chapter III

49, Successive Approximations in the Hitchcock-Koopmans
Problem '

Let us now return to the Hitechcock-Koopmans problem cquipped with
these new methods. We have seen that a process involving M depots can
be treated directly in terms of functions of (M — 1} variables, and by
mesns of Lagrange multipliers in terms of functions of M — % variables.

We shall now indicate how successive approximations can be used to
treat the problem in terms of sequences of functions of one variable.

In order to attain this reduction, we shall proceed in the following
fashion. To begin with, the shpplies at the depots Dy, D,, ..., D, are
allocated to meet part of the requirements at the demand points in any
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EXAMPLE I—RELATIVE MINIMUM

way whatscever. The remaining supplies at Iy and D, are then allocated
to meet the remaining requirements at minimum cost.

This requires, as we know, only sequences of functions of one variable,
and thus may be considered to be & routine operation. This represents the
first step in the method of successive approximations. To eontinue, we use
the same allocations from D, ..., D,, as before, the allocation from D,
determined by the minimization procedure, and determine the allocations
from D, and D, to meet the remaining demands by means of & minimiza-
tion procedure.

This represents the second step. To continue, we fix the aliocations from
Dy, ..., Dy, Dy, as before, use the allocation from D, determired by the
previous minimization, and then solve the new problem of the miniriza-
tion of shipping costs from D; and D,. The process now continues in this
way.

50. Convergence

It is elear to begin with that the minimum cost function musgt converge,
since the cost is nonincreasing at each stage of the compufation. It is,
however, not: clear to what the process converges, and as a matter of fact
it is not difficult fo construct examples in which the minimum is not
attained in this way.

Our technique in both of the following examples is to fix initially the z,,
column subject only to the conditions that 2, ¥y = &3 and no z,; > r. In
Example 1, we have distributed the supply at Depot 3 rather equally to
the demand points. Tn Exampie 2, we successively fill the demands of each
sink until we exhaust the supply at Depot 3. We then deduct this pre-
assigned shipment from the demands at the various sinks and solve the
Temaining two-source problem. We use this solution to determine the z,,
for the second iteration. This solution determines the x,; for iteration 3,
after which we repeat the cycle by fixing Z3;. We continue this process
until we obtain a stable allocation under all three types of sub-problems.

We consider three depots and ten demand points in the examples that

- Tollow, :

51. Example 1—Relative Minimum
We consider the case where sach function ¢,,{z) has the form

(1) giil®) = e - b2? L (=),

where ¢, () is'a *“‘set-up’’ cost, or fized charge, equal to zero if # = 0, and
to the constant ¢,; if x > 0. _

The a,; appear in the column under x, and the b;; under 2?2 in the follow-
ing chart.
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EXAMPLE 1
Sink Source 1 Source 2 Source 3 Demand
Setup =z =z Set-up =z 22 Setuwp =z 2
1 —+1.0 +20 +3.1 +7.0 25
2 410 +Z20 +4.1 +3.0 40
3 +23.04+.01 +21 +9.0 60
i +1.5 +1.1 4.10 +1.0 30
3] +25 +2.6 . +1.0 20
6 +100 4+50-—-.01 +3.0 +50 420 30
7 +3.0 450 +1.04.20 440 35
8 +6.0 +2.0 +6.0 4-3.0 30
9 480 +6.0—.05 +2.0 15.0 25
10 +6.0 +5.04.01 +6.0 40
335
#; = supply at Depot 1 = 100
&y = supply at Depot 2 = 80
@; = supply at Depot 3 = 155
The results of the successive approximations are given below.
Policy 1 Policy 2 Policy 3
1 10 0 15 10 15 0 10 15 0
2 25 0 15 25 0 15 40 0 0
3 5 40 15 5 55 0 5 35 0
4 15 (H 15 15 0 15 0 0 30
5 5 ¢ 15 5 0 15 0 0 20
] 0 15 15 0 o 30 0 0 30
7 20 0 15 20 0 I5 35 0 0
8 0 15 15 0 9 30 0 6 30
9 0 10 15 0 10 15 ¢ 10 15
10 20 0 20 20 0 26 10 G 30
cost = 1_126.25 cost = 966.00 cost = §21.25

go
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Policy 6

Policy 5

Policy 4

25

25

40

40

40

60

60

60

30

30
20
30

30

20
30

30

Ow:dm m

35

35

30

30
15
30

20

20

10
10

40

cost = 853.00

10

coat = 853

874.00

cost

Actual Sohution

Policy 7

25

25

10

40

>8]

n
ie] = e

moo

Mo

=
"

30

30

35

30

30

°S

20

847.75

cost =

cost = 833.00

or
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52. Example 2—Absohtte Minimum

Let us now consider the case where each g, (x) is convex and of the form
a.(x) + b;x% The numbers are:

EXAMPLE 2
Sink Source 1 Source 2 Source 3 Demand

Setup =z 22 Setup =z ¥

1 1.0 .20 3.1 .10 7.0 25
2 20 .06 4.1 3.0 .04 40
3 3.0 .01 21 2.0 60
4 15 11 .10 1.0 30
i} 256 .05 26 . 1. .20 20
6 50 .01 3.0 2.0 30
7 3.0 1.0 .20 4.0 35
8 6.0 2.0 3.0 .10 30
9 6.0 .05 2.0 5.0 25
10 6.0 50 .01 6.0 40

_x; = supply at Depot 1 = 100
z, = supply at Depot 2 = 47
x5 = supply at Depot 3 = 138

The results of the iterations follow,

Policy 1 Policy 2 Poliey 3

1 0 0] 25 0 4 21 15 1 6
2 o 0 40 0 0 40 21 0 19
3 o 0 60 0 60 0 0 60 0
4 17 0 13 17 0 13 0 1] 30
] 11 9 0 11 0 9 13 0 7
6 0 30 0 0 0 30 0 G 30
7 32 3 0 32 0 3 35 0 0
8 0 30 0 0 20 10 0 20 10
9 0 25 _ 0 0 13 12 0 13 12
10 40 0 0 40 0 0 16 0 24
cost = 1535.240 cost = 1141.25 cost = 1040.55

g2
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Policy 4
12 7 6
21 ¢ 19
7T 53 0
¢ 6 30
11 2 7
0 ¢ 30
33 2 0
0 20 10
0 13 12
16 0 24

cost = 1035.439

Policy 7

12 ) 6
21 0 19

12 48 0
0 0 30
13 0 7
0 0 30
33 2 0
0 20 10
0 20 3
9 0 3

cost = 1022089

Policy 10
iz 7 6
21 0 19
17 43 3]
0 0 30
13 0 7
0 0 30
33 2 0
0 .20 10
0 25 ¥
4 0 36 .
cost = 1013.04

Policy 5
12 4 9
21 0 19
T 53 0
0 ¢ 30
11 0 9
0 0 30
33 0 2
0 20 10
o 20 5
16 0 24

cost — 1031.24

Policy 8
12 4 9
21 0 19
12 48 0
0 0 30
13 0 7
0o -0 30
33 o - 2
0 20 10
0 25 0
9 0 31

cost = 1020.69

Policy 11
12 6 7
21 0 18
17 43 0
0 o 30
13 o 7
0 0 30
33 1 1
0 22 8
0 25 0
4 0 36
cost = 1012.44

93

Policy 6
15 4 6
21 0 i9
7 53 0
o 0 30
13 o 7
0 0 30
36 0 0
0 20 10
0 20 5
9 0 N
cost = [1026.44

Policy 9

15 4 6
21 0 19

12 48 0
g 0 30
13 0 7
o 0 30
35 0 0
0 20 10
0 25 0
4 0 36
cost = 1016.89
Policy 12

15 6 4
21 0 13

17 43 0
0 0 30
13 0 7
0 0 30
34 1 0
0 22 8
1] 25 a
0 0 4G
cost = 1009.64



ol

— .
[—=D-=-2 B - R B TR ]

-

[

© OW=1D U 0D
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Policy 13

13 8 4
21 0 18
20 40 ¢

0 0 30
13 0 7
0 0 30
33 2 Q
o 22 8
1] 25 0
0 0 40
cost = 1007.85
Policy 16
13 8 4
20 0 20
21 35 1
0 0 30
13 0 7
0 0 30
33 2 0
0 23 i
0 25 0
0 0 40
cost = 1006.76
Policy 19
13 9 3
20 0 20

22 38
0 0 30
12 0 8
0 ] 30
33 2 0
0 23 7
0 25 0
0 0 40

cost = 1006.14

=}

Policy 14
13 7 5
21 0 19
20 40 1]
0 0 30
13 0 7
0 0 30
33 2 0
0 23 7
0 25 0
¢ 0 40
cost = 1007.75

Policy 17

13 8 4
20 0 20
21 39 0

0 0 30
13 0 7
0 0 30
33 2 0
0 23 7
0 25 0
0 0 40
cost = 1006.78
Policy 20
13 8 4
20 0 20
22 38 0
0 0 30
12 0 8
0 0 30
33 2 o
0 24 6
0 25 ]
] L] 40
cost = 1006.04

94

Policy 15
14 7 4
20 1) 20
20 40 o
0 o 30
13 o 7
o o 30
33. 2 ]
0 23 7
0 23 0
o 0 40
cost = 1007.25
Policy 18
14 8 3
20 o 20
21 39 0
0 o 30
12 o 8
0 o 30
33 2 0
1) 23 7
0 25 o
o 0 40
cost = 1006.41
Policy 21
14 8 3
19 0 21
22 38 0
o 0 30
12 0 8
¢ 0 30
33 2 0
o 24 6
o 25 0
¢ 0 40

eost = 1005.74



00 =1 e L b e

-
[~=]

U 00 < Do WY

Ld

EXAMPLE 2—AEBSOLUTE MINIMUM

Policy 22
13 9 '3
19 0 21
23 37 0
0 0 30
12 0 8
0 0 30
33 2 0
0 24 6
0 25 0
0 0 40

cost = 1005.49

Policy 25
13 10 2
18 0 22
24 36 0
9 0 30
12 0 8
)] 0 30
33 2 0
0 24 6
0 25 0
0 0 40

~cost = 1005.36

= O W -1 ® 3 e W

'
-

Policy 23
13 9 3
19 0 21
23 37 0
0 0 30
12 0 8
0 0 30
33 2 0
0 24 6
0 25 0
0 0 40

cosgt = 1005.49

Policy 26
13 9 3
18 0 22
24 36 0
0 0 30
12 0 8
0 1] 30
33 2 0
0 25 5
0 25 0
0 0 40
cost = 1005.26
Policy 28
13 . 9 3
18 0 22
24 36 0
0 1] 30
12 0 8
0 0 30
33 2 0
0 25 5
0 25 0
0 0 40

cost = 1005.26
95

Policy 24
14 9 2
18 0 22
23 37 0
0 0 30
12 0 23
0 0 30
33 2 0
0 24 6
0 25 0

0 0 40
cost = 1005.39

Policy 27
13 9 3
18 0 22
24 36 o
0 L] 30
12 0 8
0 0 30
a3 2 0
0 25 5
o 25 0
0 0 40

cost = 10(05.26
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It is rather interesting to observe that although accuraey to within 4 per
cent was attained on the third iteration, twenty-eight iterations were
required to obtain the absolute minimum. Furthermore, upon referring
to the twenty-second and twenty-third steps, we see an example of no
improvement when the allocation from the first depot was fized, but,
nevertheless, an improvement when the allocation from the second depot
was fixed.

53. Stochastic Iteration

Instead of proceeding in the clockwise predetermined fashion deseribed
above, in which we choose the depats (D, B,), (D,, Dj), and so on, which
makes it easy to construct examples in which we are led to corners and
relative minima, it may be better to choose the two depots at random at
each stage, )

In the more general case where there are many depots, it will be necessary
to test all possible combinations of two depots in order to guarantee that
we have arrived at the absolute minimum. Even then, it is possible to
contemplate situations in higher dimensional spaces in which even this
type of subminimization will not be sufficient to ensure absolute mini-
mization.

54, Conclusions

Our aim in the preceding pages has been to discuss the new problems
posed by multidimensionality. In some cases, we can pursue a routine
approach provided we have a modern machine and are willing to expend
the required time and effort. In other cases, the memory requirements far
exceed the capacity of the higgest of contemporary computers,

In order to handle the multidimensional problems posed by more
realistic descriptions of economic allocation processes, we must invoke
some more powerful techniques of classieal analysis, the method of succes-
sive approximations and the method of continnity. _

We have given some examples and some discussion to show that these
methods can be employed and in some cases will yield satisfactory results.
We shall come to diseuss additional techniques that can be used, separately
or in eonjunetion with those already presented. It is to be expected
that significant complex processes will require all of these tools in
unison, together with caleulus, linear and nonlinear programiming, and
B0 O -

In treating these processes, we will face a metaprogramming problem,
in which one of the basic difficulties will be that of determining which
mathematical techniques to use and in what order. All of this is intim-
ately connected with the concept of adaptive control processes, to which
we shall refer again in Chapter VIIL
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35. “Difficult Crossing” Problems

As a continuation of the analysis of §32, where the Hitchcock-K <opmans
transportation problem was considered, let us discuss a type of rathema-
tical puzzle that appears frequently in books on mathematical resm=ations.,

A typical poser is the following:

“A group consisting of three cannibals and three missionaries seeks to
eross a river. A boat is available which will hold two people, and which
can be navigated by any combination of cannibals and mizsionaries
involving vne or twa people. If the missionaries on either side of t=¢ river,
or in the hoat, are cutnumbered at any time hv cannibals, the cannibals
will indulge in their anthropophagic tendencies and do away with the
missionaries. What schedule of crossings can be devised to pzrmit the
entire group of cannibals and missionaries to cross the river saf:ivi™

In the next section we shall formulate the problem in more zeneral
terms and then resolve it by means of the functional equation technique.

36, General Problem

Let us now consider the more general situation in which we start with
o, cannibals and », missionaries on one side of the river and m, cannibals
and n, missionaries on the other. Let the rule be that on one bank we havea
constraint &, (m,, 7;) = 0 to prevent the mizsionaries from being dex onred,
a similar constraint By{m,, n,}) = (} on the other. and a constraint Ry(m, n)
= 0 in the boat, capable of carrying at most % people.

Given the integers my, n,, m,, n,, it is not at all clear when it is possible
to schedule a safe crossing. Consequently, we shall begin by trearing the
following problem. Starting with the given initial data, what is the maxi-
mum number of people that can be transported from one bank. sax bank
one, to the other, without permitting eannibalism?

537. Functional Equations

Since the total number of cannibals and of missionaries stavs constant
throughout the process, the state of the system at any time is specified by
the numbers m; and =, defined above.

Let us then introduce the funetion

(1) fylimy, 7)) = the maximum number of people on the second bank at
the end of ¥V stages, starting with m, cannibals and a,;
missionaries on the first bank and quantities m, and n,
respectively on the second bank.

We shall suppose that it is permissible at any stage to send no people
back to the first-bank from the second bank if everybody is already on
the second bank.
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One stage of the process consists of sending @, cannibals and ¥, mission-
aries from the first bank to the second bank and then of sending =z,
cannibalz and ¥, missionaries back to the first bank.

Using the principle of optimality, we obtain the recurrence relation

2 Sulmy, ny) = max fiy y{my — 2 + %0, 2y — 31 + )
zy

for ¥ > 2, where the variables 2,, x,, y,, ¥, are subject to the constraints

3) @ O=m<m, 0<y, <n,
{b} Ofgxgi:mz‘{‘xl: Oi:y2£?32+9'1:
() Btk oz by =k
{d) Balxy, ) 20, BRylmy, ) =0,
(e) Bylmy — 2,7 — o) =0,
(f) Bifmy —x + o ny — 3 +30) =0,
(g} Rofmg + 2y, mp - 94) 20,
(h) Ryfmy + 2 — 2,9 + 31 — #2) = 0.

There are sets of =z, a,, ¥, ¥, satisfying these constraints, since by
assumption @; — x, = ¥ = y, = 0 satisfies them.
For N == 1, we have

4) filmy, ny) = max [(m, + %) + (25 + y,)],
2y

where x, y, are subject to the foregoing constraints.

58. Discussion

For small values of ¥ and of m,, m,, n,, %y, the values of f {my, n,) can
readily be tomputed by hand. In many cases, the constraints will be of
such restrictive type that there will be a unique feasible policy, which
antomatically will be the optimal policy,

"In the foregeing manner we simultaneously determine the minimum
number of crossings necessary for the transference of all the people from
one side of the bank to the other, whenever this is possible. To obtain this
minimum number, we continue the process until a value of ¥ is obtained
for which f, = m, + my, + n, + n,.

59. Numerical Solutdon

We illustrate the above algorithm by solving the problem stated in §&5.
We first recognize that only certain initial states for the V stage process
are possible. All athers lead to immediate cannibalism. If we let {3, j) be
the state of ¢ missionaries and j cannibals being on the starting bank of
the river and 3 — i missionaries and 3 — j cannibals on the second bank,
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then only the states {0, 1}, (1, 1), (3, 1), {0, 2, {2, 2), (3, 2}, (0, 3) and (3, 3)
are possible. We use the algorithm of §57 to compute

fl{O! l) = 61 fl(l’ 1) = 6! f1{3= l) = 2r f]_{os 2) = 6)

fl(g’ 2) = 31 f1(3) 2} = 21 fl(ot 3) = 4) f1(3; 3] = 1
Observing that if f,(4, ) = 6, f,. (¢, /) =6forl = 1,2,. .., we iterate the
recurrence Telation for all non-six values and get

fol3, 1) =3, (2,2} = 4, 1,(3,2) = 2,f5(0,3) = 6, f,(3,3) = 2.
Continuing the process,
F3.1) =4, [,(2,2) =6, £4(3,2) =3, £4(3.3) =2, f,(3,1) = 6,
J13.2) =4, 74(3,3) = 3,f5(3,2) = 6,f5(3,3) = 4, [((3,3) = 6.
Therefore the required number of crossings, starting with 3 cannibals

and 3 missionaries on bank one, iz 6. The optimal policy is easily deter.
mined if the maximizing decision is recorded at each stage.
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CHAPTER IiI

One-dimensional Smoothing and Scheduling

Processes

1. Introduction

In the two previous chapters, we have shown that a variety of static
allecation processes could be viewed as dynamie processes and thus be
treated by means of the functional equation technigue of dynamic pro.
gramming. In this part, continuing the same appreach, we wish to study
some processes in the field of scheduling which arise naturally in dynamic
form,

As well as obtaining algorithms suitable for compntational solution
along the lines previously indicated, in & number of cases we shall derive
analytic descriptions of the optimal policy und analytic representations of
the return funstion. Results of this type are interesting not only because of
intrinsic elegance, but, as in the theory of differential equations, because
exact results for simpler processes can be used to obtain approximate
soluticns to more complicated processes, Here, however, we have far
greater flexibility since approzimations can be made either in function
space or policy space. i

Animportant point to make, and one which we shall illustrate repeatedly
throughout the remainder of the volume, is that the functional equation
technique can be applied in different ways, in combination with classical
techniques and separately, with different objectives in mind.

The difference between what we call an explicit analytic solution and
what we call a computational solution is less of kind than of degree. Both
are algorithms for obfaining numbers, In many cases, an “explicit”
solution is useless for numerical purposes, The simplest example of this
phenomenon oceurs in the solution of linear systems of equations where the
solution of Cramer, involving the quotient of two determinants, must be
discarded in favor of iterative techniques as soon as the dimension becomes
large. Many other examples occur in the field of differential equations.

2. Smoothing Processes

Consider a situation in which we want a system to operate in a specified
state, and where we incur a cost dependent upon the deviation from this
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state. If we attempt to transform the system into the desired state, we
incur additional costs dependent upon the effort devoted to effect this
change.

Processes in which it is expedient to pursue a middle path, balancing
one type of cost against another so as to maximize the utility of the overall
operation, are called smoothing processes. In what follows we shall eonsider
some decision processes of this type arising in economic activity. Subse-
quently, inChapters VIITand IX, we shall treat questions of similar mathe.
matical type arising in the field of engineering,

3. A Particular Smoothing Process

Let us begin our study with a simple process which arises frequently in
the analysis of economie, industrial, and military operations. A supply
depot is required at a preassigned set of times {such as every dax or everv
week) to meet a set of known demands for services or supplies. If the
demand is not met, a penalty is incurred. On the other hand, if the
organization is overstaffed or overstocked, another type of penalty is
levelled.

Were this the complete picture, the optimal control policy would be
self-evident. Let us, however, introduce a cost for changing the level of
gervices or supplies. This is quite realistic in many situations.

Given a set of dernands which fluctuate greatly over time, it is now a
nontrivial problem to determine how to adjust the service level, or stock
fevel, so as to minimize the total cost of the process, compounded of
penalty costs and costs of restocking.

4. Mathematical Formulation

Let ry, 7y, . . ., 7y be 2 preassigned sequence of demands, where r. is the
demand at the kth stage. Let

(1) z, = the capability of the system at the kth stage,

k=1,2...,N, where %y = ¢ is a fixed initial level.
In this example, let us assume that it is required that

(2) z, >r, k=12 .., N.

In other words, we insist that the demand always be met.
Let us then introduce two cost functions

(8} dulrr — ) = the cost incurred at the kth stage if z, > r,,
¥ilZx — %,_,) = the cost incurred at the kth stage if z, = Ty

This latter funetion measures the cost involved in changing supply or
service level.
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" The total cost inenrred due to a choice of levels x;, 2,, . . ., Ty I8 given
by
{4) Clzy, Ty ..., Ex) :xz [pulm, — 7)) + il — -]
=1
Our objective is to choose the 1, k = 1, 2, . . ., N, subject to the condition

T, = 7y, 80 a8 to minimize this function.

5. Functional Equations

In order to treat this minimization problem by means of functional
equation techniques, we imbed this problem within the family of problems
requiring the minimization of the function

N
ity Cr= th [l — 1) + wule — 2 ),

over the regiondefined by z, > r, k=R B —1,... , N, with Xp =6
for R =12,...,X.
Let us define

{2} frle) =minCp, R=1,2,..., N,
{x:}

where the minimum is taken over the z,-region defined above.
Then
(3) fyle) = min [z ~ ry) + plEy —c)l

IgZTy
a readily determined function.

The usual argument yields the recurrence relation
(4) Srlc) = m}in ($rlzg — 7r) + wrizg — ©) + Jrelzel)
LTaZry

for R=1,2,...,N — I, We thus have a simple algorithm for obtaining
the computational solution of the optimization problem.

6. Discussion

For various classes of functions, {¢ R(x}}, {wx(z}}, and constraints of -
one type or another, the nature of the optimal policy ean be determined
explicitly. References to a number of results which have beea obtained
will be found in the bibliography at the end of this chapter.

7. Computational Aspects

Here, as in the cargo-loading process, discussed in §22 of Chapter I, we
have a one-dimensional process with integral constraints. Furthermore,
extrema are eagy to locate by direct comparison, and, if grid points are
chosen to be integers, no interpolation is required. The range of the
quantity ¢ Is automatically limited and known in advance.
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As a result, we have a short and straightforward fixed-point program
with practically no difficulties as far as time or space are concerned. In
fact, for the examples so far attempted, all computing was accomplished
while the printer paper was being ejected.

In most dynamie programming processes, the variable under considera-
tion ean take on values which allow the argument of the function on the
right-hand side to assume a wide range of values. For example, in the
carga-loading process, §22 of Chapter I, the number of units of type ¥ to
beloaded on a vessel of capacity w is permitted to assume any integer value
hetween 0 and [wfw,]. The remaining capacity w — w2y thus can take
any value between (0 and w. As a result, f,_,(z) must be calculated in
advance for values of z between 0 and 2, before we can compute fy(w).

In the present process, however, we can determine in advance precisely
which values of fg,,{x ) will be needed to determine fg(¢). Much time is

. saved by taking this fact into account. :

To see this, observe that 5 is bounded below by the requirement r 5, and
from above by the fact that it is never necessary to choose z 5 to be greater
than the quantity max rp. Hence, fp, (x5} need only be determined for

R

therange rp <z, < maxrg.
R
It follows that when fr_ (¢} is computed from the relation
(1) frerle) = min [$plzr — 7g) + valTr — €) + fr+ol®R+1))

a1
only the values satisfying the two constraints

(2) {a) ¥p < ¢ < Max fp,
R
(b) fRt1 = Tp+y = MaXrg
R

are considered.

Although we view the problem as a stage-by-stage process to reduce the
dimensionality of the maximization problem, we use our actual knowledge
of future requirements to reduce the computational effort even further.

8. Resulis

In obtaining numerical results, three different criteria were used. In one
case, the cost of surplus function ¢gz(xrz — rp) was taken to be simply
Zp — T g. In the second case, we set

(1) $plte —rp) =25 —rg for 0 <zp—rp<M,
pplzg—rp)=M, fuo z5—rg> M.

The third case involved rapidly increasing cost whenever the surplus

exceeds M: )

() prlzn —rp)=2p—rp 0<ap—rp <,
brlxp—rp) =25 —rp+ Hrg—rg— M2 zp—rr=M.
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Figure 34, Flow diagram of solution,
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The cost of increasing capability was taken to be directly proportional
to the increase,

(3) pleg —xp,) =amax{zg — Tp 4, 0),

and there was no cost for deereasing capability. In all three cases, the
costs were taken to be independent of the stage.
The following 27-period requirement schedule

(4) (18,13,9,6,3,5,8,3,1,9,18,11,4,3,2,4,5,9,12 13, 12,
11,13, 7, 1, 8, 14]

was used with 2 = 2 or 4 and M = 2 or 4, for each of the three possible
cost eriteria, In each case, the starting level is taken to be zero. It should be
noted that in many cases, the optimal poliey is not unique. The one shown
in the graphs, by means of heavy lines, is the result of ap arbitrary decision
regarding which of two minimizing values to use.

9. Flow Chart {see p. 107).

10. Some Graphical Results (Figs. 3545}

Requirament, 7,

4 I
10 5
Period, N

Figure 35. Requirement graph,
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Figure 37. Optimal labor force under criterion 1, with @ = £; cost = 203,
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Figure 39. Optimal labor force under criterion 2, with a = 3, M =4;

cost = 110,
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Figure 43. Optimal labor foree under eriterion 3, with & = 2, m =4
cost = 121.5,
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Figure 44, Optimal labor force under criterion 3, with o = 4, m = 2;
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11. “Nearest Neighbor” Problems

Consider a set of points, p,, along a line as indicated below,
; 1 1 | ]
P P ¥ 53 Pr_1 Px

and suppose that there is interaction only between neighboring points. If

the quantities z, measure the position of the point p,, the total interaction

is taken to be a specified function

(1) gilz — %) -+ golzg — 2y) + 100+ gulEy - Tya)-

Fixing the values z, and 2, the actual physical state of the system will be
the values of z,, 2,, . . ., Ty, which minimize this function. The computa-
tional solution of this problem is readily obtained using the foregoing
technique.

Problems of this tvpe arise in statistical mechanics. References to
treatments of this problem along classical lines, and by means of dynamie
programming techniques will be found at the end of the chapter.

12. Equipment Replacement

One of the basie problems of our industrial society is that of the re-
placement of old machinery by new, of obsolete tools by modern devicea,
As equipment deteriorates with age, either actually, or relative to the
performance of more rec¢ent inventions and improvements, there comes a
time when the large initial outlay for new equipment, the loss due to the
atoppage of work, and the cost of training new skills are all compensated
for by the inerease in productivity and decrease in operating costs.

We wish to determine optimal repair and replacement policies under
various assumptions concerning present costs and operating charaeter-
istics—and future developments. Since decisions of this type must be made
every year or so, depending upon the fundamental time period for the
type of process we are discussing, it is clear that we face a maualtistage
decision process. :

Vital to any study of this type are the assumptions that are made con-
cerning the future. We shall here consider only the relatively simple case
where we are given a seb of predictions for the future. How these
predictions should be made and how they should be medified on the basis
of experience are more sophisticated problems (also of dynamic program-
ming type) which we shali not consider in this volume.

13. The Physical Process

To simplify the discussion of this introductory section, we shall suppose
that we possess only a single machine which yields a certain revenue each
year, requires a certain amount of care, and can be traded on a new machine
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vt any time. The revenue, the upkeep cost, and the rebate on trade-in are
il taken to depend upon the age of the machine in known fashions.
Given this information (Figs. 46, 47, 48) we wish to determine an optimal

wrade-in policy.

P
r(2)
1 L |
o 1 2 3 t
Figure 46, r{t) = the yearly return of & machine of age &,
AV 5 ——— —m——— o ——— —— —— —
u(e)
l |
) 2 ¢

c(t)

Figure 48, cit) = the cost of replacing & machine of age &.
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14. Dynamic Programming Formulation

We shall suppose that decisions are made only at the times
t=0,1,2,..., and that at each such time we have a choice of either
keeping the old machine which we shall designate by a K for “keep,” or
buying a new one which is indicated by a P for “purchase.” Introduce the
function

(1} fit) = the total return over the time required starting with a
machine of age ¢ and using an optimal policy.

In order to keep the total return finite, we introduce a discount factor a.
A unit of return one stage hence is considered to be worth a units at the
present stage. This is & familiar device in mathematical economies.

Then we obtain, along familiar lines, the functional equation

() £(t) = max [P- r(0) — #(0) — «(¢) + affl)].
K: 7ty — u(t) + af(t 4+ 1)

This is the first infinite process considered, and the first one in which
we have used the functional notation f{f) rather than a subscript-notation
fe As the reader will see, this simplifies our subsequent notation in which
other subscripts occur.

15. Analytic Solution

It is clear that an optimal policy has the form: keep a new machine
until it is 7' years old and then replace it by & new machine, Writing

) | n(t) = rlt) — uit),

we are led to the following system of equations:

(2) f(0} = n(0} + &f(l),
Jih) = n(l} + af(2),

AT — ) =T — 1) + af(D),
ATy = —e(T) + n{0) + af(1).

Solving this system of linear equations for f(1), we obiain the relation

@) f()—= [n(l) + an(2} + - - + a¥ 2T — 1) + n(0)a? 1] — a¥ " 1e(T)

1 —at

The unknown quantity 7' is now chosen to maximize this expression for
J(1}, since maximizing f{1) clearly maximizes f{0). The reader can convince
himself, either analytically on the basis of the foregoing equations, or
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direetly from the process, that starting with a machine of any age less than
T, the optimal policy is to keep the machine until it is " years old and then
replace it by a new one. What to do with a machine of age greater than T
is not at all clear.

16. Technological Impru;-'ement

In §13, we assumed that revenue, upkeep cost, and replacement cost
were functions of machine age alone. Typical data leads to the use of
exponential curves such as are shown in Figs. 46, 47, and 48, where we may
write

(L) r{l) = Pe™,
u(t) — A4 4+ B(l — e,
oft) = O(L — ke~9¥).

Here P represents revenue from a new machine, 4 is the upkeep cost of a
new machine, 4 - B is the limiting upkeep cost as the machine ages, O is
the cost of a new machine with no trade-in, £ is the fraction of  remaining
as trade-in value after purchase, and the exponents s, w, and d determine
the rate at which the limiting values are approached.

Assume now that technological improvement occurs. As a result a
machine produced during a future year N will have initial revenue greater
than P and ultimately new machines will have initial revenue capacity -
P + Q. Let us assume that the improvement in initial performance is again
an exponential function, this time of the year of manufscture rather than
of age. Since the year of manufacture is determined by the absolute year ¥
less the age of the machine {, we write

(2 () =P + Q1 — e "V )Je—

If operating cost will tend to approach zero as technology improves, and if
the increase in upkeep as the machine ages decreases by a factor # each
year, we can write

(3) uy(t) = Ae™#¥ =0 4 B(l — e~ ¥~

Coat of these new improved muchines can be assnmed to increase or
decrease with time, or with no loss of generality we can assume if constant.

We have now defined a family of curves. For machines produced in any
particular year, we have a curve of behavior as the machine ages. Figure
49 shows a typical family of such curves representing upkeep.

Although it is helpful for some purposes, and fairly realistic, to assume
exponential technological change, the method of computaticonal solution
to be described in the next section does not make use of these special
forms. In fact, straight tables of the varicus costs are actually as conven-
ient to use as explicit analytic functions, and generally fit the facts better.
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4
A+ 8
Machine manufactured
in year O
= Machine manufactured
3 in year 10
o A -
° Machine manufactured
3 in year 100
P
=8
o .

Age of machine, {
Figura 49

In most previous analyses of this problem, the exponentials were introduced
to facilitate analytic solution. :

17. Dynamic Programming Formulation
Yot us introduce the functions
(1) f N{t) == the value at year N of the overall return from a machine
which is { years old, where an optimal replacement pelicy
iz employed for the remainder of the process.

The future is discounted as before. However, we also assume that the
process lasts N, stages, and then stops. Hence, fy ,.(f} = 0.
Since the overall return associated with purchase at year N is

@) FEO = ry(0) — uy(0) — exlt) + afya(1),
and the return from a decision to keep is

3 FEO@ = rylt) — uy(® + afyalt + 1),
we obtain the equation

(4) fult) = max [f"” #7590

or

(8) Inlf) = max [P: 0] — un(0) —extt) = ﬂf.-vu(l}:] .
Ko rylt) — uylt) + afyealt +1)
The fanetion f(f) is taken to be zero for ¥ > Ny + 1.
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Letting N assume the value ¥ in equation {5), we obtain an expression
for an(f.) in terms of known functions. Hence, we can solve for fy (¢}, for
all admissible £. Depending upon our as yet undetermined earlier decisions,
we could have entered the last stage with anything from 2 one-year-old
machine, bought in the previous period, to a very old machine, the one
with which we started the process. Having constructed the function f (¢),
we can use equation (5) to determine the function fy _,{¢}. Continuing this
sequence, we obtain fi(t}, the optimal return for a process starting in year 1.
Recording the policy used in the maximization of equation {5}, we have the
replacement policy which yields the optimal return. This procedure
constitutes a numerical solution of the problem. i

18. Example

Let us solve the following simple example, We shall consider a ten-year
process. Replacement, revenue, and upkeep costs for machines manu.
factured in each of the ten years are taken to be the following functions of
machine age:

Mackine made in year 1

Age of machine © i 2 3 4 5 6 7 8 9
Reverue 90 B85 80 75 70 70 0 60 60 60
Upkeep 2 20 25 25 30 30 35 40 45 50
Replacement 200 220 240 250 255 260 265 270 270 270

Machine made in year 2

Age 0 1 2 3 4 5 6 i 8
Revenue 100 90 8 75 70 65 65 65 65
Upkeep 15 20 20 25 25. 30 30 35 35

Replacement 200 220 240 2506 255 260 265 270 270

Mackine made in year 3

Age o 1 2 3 4 5 6 7
Revenue 110 105 100 95 950 86 70 60
Upkeep 15 15 20 20 25 25 30 30
Replacement 200 220 240 250 255 260 265 270
Machine made in year 4 ' :
Age 0 1 2 3 4 ] 6
Revenue 115 110 100 90 8 70 60
Upkeep i5 15 20 20 25 25 30

Replacement 210 215 220 225 230 235 240
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Machine made in year &

Age . 0 1 2 3 4 5
Revenue 120 115 115 110 105 100
Upkeep 10 10 15 1a 20 20

Replacement 210 215 220 225 230 235

Machine made tn year 6

Age 0 1 2 3 4
Revenue 125 120 110 105 110 -
Upkeep 10 10 10 15 15

Replacement 210 220 230 240 250

Machine made in year 7

Age 0 1 2 3
Revenue 1352 126 110 103
Upkeep 10 10 10 19

Replacement 210 220 230 240

Mackine made in year 8

Age 0 1 2
Revenne 140 135 125
Upkeep a 1 10

Replacement 220 230 240

Muackine made in year §

Age 0 1
Revenue 150 140
Upkeep B 10

Replacement 220 225

Machine made in year 10

Age 0
Revenue 155
Upkeep 5

Replacement 220

Furthermore, we initiate the proecess with a machine, called the
tncumbent machine, of some age, say three years old, with the following
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future behavior:

Incumbent machine

Age 3 4 5 6 7 8 9 10 11 12
Pevenue 60 60 50 A0 50 40 40 40 30 30
Upkeep 55 55 55 60 60 60 B0 65 65 70

Replacement 250 260 270 280 280 200 250 300 300 310

Let us now construct a table of f,,(f). To compute f,(1), we compare the
revenue minus upkeep for the old machine (2 meachine made in year 9 and
now one year old) to the cost of replacing. Hence,

(P: 155 — 5 — 225
1 1) = max = 130,
® full) LK: 140 —10
and we keep the machine. One would hardly expect it to prove optimal to
buy a new machine during the last stage of a process. Similarly,

[P: 155 — 5 — 240
2 2) = max == 115,
@ Ful? LK: 125 —10

We complete the table of values of fj,() as follows:

¢ Sl Policy

1 130
2 115
3 95
4 85
5 8O
8
7
8
9
2

P

30
30
30
10
—44

by By By DY B By B R

1

Let us compute the first two values of f,(#) and then present the complete
seb of tables constituting the sélution. For computational convenience, we

LYY ]

let @ = 1, thongh in reality “= should be taken small enough to reflect
our uncertainty of the future as well as the discounted value of the dollar,

3) £1) = max [P: 150 -~ 5 — 230 + 130] — 240,
K: 135 -10 + 115
150 — 5 — 230 + 130
110 — 10 4- 95
21

f42) = max [; ] — 105,
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Using equation {17.5) in this manner, we have, for our hypothetical
machine, the following returns-

t  fot) Policy £ fit) Policy t fit) TPolicy
1 240 K 1 310 K 1 38 K
2 195 K 2 275 K 2 360 K
3 175 K 3 260 K 3 215 K
4 165 K 4 145 P 4 19 K
5 i} K 5 125 K 5 175 . P
6 70 K 6 110 P 6 170 P
7 G0 K T 105 P 9 145 ra
8 25 K 10 75 P
11 25 P
t  filt) DPolicy t  f5(&) TPolicy t fit) DPolicy
1 465 K 1 350 K 1 435 K
2 205 K 2 M5 K 2 38 K
3 265 K 3 325 P 3 370 K
4 245 P 4 320 P 6 285 K
5 240 P 7 205 P
8 210 F
¢t fift) Policy t  filt) Pelicy t  filty TPolicy
1 440 K 1 49 K 3 310 P
2 425 K 4 283 K
5 280 K

Let us review the derivation of the last number, f,{3) = 310, for this
represents the total return obtainable by using an optimal policy. We
start year 1 with the incumbent machine, which we can replace or keep.
If we replace the incumbent machine at a net cost of 3250, the new machine
(manufactured in year 1) wiil preduce a net revenue of $70 for its first year
plus the future profits ($400) derivable from a one-vear-old machine
beginning year 2. Therefore, the net gain is $310. If we keep the incumbent
machine we accumulate a net revenue of $5 this year, and can earn $285
in all future years for a total profit of $290. Since $310 is greater than $290,
we choose to purchase 2 new machine. Once we have decided to purchase,
we see that we will start year 2 with a one-year-old machine, and the table
says to keep it another vear. We start year 3 with a two-vear-old machine
and again, following the table, we lLeep it. Jetracing our steps in this
manner, we see that the optimal policy is to purchase at year 1, keep until
year 5, when we again purchase, and then keep this machine for the rest of
the process. As a check on our work we can add up the gain from this
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policy, which is shown below:

Year Policy Profit

"

—180

65

55

50

—145
105 -

100

95

85

80

310

As an interesting by-product of this analysis, we see that should we be
forced to keep the incumbent machine during year 1, perhaps because of
insufficient eapital to replace, our optimal poliey then says that we should
keep the old machine until year 5, and then replace. This is the poliex
that resnlts in a net profit of $200. Since the net pain of replacing now over
that of keeping is 320, it is for management to decide if the initial outlay
of 5250 for a $20 net gain I economical. One calenlation of this sort,
performed gnite easily by hand in an hour or so, essentially tests all 210
possible replacement schedules and chooses the best. In addition, it
produces some additional worthwhile information. As a machine computa-

B G = O oW e L3 bD e
By by by By By By B BN

-
<

tion, a matter of seconds is required per stage.

19. Other Formulations .

The technigue of selution here deseribed is sufficiently general to admit
a wide variety of formulations of the equipment replacement problem.
No unrealistic assumptions need be made in order to fit a restrictive
mathematical model. For example, a third alternative policy, the purchase
of a used machine, may be included if one can define a cost function,
gx(t, ) which determines the eost of replacing a machine of age ¢ by one
of age z in year N. The recurrence reletion in this case is

Purchase a new machine:
70} — up(0) — oy () + afyyq(1)
(1) fy()) = max| pyrchase a machine of age x:
max ry(r) — uy(2} — gult, 2) + &fyalx + 1)

Keep: ry(f) — wy{t) + afysqlt + 1)
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If we allow = to equal 0 and ¢,{f} = g,(Z, 0) we can include the purchase
of & new machine as a special case of the purchase of a machine of age z.
We may include the possibility of an overhaul in the same way if we are
willing to agree that an overhauled machine of age t will have the character-
isties of a machine of some smaller age ¢, Here ¢ is 2 function of f and the
effort devoted to overhaul.

To include overhaul in a completely general manner, we add a new
dimension to the problem. Introduce the function

(2) falty, t5) = value at year N of the overall return from a machine
of age t,, and last overhauled at age ¢,, where an opti-
mal replacement policy is employed for the remainder
of the process.

We must now define our various costs in terms of both age, £, and age of
the machine at its last overhaul, £,. Having done this, we write a recurrence
relation in a manner analogous to that given above, obtaining

(3}
P ry(0,0) — ux(0,0) — ex(t, ) + af v 14(1,0)
Sty t) = max | K ryldy, t) — wxlty, ) + &f yalty + L&) '
rlby b — wnlf £) — 00 {8, ) + af sty + 1,4)

where 0y{f,, £,) is the cost of overhauling in year N .a machine of age ¢,
last overhauled st age 4,. The technigue of numerieal solution is analogous
to that of §17, except we now compute a sequence of functions of two
variables. Such & calculation for the range of values of ¢ and £, occurring
here is still easily performed on a digital computer, regardless of the length
of the process being analyzed. '

Another formulation might make use of a stochastic model, with
expected return being maximized. In such a medel, probability of break.
down would be included as a function of year, age, utilization, and other
factors, and a replacement policy maximizing some criteria of performance
would be socught.

Problems of this type are particular examples of the Markevian decision
processes discussed in Chapter IX. As we shall see, once we have estab-
lished the existence of certain steady-state or asymptotic steady-state
policies, using the functional equation approach, we can then discard the
functional equations and use a number of different techniques to obtain
approximate solutions. In this way we can often bypass the usual multi-
dimensional worries.

The optimal inventory process we shall diseuss below is an interesting
covnbination of a smoothing and replacement problem,
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20. A Warehousing Problem

Continuing our discussion of one-dimensional scheduling processes, let
ua focus upon a problem of the following nature:

“Given a warehouse with fixed capacity and an initial stock of a certain
product which is subject to known seasonal price and eost variations, what
is the optimal pattern of purchasing {or production), storage, and sales?”

Not only shail we obtain a simple computational approach by means of
dynamie programming, but we shall derive by way of the basie functicnal
equations an explicit analytic solution.

21. A Mathematical Model
Let us begin by introducing the following guantities:
{1) B = the storage eapacity of the warehouse,
# = the stock on hand at any particular stage.

Couosider a seasonal product to be bought (or produced), and then sold
at each of N periods. When i periods, remain,

(2) ¢; = cost per unit (bought or produced),
p; = selling price per unit,
z, = quaniity bought {or produced),
¥; = quantity sold.
The following restrictions must be imposed upon possible policies:

(3) (a) Buying constraints: The stock on hand at the end of the ith
period cannot exceed the warehouse capacity. '

(b) Selling constraints: The amount sold in the ith period cannot
exceed the amount available at the end of the {7 — 1)-th period.

(c) Nonnegativity constrainfs: Amounts purchased or sold in any
period are nonnegative.

As a consequence of these restrictions, the following inequalities munst
hold:

(4) Buying constrainis:

v+ Y (2, —y)<B, i-=12...,N,
i=1 )
Selling constraints:
i—1
y{$v+z(zj_yj)! £=2=3,"':N)
i=1

y]_ S: U,
Nonnegativity constraints:
*, Y, =0
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Subject to these constraints, we wish to maximize the total profit
derived from the N-stage process, the function
~

(5 Py = Z {py; — c%;).

22. Recurrence Relations

To treat this problem by means of dynamic programming technigues, let
us introduce the sequence of functions {fy(»}} defined by the relation
{1) (v} = max Py,

Fal pax Py

for the set of values v = 0, N = 1,2, ..., wherc z; and y, arc subject to
the relations of {21.4),
For ¥ = 1, we clearly have

2 L) = max (pyy; — e7),
where the maximum is over the region defined by
3) 0=y <v» =z =0
Hence,
(.4) fil2) = p.
For ¥ = 2, we obtain in the usual fashion the recurrence relation
G Fylo} = Ea:v [oyyx —exzy + fy-alv + 2y — wwll

where the maximum is to be taken over the region

6 () 0<yx <v
{b) . zy =0,
(c} L + Tar — Yy = B.

23. Discussion

This is a simple recurrence relation which leads by not much more than
a hand calenlation to a rapid caleulation of the maximum profit and the
optimal policy. 1t so happens, however, that a great deal more can be
obtained from the recurrence relations. We can obtain a simple explicit
solution which unquestionably yields a hand calculation.

24. Preliminary Transformations

It turns out to be convenient to think in terms of the inventory level
attained at the end of each period. Write
(1) Vot Ey — Yy = U,
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so that the maximization over the region determined in (22.6) can be
written
(2) ' max I: max ] .

0

0=SuZRB | 0Svy Sv 2y =0

Then the relation in {22.3) may be written

®) In(o) = max [dy(u,0) + fyyfu)]
where -
(4) dulu, v) = zmaf' (Pyyn — ExZ), -

and z, ¥, are constrained by the inequalities

(5) (a) . vt zy —uy =
(b) Yn =0
(e) Ty Yy = 0.

In the determination of the funetion ¢, {u, v}, we are faced with the
maximization of a linear function over the points on a straight line, which
means that we need only investigate the end points,

When 0 <u < », the two points under consideration are zy = 0,
Yy = — u, and £, = 4, ¥y = ¥ In this region,

{6) Py (1, v) = max [pyle — u), pyv — cyul.

Avguing similarly, for v < u < B,

{7) ‘I‘&N(us v} = max [_"GN(”' — ¥}, Pav — cyul

Forfixed », 0 = v < B, the resulf can be shown geometrically in two cases
which are jllustrated in Figs. 50 and 51. -

Having established the naturc of the funetion 4 ,(#, ¢}, we shall proceed
to a derivation of the analytic structure of the sequence {fy(2))}.

25. Amalytic Structure
The structure of the function, f (), defined in equation (24.3) is not
immediately obvious. However, the following surprising property holds:
Theorem 1. The function fy(v) i linegr in v, the coefficients being functions

of By, .- ., Py and cy, . . ., Oy, namely
(n S0} = K (P, Pos - - - PriC1r Cos - - -, O}
+ L{pls Pos- s PN Cs O e vy GN)”-

Furthermore, the optimal policy, w, 13 independent of », the initial stock,
and depends only wpon the selling prices and costs.
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Figure 50

Case 2:py = Cy
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~N —cyloe—v)
N

Figure 51
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26. Proof of Theorem 1

The proof is by induetion. Clearly f,{¥) = p,» since the zero stage return,
Solw), is identieally zero. Assume that fy_;(v) = Ky, + Ly_v where
K, _;and Ly, are determined by the (¥ — 1} prices and costs, {p, e},
i=12,..., N — 1. We shall show that f,(») has the same form where
the coefficients now depend upon the sequence {p, ¢,}, ¢ =1,2,. .., N.
As in Case 1, let ¢y be greater than p .. Due to our hypothesis concerning
the linearity of f,_,(#}, the maximum must oceur at one of three points:
u=0,u =, or «t = B. Thus,

(1) Fnlv) = max [$5(0, v} + fu1(0),
qu(?)) ‘D} JI_ fN—-l(v)s €6A\7(B: v) + fN—l(B”!
or
2) Sul@) = max[pyv + Ky, Ky y + Ly g2,
—ey(B—v)+ Ky, + Ly, Bl

Since the third quantity in (2} is greater than the first two if and only if
¢y < Ly, we have established the condition for a choice of w = B. The
second quantity is maximum when py < Ly , < cy and the first is
largest when Ly ; < p. In all three cases it should be noted that the
maximizing # is independent of v. If u is taken equal to B, then

3 Su®) = (Ky_y + Ly 3B — ey B) + cye.

Hence, Ky = Ky 4+ Ly B —c¢yBand Ly =cy. fu=v,

) fu@) = Koy + Ly_yo,

whence Ky = Ky ; and Ly = Ly_;. Finally, « = 0 leads to

® fule) = Kyoy + pyo.

Heuce, Ky = Ky ;, Ly = py. In each case, fy(v) is a linear function of v
with the new coefficients depending upon p,, . .., pyand ¢, . .., 6y

‘The second case, py > ¢y, remains to be considered. Since both ¢ (x, v}
and f,_,(u) are linear, we must investigate only two points, % == 0 and
# = B. Here,

(6) Sy(®) = max [$4(0, v) + Fug(O) du(B,v) + fua( B,
(M) Sniv) = max[pyv + Ky gy, pyv —onB + Ky | + Ly Bl

We have a maximum at v = 0if L _; < ey and at w = B if the reverse
inequality is true. In these cases,

{8) Salvy = Ky ) + pyo,
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if w = 0, with X,y = Kp_,, Ly = py. On the other hand,
9 Tty = (Kp_y + Ly B — ey B) + pyw

if u =B, with Ky = Ky ; + Ly 8 — cyB, Ly = p,. This completes
the proof.

27. Discussion

Let us now consider the economic interpretation of the problem, and
investigate our analytie results.

Apparently, if ¢, > p,, we have three alternatives, dependent upon
other parameters. Equations (26.3)}-(26.5) have the following significance:
{26.3) represents a purchase of enough goods to fill the warehouse and the
eurrent cost of this decision, ¢, (B, v) is cy(B — #). On the other hand,
equation (26.4) corresponds to doing nothing, with an associated current
cost of zero. Finally, the equation in (26.5) arises from selling all » items
with which the period was entered, with an immediate return of p ..

Turning to equation (26.8), where py > ¢y, we have a slightly different
interpretation. Here, a policy dictating a final level of B meaps the saleot ¢
and purchase of B, with associated cost pyv — cyB. A choice of u == 0,
a3 above, means the sale of the entire stock, », and a return of py». In all,
we then have four distinet policies: sell; buy; sell and buy: do nothing.

In each case, the poliey is pursucd up to the constraint of warehounze
capacity, or the stock on hand.

28. A Numerical Example
Recalling the definition of p; and ¢, to be costs when ¢ perieds remain, let
us, to illustrate the solution, consider the following ten-period process.

i 1 2 3 4 5 6 7 8 9 10

c; 3 b 2 3 3 4 3 2 8 8

p 2 3 1 5 5 4 1 17 6 3

We wish to compute K4, L, and u,,, the return coefficients and the
policy when ten periods remain, i.e., the decision made at the beginning
of the process. Since fi(v) = p», we conclude that X, =0, L, = py,
iy = 0, whence

(1) K,=0, L;=2 u =0

We note now that ¢, > p, which means that we refer to equations {26.3)-
{28.5). Since L; < p,, equation {26.5) is applicable, viclding the values
{2) Ky=0, L,=3, u,=0.
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For the third from last period, the relations ¢4 > p; and L, > ¢, enable
us to use (26.3). Hence,

{3} Ke=1B, Li=2, wu;=2B8
Continuing this process,

(4) K, =B, L=85 u=010
K, =3B, L;,=5 wu;,=28,

Ky=4B, L;=4, u;=2E,

K7 = L’ == 3, Uy = B,

F‘-’:ﬁB, L8=7, u3=B,

Ko=6B, Ly=1 ug=w, .
Ky=88 Lya=1T uyy==2

For this numerical example, our conclusions are that an optimal policy
leads to a profit of 68 + Tv, where v is the stock at the beginning of the
10-stage process and B is the warehouse capacity. The optimai policy
requires no action during the first two periods, sells ¥ and buys B during
period 3, keeps the warehouse full during the 4th and 5th periods, sells B
and buys B during period 6, sells B during period 7, buys B during the
8th period, and finally sells out during period 9.

29. Conclusions

‘We have established the following resulta:

1. The optimal ¥ -stage return is a linear function of 1n1txa.l stock with
coefficients dependent upen the costs and selling prices.

2. The optimal policy at any stage is independent of initial stock at that
stage.

3. The optimal policy will'always have the following simple sirueture:
Do no buying or selling for the first & stages {k may equal zerc), and then
ogcillate between a full and empty warehouse condition for the remainder
of the process.

30. The Caterer Problem

A problem of quite different origin, but of analogeus analytic structure
is the following:

“A caterer knows that in connection with the meals he has arranged to
serve during the next » days, he will need r; fresh napkins on the jth day,
j=12,...,n There are two types of laundry service available. One
type requires p days and costs b cents per napkin; a faster service requires
g days, ¢ <C p, but costs ¢ cents per napkin, ¢ > b, Beginning with no
usable napkins on hand or in the laundry, the caterer meets the demands
by purchasing napkins at e cents per napkin. How does the caterer
purchase and launder napkins o as to minimize the total cost for n days?”
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This problem can be approached in several different ways, one which
leada to functions of far tco many variables, a second which permits a
fairly explicit analytic solution and thus a quite simple computational
solution, and a third which yields an immediate simple solution.

The second approach is based upon an important idea which can be
uged to simplify a number of analytic problems arising in variational
theory. Consequently, we shall discuss it below, despite the existence of
the trivial solution, since we ean use the basic idea again in connection with
bottleneck processes, and in our discussion of the use of successive approxi-
mations.

- 31. Dynamic Programming Approach—I

The first approach to the problem by means of dynamic programming
proceeds as follows. The state of the process at any time may be specified
by the stage, i.e., day, and by the number of napkins due back from the
laundry in 1, 2, up to p days hence. On the basis of that information, we
must make a decision as to how many napkins to purchase, and how to
launder the accumulated dirty napkins.

It is not difficult to formulate the problem in this way, using the fune-
tional equation approach. Unfortunately, if p is large, we founder on the
shoals of dimensionality.

As we shall see, the proper dimensionality of the problem is p — g,
when formulated in a different manner. The fact that a particular process
can be approached in several different ways is one of the essential facts we
learn from this problem.

32. Dynamic Programming Approach~1II

In piace of the approach mentioned above, let us proceed with the
equations defining the process in the usual way until an appropriate point
at which we shall reintroduce the dynamic programming approach.

It is first of all clear from the above formulation of the problem that we
may just as well purchase all the napkins at one time at the start of the
process. Let us then begin by solving the simpler problem of determining
the Jaundering process to employ given an initial stock of S napkins.
Clearly,

(1} . 8 > maxr,.
- K

Let us now make 2 simplifying observation that all the dirty napkins
returned at the end of each day are sent out to the laundry, either to the
fast serviee or to the slow service.

The process then continues as follows. At the end of the kth day, the
caterer divides r,, the quantity of dirty napkins on hand, inte two parts,

132



ANALYTIC SOLUTION FOR ¢ = 1, p =2

r, = 4, + 7, with u, sent to the g-day laundry, and », sent to the p-day
laundry.

Continuing in this way, we see that the quantity, x,, of clean napkins
available at the beginning of the #th day is determined by the following
recurrence relation,

{2) z]_ = SI
= [Ty — Tpa) T g F Yo

where v, = v, = O0fork < 0.
The cost incurred on the kth day is

{3) bu, +cu,, k=12,...,N—1

Hence, the total cost is

N-1 N-1
{4) On="5 323 v.+e .
k=1 x=1
The problem is to minimize €'y, subject to the constraints on the u,
(5) (a) 0 < u <7 '
(b) Ty =Ty k=1,2,..,N.

In order to illustrate the method, we shall consider two particular cases.

(6) (a) g=1, p=2,
(b) g=1, p=3.

The general case will be discussed following this.

33. Analytic Solution forqg =1,p =2
The equations in (32.2} assume the form

(1) z =8,
Zy = {ry — 7)) T uy,
Xy = (xy — 1) + uy + 2y,

En1 = (xﬂ—ﬁ - rﬂ—2} T, ot hm
Ty = (Fpy = Tuog) + % + Vs
Yet us now solve for the x, in terms of the %, and v,. This is the

essential device which greatly reduces the dimensionality of the process.
‘We shall meet this technique again belaw.
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We have
2) z, =25,
Ty = (8 — 1) + uy,
Zs=(8—-?'1-—f2) + [3514"152)‘]'1’1;
= (S — g —rg — 75} + (g + uy + uy) F v+ vy,

zn—1=(‘g_"1_”2_'”"‘"n—z)‘f‘(”1+'“2+"‘3+"'+“u—21»
+(”1+T’2+""Tl'vn_3)’

To={S—r—rg— o —r oy Fugfug o+ u, ),
ot + v

Since r, = u, + v, this may be written

(3) Ty =8 —wv_,, {v,=0), k,=12,...,n
Turning to (32.4}, we wish to minimize
N-1 N1
{4) Cy=c 3 1, +0B—0) 3 =,
k=1 E=1
over all ¥, subject to the constraints
B (= 0w <7,
(b) S~v ;=27 or S—r, 20,

Since (¢ — 3) = 0, we wish to choose v, ad large as possible. Hence,

(6) p=min(r, S —r ), £=12,..., N~ 1.

This determines the structure of the optimal policy. Using this explicit

form of the solution, it is not diffienit to determine the minimizing value

of §.

34. Analytic Solution for g = kLp=hk+1
It is readily seen upon writing down the equations that the case ¢ = ¥,

P =k + 1leads to a system of equations of the same type as given above
for g =1, p = 2. This illustrates the fact that it is only the difference

P — g which determines the level of difficulty of the problem.

35. Analytic Solution for g = 1, p = 3 —I

In order to illustrate the method which is applicable to the gencral case,

let us consider the case g = 1, p = 3.
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The equations in (32.2) assume the form

(1 x =8,
32#:171—_71";‘“1\
Ty == Xy — Tg T Uy

::4=:r3—r3—i—ua+‘v1.

Ty == Ty = ooy Uy + Vaog
Lo,
@ z, =8,
=8 —r + u,
Bo={8 —r, —r)) + 2y + u,,
=8 —-n—n—rntuytutute,

»

= (8 =y )
+u]_+ug+”_'3+“'+u,|__1+v1+v2+°°'+”ﬂ..3-
Hence, '

(3) ¥ = S!

We wish to maximize 37 ! v, subject to the constraints

(4) S“'vl 2'—"‘1. ’ i S—fl = U
8—v,—v, =1y or 8—rzv+u,
8§~ Vg = Uy 275 g, 8- Yoo 2V 5+ Yoy,
and
®) 0<w <,
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36. Analytic Solution for g =1, p =3 —II

Our problem reduces to that of maximizing the linear form

N
(1) Ly=2
K=1
subject to a set of eonstraints of the form
2) (a) : by = vy,

by = vy + vy

by = vy -+ vy

{b) 7, = v, > 0.
Having chosen #,, it is clear that we have a problem of precisely the same
type remaining for the other variables vy, ¢, . . ., vy. Let us then define the
sequence of functions {fk(x)}, EL=1,2,...,N —1, as follows:
N
(3) Joz) = max T o,
. R i=k

where R, is the region defined by
4) @ x>, 20,
beiy =¥ + Vrs

by >ty + Uy,

(b) Tl = Py 20,
e =oy =0
We have
(5) Fnaa(z) = max foy; + vy],
where _
{6) zzvy, 20,
bN 2 Var_a + Pres T‘\' = 'UN - 0.
Hence,
n Jralx) = minfby, x 4 ryl.
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Employing the principle of optimality, we see that

(8) fil®) = max (o, + fy(min(rey, dag — w))
0 <oy Sty
where v,* = min [z, b, ], fork=1,2,...,¥ — 1.

37. Analytic Solution
It can now be shown by a simple, but rather arithmetic, argument that

1) fi(@y = min [Py, z + @],
where
2 P, =min[P e 1 Pevns Qs 1 Bl Pyg="bxn

k= min [Pt+19 Trr1 ‘T‘ QH1]3

k=1,2,...,¥ — 1. Furthermore, similar results hold for the general
case where p — ¢ may be any integer,

We have engaged in this analysis in order to show that the functionat
equation technigue can be used to obtain explicit analytic solutions of a2
number of scheduling problems which take the form of that posed in §36.

38.- A Common-sense Solution

Let us now show that the original problem, given in §30, can be solved
by some quite simple reasoning. Consider the case where p = 2, g = 4 first.
Adhering to the previous meaning of #,, v,, r;, and z,, the following two
inequalifies concerning the demands in these future periods that can be
effected by the decision at time & must be satisfied for the choice of v;:

(1) Xy — Ty — Trgq T Vg T %y + Yp 2= Vi
T —Tp — Tryg — Tapn + Ypog T U+ Yppg + Vg F Vp + Vg 2= Trsa

Regrouping and transposing (recalling that «, + v, = 7.},

(2) Vp %y — Vg — T+ Viea T+ Y = L,

Vp STy Tepl ™ Tiaz — Ters T Upaa H ¥ Vg b Veg + Uy = Ly

Assuming proportional cost, which is independent of time, as above, we
assert that u,,, can be taken equal to r,, ;. This iz because in examining
the present with the aim of sending as many as possible to the slow laundry,
one can assume that all future napkins are sent to the fast laundry, We
now choose

(3) v, = min (L, Lz(“ku = Tpa)s T2)
to obtain the solution.
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A numerical example with § == 20, p = 2, ¢ = 4, is shown in Fig. 52.

E| 1| 2345|6788

| 3! 5]6|a|lo|l2]1]10]1

oo | 30 52 aloloy1lio]1

v, | O 0} 4002 0]l0]|0D

zea 17112l 6 (9055 {10]9]s

Figure 52

Consider now the general case. The inequalities to be satisfied are

B8 — Vhgrpt — Vpgprs = T T Y T Tl T T Taip 1l 2 Thg
S — ¥ qipie = Yreaross — T T Tra1 — Trra ™ T Thap 2 Thinen
B — o = Mgy — = Vg — Theain — 7 T Thret = Tt

g — p relations, and v, < r,.

Let us now use these inequalities to determine bounds on »,. In order to
allow v, to be as large as possible, we take »,,,, ¢ = 1, equal to zero in the
foregoing constraints. As before, this is permissible since an increase of »,
by 1 and a deerease of ., by 1 do not affect the sum EJ\=1 ¥;. Setting all
vy = 0, ¢4 = 1, in the foregoing inequalities, and transposing, we obtain
the following restrictions:

L | E+p
(5} <8 — z v - Z T
i=k—g¢t+p+l =+l
k-1 k+p+1
e 58— > h— 2 T
i=k—g+tp+2 =P+
ktg—1
v, <8 — 2 Ty
i=ktq-Dp



INVENTORY PROBLEMS

As an example, consider the case where § = 20,4 = 5, p = 2 (see Fig. 53).

|l 110 2|8 |3 2{141

v | 1| 8] 04| 0o 1{14]1

a, | 0| 2| 24 [3] 1] o]0

ma 19| 91 9|3 [ 5|1a] 1|4

Figure 53
The starred number, 4, is obtained as follows:

(6) 4=min(20 -8 —0—3 2,20~0_—2— 14,20 — 14 — 1, 8).

39. Inventory Problems

Thete are a large number of processes which involve ordering supplies at
the present so as to anticipate an unknown demand in the future. We shall
treat here only the simple case where the distribution of demand is assumed
known.

Let us consider a process involving the stocking of a single item. We
assume that orders for further supplies are made at each of a finite set of
times, and irmmediately fulfilled. After the order has been made and filled,
there is a demand made for the item. This demand is satisfied as far as
possible, with any excess of demand over supply leading to a penalty cost.

‘We suppose that the following funetions are known:

(1) (a) $ls)ds = the probability that the demand will ie between s
) and # + ds.

(b)  k(z) = the cost of ordering z items to increase the stock
level.

{e)  p{z) = the cost of ordering 2 items to meet an excess, z, of
demand over supply, the penalty cost.

To pimplify the situation, let us assume that these functions are indepen-
dent of time. Our aim is to determine an otdering policy which minimizes
the expected cost of carrying out an N-stage process. Let us then
introduce the function

(2) fulz) = the expected cost of an N stage, starting with a stock
level = and using an optimal ordering policy.

Let us suppose that we order at the first stage a quantity y — = to bring
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the level up to y. Then the expected cost is given by the function

(3) ' kw—ﬂ+f%w—wﬂﬂﬁ
Hence, iy
4 Silx) = minl:k(y — ) +j pls — y)d{s) d.s].
v=T ¥

The usual argumentation vields the recurrence relation
(5) nm=mmbwﬁm+f_w—mﬁmk
yZx ¥

tams® [ 005 4 f:f,,_l(y — e as .
n =2,

upon an enumeration of the various possibilities corresponding to the
different cases of an excess of demand over supply, and supply over
demand.

The reader should compare this problem to that of Chapter II, §10.
There we dealt with an expecied current cost of a decision with a known
change of state; here we have a stochastic current cost of a decision and a
new state which is also stochastic. Precisely the same formalism handles
both cases.

40. Discussion

Computationally, we have a feasible algorithm for computing the
sequenee { f(x}} and the optimal ordering policy, {¥+{x)}. We can, however,
. go much further under varicus reasonable assumptions concerning the
funetions k(z), p(z), and ¢(s), and obtain simple characterizations of the
optimal policy.

A case of particular interest is that where X{z} and p(z) are linear funec-
tions of z of the form

(1) k(z) = kz, k> 0,
plR)=pz, p>0.

In this case, we can show that the optimal policy has a very simple and
intuitive structure, to wit: for each N, there is an associated stock level,
&, with the property that if x >> s, we order nothing, while if x < s, we
order s, — « to bring the stock level up to s,

At first sight, the functional equation given above looks quite different
from the relations obtained in the equipment replacement problem and its
extensions. If, however, we consider only discrete levels of stock and a

140
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diacrete set of demands, we obtain an equation of the following form
.Cﬂ ol
2) [f.(&)=min [kfj —8 4+ 3 plr—iid 4+ fooyl0} 3 4,
FE] r=j+1 r=g

$
+ z fn— !.(j - r)ér]:
=0
fori=0,1,2,..., M, n=12.... -
We see then that the optimal inventory equation can also be eonsidered
as a special case of the general equation derived from Markovian decision
proceases, diseussed in Chapter XT.

41. A Further Reduction

In some cases, a deterministic inventory problem can be reduced from a
one-dimensional problem involving a sequence of funetions of one variable
{(a simple enough task for a computer) to one of considerably simpler form
that can easily be solved by hand computation.

For the ith peried, ¢ == 1, ..., N, define the following quantities:

(1) d; = the amount demanded,

3, = the interest charge on inventory carried forward,

8, = the ordering (or set-up) cost,

x; = the amount ordered.
We require that all demands must be met, and wish to minimize the total
cost. We consider that only a set-up cost is involved in orderi ng. We do not:
include the actuval procurement cost of jtems since we assume that the
procurement cost is linear and constant over time. Thence, except for
set-up cost, the total eost of procurement is the same for any program
matching the demand.

Letting I denote inventory entering a peried, one can readily prove the
following statements: .

1. There exists an optimal program such that fz; = 0 foralli. Thet is to
say, if we enter a period with a surplus we do not make any purchase.

2. There exists an optimal program such that for all 7, z; = Oor 3%_; d;

for some £, ¢ << k = N, That is, wc buy just enough to meet future de.
mands through some future period k.
3. There exists an optimal program such that if d;. is satisfied by some
we, I¥* < 4* thend, i =4*%* £ 1,...,4* — 1 is also satisfied by 7%+,
4. Given that J = 0 for period ¢, it is optimal to consider periods 1
through ¢ — 1 independently of the remainder of the process. _

Now, letting F(i) = the minimum cost for pericds 1 through 4, we have

x

1—1 i
min | §, L .l F'—I:I,
(2) F(i‘-} — min I=j=i [ ! ?Lg:' k=§+l w + {J )

8, + F(i —1) ’
where F(I) = §, and F{0) = 0.
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Hence we compute recursively one function of one variable, rather than
a sequence of funections of one variable.

42. Production Line Scheduling

The last problem we wish to consider is a very simple version of a
significant elass of problems that arise in preduetion scheduling. Since so
few of these problems ere approachable by any means, and since the
solution we obtain has such an elegant form, we feel that, it is worth
presenting. It can be used to furnish approximate solutions to the more
complicated versions,

Consider & different articles which must pass through two processing
stages, one after the other. Only one article can be processed at any stage
at any time, and we assume that the order of the itema cannot be changed
once the processing has begun. Given the time required for each article to
go threugh each stage, in what order should the articles be fed into the
first stage in order to minimize the total time required to process ail the
iterns? '

An explicit solution ecan be given for the two-machine process, and will
be presented below. There seems to be no corresponding result for the
case of three or more machines.

43. Mathematical Formulation
Let

(I} a; = the time required to process the ith item on the first machine,
b, = the time required to process the {th item on the second machine.

The operation is taken to proceed as follows. The items are arranged in
gome order, which may as well be 1,2, . . ., ¥. This is shown schematically
in Fig. b4.

Machine Machine
- w i —
A 4 @B (I] ’ | 2

Figure 54

After the first item goes through Machine One, it is then sent through
Machine Two. As soon as Machine One is finished with the first item, it
begins its processing in Machine Two. However, Machine Two cannot begin
on item two until it has completely processed the first item.

The problem then is that of arranging the times 5o as {0 minimize the
total time that the second machine is inactive waiting for items from the
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first machine. The complexity of the problem is a consequence of the fact
that different items reguire different times for processing by the two
machines,

Let

{2} =z, = the inactive period of the second machine immediatcly before
the ith item is fed into the second machine,

Then we have the following recurrence relations:
3 2, = Gy,
%, = max (@, + ay — b — 2,0}, -
2y - 7, = max (a; 4+ a, — b, 1)),

T, = max Za@ Zb—uix,o,
(2 )

i=1

2
%, + %5 -+ ¥y = max (E a, — zb,,zcz abl,al)
=1

and, inductively,

- N
(4) 3 #,= max K,
i=1 1SusN
where
" u=1l
(5) Kuz z o — 2 bf'
i=1 i=

We wish to determine a permutation of the items which minimize the
expression in (4).

Although this can be done directly, using the explicit representation
given above, it is instructive to use functional equation techniques as we
shall do below.

44. Dynamic Programming Approach
Let us introduce the function

{1) flay, by @9y By, - .+, @y, by t) = the time consumed processing the N
items, when the second machine is
committed ¢ time units ahead, the
processing times are g, b; respectively,
and an optimal scheduling policy is
employed.

If the #th item is fed into the machines first, we see that we obtain the
functional equation

(2) Flay, by ag, by yvvvhay, by f)
=min [@, 4 fla, b, @y, By, . ... 0,0,..., 2y, by; b, 4 max {t — a, O
i

where the (0, 0) combination is now where (a,, b,) was before.
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In order to use this relation to abtain the optimal ordering, we consider
the effect of interchanging the order of two succeeding items. Then, feeding
in first the ¢th and then the jth item, we have

() floy by, 2 by - Ay, by )
’ :a;' +a’j +f(a'1!b])- -'}0)09- ‘-:0101" - ':GNJbN;tij}!

where _
{4) 4y = b; + max (b, + max {{ — a, 0) — a,, 0]
=b;+ b, —a, + max[max (f — e, 0),qa, — &]
b, + b, —a, + max [t —a,a —b,0]
=b+b, —a,—-a,+ max[t,a, +a, —b,a]
= bj + b; — a; — @, + max [¢ max [¢; + a; — b, a;]).
We see then that if
(5) - max{e; + a; — b, a,] <mas{g, +a;, — b, a],
it pays fo interchange the order, from (3, 3} to (7, 2).
This criterion can be written _
{6) a; +a; +max[—b, —a,] < a;, + o; + max [—b;, — g,].
Thll.;i_._ we compare

{7) max|[—b, —a;] and max[-b, —a].

45. Determination of Optimal Ordering

In order to determine the optimat ordering according to the preceding
result, we proceed as follows:
1. List the values of the «, and &; In two vertical columnus.

i a; b,
1 ay b
2 ty by
N aN bN

. Scan all the time periods for the shortest one.

. If it is an a; value, place the corresponding item first.

. If it is a b, value, place the corresponding item last.

. Cross off both times for that item,

. Repeat the steps on the reduced set of 2r — 2 time values.
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7. In case of ties, for the sake of definiteness, choose the item with
amaller subscript to be first. In case of a tie between e, and §; values, order
the item according to the g-value first.

46. An Example
Consider the following example.

i a, b,
1 4 5 )
2 4 1
3 30 4
4 i 30
5 2 3
At the first step, we have
¢ a; b,
1 4 5
3 30 4
4 B 30
5 2 3
2 4 1
At the next step,
3 a, b;
& 2. 3
1 4 5
3 30 4
4 ] 30
2 4 1

We see then that the optimal arrangement is {5, 1, 4, 3, 2).

47. Conclusions

Qur aim in this chapter has been to show that a number of scheduling
problems, some actually called scheduling problems and others masquerad.-
ing under the names of “smoothing,” “equipment replacement,” and
“inventery control,” can be treated by means of dynamic programming
techniques. Many of these problems reduee to very simple and guick
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machine calculations, while in a number of other cases, the functional
equations can be used to provide explicit expressions for the optimal
pelicies and return functions.

As we have mentioned above, one of the important reasons for consider-
ing these fairly simple models of economic processes lies in the fact that
the solutions obtained can be used to furnish approximate policies for
more complex and realistic models. Furthermore, the type of sensitivity
analysis that these solutions yield will guide us in the construction of
larger models.
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CHAPTER 1V

Optimal Search Techniques

1. Introduction
In the previous sections, we have repeatedly encountered equations of
the form

(1} fN(x} = max gie, y, fN—l[y))a

¥
where the maximization is to be accomplished by a direct examination of
possibilities. If ¥ can assume a number of different values, ¥y, ¥, . . . , ¥y,

this straightforward procedure envisages the caleulation of the values
7z, ¥y, Fva (o 90, Yo, Fv_a(¥e)), and so forth, and a comparison of values.
If M islarge, a great deal of time can be consumed in the calculation of the
values g(2, ¥,. fv_ (%)) and in the comparisons,

The question arizes as to whether we can locate the maximum value in &
more efficient fashion. This is a significant question, since the feasibility of
solution of a problem by one technigue or another depends upon the
relative times required to obtain the solution. We may frequently wish to
allow a large number of policy choices at each stage in order to ensure the
accuracy of the solution. Consequently, it is important to study search
processes in their own right.

We shall show that for one very important and often met case, there
exist techniques which reduce the time in a phenomenal way. Following
our discussion of the determination of the maximum of a function, we
ghall study the problem of determining the location of the zero of a mono-
tone decreasing function.

These problems are particular cases of search problems-—questions of
extraordinary difficulty insofar as solution and even formulation are con-
cerned. It is rather amusing to note that the computational solution of
dynamic programming processes itself raises further dynamic programming
_ problems. )

The results and techniques of this chapter are due to 0. Gross and S.
Johnson. :

2. Unimodal Function _
Let us begin by introducing the concept of a unimodal funciion.
Definition. A function f(z) is unimodal in an interval [0, 4] if there is a
number wy, O <z, < &, such that f{z) is either strictly incressing for
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r < xy, and strictly decreasing for x > x,, or eise strictly increasing for

& < z,, and strictly decreasing for z = x,.
The most important example of functions of this nature are concave

fanctions.

3. Optimal One-dimensional Maximization

It iz clear that the unimodal property will never allow us to determine
the maximum value of f{x), but it will allow us to determine very accurately
the location of z,. We wish to prove

Theorem 1. Lety = f(x) be a unimodal function on aninferval 0 <z < L,
Suppose that L is a number with the property that the point at whick f(z)
achieves its marimum can be located within an interval of unit length by
calculating at most n values, and making comparisons,

Introduce the quantity

(1) F,=8up L.
Then
(2) Fn=Fn--1+Fu-2’ ”’22’

with Fg = F, = 1.

The numbers F, are the Fibonacel numbers, which oecur in the most
unexpected places. We shall discuss them below.

Proof. The proof will be inductive. Obgerve that F,= 1, and that
Fy = 1, since one value of a unimodal function gives essentially no more
information abeout the location of the maximizing value than none.

Fix n = 2, and compute ¢, = f{x;), ¥, = fiz,), for z; and z, two values
in (0, L), to be determined subsequently with x, < @, If y; > y,, the
maximum value ocenrs in [0, x,), while if ¥, > y,, the maximum is in
(x1, £,]. If 4, = ¥,, we choose either of these intervals, even though we
know the miximum occurs in [z, ,].

We are thus left with a sub-interval of [0, L] and the value of f(x} at an
interior point.

Forn=2 L,=2— ¢ wetake x, = 1 — ¢, z, = 1, where ¢ ia small,
This shows that Sup L, = 2. On the other hand, the foregoing analysis
shows that Sup L, < 2 + 3 for any & > 0. Hence,

(3) F2=2=F1+F0.

Let us now procced inductively. Assume that F, = F, , + F,_, for
k=2,..., 72— 1. We wish to show, on this assumption, that
(4) Fn=Fn—1+Fﬂ—2‘

Buppase we ealeulate f{r) at the two points 2, and =, on [0, L]. Then we
have the picture in Fig. 55, If 3, = y,, we are left with the situation in
Fig. §6. It follows that z, < F,_,, since we are allowed only n — 2 more

153



OPTIMAL SEARCH TECHNIQUES

choices, with x, a first. choice for the case where » — 1 calculations are
- allowed. Furthermore, x; < F, _,, since the maximum could occur on
(0, ), with only » — 2 choices left,

y1=fl=y) Yo = flxs)

b‘_-
A

0 ry x,

Figura 55

Similarly, if ¢, > ¥,, we have L, — 2, << F,_,. Thus,

(5) Lﬂ<x]_+Fﬂ—l<Fﬂ"‘1+Fﬂ—z’
whenee
©) F,=8uwlil,<F,,+ F,,
)

I |

1 1

0 x5 Zy

Figure 56

It remains to derive the reverse inequality. Choose

(7) Ln= (1 - g)(Fn*l + Fﬂ-—ﬂ)’ Ty = (1 _é)Fn—%

Zz = (1 —I—g)Fu_l.

Since € can be made arbitrarily small, this shows that ¥ = F i+ Fop
The two inequalities yield the desired equality.

Furthermore, this yields an optimsal testing procedure for any small e,
After comparing f{z;) and f(x,), we are left with an interval of length
L, = (1 — ¢/2)F,_,, and with a value at an optimal first position for the
smaller interval. Continuing in this way, we have L, = (1 — &/2)F, for
2 <k < n. Finally, L, = {1 — ¢/2)F, = 2 — ¢, so that the final interval
is of unit length. :

4. The Fibonacci Numbers
Although the sequence {F,} generated by the recurrence relation
(1) F.=F s+ F _, F,=F =1
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starts out slowly,
(2) 1,1,2,3,5,8,13,21,34,55,...,
we have F,, > 10,000. Thus the position of & maximum can always be

located within 102 of the original interval length in at most 20 calcula-

tions.
To determine the analytic form of F, observe that +™ is a solution of {1},
ignoring the boundary conditions, if

3 réd=r- L

The two values of r are (1 v/5)/2.
Hence, if we set
S 1y 1 — 5 E
(4) Fﬂ:cl(\/ * ) ‘|"02( \/),
2 2
we have the solution of {1} provided we fit the values at n = Q and = = 1.-
Thus,

(s) l=cte
1= cl(‘\/__.__.o + 1) + cz(l — \/3)
2 2
The values for ¢; and ¢, are
(6) 6 = 1+.5 0, == \1_5_'_"_5 .

N N

Since (\/3 + 1}/2 > 1 and (\/3 —1)2 < 1, we se; that for large #, F, is
14+ \/3) (x/g +1

V5 2

obtain exponential increases in accuracy at a cost of a few additional

n
very accurately given ‘by( ) . Tt follows that one can

computations. .

The ratio F {F,_, approaches [Vrf—) -+ 1){2 which is approximately 1.62,
Hence, the first two values, x, and z,, should be chosen at a distance .62.L
from either end of the interval [0, L]. This uniform testing poliey would be
an excellent approximate policy for all except the last few stages, at which
point it is of little import whether the best policy is used or not. This
simple search policy is particularly applicable for use with digital com.
puters.

5. The Golden Mean, an Aside
Take a line segment [0, L] and divide it into two parts so that one part
is (’\/g ~+ 1)/2 times the other. The reetangle formed by these sides was

supposed by the Greeks to have the most pleasing proportions, and con-
sequently was often used in their architecture.
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6. The Discrete Case

Let us now consider the case where f(x) is defined only over a discrete set
of points. In this case, we can establish

Theorem 2. Let y = f{x) be a unimodal function defined on a set of H,
digcrete points. Let H be an inleger with the property that the mavimum
value can ahways be identified by n observations and subsequent comparisons,
and set

(1) ) K, =Max H
Then
{2) K =—14+F ., «#o=1 -

Proof. Number the points in some order 1, 2, 8, . . ., 5. To begin with,
it is clear that Ky = 1, K, = 2, K, = 4. Now take n > 3, and assume thaf,
K= -1+ K, ,fork <n

Let us caleulate f(z) at o, and z,. Argnments analogous to those givea
above, show that

{(3) o <K, ,+1, H, —z <K, _,
whence
4) H, <K, ,+1+ K, ,=F, ,—+1+{(F,—-)=F,,—1

This maximum value j¢ attained if =, = F, _, and z, = F . This
establishes the desired result, and yields the optimal policy.

7. Zeros of Functions

It is interesting to see if the same ideas can be used to obtain a search
technique for finding the zero of a function in an interval, given the
information that the function is monotone deereasing, It turns out that
further information is required in order to pose an interesting problem,
We shall treat the following gquestion:

“Let f{x) be a continuous and convex function in [0, L), Apart from this,
f(z) is unknown. However, any particular value of f(z) can be computed,
and we start initially with the information that f{0} > 0, f{L) << 0.

Given an integer n > 0, how do we proceed to locate the root of f{z} in
[0, L] with maximnm aceuracy in # steps, where a step consists of ealeula-
ting & value of f(x) at any point we choose, and comparing it with previously
obtained values?”

8. Functional Equations
To make the problem precise, we formulate it in terms of minimizing the
maximum length of interval for which it can be asserted that it must
include the desired zero, after n observations, taken sequentially.
Without loss of generality, we can always consider the diagram shown in
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" Fig. 57 Here f{0) =1, fi1) = —¥, ¥ > 0. Since f is convex, the zero
must lie on [0, W], where W = 1f{1 + ¥). If we have just one more
reading to make (n = 1), then we choose the point z on (0, W) and calculate
f(z). The optimal choice of x will be derived below,

It can be shown by simple dominance arguments that no reading of f
need ever be taken outside any interval on which the zero has been located.

Figure 57

Hawving chosen «, and calculated f(z), we encounter exactly one of the
following cases (barring f{z) = 0, of course, the best possible case).

Cose 1. If f(x) = v > 0, then by drawing straight lines joining known
points on the graph of f, we have the picture shown in Fig. 58, with the
root located on (S, W') as implied by the convexity of f.

Case 2. If flz) = —»" < 0, the picture is as shown in Fig. 59, with the
root Jocated on (max (0, &), W) as indicated.

Tet 87 — max (0, §). If  is the final point at which f{z) is to be deter-
mined {i.c., = = 1), then it is chosen so as to minimize the maximum
possible value of max (W’ — 5, W — §"), consistent with our choice.
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Before going into the algebraic details of the solution for n = 1, Iet us
consider the general n-stage process in which we have several more readings
to make. In either of the two cases diagrammed above, all the essential
data can be described by a basic triangle determined by a two-parameter
system in the following way.

1

Figurs 58

Referring to Fig. 58, we can conclude that the graph of f lies above the
line segment v, und below the segment »#"Y (where the letters stand for
both points and values in the obvious mauner). 1f we now draw the line
gegment S ¥, it may or may not be crossed by the curve y = f{z); but if
it is crossed, at some point P, say, we can replace that portion of the curve
lying below PY by £Y without losing information. This device does not
violate the eonvexity condition, and it includes the worst possible case.
This can be shown by simple dominance arguments based on our knowledge
of the function at any particular stage. '

The essential data can thus be described by the triangle »S¥. Since a
vertieal reduction in scale leaves the problem invariant, and a horizontal
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reduction leaves it relatively invariant, the triangle »S¥ can be replaced
by a triangle of standard form described pictorially by two parameters,
Y, 8, as in Fig, 60.

Similarly, in the second case (Fig. 59), the graph of f lies above §%' and
below 1 W y'. Draw the line segment from 1 to 5" and replace any portion

Figure 5%

of the graph of f Iying helow this line by the line itself from 1 to the point

of erossing. This does not effect the choice of subsequent 2’s, since they

will all be chesen on minimal bracketing intervals. This agaip can be shown
by simple dominance arguments. Thus, in the second ecase, by a similar

suitable reduction to scale, we are led to another representation of Fig. 60,

Now define the function of two variables § and ¥:

(1} R,(S, ¥) = the minimum length of interval on which we can gnaran-
tee locating the zero in [0, 1] of any convex function f,
given that f(0) =1, f{l) = —Y < 0, the information
that the root is greater than § and the fact that we haven
readings to make.
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y
Figuore 60
If n = 0, we have clearly,
1
2 8, F)y= — 8.
(2) B, D=1

Next, using the principle of optimality, and taking intc aceount the scale
factors, we obtain for #» > (1 the following recurrence relation:

o — v
(3 max xR“_l(x_é__T,,’) , 'u’)
R (8, ¥}= min max =¥ 5‘!;(-2; 5 |
g A § - x v y
B=z= max ( x)R“_-l . )
o o<y S1-2b +7) l—z l—w» »

with the upper and Jower expressions after the brace corresponding to the
second and first cases, respectively. The scale factors are obtained in a
completely elementary manner by means of similar triangles.

The ranges of the variables S, ¥ above are given by ¥ =0,
0 <8 < 1/{1 4+ ¥). To render the expressions more amenable to com-
putation on the Johnniac, the following changes of variable were made:

l r

4) “ T ¢.(8. W)= RS, T},

1
hence E_(8, ¥} = ﬂ(S,-————).
when b 3 ] it 7

6o



THE SPECIAL CASE % == |
An additional modification of the variables », ¥ reduces the system to

(5) ¢ol8, W) =W — 8§,

% max gﬁ,,_;(t Wl —o ) 1

2 Wl —a)+a—1

‘g’ﬂ(ss WY = min -ma_x Sftp
Ssr=i ' —x Wit — x) .
(1 — ) max ¢, , X
esézw’ | M —z - Wa

where 0 = 8§ = W = L. \

The funections ¢ (S, W) were then computed for n = 1, 2, 3, 4 by means
of a discrete approximation using various grid sizes and linear interpelation.

The minimizing #'s were recorded since these form the basis of our
optimal policy, i.e., z¥ = 2, *(S, ¥} is the point at which we evaluate the
unknown function f given the information that the root lies on (8, W) in
our basic triangle and that there are » evaluations to be made. The point
x,* is, of course, itself measured on the basic triangle. To take care of the
general situation, we must, of course, relate our readings to the original
scale. If we let p (5, T) denote the fraction of the distance between S and
W oceupied by z,*, we readily obtain

S, W) — 8
8,y =S W 27
p(8, T} "

where W = 1f({1 + Y). It is now a relatively easy matter to relate z,* to
the original scale, and thus to obtain the procedure cycle cutlined below,

Graphs of the functions B, (0, ¥} and p (0, ¥) for n = 1,2, 3,4 are
included at ths end of this Chapter.

9. The Special Casen =1

We shall begin this section with 2 few remarks intended primarily to
validate certain assumptions made, tacitly or otherwise, in the derivation
of the foregoing functional equation. We shall close this scetion with a
brief treatment of the special case n = 1, § = 0, which provided us with
an excellent check on the validity of the data obtained from the Johnniac,
The remarks arte as follows:

1. Suppose we are at a certain stage in an optimal sequential minimax
search, with several values of f computed, and ready to choose our next
point of evaluation. Let a, b denote the closest evalnation points on the
left and right respectively of the minimal interval (S, W) on which the
root is known to lie, Then in-an optimal procedure, = is chosen on {(a, §).
To see this, we need only state that since the unknown function f may
indeed be piecewise linear (a possible contingency) outside (a, b}, it is clear
that any such subsequent reading would in such 2 case afford no informa-
tion regarding the character of f within (a, ), pertinent to the location of
its zero, not already implied by the quantities a, b, f{(a}, f(b), S, and W, or
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indeed by any of the previous readings, for that matter. Similar, but
glightly more involved arguments, ¢can be given to show that the next
reading should be taken on the interval (S, W)

2. In the treatment of Case 2, it was tacitly assumed that ¥, < ¥, or,
equivalently, that the §Y line has a negative slope as shown in the figure.
Again, it can be shown by dominance arguments that the worst situation
ocours when fis monotone, and indeed when the graph of f lies above the
line 8¥. It is this condition which determines the limits of the variable »
in the upper line of the functicnal equation for £ . It iz precisely such
dominance considerations as these which, though enabling us to express
the functional equation in a relatively simple form and this to
obtain an optimal “policy’ via its recursive computation, nonetheless,
do not enable us to obtain an optimal “procedure” directly from the
equation.

3. We now conjecture that the functional equation for B, may be
validly simplified by assuming that the maximum in the upper line of the
equation is always taken on at the upper end-point of the range of v. This
is true, for example, if n = 1. However, this assertion has not been estab-
lished in general, and, consequently, the transformed eqguation for @, was
subsequently submitted to the Johnniac in its present form. It turns out
that the resulting data supported the conjecture,

4. R (S, Y is separately decreasing in 5 and ¥. To sce this for the first
variable, for example, upon recalling the definition of B (S, Y}, we
observe that, other things being the same, the information that the root is
greater than § includes the information that the root is greater than §' if
8 < 8. On the basis of the additional information, then, we can clearly
guarantee af least as short a final bracketing interval with a larger & value
if we are proceeding optimally, ie., B (8, ¥} = B8, 1 if.$ > 8. An
analogous argument applies for the second variable.

1. n=1,5=10

Let us now present a brief discussion of some results obtained for the
case n==1, § = 0. We shall spare the reader the elementary, aibeit
complicated, algebraic details involved and simply state that upon sub.
stituting the function

; 1
4y RSN =S

in the right member of our fanctional equation and setting § = 0 in the
result we obtain a relatively simple algebraic minimax problem for the
determination of E,{0, ¥). _

The substitution p = x(1 + ¥) then yields, upon performing the mini-
max operation, the following equation relating the optimal ratio p and the
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variable Y
{2) (p* — 2p% — 5p? — 2p - 1)V2 4 2{2p% — p? — 3p 4+ 1}¥
: +{(2p —1¥ =0,
with the restrictions ¥ > 0,0 < p = 1.
Since the diseriminant of this quadratic expression in ¥ turns out to be
precisely 8p%, we readily obtain the following simple rational parameteriza-
tion of the {p, ¥} curve:

p=101 — 12
{3 y_ o 0<t<,
14—

To determine the value of #; we note that the limiting form of the
polynomial equation as ¥ — oo is simply the coefficient of the leading
term in ¥ set equal to zero:

{4) ph—2p% —5p—2p + 1=1.

This equation has a unique root on the interval {0, 1) and is given by

P._1+2\/§—\/5+4\/§ o
-
2

It follows from the parametric representation of p that

t,=1—v2p, ~~ 250
As a check on this, we note that this value of ¢, is the smallest positive
root of the denominator in the parametric expression for ¥,

The graphs of Bi(0, ¥), p,(¥) were plotted from manual eomputations
using the preceding formulas and these compared quite favorably with the
results from the Johnniac. Unfortunately, however, due presumably to the
choice of insufficiently small grid sizes imposed by the Johnniac’s limited
memory, a eumulative error caused, in effect, a gradual upward creep in
the tails of the p curves. These were smoothed out to agree with theory to
obtain the included graphs. The R curves, fortunately, seemed guite
insensitive to choice of grid size.

Let ns also mention the fact that further checks on the computations
were provided by the easily derived relationships:

) . 1—8
&n(WS W) = 0’ {#“(S, I) = _-'2";' 1
and these were found to fit the Johnniac data exactly.

282,

8

il. Description of the Computational Procedure

Let ua now describe the procedure eyele. Suppose we are in the situation
in which we know f{a) = ¥, > 0, f(b) = ~Y,, ¥, > 0, where a < b, and
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the root > & and we have n more readings to make. Then we have
bracketed the root on the interval (8, W), where

- boa) — 2.
W =a | a)Yb+Ya

If n = 0, the computation ceases and the values S, W are recorded.

Y
Ifn > 0, caleulate the value of f(z)at 2 =8 — {W — 8) - p, (?b) . Then,

o

¥
Fffla)y=—=¥_>0,setae ==z b’ =5, andS':x—{m{x—a)?—;”—Y‘H,

however, f(z) — — ¥, <O, set &’ = a, b’ =z, andif I_ > ¥, set 8 = 5;
otherwise set §' — max(S, z2—(b—= —L)
Yb -7 z

Finally, set 2’ = n — 1.

We are now in the situation in which we know that fiu) = ¥, > 0,
fib'y = — ¥, ¥ = 0, where ¢’ <C &', and the fact that the root is greater
than 8" with " more readings to make. This completes the cycle. (As the
problem is stated, § = a initialiy.) '

In the next section, we shall iJlustrate how this procedure works on a
particular example.

Remark 1. The foregoing procedure is an epproximation to the actual
minimax procedure. The theoretically correct procedure would only

Y
involve replacing the expression p, (?’3) in the formula for z above by
a

§—a ¥,

P (b—a, Tr—b), where p {8, ¥} is as defined above. Since the objective
—a'Y, :

function is relatively insensitive to S in our choice of p (8, ¥} in the vicinity

of the minimax, we feel that the approximation

(1) pa(0, ¥) = p (S, 1)

is justified, and define p{¥) = p (0, ¥). This approximation renders the
procedure more adaptable fo machine computation.

12. ANumerical Application—Comparing the Bisection Technique

Suppose we are desirous of bracketing in on the zero of & certain com-
plicated function f defined over. the interval (0, 1). We know that f is
continuous and convex and that, in fact, f(0) = 1, f{1) = —1. However,
since the function requires one hour of machine time to evaluate a single
point, we are ignorant of the fact that to all intents and purposes it is
given by the relatively innccuouns exprassion

- (1o 3]

164
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‘We can afford to make three evalnations of the function (= = 3). Upon

¥

referring to the graph of B,(0, ¥) with ¥ = -I—,'-} == 1, we see that we can
1

guarantee locating the root on an interval of length .01 times the original

interval, i.e., on an interval of length .01. However, since the graphs
represent the worst that can happen to us, we expect to do much better,
and indeed this turns out to be the case.

Let us proceed to caleulate:

Cycled. a=06=1,Y_ =1,Y,=1,8=0,n =3, whence by our
formula, W = .5, and we have logated the root on (0, .5). Next, « --
0+ (5 — 0)py(1) = .5(.148) = .074, and we find that f{.074) = .76830 >

074(76839) o
1 76835 o Co0 TmAlY

0;50a = .04, & =1, and s" = .074 -
n =2,

Cycle 2. (dropping primes on the new variables). « = .074, 5 =1,
¥,=.76839, ¥,=1, 8= 31950, n =2, whence by our formula,
926(.76839)
= 074 —_—
W= 074+ 1.76839 1
(31950, .47636) Next, o = .31050 + .1568692(-%@) = 31950 +
(.15686)(.198) = 35066, and we find that f[.35066) = —.04795 < 0, so

a' = 074, b’ = 35066 and since ¥, «¢ ¥, & = max (‘31950, 33066 —
{1 — .35066)(.04795)
1 — 04795

Cyde3. a = .074,6 = 35066, ¥, = 76839, ¥, = .04795, 8 = .31950,
(35066 — 074)(.76839)
76830 - 04795
33441, and we have located the root on {31850, .33441). Next, x = .31950
04795
+ (33441 — .31930},01(77—%@
we find that f(.32440) — 02535 > 0, s0 @’ = .32440, &' — 35066, and
, {-32440 — .074)(.02535)
8" = .32440 6839 — 03935 = .33384.
COycle 4. o = 32440, b = 35066, ¥, = .02535, ¥, = .04795, § =
33204, » = 0, whence by our formula,

= 47636, and we have located the root on

) = 31950, Finally, »" = 1.

n = 1, whence by our formula, W = .074 +

): 31950 + {01491} p,(.624) = .32440,and

(35066 — 32440)(.02535)
W = .32440 -
t T 0253 1 outes 33348,

and we have located the reot on {33294, 33248} » = {, so the computa.-
tion ceascs and the interval (33284, .33348) is recorded.
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13. Discussion

Since the bisection procedure does not take cognizance of the convexity
of the function, one would obtain initially without any evaluation of f that
the root lies on (0}, 1}; with one evaluation, (0, .5); with two evalnations,
(.25, .5); and finally, with three evaluations, {.25, .375). The lengths of
these bracketing intervals are, then, 1, .5, .25,.125, respectively. Comparing

1.0
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Figure 6]
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DISCUSSION

these with those obtained by the procedure above, namely .5, .15686,
01491, .00054, we see that our procedure does have a definite advantage
in this instance, In fact, in any instance of a convex function with the same
starting values as our example, we can guarantee In three evaluations, a
bracketing interval of length less than or equal to .01, as was pointed cut
earlier. This value compares favorably with .125. (See Figs. 61 and 62.)

0.5

(0,Y1=p (V)

el T T N e ApP——

pLY)

—— iy g — ot

Figure 62
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14. The Defective Coin Problem

The problem of ascertaining the minimum number of weizhings which
suffice to determine the defective coin in a set of ¥ coins of the same
appearance, given an equal arra balance and the information that there is
precisely one defective coin present, is well known. A largze number of in-
genioussolutionsexist, sorae based upon sequential procedurez and some not,

Qddly encugh, the corresponding problem for more than one defective
coin has attracted little attention. The problem is of significance becaunse
it represents one of the simplest examples of a sequential testing problem
replete with the difficulties of combinatorial nature and with the difficulties
inherent in the concept of “information.”

A small amount of analysis discloses the enormous difference in com-
plexity between the one-coin and two-coin problem. Starting with a set
of ¥ coins known to contain precisely one defective coin and an equal arm
balance, the only permissible operation is that of weighing one group of %
coins against another group of & coins chosen from the original set. If the
two groups balance, we immediately conclude that the defeetive coin s in
the remaining group of N — 2k coins, If the two groups do not balance,
we know that the defective coin is in one of the two sets of k coins. Taking
the simple case where we know in advance that the defective coin is
heavier than any of the other coins, we see that regardless of the outcome
of the first test, we face a problem of exactly the same txpe as the original
at the end of the test, and with a smaller number of coins, Thiz invariance
permits us to apply the theory of dynamic programming to this problem
in a quite simple fashion.

The problem in the case where there are known to be two or more
defective coins is far more complex because we cannot draw any such
definite conclusions at the end of & single test. We shall analyze this in
detail in the following section. The purpose of the following sections is to
indicate a systematic way in which the theory of dynamic programming
can be used to provide a computational solution to the determination of
optimal and suboptimal testing policies. We shall illustrate this by means
of some numerical results obtained using a digital computer,

15, The Two-coin Problem

Let us now consider the case where there are two defective coins in a
get of N coins, and where these two coing are known to be heavier than the
other coins in the set. Let us consider the possibilities attendant upon a
single weighing involving two sets of £ coins each.

{a} If the two sets balance, either they both possess one defective coin,
with no defective coins remaining in the group of ¥ — 2k coins, or each
group of & possesses no defective coing and the two defectives are in the
remaining group of ¥ — 2k coins.
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{b) If the two seis do not balance. eZther one:set possesses one defective
eoin with a2t most one in the remaininz N — 2k coins, or one set of k coins
possesses two defectives with none in 1he remaining ¥ — 2&.

Wo see that the original information patiern has ramified. As the testing
continnues, this ramification increases .at an alarming rate if we allow alj
possible testing programs. Observe that the sct of possible tests has become
very much larger than what it was in the simple case where there was
known to be only one defective.

At the end of the first test, we can choose a subset from the first group
of k coins, ancther subset from the second set of & coins, and & third
subzet from the group of N — 2k coins. and then matceh this set of coins
against & similar set. Although many of these tests are clearly inefficient
and majorized by simpler policies, it is not easy to rule out all tests of this
type without a good deal of difficult analysis. Furthermore, it is not clear
a priori that some tests of this nature may not be useful,

In what follows, however, in order to simplify the analvsis and speed
up the calculations, we shall not allow any mixed tests of the type de-
scribed above. YWe shall allow the information obtained from the testing
of ¢ne group of coins to be used in the testing of any other group,

16. Apnalytic Formulation

From what has been said above, we see that regardless of the definite
information we start with, and regardless of the outeome of a particular
test, we end up in a situation in which we must face alternatives. Let us
then assume from the very beginning that we are given an initial proba-
bility distribution p = [pg, 2, P4); wWhere p; is the probability that there
are exactly 7 defective coins in the set of & coins, for i = 0, |, 2. Assuming
that these defective coins are distributed in a uniform fashion among the
N coins, we can immediately caleulate the corresponding probability
distribution for any set of k coins drawn from the original group of N

We shall anly consider policies of the following type. Given a set of ¥
coins and an associated probability distribution p = [pg, p;. Pal, We draw
two groups of % coins each at random and halence them against one
another. If they balance, which means that each group now has at most
one defective, we search one of the groups. If this has no defectives, then
the other batch of & coins has none, and we go on to examine the remaining
group of N — 2k coins. If the first batch has one defective, then the second
batch has exactly one defective, and ‘there is no need to examine the
remaining N — 2k coins.

If the two groups of k each unbalance, we proceed to isolate the defec-
tives in the heavier batch. If this has one defective, then the other batch
of k has no defective, and we proceed to find the remaining defective in the
group of N — 2k coins, if there is indeed one more. If the k-group has two
defectives, we need not examine either of the other two groups of coins,
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Prior to writing down the functional equation we shall use to determine
the optimal choice of &, let us infroduce the following quantities:
In(pe Pr> Pa) = expected number of weighings required to determine all
- defectives, given py, py, p, and using a suboptimal pro-
cedure for N coius.
In(Pg P13 k) =Prob{two k-batches balance).
Pp{0) = Prob{no detectives in each k-batch, given that the arms
halance),
Pgl) = Prob{one defective in each, given that the arms balance),
Pp(l) = Prob{one defective in one k-batch and none in the other,
given that the arms are unbalanced).
P (2} = Prob(two defectives in one £-batch and none in the other,
given that the arms are unbalanced).
pir; ;1) = Prob(r defectives in the first A-batch, ¢ in the second
k-batch, and ¢ in the untested N — 2& batch).
SN0, 2y, po} = g5{0, P Po) = Glpy, 22) = g{p1)
FxlPo 1, 0) = R {By, Pu O) == Ar{Dy, 1) = By(pg)-
S0, 1,01 =4d,(0,1,0) =d.

17. Values of p{r;s;t)

In order to derive the basic recurrence equations, it will be of use to
tabulate the varions values of p(r; s; #):

1; 1 2
pl; ,0}‘——m?z,
2N — 20)
Lol = — 5,
P( 3 Y ) N(N-—-lj 1
k(N — 2k
N P | Rl s P
p(0; 1;1) Ny 1)
B — 1)
LN IN — .
p(—" 05 0) - ﬂr(ﬂy o 1] pzs
ik —1
2(0;2;0) = e 1

N(.N' o 1}p2;

1 .
(N — 2NN — 2k — 1)

p(0; 05 2) =

NN 1)
k
P{0;1;0}=§p1;__
k
p{l; 0;0) = ¥ 2
. N — 2%
p(0; 0 1) = —5— 1y

2(0;0; 0) = p,.
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18. The Basic Functional Equation

Applying the principle of optimality in the usual fashion, the basic equa-
tion from which the search policies are derived is readily seen to be

f:\.‘fﬁu' P1s Pa) = niin {1 + gulpe P13 k}[fzk(pé”J
(1) + Ppl0) fx gl P8, 1%, 287) + Pp{l)d,]
+ (1 — gy(pos 21: WGP - Py ol 25

where the p{? are probabilities eonditional upon the various possible
results of the weighing of the two k-batches, and

(@) SpP=1, allj.
i

-

The superscript {1) correspends to balance of the two groups ur £. The
superscript (2) corresponds to the case where the defectives are known to
be in the remaining ¥ — 2% coins. The superscript (3} corresponds to
unbalance of the original two groups of k, and the superseript (4) to the
penultimate case described in Sec. 16.

The p{? are given by

(3)
PP = [Po + Py

(N — 2k)N — 2% — 1}}/
NN 1)

[ {(N — QkWN — 2k — 1) + 2&21] _
Pot Py NN = 1) [

1 1.
=1~

N -2 N = 25N — 28— 1
PI(J?') =Po/|:190 +1’1(——";"”—) +?2( i ) H

N N — 1)

@ N — 2% N — 2% (¥ — 2B — 2k — 1)
PiT=n v Do+ N + NE -1 ;
PP =1—pf —pP;

§) = 0;
ok | RN — Qk):] /[ 2k (41;(1\? — 2k) + 2%l — 1))]

@) _f ., o ALY — 4 g .

7 [P_lN-E_pzN[N—l) Py T P N — ) ’

?

Qk(k — 1) % AB(N - 2%) + kit — 1})]
9 _ i
Pz By NN 1 I:Pl I + }’3‘2( NV =D

w2k [ 2%k 4k(1\’——2k}]
Po -—P].N pli\r P N(.L\'Y—"l)

4 (4},
P =1 — pp?;

o =0,

2
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Also
(4}

B g N8 ‘:[NWQk)(Nv%— 1)+2k2:[
IPo P k) =Po F LTt P2 NE =1 ;
and
(5} Py ="

P5(1) = #;

2k 4N — 2k) )

PU(]') =}‘)1§ +P2 AT(AY —1) "

The equations for d, ky{p,). and g.(p,} are special cases of equation (1},
and reduce to:

, N -2k 2k
)] ay = mln I:l + 7 Eyox + ¥ dk] .

Bylpp) = mgn (1 4 g3{Pg: 1 — 2y k)hx_ -2k(}’32})]
+ (1 — gylpo, 1 — py; £}, f

and

M gaipy) = min [1 + ¢4(0, py; E)A (25

1+ PuOg (3P 4+ PRy
+ (1 — g0, py; RNg(P1P)
+ Py{Uhy ol o)

19. Computational Procedures

Using Equations (18.1}, (186}, and {18.7), approximate valuecs of fy
and the corresponding values of & which yield the minima were obtained
for ¥ =1, ..., 99, for values of p; at increments of 0.1. These values of
Sy and & were computed iteratively using a Univae 1103. Due to the storage
size of computers existing today, to the dimensionality of the problermn,
and to the limited amonnt of computer time available, the method of
computation was rather crude and hence the resalts give only an approxi-
mate idea as to the nature of the exact solution. However, some clues are
obtained. It will be possible to obtain more accurate solutions using
exactly the same technigues with smaller increments on the p, when
computers with larger memories become available.

The crudity of the results is due to the fact that the pi themselves take
on values in the continuum {9, 1] for the various values of p,, py, 0, %, and
N. That is, the p} caleulated from Equations (§8.3)arenot 0,0,1,0.2,.. .,
0.9, 1.0, but take on intermediary values whose corresponding funectional
values f,(p5’, o7, pi’) have to be approximated by interpolation on
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previously obtained f.(p,, p,", p,'}'s, where py,p,"p,” have values
0,0.1,...,08,10.

We shall call these eleven values the set P; also pit, gl are those
consecutive members of P that contair pl. }

For the cases in which p§” 4 ¢ = 1, the interpolation on f{p{", p{),
(where p& is redundant, since gy’ + p + 4’ = 1), is of the form

(1} fr(?os Bl = N(p, — ?u)f:(?}us B} + By — D) fr(?n’ Hile — _plj
+ 01(p, — ?o)fr(?jo:.?l) + Py - po)fr{fus_iol)(ﬁl — ™)

When {7 + 57 = 1.1, the interpolation has to be modified so that
only f{po. B,), F{Pg, 1), and f{pg, p) occur in the expression. Obviously,

TABLE I
Values of &y For ¥ = 80

i 0 1 2 3 4 5 Ri] qJ 8B 9 10
By

0 1 1 T 8 8 8 i3 18 40 40 27

1 3 7 8 8 16 10 40 40 40 27

2 4 10 10 i2 14 40 40 40 29

3 8 8 9 10 40 40 40 40

4 7 7 40 40 40 40 40

B 8 8 40 40 21 40

6 7 38 40 40 40

Wi 7 38 39 40

R 32 a7 39

9 28 37
1.0 —

he incremental interval 0.1 is large and creates inexactness in the com-
utations, but the fact that all f{py m). # << &, had to be stored to
btain fy made a smaller interval impossible. Also, one would intuitively
el that the f's and their corresponding &’s which wminimize {which we
2all define as ky) might be discontinuous at the boundaries pﬁf’ =1,
P =1, and p{* + p{* = 1, and this again is & drawback to the use of
iterpolation. .
Since the number of values of f\{p,, p;) calculated is over 6000, limita-
ons on space preclude printing all of them and their corresponding %.'s.
;owever, as examples of the basic data obtained, Tables I to IV show
1iese data for ¥ = 30 and 90.
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TABLE I
) Values of f, For ¥ = 80
| © . 2 .8 .4 5 6 T 8 .9 10
Po
0 | 6447 6312 6.539 6£.535 6407 6416 6.283 6.072 5.748 3143 £L.000
. 4.674 5773 6.146 6,309 6.295 6.164 5923 5.496 4.013 3.027
2 4,531 5203 5.736 5958 5.837 5.588 A.204 1.663 3.720
.3 4.544 4.920 5.422 5486 5.243 4.911 4.4038 3.450
4 | 4.056 4.689 5114 4.8%0 4.619 4134 3.100
5 | 3781 4.340 4521 4.272 3.835 2.730 .
6 | 3452 4.058 3.017 2445 2.400
7| 3.160 3488 3021 2.050
8 | 2,706 2.481 1.675
.8 | 1713 L315
1.0 —
TABLE III
. Values of &, For ¥ = 90
! 0 1 2 3 4 ] 6 7 8 9 10
Po
0 7 8 8 9 10 10 10 22 45 45 27
1 5 8 10 10 1o 10 22 45 45 3l
2 5 10 10 10 14 15 45 45 132
3 6 9 9 45 45 45 45 45
4 6 8 g 45 45 45 45
.5 9 9 45 45 4h 45
6 8 10 44 45 45
i 8 37 44 44
B 36 42 44
.9 32 41
1.0 —
TABLE IV
. Values of fy For ¥ — 90
Pl O Rl 2 3 4 5 .6 7 8 48 Lo
Py
0 | 6.591 6.637 6.680 -6.687 6.63+ 6.5353 6432 6.236 5,909 5.2712 4.156
.1 4.770 5.895 5.260 6.437 6.436 6.32L 6.I08 5.656 35.030 4.068
2 4.664 5.409 5.819 6.085 5.943 5.684 5.343 4.765 3.849
3 | 4.430 5.034 5508 5.654 5.396 5.033 450! 3.530
4 | 4132 4767 5.208 5,004 4733 1238 3.160
5 | 3887 4.422 1.607 4.371 3.913 2.800
B | 3523 4134 3.088 3513 2440
7| 8217 3541 2081 2.083
8 | 2797 2827 L1702
9 1.748 1.320
1.0 —

174



COMPUTATIONAL ?ROCEDURES

From the fy{pg, p1, p,) and their corresponding ky's obtained, various
properties of the process that suggest themselves are:

(2) (@) fy(0,0,1)=log, ¥,

(b} fy0,0.1}= r?a}x Inlwgs 1o P,
P

{c) IM tends to a limit as N — o5, pg, Py, P2

log, ¥ remaining fixed.

The validity of the last statement is suggested by a statistical analysis
performed on the data for ¥ = 70 — 99; it was decided to use these

TABLE V
N 3,(0, 0) 8,(.2, .5) 35(.6, .3) sxl(.8, .1)
79 1.470 1.305 784 510
80 1471 1.275 786 566
81 1.469 1.280 719 571
82 1.470 1.282 788 565
83 | 1468 1.292 81 570
84 1.468 1.262 785 564
85 1.466 1.201 78 - 568
86 1.467 1.268 786 562
87 1.464 1.277 78 566
88 1.465 1271 779 562
89 1.462 1.281 772 566
90 1.465 1.265 781 561
91 1.463 1.289 774 563
92 1.464 1.274 a7 561
93 1.462 1.283 70 557
94 1.463 1.275 779 559
95 1.461 1.283 73 555
96 1.462 1.268 773 558
97 1.460 1.281 767 . 558
98 1.461 1.270 776 557
99 1.460 1.278 770 553

values of & to make things as asyraptotic as possible while still retaining
sufficient data to provide indications of trends, For these values of ¥, and
for all {p,} in P, the statistics

ky(po. 71)
P pr) = o f T
and ' /
J! '[_'Pc, pl]
8. AN e 1
N Po» 1) log, ¥
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were computed. For fixed p,, the s, {p,, p,) arc amazingly constant over N,
examples being given in Table V. Quadratic regressions on p, and p, were
performed on the means of ry and sy {averaged over N); ie., on the
statistics

1 a4

(3) "(Po P) = 57 3 rx(Po 71),
1 49

8(Pg, P1) = 71 NZ:TG Sx{Po» P1)-

The regressions are:
(4) {a) r= —1.076 1 6.0l4p, — .394p,* I 8.350p, — 3.431n.%
with a, = .956, and
(b} s —=1.017 — 8689p, | .013p,% + .388p, — .784p, 2,
with o, = .070.
Equation (19.4b), with its low variance and its constant near unity,
sugpgests that the regression is fairly accurate.
However, Equation {(19.4a), with its high value of g,, is not too satis-
factory. One reason for this resuit is that the k's are in some cases highly

TABLE VI :
N (3, 3) 75 (6, .1) ral8, 1)
9 1302 4810 3544
80 1250 4750 4625
81 4938 1111 4691
82 1341 4756 4634
83 1325 1084 3614
84 5000 4762 4643
85 4041 1059 4706
86 1279 4767 4651
87 1264 4828 3678
88 5000 4773 4659
89 4944 1124 3506
90 5000 1111 4667
91 1538 1099 3956
92 5000 4783 4674
93 4046 .- 1075 4624
94 5000 4787 4894
95 1368 4737 4632
96 5000 4792 3750
97 4948 4742 4639
98 1327 1122 4604
99 1313 1111 4646
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erratic through N for this fixed p,, p,. This is probably partly because (i)
there might be some &'s which produce almost the same value of f and the
crudity of the computations does not prefer the best consistently, and
{if) the interpolations, as meuticned previously, might not give good
results at the boundaries pf? = 1, p{* = 1, and pf* - p{? = 1. Reason
(i} is backed up by the basic data in that, for many valucs of py, py, two
highly different values of k recur consistently and one of them is probably
the correct one. Examples from the basic data appear in Table V1.

20. Imformation Theory Considerations .

Using information theory, a lower bound on f for a completely optimal
policy may be derived. In one weighing there are three possible outcomes:
balance and unbalance each way. In such a weighing it therefore follows
that the expected value of information acquired is at most logs 3 = 1 unit.

If there is no defective coin, the knowledge of this is equivalent to
—log, p, units of information. If there is one defective coin, it may be any
of the N, each with probability p,/¥V; hence the amount of information
corresponding to the determination of each one of these possibilities is
—log,i(p,{ N}, so that the expected ardount of mformatlon corresponding
to these N possibilities is

B P
N(E\T}) (—Ioc,z V) —p, log, 1Vumts

Bimilarly, the information corresponding to the case of {wo defectives is
found to be

—p log __ﬁ_
PR NN — 2
Hence the lower bhound on fy is the ratio of the expected amount of
information to the unit of information log, 3:
NN — 1]

u

1) F=— E p; logy p; + py logy N 4 pg logg

A comparison of this with our data confirms statements (b) and (c) in
Sec. 19, but suggests once again that the erudity of the interpolation
procedure has somewhat underestimated the f\’s, at least for p, + p, <
0.6. For example, in Table IV the underlined values of f, are below the
bound F computed from Eq. {20.1}. Nevertheless, we may take some
comfort in the fact that the values of f,. obtained would suggest that our
suboptimal policies are good, sinee the values are of the same order as F..

The following points may also be deduced from (20.1):

(2) — (py 1+ 2p,) log; 2,

log, ¥
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which supports statement (c) of the last section. When p, = 1, this
expression becomes 2 log, 3 = 1.26, and hence the statement equivalent
to (a) should be

@ fu(0,0,1) > 1.26 log, ¥,

for an optimal policy.
Finally, it may be shown that the minimum of F over gy + p, + 9 = 1
occurs when

- _ b P

the asymptotic solution to which is p, = 1, confirming statement ih).
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CHAPTER V

Dynamic Progmmmii-!g and the
Calailus qf Variations )

1. Introduction

We shall seein subseqgnent chapters that a numberof significant processes
arising in the study of trajectories, in the study of multizstage production
processes, and finally in the field of feedback control can be formulated
ag problems in the caleulus of variations. Although the techniques of this
theory play a vital role in the analytic treatment of many classes of varia-
tional questions, they have so far been of little use in the computational
solution of the problems of contemporary science and engineering.

In order to explain this phenomenon, we shall present the very rudi-
ments of the calculus of variations and then discuss in detail the difficulties
that lie in the way of a computational solution along these lines. We shall
present the dynamic programming approach to problems of this nature
and indicate how some of these difficulties are by-passed or overcome,

Following this, we shall indicate briefly how the funectional equation
approach, based upon the principle of optimality, yields the fundamental
classical results of the ealeulus of variations and the Hamilton-Jacobi
theory as well. -

The reader interested only in the computational solution of trajectory
and feedback control processes can skip this chapter on a first reading. In
each of the following chapters, devoted respectively to trajectories,
multistage production processes (a particular class of feedback control
processes of economic origini, and feedback control problems of engineer-
ing origin, the dizenssion will be self-contained. In Chapter XII, devoted
to a discussion of numerical aspects, we shall present a solution of the
brachistochrone problem along dymiamic programming lines.

Tn ap appendix, we discuss & new approach due to Bryson which appears
quite promising as far as breaking the dimensionality barrier is concerned.

2. Functionals
The ordinary caleulus deals with the problem of maximizing or mini-
mizing a function of N variables

(l) F = F(x]_; Tay - -+ xN}‘
180



FUNCTIONALS

In the calculus of variations, we consider problems involving funetions
of an infinite number of variables, or, equivalently, functions of functions.
The term commonly used to describe a scalar value dependent upon a
funection is functional. Just as a function is a rule for assigning a number to
a finite set of numbers, so a functional is a rule for assigning a number to
a function, or set of functions.

The simplest and most important functional is the Riemann integral

@) 1) = [yt ie

defined for all funetions ¥{x) which are countinuous over [a, &].
We shall concern ourselves in what follows with funetionals of the form

3) Jy) = J glyix), ¥'(x), x) dx,

where, as customary, ¥'(x} represents the derivative of 3{z}). The function
#(x) will in general be subject to end-point conditions of the form

(4) yla) = ¢, Riyld) ¥'(5)) = oy
The meaning of relations of this type will be discussed helow.’

Of wider scope is the problem of minimizing or maximizing a functional
of the form

L]
®) 76 = [ g, =ta), 2
where z, y, and z are connccted by a differential equation
d.
(6) 2~ H(z, g, 2), 2(0) — e
dux

Still more general is the problem of maximizing or minimizing an
expression

b
o Jy) = f glz=(x), y(2), x} dw -+ h(z(b). (b}, ),

with xz and y subject to (8), and possibly to side constraints.
This problem is called the problem of Bolza, while the problem of finding
the extremum of a function of the end-point b,

(8) J(y) = klz(d), y(b), &),

is called the problem of Mayer in the caleulus of variations. We shall refer
to this last problem as a ierminal control process.

Both problems are particular cases of the optimization of a Riemann.
Stieltjes integral

b
(9) Jy) = _[ g(z(x), (=), x) dG(x),
181
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a problem which we shall not discuss. In most important applications, the
functional J{y) has the form given in (7), where either g or & is identically
ZEeTO,

3. The Formalism of the Calculus of YVariations

Let us now describe the basic approach of the caleulus of variations and
present some classical results. We do this in order to compare the two
different techniques—those of the caleulus of variations and those of
dynamic programming. In subsequent discussion we will indicate advan-
tages and disadvantages of each technique. It is most likely that a synthesis
of the two methods will ultimately prove capable of handiing the truly
eomplex problems of optimal control and optimal trajectory. That the
two methods are truly complementary will be a consequence of the geo-
metric interprefations presented helow.

In the calculus of variations, we seek to obtain an equation for the
optimizing function. Proceeding purely formally, without regard for the
many formidable questions of existence and uniqueness of solntion which
arise at the very outset, let us examine the problem of finding a function
g{x} which minimizes the functional

. [
{ f F(ylz), y'(x), x}) dx.

L

We shall emaploy a straightforward extension of the variational approach
used for functions of a finite number of variables. As a matter of fact, the
fundamental equation of the calenlus of variations was derived by Euler
by means of & passage to the limit from the finite to the infinite. Asis to be
expected from similar analysis in ordinary caleulus, the conditions that
we obiain will be necessary, and, in general, not sufficient.

Let y{x} denote a minimizing function, which we may consider to furnish
a relative minimum. If z(x) is any ““nearby’” function, we must then have

2 J(z) = J(y).
To represent the fact that z({r} is a nearby function, let us write

(3) =z) = ylx) + eglz),

where g(x) is an as yet unspecified function and ¢ is a small parameter.
The function z{z) is not the most general nearby function, but this is not
important to us, since, as indicated above, we are concerned with obtaining
necessary conditions. It is important to realize that in order to obtain
necessary conditions, we can vary over any convenient class of nearby
functions.

The incquality in (2) then becomes

(4) J{y -+ eg) = J(y)
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for all ¢ and g{x), or, in explicit terms,

b ]
(5) f Fly +er,y + o', 2) dz = f Fy, ¥, =) de.

To derive a more useful result from this, we expand the left-hand side as a
function of the parameter e. It is sufficient to retain only the constant and
linear torm in this expansion since ¢ is assumed to be a small parameter.
We thus ablain the relation

B
() T + e[ f (Fg + Foq) dz] L 0(e) = Iy

For this ineguality to be valid for both positive and negative values of the
small parameter ¢, we must have

o j( Fg+ F.g)dz=0.

Since g{z) was arbitrary, this relation must be true for zll functions g{x)
possessing derivatives in {a, bl.

It is useful to note that the eguation in (7) could also be derived from
the condition that 8J{0¢ must equal zero at ¢ = 0.

In order to extract the most from this result, we integrate the second
term in the integrand by parts, obtaining

. . . b
(8) f [Q(D:)F., — gl=z} d_ (F.,r)] -+ [g(z)Fv,] = 0.
a i .

Since we are presently concerned with necessary conditions within the
interval of interest, let us for the moment set

{9 gla) = g(b) = 0.

This is equivalent to the statement that we keep the end-points of the
. optimizing curve fixed. Ye then have the result that

(10) f g(z}[ﬂ, - (F,,o] dz =0

for all admissible g{x). Were this true for all g{z), it would be trivial that
the coefficient function must be zero, i.e.,

(11) F, — 4 F,.=0.

dx .

To establish this, we need only take g(x) = F, — dF_[dr itself. The
integrand in the relation int {10} then becomes a perfect square whenee (11)
follows. However, as we have pointed out above, we are not really con-
- sidering all possible g{z), but only those which have derivatives, and indeed
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only those which have derivatives which are well enough behaved so that
the preceding integrals make sense. Since we do not know the nature of the
solution in advance, there is no guarantee that the funetion £, — dF /dz,
is an admissible g{x).

Nevertheless, one of the fundamental results of the caleulus of variations
{the “fundamental lemma of the ealenlus of variations”) asserts that if (10)
is satisfied by all admissible g{z), then equation {11) does hold.

A rigorous formulation of these variationa) problems and detailed proofs
of these results will be found in several of the standard texts referred to at
the end of the chapter. We shall not pursuc the matter any further here,
since, as shall be seen below, we have various means of by-passing a
number of the questions of rigor.

The equationin {11} when written out represents a second order equation
which Is, apart from easily determined cases, nonlinear. It is called the
Buler equation of the variational problem, and is a necessary condition
completely analogous to that derived in the finite dimensional case by
setting the first partial derivatives equal to zero.

Only in rare cases is an explicit analytic sclution of this equation
obtainable in terms of the standard functions of analysis. The
classic examples may be found in references given at the end of the
chapter.

4. Necessary Conditions

As in the caleulus case, the same varjational equation is obtained for
both minimizing and maximizing functions, as well as for functions yield-
ing stationary points of more complex nature. Rules for distinguishing
between the various contingencies are to some extent known, but the
overall picture is quite cloudy.

Two of the most important conditions for a minimum are:

The Weierstrass Condition. Let z(x) be a function distinet from the
extremal function y(r), and z'(x} its derivative. Then we must have

{1 Flz,y,2) — Fla, g ) — & — ¥ ) F o,y 9) 2 0.

The left-hand side of this inequality is called the Weiersirass E-function.
The Legendre Condition. For y{z) to be a minimizing are, we must have

() Py iz v,9) = 0.

This corresponds to the msual second derivative condition of the
caleulus.

These conditions, which are nomintuitive from the standpoint of the
elassieal calculus of variations approach to optimization problems, will
be shown to follow logically and simply from the dynamic programming
approach, presented below.
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5. Natural Boundary Conditions

QOccasionally in variational processes the extremal funection is constrained
to satisfy end conditions of the form

(1) Glylal, ¥'(a) = 0, H(y(b), y'(B) = 0.

More frequently, the initial conditions yield a certain constraint, but the
terminal conditions are imposed by the variational problem itself. Refer-
ring to eguation (3.8}, we see that if ¥ must assume fixed values at e and 5,
then it is sensibie to require that g{x) vanish at these points. On the other
hand, if ¢{z) is determined only at & or not specified at all, then the varia:
tion of g{x) ab the point = = « yields the further relation

2) F,=0 at z=a

This last condition is called a netural boundary condition.

6. Isoperimetric Problems

Frequently, we encounter the problem of maximizing or minimizing the
functional J(y} subject to an integral constraint of the form

(1) J'° Gy, y', 1) dx = c,.

E: 3
In applications, this usually signifies the finiteness of some resource.
Under various conditions, it ean be shown that as in the ordinary calculus,
we tan employ a Lagrange multiplier and treat the new problem of finding
the extremum of the functional

8
(2) f [F(y’ y’s "-C) - iG{y, y’s :'C)] dz.
We thus obtain the modified Euler eguation
a d .
(3) (F — 30), — = (F, — 46,) =0,
dx

where 1is a constant which must be determined by use of the relation in (1),

As we shall show below, this result also follows from the functional
equation approach of dynamie programming. As may be expected, it is
not a simple matter to carry through the solution of a problem of this type
to the very end. '

7. Shortcomings of the Calculus of Variations

The difficuities that we enumerated in connection with the use of the
calculus in the treatment of finite dimensional optimization problems are,
a3 should be expected, present in these more complex variational problems
over function spaces, and present in more complex forms,
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After the initial development of the caleulus of variations by Euler,
Lagrange, Weierstrass, Hilbert, Bolza, Bliss, and others, the subject
became, to a large extent, more fit for the textbook than the laboratory.
Reasonably, one could hope for no more satisfactory deseription of the
solution than that given by a differential equation, a resalt obtaincd by
Euler. Consequently, the subsequent work was devoted to rigorizing the
known formalism, resulting in the derivation of various necessary and
sufficient conditions for various types of extrema, and in extending the
class of functionals to which these technigques could be applied.

Little emphasis was placed on the problem of obtaining numerical results
znd the major emphasis was placed upon existence and uniqueness
thecrems.

The advent of the high-speed digital computer, however, has greatly
affected mathematical thinking. With this powerful tool at our disposal,
we now evaluate analytic techniques not only with regard to their elegance,
but also in relation to their computational feasibility. The Euler equation,
which rates so highly as far as its analytical aspects are concerned, must
now be judged from the viewpoint of numerical solution, Unfortunately,
it is most unsatisfactory from this standpoint.

There are actually several distinct types of difficulty associated with the
classical formulation of variational questions. Some of these stem from the
variational problem itself, and some stem from the Euler equation. Let
us discuss first the numerical solution of the Euler equation.

Ag pointed out above, this is in the main a nonlinear equation. Further-
more, this is a nonlinear equation with a two-point boundary condition.
In order to appreciate what this last statement means, let us briefly review
what the computational solution of a differential equation entails.

Bince there is a negligible probability of a usable explicit analytic
solution, we must have recourse for the purposes of numerical computation
to analogue devices, including the use of Monte Carlo methods, or to
digital computers. In the majority of cases, it is the digital computer which
must be used,

Bince a digital computer employs only the nsual operations of arithmetic,
we must convert the equation under consideration into a form which
requires only the use of these operations, and requires ne transcendental
operations such as differentiation or integration. This means that we must
approximate to integrals by sums and to derivatives by. differences. This
approximation can be done in an unlimited number of ways, requiring a
eareful balancing of accuracy factors, stability factors, and time factors.
All of this means, of course, that at the present time numerical computa-
tion is more of an art than a science.

Avoiding all the fine details which enter inevitably into any particular
computation, let us present the general idea of digital comaputer solution of

186



SHORTCOMINGS OF THE CALCULUS OF VARIATIONS

a differential equation. Given the equation

(1) ¥ = fla, ¥, ylzg) = oo
an initial value problem, we replace the derivative by an approximate
expression such as

2 Y& = [yle + A) — p(=)]fA
or
3) ¥ o= [ylz + A) — ylz — A})f2A.

Using the first choice (in some ways, the worst possible choice), the
differential equation in (1) is now replaced by the difference equation, say

Yz + A) — wl=)
A

and z is allowed to assume only the values =g, zj + A, 1, 4 24, x, + 34,
and so on.

Given the initial value, y{x,}, we evaluate y(z, + A) by means of the
forinula in {4). Using the new value g{x, + A}, the formuia is used again to
determine the value of yat x =— x, + 24, and so on. This type of operation,
an iterative process, is ideally suited to & digital computer since it requires
that the same type of operation be repeated over and over again. Conse-
quently, one set of instructions suffices to carry out the entire process.

The chaice of A depends tpon the accuracy required and the time that
onc is willing to spend on the computation. Generally, the smaller the
value of A, the more aceurate the sclution obtained in this way. On the
other hand, the time required to determine the value of ¥ at some point

(4) =flz.yh ¥Z) =c

x = x, is elearly proporticnal to 1/A, Furthermore, stability considerations
enter. For this reasou, the second approximation, that given in (3), is
greatly preferable to that given in (2).

We shall not enter any further into these important matters here, since
little has been done in this direction in ¢onnection with the solution of
variational problems. The reader interested in the results known for
differential equations may refer to the references given at the end ol the
chapter.

The same method is employed to solve a system of differential equations
of the form

o d; i ,
(3) ;ff i Yy YoYU WO =c, =1,2,. ., N
If we use vector notation,
d
(6) E ety w0 =,
dz

the procedure is formally preeisely as given above.
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Sinee digital computers are ideally designed to solve differential equa-
tions with initial conditions, it is 2 completely routine effort to think in
terms of the solution of one hundred or even one thousand simnltaneows
equations of the type appearing in (H).

8. Two-point Boundary Value Problems

The situation changes drastically when two-point boundary valne
problems are introduced. Consider a second order equation of the form

(t) ¥ = gle g y), T <T <7,

where the solution is subject to the houndary conditions

(2) Ylwg) = oy, ¥lmy) = ¢

Using finite difference approximations, and setting

3) yizx) = [ylz + A) — y@)/A,
¥} = [yl + 248) - 2y(z + D) + yix) VA2,

we see that, although y(x,) is given, we have no apparent way of deter-
mining y(x, + A}, since ¥'(x,) has not been specified.

The standard escape from this cul-de-sac is to guess a value for y'(z,)
and then use the methods described in §7 to obtain a value for y{z,). The
initial guess for y'(xy) Is then repeatedly modified until there is an accept-
able fit between the prescribed value at z, and that obtained from the
integration.

When the Euler equation is nonlinear, the technique for adjusting the
initial choice of ¥'(x,) is corupletely catch-as-cateh-can with ne Marquess of
Queensberry rules. Tno many cases, nstability of both analytic and com-
putational origin produces wild fluctuations in the value of y(z,) as a
consequence of small changes in the value of ¥'(x,).

There is no praciical way of predicting numerical instabilities for
simultaneous nonlinear differential equations, but experience with the
variational approach to trajectory problems indicates stromgly that
instahility presents a very real and often insurmountable problem.

It is desirable then to have a way of obtaining the computational
solution of the original variational problem which does not depend upon
the solution of nonlinear differential equations with two-point boundary
eonditions. -

9. Constraints

A far more serious difficulty from many points of view than that
connected with the purely computational problem arising from the two-
point boundary conditions arises from the presence of constraiuts on the
nature of the optimizing funetion,
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Consider, for example, the problem of minimizing the functional

b
(1} . J(y) = J. 9'(?}, y': ) dx
subjcct Lo a constraint of the form

{2) l#] < ¢

Bince the existence of the Euler equation is based upon the assumption
that a free variation is permitted in the vicinity of an extremal, we must

y L4 : -

T2 3

ol

Figura 63

tace the fact that there may be no Euler equation at alll The solution maw
consist of intervals in which y" = ¢;, interlaced by intervals inm which
%' = —c,. Or there may be intervals where 4" = ¢, or y’ = —¢,;, together
with intervals in which [y'] < ¢;, which means that the Euler eqguatior
will be satisfled within these intervals where |y'| <2 ¢,. The solution max
then have the form of Fig, 63.

Tt is not difficult to construect examples where this oscillation can oecur
as often as is desired. Even simple versions of trajectory, eonsrol, and
bottleneck processes can yield soluticns with three ar four alternatioms
The result of this corplexity is that problems of this nature are extra-
ordinarily diffienlt to attack. They require a combinarion of analytie
technigues and ingenuity, and at the present time, there cxist oo known
uniform methods for obtaining explicit solutions. References will be fourd
t0 a number of particular problems which have been sobved.
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Whatever the difficulties present in the computational sclution to the
usweal variational problem, they are mild compared fo those encountered
here. Not only must one guess initial values, but in some cases initial
phases of solution and the persistence of these phases must be guessed
as well. The problemn above where [y'] < ¢;, can be handled, with the aid
of Lagrange multipliers and guesses as to initial conditions. The problem
of minimizing sabject to the constraint |y| < ¢, seemingly cannot be
kandled in this fashion.

As we shall see, the dynamie programiming approach affords a way
around these difficulties, and, in many cases, is actually aided in the com-
putational solution by the presence of constraints?!

10. Linearity
The study of the optimal utilization of economie complexes, discussed in

Chapter V11, leads to the analytic problem of maximizing the inner
product
1) J{y) = (@(T), a),
where x and y are conneeted by means of the vecior-matrix equation
@ T _ Az By, w0) =,
at -
and the inequality constraint -
(3 Cy = Dz,

Here the linearity completely precludes the classical variational
approach, There iz no Euler equation for this maximization problem.

11. The Formalism of Dynamic Programming

Let us now briefly sketch the dynamiec programming approach to
variational problems. As before, we shall proceed in a purely formal way.
Counsider the problem of minimizing the functional

]
(1) Jiy) = j Fie, y, y') dx,

where the function y is subject to the initial condition y{a} = ¢. The
minimum value will be a function of the initial z-value @, and the initial
y-value c. Here ¢ measures the initial state of the system and g the duration
of the process.

Let us then introduce the function
(2 fla, ¢} = min J(y).

v
L Cf. the discussion in §17 of Chapter L.
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What we have done is to imbed the particular problem posed above where
@ and ¢ are constants within the family of problems gencrated by allowing
@ and ¢ to be parameters with the range of variation — o0 << e << b and
— < ¢ < a0, :

We shall begin by obtaining an equation for the function f{e, ¢), and then
show how this equation yields the results we have previously noted in the
sections on the caloulus of variations, together with some further results.

Since the integral has the requisite additivity property

b Tat+i b
) ' f - f + f , )
. a a a+d

the principle of optimality readily yields the functicnal equation

a+s
¢} fle.¢)= min I:j Fla, g,y )dz 1 fla + A, C(y)}:l,

vla, 2+ 41
where the minimization is over all functions y defined overa < = << a 4- A,
with y(z) = ¢, and ¢y} = yla + A).

We shall make use of this relation in two ways, analytically by letting
A — 0 and computationally by taking A small, but nonzero, We shall
discuss this point in great detail below.

Throughout what follows we shall assume that the function fia, ¢) has
continuous first and second partial derivatives.

12. The Basic Nonlinear Partial Diffevential Equation
Observe that a.choice of y{z) over [a, @ 4+ A, with y{a) constrained to

equal ¢, can be construed to be a choice of ¥'(z) over (o, @ -- A} Tf A is
small, the choice of &' {z) over [, @ + A]is equivalent to a choice of y'(a),
assurhing continuity of y'(x). Thus, writing

a+A I .
{1) f Fla,y, y'ydo = Fla, c, y'(@)A + o(A),

a

oy) == a + ¥'(@)A + ofd),

and » = y'{a), we can express (11.4) in the following terms:

(2) fla, ¢) = min [Fia, ¢, )A + fla + A, ¢ + vA}] 4- ofA).

Letting A -»> ¢, this yields in the limit the nonlinear partial differential
equation

- [p Qﬁ]
3 au—mvn {a, ¢, v}—i—vac .

The initial condition is f(b, ¢} = 0 for all ¢, and the equation in (3) is
taken to hold for @ << b.
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13. The Euler Equation

In order to avoid constant translation of results, let us take the lower
limit @ to be z and let ' denote what we have called v above.
- Proceeding formally, power series expansion of {12.2) yields the equation

(nfmm=m@Pﬁ&ym+ﬂaw+%A+§yA+~}

0y
Letting A — 0, this leads to the nonlinear partial differential equation
@) 0=mmhmu)+f+ W]
¥ oz ay- -
{the equation of {12.3)). This equation is equivalent to the two eguations
@ Fo+4
oy
obtained by taking the partial derivative with respect to 3’, and
é d
@ ey doy
6z - G

valid for =, ¥, and ¥ related by ( 3). Difl erentiating (3) with respect to z,
we cbtain
+

(5)
da a.z: a v Oy

and partial differentiation with respect to ¥ of {4} gives
a ! o2 ‘2 , of oy

% 9 J; LYW,

8 o 33; y 8y Ay
These last two equations, combined with (3), yield the classical Euler
eguation

2
Ly P

6) F,4+F

d
7 —F,—F =0
M dz

The usual derivation of this result from (2) relies upon the theory of
characteristics.

14. The Legendre Condition

We have used the fact that the derivative of the funetion in (13.2) must
equal zero at a minimum. The additional requirement that the second
derivative of {13.2) with respect to ¥" must be positive, in order to yield
a minimum, leads to the inequality

(1) Fpp =0
which is the classical Legendre condition.
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SEVERAL DEPENDENT VARIABLES

15. The Weierstrass Condition
The Leogendre condition does not rule out the possibility of a relative
minimurm. For an absolute minimum to exist, we must have the inequality
af
7

1y F(Iy,y)Jrf+Jgi4F(xy,Y'+af+Y'y

&
for all functions ¥ =— ¥'(z, y) or

@ Fy, Y')*F(I’y-sf’)+(1”-y')%zo

which, using Equation (13.3), yields

(3} Flz,y, Y)Y — Fiz,y,y) — (Y — yF,. =0,
the Weierstrass necessary condition for an absclute minimum.
16. Several Dependent Variables

The preceding method is readily carried over to treat the problem of
. minimizing the functicnal

] .
1y J{yy ye -0 ¥2) =J‘ Flyn v - ¥ns 2% - - Yo' 20 Ay,
; ]
where _
(2) nz) = ¥y, (%) = Yo - - -2 YalE) = Y

¥f higher derivatives oceur, a change of variable can be used to reduce the
problem to the foregoing. For example, if we wish to minimize

&

®) I = | P4 =) de,
over all y satisfying the conditions
(4) y(.’E) = y]_! y!(I) = 2(2,'
we introduce the new variables
(5) Y = y(=),

¥ = y'{z).
Then the problem hecomes that of minimizing

b

(6) (o ¥2) -—f Fly. s o> 2) dz,
subject to the constraint
(M) v =¥ 0y =6, Yalz) =

For the sake of notational simplicity, let us consider only the simple case
where there are no side differential equations.

193



DYNAMIC PROGRAMMING AND THE CALCULUS OF VARIATIONS

Following the reasoning of §13, we obtain the equation

®) 0= min)[l‘—}—g‘f—}—z,gf]

which yields the further equations

(9) Py, - a o i=1...,n,
ay;
af o
(10 : 4= = 0.
) B 2 v By,
From these, as above, we derive the relations ’

i=1...,n,

a e B,
11 Ly, : gy
() de ¥ + oy, 0c ; 9y, dy, Yi

and, taking partial derivatives with respect to y,,
oF & & i i
oY + af +Sy/ o
ay: ayl o ay i=1 ay: ay:
s A % _
i=1 3y, By, ’

t=1,...,n

(12) Fy + 2

We thus obtain the set of Euler equations

4 .
(13} d:F,'_,——F“-——*O, i=1,...,n

17. An Isoperimetric Problem
Let us add the restriction that

b
{1) J. G{Il, Y, y') dx]_ =i,

where z is a given value. Our basic funetion, the value of the minimum,
is now one of three variables, =, y, and 2. In other words, z is an additional
state variable. Hence we write

-
(2) flz,y,2) = m{i}rlf F(zy, y, 4") dn,

subject to the restriction in {1).
The analogue of the equation in (12.2) is

3 flr.y,2) = mﬂjn [Fla.y. ¥JA+fle + Ay -+ vA 2z — Gl g, y)AY)
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Proceeding as before, we derive the partial differential equation _

@ O:min[F(x,y, )+a +Jaf Gz y,y}wj
”

This yiclds, upon differentiation, the relatlon

af af
o=F, +% ¢ %,
) ' ' ”+8y Y oz

and the equation

a e af
[ o — —+ u' —

© a oy gz .
Differentiation of {5) with respect to z, and pertial differentiation with
respect to y of (6), combine to yield

(1) ii(F_.aiG)_g-(F-aiG)zo
dz gy’ oz oy 0z
Partial differentiation of (6) with respeet to z yields the following resuits:
&f AP i |
8 0= —— P—— .
®) oz 8z+ Y dy oz oz
af)
\ o 5
@ dx '\
(10) o = gonstant.
dz

18. Lagrange Multiplier

We have thus shown that df/8z plays the role of the Lagrange multiplier.
Furthermore, we have established the well-known fact that it is constant,
ie., independent of z, in the isoperimetric problem. Equation (17.7) is the
Euler equation for the discussion of the variational problem based upon
a Lagrange multiplier 2, where the basic functional is taken to be

b
{1} f (Fleny, y') — 22y, g ) dzy

19. Natural Boundary Conditions

Suppose that y{a) is not specified. Then the optimal initial y-value has
the property that the change in the minimal value of the integral to the
final point (b, ¥()} causcd by a change in initial point y{a) is zero. Other-
wise, there would be a better starting point. Therefore

of

1 = =
{ ) ay =g 0,
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which, together with (13.3), yields

(2) : v =0.

This is the natural boundary condition associated with an unspecified
boundary value.

20. A Transversality Condition

Let us now suppose that the y-curve sought must start somewhere on a
given curve i = g{x). To treat this problem, we reason as follows. For the
optimal curve, the change in f as the initial point varies along the specifed
eurve must be zero. This is equivalent to saying that at the initial point

of , .o
1 = = = 0.
@ ax+9 2
Referring to (13.4),
o _ o
2 FyryZ g2 —0,
2) + ¥ 2 g 2

and from (13.3),
&) Filg—y)F, =0

This condition on the initial derivative ¢ in terms of the initial point (z, ¥)
and the slope of g(z) is a classical transversality condition.

21. The Erdmann Corner Conditions

We now ask under what conditions the optimal " may be discontinuous.
Examination of (13.3) and the continuity of 8f{fy show that F, is a
continuous function across the discontinnity, and (13.4) now tells us that

(1 F —y'F,.

is a continuous function across the discontinuity. These are the Erdmann
corner conditions.

22. Implicit Variational Problems

Let us now consider a very important class of variationai problems in
which no simple explicit expression exists for the functional to be mini-
mized. Asan example of a problem of this nature, let us snppose that we
arc given a set of differential equations
dy;

559,;{?!1,3’2:—'--,?!‘.\;! N t)) yj(0)=cja i—_‘l’?:---rN’

and asked to determine the unknown function z so as to minimize the time

L
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required to transform the system into the'state (i, d,, . . . , d). Here the
functional I = 1'(z} is determined by the conditions
(2) w(TY =4, i=1,2..,,N.

In other words, we wish to transform a system from an initial state into
a desired state in minimum time. It is clear that many engineering and
industrial control problems can be phrased in these terms.

To determine the structure of the solution, we introduce the function
{3) fly, 1) = time required to transform the system in state y at time

into the desired final state,
Then the prineiple of optimality yields the equation
“ fo. ) = min[A+ [y + g8, ¢ + A)] + o8).
=i,

In plaes of {1), we use the notation dy/dt = g. Then passing to the limit as
A — 0, we obtain, purely formally as before, the relation

i N
5) 0 = min [! + 3 h0+ f:]-
z i=1
From this we derive two relations
N ag‘
(6) 0=>/1 =
i=1 az

N
0=1 _IL zfgrl.gi +fi‘
i=1

We can now draw the following conclusions by examination of the
relations in {6): _
{7T) (a) f, = 0 at ¢ = T by the definition of f{y, t).
(b) 371 £, (TgAT) = —1 at T, using (6) and the condition in (a).

i=1

- (c) If the ¢'s are not time dependent, 3 ¥, £, 8: = —1all along the
optimal path (this is a first integral of the solution).
(d) It follows from the definition of f(y, {) that for 4’s not prescribed
at T, f, () = 0.
In the classical literature, the f, are called A, the multiplier funciions.
If the multiplicrs, the f, , are known at a point, the above equations tell
us how to determine the optimal decision, z, at that point. It remains to
determine how the multipliers change as functions of time along the
optimal path. We would like to be able to compute df, jd¢. Differentiation
shows us that '

©) L =3 (2n)2 -3 (;;f)g

E;”’:ia};‘; dt

e
TN
g(ayf '
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For the important case where the form of the differential eguations is
independent of time, partial differentiation of (6) with respect to y; vields
the relation

8 . 29, . Oy, Oz
9 0= (_f]gg"r f.(——"-i—"—‘——--
@ 2 oy, ; “\gy, = 9= oy,
Combining these two results and those of {6), we obtain the Euler equations
for the time derivative of the multipliers
s %

. P _
(10 - L, =0, i=1,...,..
1) dtf”" +5§1 oy, ’

1

These N first order differential equations for the mtiltip]jer funetions,
together with the N original equations

a % o2
and Equation (6) constitute a set of 2 4~ 1 equations which can be solved
for the & multiplier functions, the N variables ¥, ¥y, ..., yy. and the
policy function. The 2N constants of integration are determined by the vV
initial y values, the specified final y values, and the conditions of {Td).
As in earlier sections, varions other necessary conditions follow readiiv
from the requirement that the value of z in (5) yields an absolute minimura.
The above problem is of a type called “the problem of daver.” More
generally, we can combine the Lagrange and Mayer problems and seek to
minimize the integral of a function plus a funetion evaluated at the end.
point, where the function evalvated at the endpoint contains some
variables whose final values are unspecified in advance. The ahove
formalism is applicable, and results are easily deduced. This very general
problem is called the “‘problem of Bolza.”

23. Inequality Constraints

In many recent applications , we have encountered problems where there
are inequality constraints on the decision variables.

With reference to the problem posed in the foregoing section, let us now
assume that the foreing function z is to be chosen subject to the inequality
constraint

H . Ry, 2) < 0.

At the boundary of this constraint region, the first equation in (22.6) is
lacking. Thus, (22.10) becomes

daf Loy of (N By, af)a;

2 . - jadz el + e Rt B WAl

@) di gy, 418y, Oy, i=1 0z dy,/ oy,
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THE HAMILTON-JACOBI EQUATION

On the boundary of the constraint region, determined by Ay, z) = 0, we
have
oh | Ok 8z

3 —— = 0.
@ | %o,
Then (2) can be written as
d af N . 9, ok
4 b/ I o Wt F iy
“ dt 2y, fg; T 3y, T oy,
where
) i X
9y y
and _
& dg; of

X

© =

8
We see then that inequality constraints of the foregoing type cun easily

bhe included. In classical theory u appears as an additional Lagrange
multiplier introduced te incorporate the constraint.

24, The Hamilon-Jacohi Equation

Let us now show how the Hamilton-Jacobi eqguation of classical
mechanics follows in a very simple fashion from the principle of optimality,
in conjunction with the Hamilton prineiple that a particle moves so as to
minimize the Lagrangian [ZL(y, ¢, £} dt.

Let g, a vector, describe the state of a system {i.e., ¢ is a point in
configuration space in the terminology of classical mechanics), and let
¢ = dg/dt be the decision variable to be chosen optimally. The problem is
to transform state @ given at time f; into ¢ at time ¢ in such a way as
to minimize the functional [L{g, ¢, {,) df,. We proceed as follows, Define

t
S{q, t; @, t;) = the minimum value of the fun.ctiona.IJ~ Lig, 4, &) dt
f
subject to the preceding boundary conditions,

Then, regarding both ends of the interval as variable, we have the two
relations

(M) St Q) = min (L@ ¢ 1A + §g. 5@+ 8, &y + A))

These equations result from the application of the principle of optimality
at each end of the interval.
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At time £,

. a8 as}
=y L - —_ L —
® o=malr 10 3
" which implies, upon defining 81/909 as momenta P,
ol a8
@) 2o
aQ oQ
At the general time ¢, expansion of (2) yields the two egnations
. a5 98
O0=L—¢g—— =—,
(8) 5w
el a8
6 gE_
© W g ?

Defining the Hamiltonian function Hig, p, £} as pg — L, (5) becomes the
Hamiltonlan-Jacobi partial differential equation
(7} UZH(Q,@J)—F?—*-Q.

: 0 at

The initial condition that at time {; the configuration is ¢ determincs
the required constants of integration for the solution function S{g, #; @, t,).
Furthermore, if the initial momenta £ are known, Equation (4) gives us
g = qt; @, P, {,) and (6) vields p = w(f; Q, P, {,). Hence, solution of the
Hamilton-Jacobi equation (7) tells us the position ¢ and momenta p as
fanetions of time and the initial conditions. Since methods for analviically
determining the solution of (7) and finding the coordinates and momenta
as functions of time are diseussed in many texts, we shall not pursue the
matter any further.

25. Discrete Approximations

If we wish fo employ digital computers in the numerical solution of
variational problems along the foregoing lines, it is necessary to convert the
nonlinear partial differential equation of (12.3) into an equation requiring
only arithmetic operations.

There are several ways of doing this. One class of methods depends npon
a discrete approximation to the exact equation; the other depends upon
deriving an exact equation for a discrete approximation to the original
continuous process. The first is the conventional technique which is
deseribed and discussed in a number of easily available sources, Since we
shall not employ it in this volume, let us proceed to discuss the second
method which we shall uwse to treat trajectorv processes, multistage
production processes, and feedback control processes.

In place of allowing a choice of a function ¥(z} over the interval [a, b],
let us suppose that we are allowed only to choose the values of y(z) at tne
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DISCUSSION

points @ =kA,(E+ 1)A, ..., NA =05. In place of minimizing the
integral
&

n J(y) =f gy, y', x) dz,
we seek to minimize the finite sum

N-1 .
(2) Jly) = Z Gl Yy — A, AA,

i=k

where we write y(iA) = y,, and approximate to the derivative y’ by the
expression (y,,; — y.)/A.
Generally, in place of minimizing

(3 J{y) ﬁ_f g(y, z, z} dx,
where ¢
d
4) f —hy,n ), yla)—e,
. J

we wish to minimize the sum

N-1

(5) Jyly) = Z gy, 2, WA,

where T

{6) Yiep = ¥ + Ay, =, AN, ¥ = €.
Writing

(7 Jile) = gi}n Jily),

the usual argument yields the nonlinear difference equation

® file) = ]Izlin [9le, 2 BAA -} fipale + Bz, 7, KA)A)L
&
If z, is subject to constraints, the minimization is taken over the con-
atrained set.
In the limit as A - 0, we obtain, of course, the same nonlinear partisl
differential equation as before. It is this type of equation which we will use
to obtain the computational solufion of trajectory problems in the next

chapter.

26. Discussion

The discrete variational problem deseribed above is obtained by using
the simplest approximation fornula for the area under a curve. Use of the
trapezoidal Tule will result in a more complicated expression than that
appearing in (25.5), while more accurate quadrature formulas such as, for
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eiamIJle, that of Gauss, will lead to sums of the form

N-1
(1} Jily) = zkcig{yss 25 TN,
where the x, are no longer regularly spaced. This idea will be devel
further in Chapter XII. Since these variational problems can be treate
means of precisely the same fonciional equation technique, at the co
glight additional effort, we can obtain a great increase in accuracy.
Similarly, (25.6) is derived from {25.4) by using the crude approxim:

(: +1‘JA d’! (i+1t4
(3] j % dr = hiy, z, x) dz == Ry, =, iA)A,
A
or
3) Yepr — Ui o2 Ry, 2, 1A)A.

Onee again, a more accurate quadrature formula will yield a conside
increase in accuracy at small cost in computational effort.

In what follows, however, we shall employ only the simplest rectang
approximation, and deal with relations such as those appearing in {:
and (25,8}, since these will be sufficient to indicate the technigques that
be used.

27. Two-point Boundary Value Problems
At first sight,, it is rather surprising that the fanctional equationappr
-replaces two-point boundary value problems by initial value probl
Consider the problemn of minimizing the sum

N-1
1) Jly) = 2 I 27, AAJA,
i=k
where
2 (a) Yp = €y
(b) Yo = ¥ + Ay, 2, IA)A

and there is no restriction on the value of y ;. Then the recurrence relz
of (25.8) holds for k== 0,1,2,..., ¥ — 2, with

(3) Fu-1le) =minglo, zy_;, (¥ — DA)A.
Zx¥-1
We cell this an mmal value problem since fy_,{¢) is known and lea(‘
means of a simple iterative prmedure the relation of {(25.8),
determination of f,(c).
What happens when the value of y, is prescribed in advance? '
Jr1(e} in place of being determined by (3) is determined by the expre

) Frale) == g(6, s (V — DAY,
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DUALITY

where Z,_; is fixed by the relation
(6) ¥y = € + Ble, Zy_y, (N — 1IAA.

In other words, Z,,_, is determined by the condition that we musi go from

the state ¢ to the fixed statc y,.
Once the correct value of f_;(c) is obtained in this way, the ealeulation
proceeds as before, using (25.8).

Possible statas ="
at stage ~-2 -

\ / Final state
"¢

* ‘\ Possible states

at stoge A — |

Figure 64

When there are constraints on 2, it may not be possible to get to ¥ at
stage IV from every state ¢ at stage ¥ — }. In that case, f,_,{c) Is only
defined for those ¢ from which we get to y.. Similarly, fy_s(c) is only
defined for thosc ¢ from which one can get to the possible states at stage
N — 1, and so on (see Fig. 64).

As usual, constraints simplify the nuraerical solution when the dynamie
programming approach is followed.

28. Duality

Let us amplify the previous comment that the caleulus of variations and
dynamic programming are complementary theories. The caleulus of
variations considers the extremal curve to be alocus of points, and attempts
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to determine this curve by means of a differential equation. The theory
of dynamic programming regards the extremal as an envelope ol tangents,
and attempts to determine the optimal direction at each point on an
extremal.

The duality of Euclidean geometry asserts that a curve can equally be
regarded as a locus of points or an envelope of tangents. Conseguently, we
see that the two approaches we have presented—that of the rcalenlus
of variations and that of dynamic programming—are dual to each
other.

Tt is for this reason that we can expect that a combination of tha
two approaches will prove far more powerful than any single rmethod by
itself.

29, Conclusion

In this chapter we have introduced the reader to the fundamental
problems of the calculus of variations, and the approachesto thes= problems
along the lines of the classical methods and the theory of dynamic pro-
gramming.

After presenting some of the basic results of the calenlus of variations,
we have shown how they can be derived in very simple steps from the
funetional equation obtained from the prineiple of optimality.

-We have covered in some detail the dificultiss encountered in attemps-
ing to use the Euler equation and then have shown bow the functionai
equation technique eliminates these difficultics. In the succeedinz chapters
we will illustrate this statement with examples from the study of optimal
trajectories, multistage production processes, and feedback coctrol.

To keep the tale interesting, other difficulties arise, notably the “eurse of
dimensionality™.
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CHAPTER VI

Optz'mal Trajectorfes

1. Introduction

The commercial and military uses of aircraft, the scientific aspeets of
satellites, and the glamour of interplanetary travel have all combined to
produce an enormouns focussing of attention upon the determination of
feasible and optimal trajectories.

As aircraft attain higher performance capabilities, the flight paths
yielding minimum time and these yielding maximum range become
progreseively less intuitive. On the other hand, because of the increased
significance of time in our modern society and the increased cest of fuel,

- the determination of efficient opcration becomes progressively more
essential.

With planes capable of either ground level or stratospheric flight at
subsonic or supersonic speeds, the number of possible types of flighr
profile becomes vast, with a corresponding complexity of optimal policy.

The intricacies of the problem of ascertaining optimal trajectories
become clear when one realizes that the attractive supersonie region of
operation is separated from the subsonic region by a transzition screen, tke
sonic barrier, which induces a very high drag. No simple policy based vpen
single-stage considerations can be expected to determine efficient flight
paths which penetrate this barrier. Yet, change.of-state phenomena
associated with high-performance craft strongly indicate the desirability
of supersonic flight.

Turning to rockets and satellites, the fact that every pound of “*payload™
may necessitate thousands of pounds of luel makes it equally essential
that trajectories be carefully selected. Not only must guidance and
eontrol be painstakingly caleuiated, but the very kind of control that is
exerted. must be selected properly. We shall discuss tkis point in more
detail below,

In the pages that follow we shall use dynamic programming in both
expected and nnexpected ways to study a variety of prablems arising in
aerodynamics and control processes, Although many of these problems can
be posed in the terms of the calculus of variations, we shall, for reasons
discussed in the previous chapter, use the functional equation approach to
obtain numerical results.
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2. A Simplified Trajectory Problem

Althongh the computational approach of dynamie programming is by
now certainly familiar to the reader, we feel that it is nonetheless worth-
while to formulate and sclve a simple optimal path problem. The applica-
bility of the techniques we employ here will become apparent when we
consider the minimum time-to-climb problem for airplanes.

Figure 65

Suppose we wish to find that path, always moving to the right, which
minimizes the sum of numbers encountered while going from A to Bin tke
network shown int Fig. 65. Considering A as the origin, and B as the peint
(0, 6), we have the recurrence relation

o dey;z+Ly+ 1)+ @+ Ly+ 1)]
fizy) = min [d(x,y;z+ Ly—1+fe+Ly—DT

where d{z, y; z + 1, y -+ 1) represents the number on the link between the
points {z,y) and (x + 1,y = 1), 8 number which we consider to represent
the distance between (z, v} and (z + I,y + 1). To solve. we first note that
f(5,1) = 4 and f(5, —1) = 3. Using these values for f(3, y) we determine
f4,4). Thus f(4,2) =144 =05, f(4,0) = min [; i ;:l = 5 and f4, =2}
=6} 3 — 9. We also note that from f{4, 0) our optimal choice is to 20
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diagonally down, In an analogous manner we compute f(3, yi, f(2, y),
fi1, 3, and finally £f(0, D). The solution, with arrows indiecating the optimal
direction, is summarized by the table of valucs appearing in Fig. G6.

3. A Dual Prolilem

In the preceding discussion we have defined flz, ¥) as the minimum sum
Jrom the point (x, y) to the end potni. This resulted in an iterative technique
working back from the termination point. However, we could just as well
have defined a different function ¢{x, ¥} as the minimum sum from the
wnstial point fo (x, y}. This would re:zult in a forward iteration yielding the
golution shown in Fig. 67. Heve the arrows must be intérpreted as indicat-
ing the direction from which one arrives at a point. Both cases yield, as
they must, identical resnlts for the hest path, and sum, from A to B. This
duality of approaches should be kept in mind during subsequent dis-
cussions.

4. The Minimum Time-to-climb Problem

The following problem will be considered in detail: What flight path, in
the altitude-veloeity plane, minimizes the time required for an ajrplane to
climb from initial altitude A and velocity ¥ to a prescribed final altitnde
I and velocity V5!

The equation of motion derived from quasi steady-state assumptions
describing this problem is taken to be

K(T )
T
) dr_W_ " yane,
dt Vdv
142
g dH

where the thrust, 7', is a function only of altitude, A, and velocity, ¥,
since we shall assune a fixed throttle setting. For simplicity in this example
we assume that the drag, D, is likewise a function of H and F, thereby
neglecting the drag due to flight path inclination and normal accelerations.
We also limit ourselves here to those paths containing neither dives nor
zooms. A more preeise solution whercin drag is considered a function of
H, V,climb angle ®, and © and with no artificial restrictions on adwmissible
paths is also possible by means of dynamic programming and will be
considered in §8.

5. Dynamic Programming Formulation

The fundamental equation of dynamie programming with respeet to the
minimum time-to-climb problem is

(1) FIH,V)=min[t(H,AH. V,0)+ f(H+AH,V +AV[H, AH.V, O]
e
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ANALYTIC SOLUTION

In this equation f{H, V} represents the minimum time-to-climb from
initial position (ff, ¥) to the prescribed final altitude and velocits. The
expression $H, AH, ¥V, ©) is the time consumed climbing to altitude
H -+ AH at climb angle 8. Equation (1} states the obvious fact that the
total time to climb is the sum of:

(2} the time to ¢limb at some angle @ to a nearby altitude, and

(b) the minimum time to climb from that new position to the end
point, minimized over all permissible angles ©.

This equation will be the basis of our analytie and computational
discussion.

6. Ahalyﬁc Solution
Substituting the expressions from (4.1) into (5.1) we obtain the egrnation

g
o f(H,V)_—mén L’sinﬁ)—'—j A+ARYV+ Vsin® V-]AH ’

Expansion of the right-hand side in a power series about the point (H, ¥}
yields the new equation

2) fHV)

g

| am ¥ [ g} i ]
= HV H—= — LA o
mén[vsmG)H{ M e Ty Mt

where o{AH) represents higher order terms in AH. Cancelling f{H, ¥),
dividing by AH, and letting AH — 0, we see that

g
. ST — D)
{ 1Ly LW ar gafi]_

Ven® 8H ' Vsin® oF Vv

Examination of this equation leads to three cases:

Ef_{/] =, choose sin © as large as possible.

3) 0 = min
-]

Y
@) (a) If]:l-}—W(T D)

(b Ifl:l +-F%{T—~D}:—I{-] < 0, choose sin © = 0.

8}'] 2 V@

H[l Tir—»yZi—o, Zirv—prn=L(v—DP).
(e) -E-W( }81? aV{ ) gBH( }
The equation in case (¢} is derived by solving for 3f/2H and 8f/@V, using
the fact that (3) is valid. We next equate 02/2H 8V and 2%//dV 3H. The
resulting equation defines a curve in the (#, V') plane.
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We may now conclude that the optimal climb path consists of a basic
gurve independent of end points, together with transition paths of either
level flight or steepest climb.

'Direct solution of equations of the type appearing in {3) presents many
difficulties. At the present time, only trial and error procedures vield the
correct combination of Euler paths and transition curves in the general
case. In certain special cases, analytic technigues can be employed.

7. Computational Procedure

Turning now to a consideration of the computational aspects of the
minimun time-to-climb problem, suppose we wish to fiy from point 1 to

T 9

Altitude

Velocity
Figure 68: Altitude-velocity gnd.
point 2 of Fig. 68 in minimum time. We can think of the H-V plane asa grid

of elements of arbitrary size. Let us restrict ourselves to only horizontal
and vertical moves in increments corresponding to the grid size. In the
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physical sense we are restricting the airplane motion to incremental climbs
at eonstant velocity and incremental accelerations at eonstant altitude.
'The linearity of our “degenerate’” quasi steady-state equations permits this,
We could now try the direct approach; this is, starting at point 1 try all
possible paths and find the minimum-time path by elimination. This
brute force approach is prohibitive timewise even with computing
machinery; for example, a 10 » 10-element grid requires about 873,000
separate ealeulations to try all paths.
‘We use instead the method discussed in §2. We construct an auvxiliary
matrix with the following properties:
(1) The minimum-sum path from any point to the end point 2 is given
by foliowing the path as indicated by the arrows.
{2) The numerical value of the time for the minimum-sum path from
any point is given by the numbers in the matrix.
Only a small number of caleulations are required to construct this
matrix. For example, a 10 x I0-element grid requires 180 separate calcula-
tions as compared with 875,000 calculations for the brute force approach.

8. A Sample Problem

In order to display some numerical results of the application of dynamie
programming to the minimum time-to-climb problem, a hypothetical
turbojet-powered interceptor airplane was selected capable of level fight
at 60,000 ft. altitude and a Mach number of 2.0. We are assuming that the
reader i3 familiar with the conventional terminology of aeronautieal
engincering. Assumption of a parabolic polar, and the equations of motion
lead to the following expressions:

{I) Cp=Cp, + EC.?,
NW
2) Op=—,
7
_ L
(3) N=cos0® 4+ — @'sinB,
g
(4) q = 14814, % = 14814, ,,(F/V o).
For climb at M == constant,
AH (1 . KéK)
Al g AH
(5} Y r_p
W
For acceleration at H — constant,
| ¥ar
(6) a=-"2
Tr— i
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Cpa
I i
0.5 1.0 1.5 2.0
M
Figure 6%. Zero-lift drag coefficient.
.4
| 1
a.5 1.0 1.5 2.0

M

Figure 70. Drag-due-to-lift factor,
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CD’, the zero-lift coefficient, and X, the drag-due-to-lift factor, are
funetions of Mach number as shown in Figs. 69 and 70. The available
thrust is a function of altitude and speed if throttle setting is fixed, and is
shown in Fig. 71.

/ Sea level
20,000 ft

40,000

Thrust ovailable

e

I !

0.5 1.0 1.5 2.0
M

Figura 71. Thrust availabile.

We proceed by forming the (I, V) matrix for which we have chosen
AH = 1000 ft. and AM = .02, A starting pointof (H = 0, /f = 8)and a
final point of (H = 60,000, M = 2.0} result in a 61 X 6Bl-element matrix,
{The matrix in general need not be square.) A second matrix, analogous to
that of the previous example, was developed by a high-speed digital
computer and minimum-time paths were determined for several cases.
The results are shown in Tigs. 72-74.

Considering Fig. 72, the form of the general solution discussed previcusiy
can be recognized. The portions of the path GH and fJ are the Euler
paths in two branches. The portion F¢ is the transition path from the
starting point to the subsonic Euler path. The portion H17 is the transition
between the subsonie and supcrsonic branches of the Euler curves, The
portion J X is the transition from the supersenic Enler path to the end point,

In Case A of Fig. 72, the gross weight of the airplane was held constant
at 40,000 1b. and the load factor N was assumed to be unity. Time to
climb along the optimal path is 277 see.

In Case B, the effect of changing gross weight along the flight path was
considered by introducing the specific fuel consumption as a funetion of
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shtitude and speed. Since we move backwards in forming the second matrix,
the technique emplayed is to start with several assumed values of final
gross weight and calculate the increase as we move through the matrix.
The interesting by-product is, of course, time-to-climb data for a variety
of starting gross weights. For 40,000-1b. starting gross weight the time is
352 sec. and the fuel used is 3450 [b.

60

# {thousonds of #t)

Cose A: Constant W, A= 1.0 x
———Case B: AW ¥=1.0
- Cose & AW, N =cos 8
50
{0
o
30 f_ﬂr- )
=)
_.l‘"i
M I
20 - 2
10
F G
06 0.8 1.0 L2 .4 1.6 1.8 2.0
M

- Figure 72. Altitude-Mach number trace of minimuin-tirme paths.

For Case C, the effect of including the climb angle in the airplane drag
was investigated. The effect of normal accelerations on drag was neglected.
The technique employed is an iterative process similar to that emploved for
a gross-weight change. Time to climb for Case Cis 251 see. It is appreciated
that the drag corrections due to normal accelerations are important.
especially at the transition points such as the leveling off from the initial
climb to horizontal acceleration, and a general solution including this
effect can be obtained by an extension of the mecthod deseribed here
{see §9).
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Figurs 73. Altitude-horizontal distance profils of minimum-time paths,
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Figure 74. Lffect of initial gross weight on minimurn time-te-climb.
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Figure 73 shows the altitude-horizontal distance profile for the three
eases investigated, where the horizontal distance, for small At, is computed
as the product of At and the average horizontal velocity component.
Figure 74 shows the useful curve which is the result of the computational
technique eniployed in Case B,

As for the practical application of the theoretical results, it may be
optimistic to expect either human or autopilots to follow complicated
altitnde-velocity climb schedules such as those shown here.

Fortunately, a more practical path consisting of two constant-Mach
number climbs and one constant-altitude acceleration can be found which
will, timewise, approach closely the complicated path feund in the
numerica! example. Consequently. the most useful purpose of the theoreti-
cal solution may well be to serve as a guide and criterion to establishing
practical minimum-time paths,

9. A Generalized Climb Problem

The minimum time-to-climb problem discussed in the previcus sections
can be made to conform much more closely to reality if certain additional
factors are included. In particular, it appears that:

(1) Drag due to path inclination and normal aceceleration should be
included.

(2) Allowable normal accelerations should be limited due to pilot
and plane streas, .

(3) Dives and zooms shounld be allowed.

{4} The flight range should be specifiable.

The inclusion of these factors is not beyond the limits of present com-
putability. They do, however, lead to considerably mare programming and
computing effort. Ideally, both a fast and easy first approximation method
such as that described above, and the more complete solution to be dis-
cussed below, should be available to design and performance engineers.

The inclusion of drag due to path inclination and normal accelerations
is accomplished by the introduction of the path inelination angle 0, and
its derivative © into the formulation. This leads to 2 two-dimensional
problem. Acceleration limitations determine a bound on the variable ©.
Programming © is equivalent to programming the angle of attack.

To inclnde dives, gain of velocity at the expense of altitude. and zooms,
gains of altitude and loss of velocity, a new monotonically varying
quantity to play the role of stage must be found. This variable is energy
height, defined as:

(1) E=H{ v
2g

For all reasonable trajectories, this variable will increase during powered
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flight, though altitude and velocity may individually fluctnate. Note that
no additional quantity has been introdneed, since knowledge of E and H
determines ¥ by means of (1).

Finally, range, 8, can be specified by the introductien of & eonstant
Lagrange multiplier, which can be experimentally delermined by iterative
solution. :

With thesc additions, the recurrence relation takes the form

(2) fpH, 0)

. dt ds dH a0
= min | —AE 4+ i—=AF L -(H—{——AE,@—P—AE)],
asggib[dg T Ju+os dE dE
aE .
where
@) LT n,
dt W
ds  Weos O
dE T _D
dii  Wsin®
aE T—D
and
(4) T =T H),

D= DEH 60,0),
and the stress limitations in Equation {(2) are given by

{5) a=alk, H, 0},
b= bE, H,0).

Numeriral solution, as has ofien been discussed hefore, involves the
suecessive computation of a sequence of tables of values of a function of
two variables.

10. A Satellite Trajectory Problem

En the sections immediately following, we wish to study the problem of
putting a satellite info orbit. Since the question is quite complex, we shall
study a simplified version.

The problem is interesting from both analytic and computational points
of view. . :

Analytically, this is a problem of the Mayer type with one of the state
variables, the horizontal veloeity, to be maximized at burnout, subject
to certain constraints. If the thrust is preprogrammed or constant, the
analysis of the previous chapter is applicable. Tf thrust magnitude which
enters lincarly is to be chosen optimally subject to certain constraints, an
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analytic treatment is difficult, but the computational alzorithm of dynamic
programming still applics.

11. The Simplified Problem

Our aim is to ascertain the thrust control policy and fuel consumption
policy which will put a satellite into orbit at a specitied altitude with a
maximum horizontal compenent of veloeity.

In order to keep the numerical effort within reasonable bounds, we rake
advantage of the essential simplifications that result from the neglect of
various zerodynamic forees, and the assumption that the terrestrial gravi.
tational field is plane-parallel.

The determination of paths of minimum fuel, maximum altitrude, az4d =0
on, can be carried out along the lines indicated in the preceding dizcussion.
Bimilarly, the more realistic processes corresponding to spherical gravita-
tional field can be treated by means of the same techniques, at the expense
of considering functions of two or more variables.

12. Mathematical Formulation

The equations of motion of a satellite traveling over a flat earth in a
Cartesian coordinate system will be taken to be

du
1 —_—= s,
(1 P pcos
du i
— = gpsindg — g,
Pl $—yg
o,
dt
dx
“ o
df

Here (see Fig. 75)
(2) (a) = and v are, as usual, the horizontal and vertical coordiuates,
{b) © and w are the horizontal and vertical projections of velocity,
{e} p is the magnitude of acceleration due to reaction force,
{(d) ¢ is the inclination of the thrust to the horizontal.

If we introduce the quantity V as the velocity available to the satellite
in the idealized case of no gravitational force, we obtain the relation

arv
3 2 .
{3) % v
The variable ¥ will be a’ monotone function of the quantity of fuel. Since
gP
(4) =",
S
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where P is the thrust, and
cdM

5) . p— - 225
(5) .

where M is the weight and ¢ is the exit velocity of the gases, we can solve
for M in terms of the “‘ideal available velocity,” ¥, ebtaining the equation

(6) M= M,
where M, is the weight of the empty rocket.

4

x
Figure 75

The equations of motion, {1), together with (6), which yields mass as a
function of V¥, and (4}, which furnishes the acceleration in terms of thrust
and mass, enable us to determine optimal inclinations and optimal magni-
tude of thrust as functions of V.

13. Analytic Solution

If p is constant, then the method of the previous chapter yields the
important conclusion that the optimal policy, @, is characterized by the
property that

d
1 —tan ¢ = 4,
(1) o ban ¢
a canslani.

14, Dynamic Programming Approach—I
Let us now see how we can employ the functional equation approach of
dynamic programming to obtain a computational selution.
The state variables are altitude y, vertical component of velocity w, and
available velocity V. Consequently, we introduce the function
(1) f(V,w, y) = the additional horizontzl velocity obtained starting at
altitude y, vertical compenent of velocity w and ideal
available veloeity ¥V, and uszing an optimal policy.
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Referring to the defining equations of motion in §12, and using the
principle of optimality, we obtain the functional equation

(2) f(¥V,w, y) = max [005 dAV -J,—f(V — AV, L+ @AV, ¥+ d—y;Al')jI
. P av air
. ar e¥ie .
= max [cos AT —:—f(V — AV, w (smqs ——"-——-—)AT R
#. P \ P
F Ve
- wl e __“_,)J,
qF

where AV is regarded as a small quantity.

Letting ¥ assume only a finite set of values 0, AT, 2ATF, ., ., VAT,
we see that the computation becomes that of determining a sequence of
functions of two variables f\(w, ¥) = f{NA, w, ¥), vsing (2).

15. Dynamic Programming Approach—II

In order to simplify the computation, we use a Lagrange multiplier
formalism, as discussed in Chapter 11, §186, to reduce the problem to one of
determining a sequence of funetions of one variahle.

In place of maximizing the final value of «, subject to the constraints on
& final altitude and on w, we cousider the problem of maximizing

0 L
@ hf cos quV—,l—}.[ Yy,
Y1y v dF
subjeel to the constraints of the equations of motion. Here Ais the Lagrange
parameter.

The new functional equation for the maximum value is
2) fiV,x)

Iy, Vie
= max Imax I:CUS PAF '-}-'MAV]
¢.P e

Dl o B P VA . |
-1—_1’(? — AV, w ~ (sm ¢ — —P—)AP), Jawdst+— f(V, e — g_‘u‘)j,
where the second alternative within the max { ] represents a decision to
coast for a small time interval Az

The parameter 7 is adjusted untii the altitude constraint iz met. By
using the Lagrange parameter, we have partitioned a problem originaily
involving a sequence of functions of fiwo variables into a set of problems
involving functions of ene variable. The gain in computing time and eiffort
is considerable.

16, Computational Aspects

The numerical solution is obtained by iterating the recurrence equation
{15.2) backwards from the known final values. The calculation is begun by
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observing that, if burnout cccurs with a vertical component of veloeity w,
the additional altitude obtained during ceasting will be w?*2¢ and the
additional horizontal velocity will be zero. Henee f(0, w) = lw?/27. A
table containing f{0, ) for a range of w values {we do not yet know to what
burnout value of % the optimal policy will lead) is stored in the high-speed
memory of the computer.

This tabular function Is now used to determine & new function, f{AT, w),
the total additional horizontal veloeity plus A times the altitude that can
be attained starting with a small quantity AV of “available velocity (fuely”
and vertical velocity component w. This calculation is performed using
equation {15.2). We actnally evaluate the gain associated with choices of
different ¢’s and J”'s and compare this with the return from a decision to
coast. On this basis we pick the optimal decision. The return from this
decigion is recorded in the computer memory as the value of f{AT, 1) for
the particular value of w considered. A second table is constructed giving
the optimal decision that vielded f{AV, w). A third table, J(AV, w), is
maintained giving the total aititude gained when following an optimal
path starting from (AT, w). Since we are fAlying so as to maximize hori-
zontal velocity plus A times altitude, this third tabie is just a convenient
record that is not used in the calculation, but which, when the iteration of
equation {15.2) is finished, yields immediately the total altitude (and
henece the horfzontal velocity, f(V, 0} — AJ{F, 0]}, gained by following an
optimal trajectory,

Once the technique described above for caleulating f{AV, w) using the
table of {0, w) has been programmed for a computer, it is a simple matter
to have the same code caleulate f{2AY, w) from f{AF, w} and, finally,
F(V, w) from f(¥ — AV, w). Notice that at each stage of this computation
only one table of the function f is needed to compute the next table in the
sequence. Once a table has been computed and used in the ealeulation of
the next table it can be printed by the computer and destroyed in memory.
Hence the computer memory capacity required is determined by the num-
ber of discrete points ehosen for the w-table, and does not depend on the
fineness of the AV grid, The total time for a calculation depends inversely
on the size of AV,

At the completion of the backwards iteration of eguation (15.2) one
knows the horizontal velocity and altitude obtained by an optimal policy
for the specificd initial conditions. Also the initial decision for the starting
point is determined by the nature of the ealeulation of f(¥, w). To recon-
struct the optimal path in its entirety, one now determines the new value
of w after using the preseribed decislon for the first AV interval. In
ealeulating f(V — AV, w) for this w-value, an optimal decision was
determined and recorded (since the actual w may not be a peint of the
w-grid, interpolation may be necessary) and this decision is used during
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the interval ¥ — AV to ¥V — 2ZAF. In this manner we use the cutput of
the sequence of calculations, processing them in the opposite order from
that in which they were computed.

The ghove operation may be performed easily by the computer as the
final step of the calculation if the requisite tables are stored on tape or
punched into cards, .

Once the problem has been solved, one examines the final altitude to
determine if the required height was attained. A new value of the Lagrange
multiplier 2 is then caleulated based upon previous values and results, and
the ealceulation is repcated. 3

One calculation yields the optimal path, in terms of horizontal velocity
and 2 (altitude), for a wide range of initial vertical components of velocity.
This variety of results is of interest in problems where initial vertical
velocity is not necessarily specified and the answers for a range of
values are desired. Secondiy, after several variations of 7, optimal trajee-
tories to several different altitudes are known, vielding an interesting
estimate of the trade-off between altitude and velocity along optimal
trajectories.

17, Numerical Results

For all caleulations, we have assumed a hypothetical rocket with the
following characteristics:
Empty weight, M, = 5000 lbs.
Exhaust velocity, ¢ = 11,000 ft/sec.
Maximum thrust, F, . = 3ML000 [bs.
Minimun thrust with cngine on, P, = 30,000 Ibs.
Total ideal available velocity = 30,000 ft/sec.
These data imply a total weight at takeoff of 76,158 lbs.
A value of J of 00142 yielded a final altitude of approximately £50 miles
with a horizontal component of veloeity at this altitude of 26,300 ft/sec.
Various parameters and grid-sizes required {or nomerical solution were
chosen as follows:
{I} AV = 1000. Therefore the recurrence relation was iterated 30
times.
(2) Aw = 50. Each table of f{¥, w) contained 281 numbers, since
wuas allowed to assume value from 0 to 14,000,
(3) Adh -= .01 radian. Admissible thrust angles were 0, .01, .02, . .,
«r{2 radians. _
{4) Thrust could assume valnes 300,000, 250,000, 200,000, 150,000,
100,000, or 50,000.
These numbers were determined experimentally. They possess the
property that a further refinement has little or no effcet on the computed
solution,
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A condensed summary of the solufion, as computed on the Raxp
Johnniac computer in 20 mimates, is shown below.

It should be noted that, although in this simplificd study the rocket is
revealed to be flown at maximuny threust wntil barnout and the thrast
dircetion oheys a simple law, the computational schieme assumes neither of
these results. It is thervefore applicable to more geucral problems that are
not amenable to conventional mathematical apalysis.

¥V Mass h w % ¢ r Time
(ftfsec)| (Ib) (i) {ftfsec) | (flfsec) ) (racd.) | {Ibs) |. ({seq)
O 360 | 300,004 0

30,000 | 76,456 0 | )
25,000 | 45,529 16,045, 1,314 | 4,279t 523 | 300,000 33.3
20,000 30,803 87,720, 3308 K625 501 | 300000 Ht.4
15,000 . 19,352+ 106,344 5,25% | 13,020 490 | 300,000 a67.8
10,600 [ 12,410 | 152854 7,330 17 436G | 480 | 300.000 763
5000 T.8TT| 192,848| 940641 21,871 480 | 300000 81.7
burnouty 5,000 224 920 11,650 | 26,313 | 472 | 300,000 85.1
end of
coast | 5,000 | 2,337,679 0263131 0 G 4447

It is of interest to check the numerical aceuracy of this caleulation by
comparing the variation of tan ¢ to the linear rule derived. We fit tan (i)
above by a least square lincar fit tan §{t) = = + ¢ where o = 623045 and
£ = —.001334, and obtain the table:

¢ Ble) | tan ity | tan ${t) | |tan $—tan |

0 560 6269 6239 0030
3337 .523 5766 5793 D029
54.4 | .501 5476 5013 D037
67.8 | 450 5334 5334 0000
6.3 | 480 52006 4220 L0l4
81.7 | 480 52006 5148 OG58
£5.1 | 472 [ L5093 51063 0010

18. Flow Chart (See p. 226)

The program is shown dlagrammatically in Fig. 78.

19. A New Guidance Concept
The state-variable concept of dynamic programming gives rise quite
naturally o a new approach to guidance and feedback contro) in general.
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THE OPTIMAL STAGING PROBLEM

The clder variational approach atterpts to determine, for any given
problem, the equation of the best trajectory. It is natural that this leads to
a guidance philosophy based on the preecalculation of a desired path, and
the programming of the guidance computer to follow this path. If the
missile should stray due to unexpected forces, or minute malfunections, a
fecdback mechanism senses this deviation and attempts to return Lo the
preseribed path. The use of such a device necessarily leads to stability
difficultics with the ever present danger of increasing oscillations due to
overcorrection.

All such difficulties are automatically avoided in the state-variable
approach. Once the rocke! has strayed, the optimal path is no longer the
precalculated one, but a new one determined by the new state of the rocket.
Any attempt to return to the old path is not only difficult, but is indeed
nonoptimal, in general. Tt is precisely the information needed to accomplish
this—the optimal decision as a function of all possible reasonable states—
that is produced in a dynamic programming calculation. By building this
information into the guidance system (an engineering problem as yet little
investigated), casily flown and truly optimal paths ean be generated.

20. Multistage Rockets

We shall discuss here an entirely different tvpe of multistage problem,
bred by the space age. As is indicated by the name itself, problems con.-
cerning the optimal configuration for multistage rockets are conveniently
approached by way of dynamic programming. To illustrate the applica-
bility of the technigue, we have chosen the following problem.

21. The Optimal Staging Problem

We shall eonsider the problem, arising in rocket design, of the determina-
tion of the proper number and size of booster stages. As the reader of any
daily paper these days is aware, current satellite carriers and space probe
vehicles are constructed of several fuel carrying sections. After the pro.
pellant contained in a particular section has been expended, the casing of
the stage is dropped in order to reduce the total weight. Idealiy, one would
prefer an infinite-stage rocket, the extra casing weight being dropped
continucusly as fuel is consumed. However, this leads to infinitely many
timing and control devices and, consequently, a rather high probability of
malfunciion. Granting, then, that one is willing {o use a reasonably small
number of stages, the question of fuel alloeation among the stages arises,
It is a simplified version of this aspect of the problem that we shall discuss
here. We shall seek to determine the amount of fuel to be stored in each
stage of a k-stage rocket, in order to impart to the nose cone and payload
a specified final velocity. We shall make the assignment so as to minimize
the total fuel used, i.e., initial weight. We wish to solve this problem for a
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k-stage rocket, where k takes on values 1, 2, 3, . .., V. This whole range of
problems can be solved in one dynamic programming computation. The
choice of the optimal £ can then be made on the basis of the trade-off
between weight and reliability.

22. Formulation

We wish to minimize the weight necessary to achieve a specified velocity,
and we shall assume that the trajectory is known. One variable necessary
to describe the state of the missile at the heginning of a stage is the velocity
attained, or, equivalently, the velocity left to be attained by subsequent
booster stages. It i3 also necessary to know the weight of the rocket in order
to compute its performance during a given stage. All other data necessary
to the stage.performance computation is assumed known a priori, inde-
pendent of the ealenlated configuration. Since the criterion function to be
minimized is the weight necessary to attain the final velocity, and the
optimal weight of the rocket at a given velocity js precisely that necessary
to attain the final velocity, the value of the objective function {i.e., weight)
at a given stage and the value of the state variable (i e, ¥elocity) determine
the performance during the stage.

Analytically, let us define

{1) fi(v) == minimum weight of a k stage rocket achieving a final velocity v.

Now, if v, is the as yet undetermined velocity to be added during stage &
and the function w(t,, f,_;{# — v,}) is the additional fuel and casing weight
necessary to do this, we have, by the principle of optimality, the recurrence
relation

(2) JFelv) = mijl [w{my, fra (7 — w D) + fro o — 2]

£

The nature of the function w is the unique aspect of this problem.
Nowhere, to this point, have we encountered the situation of the (& - 1)-
stage returnfunclion appearing in the single-stage portion of the recorrence
relation, That this offers no additional computational difficulties can be
easily verified by the reader upon checking the computational algorithm
used s0 often in this book. Numerical resuits obtained in this fashion wil?
be found in references given at the end of the chapter.

23. Higher Dimensional FProblems

As the reader will note, the iliustrative problems chosen in this chapter
are all of low dimensionality as far as dynamie programming is concerned.
The airplane minimum time-to-clim® problem of §4 led to a quick and
easily programmed way of roughly approximating the optimal path.
Though this is a desiralile result, one also would like to be able to caleulate
solutions to problems including many more realistic factors such as those
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included in the formulation of §9. Larger, faster computers and additional
- time and effort are necessary for the study of this companion program. Sim-
ilar statements hold true for rocket and interplanctavy space tlight problems.
While several dimension-reducers, such as Lagrange multipliers, have
already been introduced, more analvtic devices are needed to tame the
toughest trajectory problems. Seme candidates for problem-tamers will
be discussed in the sections on numecrical analysis in Chapter XIL
Problems can be generalized by means other than staie variable expan-
sion. Stochastic elements ean and often should be included in the mathe-
matical model. Finatly, adaptive techniques where the system learns zbout
its environment and optimally adapts to it must be considered. We shall
discuss these matters in the chapter on feedback control (Chapter IX).

24. A Routing Problem

As a further application of thesc ideas, let us consider the following
routing problem which arises in a wide variety of applications. Suppose
that we are given ¥ cities, numbered i = 1, 2, ., ., ¥, insome order, and a
set of numbers, (t;), where

{1) t,; — the time required to travel from the ith city to the jth city.

iy
Starting at the first city, we wish to trace a path to the Nth city which will
require a minimum time. We can go directly, or go by way of any of the
other cities.

In many situations, there are no connections between two particular
cities, in which case we consider #;; to be infinite, or, for digital computer
purposcs, a very large positive number.

If ¥ is at all large, any direct enumerative solution is impossible. Let
us treat the problem by means of functional equation techniques. We
consider the general problem of determining the minimum time required to
go from the ¢th city to the Nth city. Let

{2) f; = the time required to travel from the ith to the X'th city, using an
optimal routing policy.
Then the same reasoning we have employed in discussing the preceding
trajectory processes leads to the relation
(3) Ji=min[f, -+ ], i=12,..., ¥ -1, f,=10
FESY

It can be shown withont difficuity that this system of equations possesses
a unignue solution, and thus that the solution of this set is equivalent to the
solution of the original problem,

25. Compuiational Aspects

This equation possesses a feature which we have not previcusly en-
countered, namely that the unknown function, f,, appears on both sides of
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the equation, Consequently, we possess ne immediate iterative secheme for
generating the solution.

It is necessary, therefore, to employ some method of successive approxi-
mations. We could, for example, set
M) @ =ming, i=12...,N~1 f@—o,

F#E

M —mingg, 4 £5 VL, i=1,2,...,N—1, f¥=o.
Exal

This yields monotone convergence from below. Or, we can think in terms
of policies. Let us consider first those paths that go directly from { to &,
then those which make one stop, and so on. This leads to the scheme

@) ¢ =iy i—12.. ., N—1 ¢¥=0,

g = min [t q"" D iz N1, g =0,
which yields monotone convergence from above, and, indeed, in a finite
nntnber of steps.

Methed (1} evaluates the best path of length k starting at eity i, However,
the equations have the property that X is a sink and if a path reaches &
in less than k steps, it can stop there. Yor any other eity, the path eannot
stop except after £ steps. Henee as b gets large, the paths all tend to go to
city ¥, and the minimization guarautees that they will do this by the best
route.

Method ({2) assigns to each city at each iteration an attainable, but not
necessarily optimal, time. Buccessive iteration converges to the best path.

This example illustrates the distinetion between function-space and
policy-space iteration discussed in Chapter 11, Section 44. Method (1) gives
at each iteration the optimal solution to a problem different from the
original problem. Method (2}, before convergence, gives a nonoptimal
solution t¢ the original problem, '

Both techniques are readily suited to hand or machine computation for
moderate values of ¥, fe., N =< 160, and to machine computat:on for &
of the order of magmtude of several thousand,

26. The nth Shortest Path

It is oceeasionally of interest to determine not only the shortest path, but
also the secand shortest, the third shortest, and so on. In this way we can
ascertain how important it is to use the shortest path, rather than, say, the
tenth shortest.

To illustrate the method, let us introduce the sequence of values

1) », = the time required to go from ¢ fo IV using the second shortest
path,i=1,2,...,N — L.
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In order to ohtain a relation for u,, observe that if the first stop on the
way to & from 7 is at §, then the continuation from j to .V must be along
either a path which minimizes the time from j to N, or which is a second
shortest path from j to ¥,

Let
(2} min, w; — the absolute minimum of 2, ¢=21,2,..., N,

min, w; = the second smallest value of w,.

Then we have the equations

{3) v = min {minl (t; + v;), ming {4, 4 f,.)},.

i FEi
t=1,2,...,§N—1, with s, =0, and f, defined as in §24. Similar, but
more complex, equations can be derived for the nth shortest path,

27, Conclusions

The aim of this chapter has been to demonstrate to the reader that a
number of classes of optimal trajectory problems can be gquickly and
accurately solved computationally by means of dynamic programming
techuigues,

The advantage of the dynamic programining approach lies in the fact
that realistic equations of motion and realistic constraints are easily
incorporated into the solution along funetional equation lines.

The prineipal difiiculty with which we must grapple is that of dimension-
ality. How to treat functions of several variables is a problem to which we
shall return again.

Comments and Bibliography
§1. A great deal of effort has been devoted to trajectory prohlems, applving
the ealeulus of variations. For a diseussion of some of the results, and referenees
to raany other papers, sce

J. V. Breakwell, "“The optimization of trajectories,” J. Sec. Indust, Appl,

Math., vol. 7, 1959,

H. J. Kelley, “Gradient theory of aptimal flight paths,” dmer. Rocket Sec.J.,

vol. 30, 1980,

§2-£8. The results presented here were originally presented in
5. Cartaino and 8. Dreyfus, “Application of dynamic programming to the
airplane minimumn time-to-clitnb problem,” dera. Rev., 1957.

§10. The problem was first discussed in

D. H. Okhotsimskii and T. M. Encev, J. British Interplanetary Seoc.,

Janunary- February 1938,
using vaviational technigues, and then in

R. Bellman and 5. Dreyfus, “An application of dynamic programming to

the determination of optimal sateilite trajectories,” J. British Interplanctary

Soc., vol. 17, 1959-60, pp. 76-83,

. using dynamiec programming techniques.

231



COPTIMAL TRAJECTORIES

See also

F, F. Bmith, The Optimization of Multistage Orbit Transfer Processes by
Dynamic Programming, The RAND Corporation, Paper P-2177, 194].

P. 1. Welding and J. Stringer, “A problem in vehiele fuel consumption,”
Oper. Res. &, vol. 11, 1960, pp. 197204,

R. Belhman, 8. Ireyfus, and R, Kalaha, Applications of Dynumic Pro-
gramming to Space Guidance, Safcllites and Trajectories, The RAND Cor.
poration, Paper P-1023, 1960,

J. N. Frunlklin, “The range of a fleet of aiveraft,”.J. Soe. Indust. Appl. Math.,
vol. 8, 1960, pp. 541-548,

5. I8, Dreyfus, ¥ The analysis and selution of optimum trajectory problems,”
Symposium  on  Mathematical Optimization Technigues, Santa Monica,
California, 1960,

For a different approach, see

A.E. Bryson, W. F. Denham, F. J. Carrell and K. Mikami, Determination
of the Lift or Drag Program that M inimizes Re-enfry Heating with dcceleration
or Hange Congtraints Using a Steepest Descent Computation Procedure, to

appear.
For the use of the Neyman.Pearson lemma and extensions to handle

variational problems with constraints, see
R. Bellman, 1. Glicksberg, and Q. Gross, Some Adspects of the Mathematical
Theory of Control Processes, The RAXD Corporation, Repore R-313, 1938,
G. Goertzel, "Minimurn critical mass and flat lux,” J. Nuclear Energy, vol.
2, 1956, pp. 193-201.

§20-§22. These results are due to Ten-Dyke. See
R. P. Ten-Dyke, “Computation of rocket step weights to minimize initial
gross weights,”" Jet Propulsion, vol. 28, 1958, pp. 338-340.

§24. This follows
R, Bellman, A routing problem,” @. Appl. Math., vol. 18, 1938, pp. §7-80.
See also ’ -
R. E. Greenwood, “Linear graphs and matrices,” Tevas J. Science, vol. 12,
1860, pp. 105-108. :

Many other approaches to this fundamental problem are available, See

K. Kalaba, *'On some communication network problems, -combinaterial
analysis,”  FProc. Symposium in Applied Mathematics, vol. 10, 1960,
American Math, Soe.,

and
M. Pollack, ““The maximum capacity route through a network,” Operations
Resgearch, vol. 8, 1960, pp. 733--736.
M. Pollack and N. Wiebenson, “Solutions of the shortest-route problems—
a review,” Operations Research, vol. 8, 1360, pp, 224-230,

for further references and extensions, and other technigques.
For a linear programming treatment of related problems, sce
L. R. Ford, Jr. and D. R. Fulkerson, “Maximal flow through a network,”
Canadian J. Math., vol. 8, 1856, pp. 389-404.

232



COMMENTS AND RBIBELIOGRAPHY

§26. A more detailed diseussion may be [ound in
R. Bellman and R. Kalaba, “On k-th best policies,” J. Soa, Indust. Appl.
Math., vol. &, 1960, pp. 582 585,

and in the reference by R. Kalaba given in §24.
For same quite different ideas, see

§. Beardwood, J. H. Haltorn and J. M. Hammersley, “The shortest paih
through many points,” Proc. Cambridge Phil. Soe., vol. 53, 1939, pp.
209--327.

233



CHAPTER VII

Mf.zlrz'stage Production Processes Urfh'zing C‘omplexes
of Industries

1. Introduction

A problem of fundamental importance in the economic and industrial
world is the efficieni utilization of a complex of interdependent industries.
It is clear that any realistic treatment will present formidable difficulties.
Before one can even contemplate optimization, we must grapple with the
description of the processes that arise in precise and concise terms, with
the recognition of objectives, with the incorporation of stochastic and
adaptive features, and with the discovery of feasible, much less optimal,
policies,

Here, quite modestly, we wish to study certain simplified models of
multistage production processes, Our aim is to show how the funetional
equation technique enables us to obtain a computational foothold on the
solution of classes of problems which preserve some of the aspectis of actual
economic problems.

The apparently specialized mathematical modet is worthy of attention
because identieal analytic questions arise in many actual areas such as in
the field of forestry, in the study of the production and stockpiling of
manganese, and in many phases of chemieal engineering; as examples of the
last grouvp alone, consider problems of isotope separation, catalysi replace-
ment, and any number of other chemical processing problems as well.

We shall very briefly indicate soine of the contacts between the results
we present here, and the macroeconomic theory of von Neumann, tied in
with the theory of gantes and linear programming. Further results will be
found in a number of references given at the end of the chapter.

Often, processes of the type discussed below are called “boftleneck
processes,” since the behavior of the whole process is governed by the
resource or production capacity in shortest supply.

2. A Two-industry Economic Complex

Let uvs assume that we are examining the operation of a two-industry
complex, the “auto” industry and the “steel” industry. Although these
appellations are not to be taken too seriously, by using these familar
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names and relying upon certain intuitive notions, we can hope to obtain a
elue to computational and analytic solutions. Alternatively, the solutions
which we obtain can be used to provide an intuitive basis for the solution
of still more complex models. One of the reasons why it is worthwhile to
treat these admittedly over-simplified models in some detail is in the hope
of obtaining some picture of the structure of the solution of problems of this
nature. :

We shall suppose, using the concept of lumped parameters which
plays such an essential role in mathematical physics, that the state of
eachi industry at any particnlar time may be specificd by means of two
guantities:

(1) (a) the stockpile of raw materials required for production,
(b) the capacily of the industry to produce its particular product.

To simplify the formulation and computation in this particular case, we
shall assume that avto capacity is arbitrarily large. In short, the production
of autos will depend only upon the gquantity of steel allocated to the pro-
duction of autos.

At any particular time, the stcel in the steel stockpile may be used for
either of three purposes:

{2} (a) to praduce additional steel using the existing steel capacity,
(b} to inerease the existing steel capacity,
(¢} to produce autos using the existing auto capacity.

We wish to determine allocation policies which maximize the total
quantity of autos produced over a given period of time,

3. A Mathematiczl Model

At the moment, the process will be taken to be discrete, with allocations
made only at times 1 =10, 1, ..., T — 1, At any particular time, { = n,
the state of the system is determined by the quantities

{1} {a) #(n) = amount of steel in Lhe steel stockpile,
(b) x,.(n) = capacity of the steel mills.

In determining the allocation of available stecl at stage n, we introduce
the quantities

(2) (a} z,n) = the quantity of steel nsed to produee additional steel,
(b) z,(n) = the quantity of steel used to increase steel capacity,
{e) z{n) = the quantity of steel used to produee autos.

We then have the relation
(3 x(n) = z,(n} 4 z,(n) + 2,(n).
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In order to introduce some realistic features, we impose two constraints
on the z's:

{4} (a) z,(n) = aqz,(n}, 0<a <1,
() 2,(n) < 2, (n).

The first constraint asserts that it is not poszible to u:e more than a
fixed percentage of available steel for auto production over any stage,
n to » + 1, whilc the second states that there is no point to alloeating
mote steel to the steel mills than the maximum eapacity of the miils.

We shall choose the units so that the quantity of autos produced in the
stage {n, n + 1} is z,(#). Furthermore, the quantity of steel produced in
{n,m | 1} is proportional to z () and the increase in steel caparcity is
proportional to z, (r). Let the respective coefficients of propoertionality be
ay and a5

We are thus assuming that we have a linear model of production.
Expressed analytically,

('-)) xa(n + 1:' = a2zs(n)1 g > 1’ xs(o) =0 -
xz,.(n - 1) =z (n) + azz,(n), ay > 0, z,.(0) = ¢,

It is required to choose the quantities z/(n}, z,(a), and z,{(»),
n==0,1,..., 7T -1, so as to maximize the total quantity of autos
produced over the entire 7-stage process.

4, Discussion

The analytie solutions of problems of this genre are complicated by two
factors, linearity and the presence of constraints. Nevertheless, a wide
variety of variatioval problems can be solved explicitly.

In continuous form, the variational problem is that of finding a vector
y which maximizes the inner product {z(T), a), given that x aud y are
rclated by means of the differential equation

dx

1 = =dx ! By, 0) =¢,
(1) a x y z(0)}

and by a constraint of the form
(2) Cy < Dz

These problems cannot be treated by means of the elassical methods of
the calculus of variations. References to papers containing the analytic
solution of a number of problems of this type will be found at the end of
this chapter. '

Turning to the question of obtaining a computational solution, it is
clear that the discrete problem may be formulated as a linear programming
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problem. We must maximize a linear form

=1

@) Liz) = 3 z4ln),

subiject to the constraints of {3.3), (3.4}, and (3.5},

In order to examine the feasibility of & solution along these lines, let us
eount variables, assuming that we are intercsted in a 30-stage process.
With three additional unknowns introduced at each stage, we face a
problem involving 90 variables subject to 120 relations. Although not
formidable, it is nonetheless sizeable. If we wish to determine the
dependence of the solution upon e, and ¢,, the initial steel stoekpile and the
mnitial mill capacity, a direet method of this type may lead to inordinate
demands on time.

We wish instead to present a computational method which antematically
yields the dependence of the solution upon ¢, and ¢,

3. Dynamic Programming Approach
Let vs define, for N == 1,2,..., ¢ =0, ¢ =0, the {unction

(1) fylcy, cg) = total auto production over N stages, starting with initial
steel stockpile ¢; and initial mill capacity ¢, and using an
optimal policy.

We have
(2) Sifen ¢3) = a4,
and, generally,
{3) Inler 6g) = max [z, + frqlagz, o + a52,,)]
-1
for N =2,38,..., where the maximization is over the region in z-space
defined by the inequalitics
(4) (a') za’ zgr zm _> 0!
(b} %z + Zg 'IL 2 = Cps
(c) Zp < 40,
() zZ, < g

In the next section, we shall discuss the numerical determination of the
sequence { fy(¢;, 6,0}

6. Search of Vertices
The region in the (z,, z,, z,,) plane determined by the inegualities (3.4}

has the form shown in Fisg. ';:i'

The vertices, as numbered in Fig, 77, have the following significance in
terms of the process:

L. In case mill capacity does not represent a constraint, allocate all

available steel to the production of more steel,
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2. Alleate as much steel as possible to the production of steel; when
the mill capacity is net, allocate the rest to the expansion of mill capacity.

3. The allowable percentage of steel stockpile is assipned to auto
production, the rest to steel production.

4. This vertex oecurs when mill capacity is insufficient to handle all the
stecl available. It represents an allocation of steel to steel production up to
the mill capacity, an allocation to auto production up to the allowable
percentage, and an allocation of the remaining steel to the cxpansion of
mill capacity.

Figure 77. Region of variability of the quantities z,, z,, 2,,.

5. Allocate as much steel as allowable to stee production and the rest to
auto production.

6. Allocate all of the current steel stockpile to the expansion of mill
capacity.

7. Produce as many autos as possible and then expand mill capacity
with the remalniug steel.

Obviously all of these conditions do uot occur at once, but depend on
steel capaecity and steel stockpile, which vary throwghout the process.

Of these seven, only the first ive are actual possibilities, since vertices
6 and 7 effectively end the process—no new steel being prodwnced.

Tt may be shown that the maximization over the vertices of the region
is either optimal or a very good approximation as the number of stages
increases arbitrarily. Here, since we are primarily interested in indicating
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the gencral approach to problems of this type, we shall accept maximiza-
tion over vertices as exact. In any case, a caleulation of Lhis type furnishes
a useful approximation in policy space.

I we wished to proceed ab ¢nitio without prejudicing ourselves as to the
location of the maximum, we would do the {ollowing. The relation in (5.3}
may be written

{1) f;\‘(cls Ca) = n’;a}x [min ({I1{31, € — 2, — 2,) 'i"f‘\‘—],(a'azs: Gy - 297,01
4

where the maximization Is now over the region

2} (a) 2.y %y, =
{b) zZ, + Z, =0y
{c) 2 = Cp.

7. Reduction in Dimension and Magnitude

Let us now show that we can reduce the problem te a sequence of one-
dimensional problems and simultaneously introduce “shrinking’” trans-
formations. By this we mean that we can ensure that the number of
possible states of the system does not inerease over time.

It is first of all clear from the linearity of all the constraints and produc-
tion functions that f\(c,, ¢,} is'a homogeneous function of ¢; and ¢, of the
firet degree. Hence, for ¢, ¢; > 0, we have

& €
n Suley e} = lex(l» _g) = Cafx (—1 , 1) .
151 o
It follows that we need compute only f.{1, x} or f{z, 1}). Tuming to
(5.3), we have

(2) Fail, ;) = m{a;}x (2, + fao1(@o%s 0 =+ G32,)]

= max I:z“ + a.zzsf_\-_l(l, w—m)}

2} 22,

We sec, then, that the calculation of f.({1, ¢,} for ¢; = 0 depends only on

a knowledge of f\_,(1, ¢} for e, == 0. This is the required reduction in

dimensionality. However, we still face the difficulty of an expanding range
for c,, since the ratio (¢, + 32, )/a,2, may be much larger than c,fe,.

In order to avoid this difficulty, let us show that we can compute
I, 2) and fofx, 1) for 0 = @ = 1, knowing fy. (1, &) and fy._,{x, 1} for
0 <z < 1. It is worthwhile to introduce two functions in place of one in
order to preserve a fixed interval of interest.
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Referring to {2}, we have

(3) fN(l’ 02} = max [z“ + azzsf;'—l_(l, c-._...__2 + aszm)i|
@ g2y

for mz, = ¢y + a5z,

= max I:za =+ {ep -+ “aszf_\'ﬂ(_%‘_ : 1)]

{z} £y -I- B2,
for a,z. < ¢y + ag2

R

Combining this equation with the foregoing obscrvation concerning the
maximization over vertices, we have a quite simple computational scheme.

8. Computational Technigque

The simplifications introduced by the transformation technigue of §7
represent the most significant contribution of this particular study. With
respect to the programming, the results are:

{a) areduction in time and space requivements from 72 to 27, and
{(b) a considerable further reduction afforded by the elimination of
expanding grid.

Let us elaborate on these two points. Normally, to express all possible
states of a system defined by two independent parameters (here ¢;, steel
stockpile, and ¢,, mill eapaeity), it is necessary to construct a grid of
Fyleg, e in gy, o) space, and then to interpolate over this two-dimensignal
region to determine fi{c,’, c,’), the steel allocable to auto production
during an X-period proecess in which the initial conditions are ¢," and ¢,’,
where (g, ¢,') is not a lattice point. This function iz necessary for our
recurgive caleulation of fi.,{c,, ;). If the intervals [0, ¢,7 and [0, c,] are
divided into n parts by this grid, we must compute and store n2 values of
Jaleg, o5} for future use. The time requirement beeomes even more serions
because of the extra logic needed when dealing with a two-dimensional
system. This accounts for the savings resulting from the reduction to
cne-dimensional form.

The possibility of an expanding grid is a serious obstacle in some
dynamie programming processes. Nonmathematically, the situation iz this:
To calculate the conditions at time ¢, we must know in advance all poszible
states that might exist at time ¢ — 1. In this particular application, to
determine anto production over N periods, we must know auto production
for N — 1 periods for all allowable steel stockpiles and capacities. But after
one pericd of production, either stockpile, or capacity, or both, max be
increased. So, to calculate fy(cy, ¢}, fr_ {e,, 65"} is needed, where ¢;” may
be greater than ¢, and similarly for ¢,’. Consequently, the region over -
which fyle,, ¢,) can be calculated is smaller than the region over which
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© Faoy(oy &) is known, One must therefore begin an N-stage caleulation by
considering a large region in order to complete the calecnlation with a
modest range of values for ¢; and ¢,. The techaique of §7, bypassing this
obstacle, represents a real and significant advance.

One further innovation in this problem—the optimization over a three-
dimensional region-—bears mention. Technigues for the solution of general
problems of this multidimensional sort have been little investigated. Here,
of course, we are saved by the nature of the functions and the nature of our
requirement that only the vertices of the region need be considered. The
coding technique used in order to determine and evalnate the relevant
vertices is diagrammed in Fig. 78. i

The remamder of the program is concerned with the calculation of a
table of values f\ (¢, c;), the block transfer of this table, and its subsequent
use in the derivation of a table of fi. (¢, ¢;).

Tabie I presents the result of an analysis of a typical situation. The
ealeulation generates the optimal choice of vertex at each stage for each
initial eondition and also lists the total achievable steel allocation to auto
production. T'o display the resulta to better advantage, a hand caleulation
was performed, using the policy dictated by the computer; this shows the
zetnal unnormalized, growth of the system as a function of time. The
sensitivity of the process was demonstrated by evaluating the return from
3 policy that was optimal in ali but the first decision. An initial choice of
vertex 3 resulted in an over-all reduction in productivity of 8 per cent.

9. Steady-state Growth

The question avises as to whether a complex of the type described settles
into a regular pattern of growth in which the stockpile and capacity alike
grow uniformly over time. If so, we wonld expect exponential growth.

Thus, for example, considering the differential equation in (4.1), we
suspect asymptotic behavior of the form

{1) x ~ ety 3~ el

where w and z are independent of tirne. We are led to the relations
{2} Aw = Aw - Bz,
Cz < Dw,
and to the problem of deterinining the largest such A for which these
relations hold. )

Questions of this nature are part of the theory of linear inequalities.
They play an important role in the theory of games and linear program-
ming, the study of the computational aspects of linear inequalities. The
problem posed above was first discussed by von Neumann in connection
with his study of the possibility of exponentially expanding economy.
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TABLE 1

Analysis of a Typical Bottleneck Situation
Fifteen-stage process, with parameters ¢, —~ 0.2, 2, = 2,
ay = 0.4, and initial quantities e — 1, ¢, =1

Information Made Available

Actual Conditions Using Opiimal

by Caleulation Policy
Normalized
Condition Actual Condition Steel Allocaied
Btage [ (), cy) at | Vertex | al Beginning of tg Aufo
Beginning of Stage Production
Stage
1| 1 1, 1) 0
2 (1,0.5) 2 {2, 1) 0
3 (£,0.7) 2 (2, 14) 0
4 (1, 0.5857) 2 (2.8, 1.64) 0
5 {1, 0.642} 2 (3.28, 2.096) 0
6 | (1,0.811) 2 (4,192, 2.57) 0
7 (1, 0.626) 2 (5.14, 3.22 0
E (i, 0.620) 4 (G644, 3.938) 1.288
9 (I, 0.588) 4 {7.976, 4.4536) 1.595
10 (1, 0.5886) 4 {8.0072, 5.2195) 1781
11 | (1,0573) 4 (10.4392, 5.9817) 2.008
12 (1, 0.579) 4 {11.9634, £.9208) 2,393
13 (1, 0.576) 4 (13.8536, 7.9797) 2.7711
14 (1, 0.6577} 4 {15.9504, 9.2086) 3.192
15 (1, 0.577) 4 {18.4172, 10.6226) 3.683
Total allocation to auto production 18.853

Important as the question of optimal steady-state Lehavior is, the
problem of approach to steady-state behavior is more important sinec

most applications deal with processes of finite duration.

In our discussion of Markovian decision processes, we shall onee again
encounter asymptotie behavior and the connection with a linear pro-

gramming formulation. There we shall present some detailed results.

§1. The reader interested in further discussion of.processes of bottleneck typo
is referred to Chapters 6 and 7 of Dynanic Programming, where more complex

Comments and Bibliography

models and several analytic solutions are presentod,
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For applications to forestry, and further numerical rezults, see
T. Arimizu, “\Working group matrix in’ dynamic model of forest manage-
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For applications to chemical enginecring, see
8. M. Roberts, Dynumic Progromming Formulation of the Catalyst Rezdace-
ment Problem, (to appear}.
R. Arie, R. Bellman, and R. Kalaba, “Some optimization problems in
chemical engineering,” Chem. Engr. Progress Symp. Series, vol. 36, 1960,
Pr. 95-102.
K. Aris, The Optimal Design of Chemical Reactors, Acadernic Press, Ine.,
New York, 1941.
§4. A continuous version of the “simplex technigque’ of linear programming
designed to yield solutions of the continuous variational problims described
in this section has been developed by Lehman. See
3. Lehman, On the Contiratous Simplex Lechnigue, The RAND Corporation,
Research Memorandum RAI-1386, 1954,
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1838, pp. 115-135.
K. Marx, Capital, C. Kerr and Co., Chicago, Tilinois, 1333, vol. IT, Chapters
20 and 21.

244



CHAPTER VIII

Feedback Control Processes

. I. Introduction .

In this and the subsequent chapter we wish to discuss a number of
applications of dynaraie programming to fecdback control processes, and
to processes which can be taken te be feedback control processes. Asin the
chapters treating trajectory proecsses and the calculus of variations, we
will devote ourselves in one chapter to the important tasks of recognition
and formulation of problems, and in the following ehapter to computational
aspects. As we have constantly emphasized, these represent separate bnt
intimately related parts of the complete problem. To divoree them whoily
is to serionsly handicap any attempt at sclutions of the actual physical
problems,

We shall begin by diseussing the classical control problem, one which is
quite different from what we nowadays think of as “control.” Following
this, we shall consider a mathematical formulation of a typical feedback
control problem encountered in clectronics. Initially, we shall treat
deterministic processes, associated with the usual realizstie constraicis,
nonapalytic and implicit furctionals. Subsequently. we shall turn te the
more complex stochastic and adaptive control processes, where compuza-
ticnal results oltained by Aoki will be given.

It will be clear from what follows that the analytic and computational
investigation of this vast domain of intrigning and significant problems
has just begun. Consequently, very little has been done in the direction of
rigorous formulation, and mueh remains to be done as far as justification
of the techniques that are used is concerned. As usual, we can citvams ent
some guestions of rigor by considering ontly discrete versions of feedback
control problems. We do wish to point cut in passing that many interesting
analytic problems exist in thiz general area.

Tn addition to questions of feedback control problens of rather straizht-
forward nature, wo shall discuss a maximum deviation problem arising
in the use of nuclear reactors, an implicit variational problem of deter-
ministi¢ type, the “bang-bang™ control problem, and implieit cariaticnal
problems of stochastic type that will be encountered in a “soft landing”
on the moon, or another planet, some questions of maximmum altitude and
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maximum range of interest in ballistics, and, finally, some eommunication
processes linked to “information theory.”

A number of references to additional applications will be found in the
discussion at the end of the chapter.

2. The Classical Control Problem

The idea of feedback control is most commonly associated with the
governar used by Watt for the steam engiiie. Yet, actually, it is older than
that, since a governor invented by Huygens for the regulation of clocks was
used for windmills and water wheels before the advent of the steam engine,
Furthermore, feedback methods appear 1o have beea used in China for
several thousand years before the industrial revolution.

KNonetheless, the mathematical analysis of control problems centered
about the closely related concept of stability until goite recently. Consider
a system ruled by an »th order lincar differential equation
d d"
i e
with constant coefficients. This equation can be considered to arise as the
perturbotion equation of a more complex nonlinear eguation in the course
of the investigation of the stability of an eguilibrium state.

The system will be considered 'stable™ provided that all solutions of (1)
approach zero as { — co. As is well known, this is equivalent to the con.
dition that all the roots of the polvnomial equation

2 g alg_n—]_ 4+ -4 a,=0

(1) ot au=0

possess negative real parts. Necessary and sufficient conditions for this
condition were obtained by Routh and Hurwitz, and a great deal has been
done on this problem since. :

The problem of control was thus taken to be a problem of design. It was
necessary to construct the physical system in such a way as te ensure that
the foregoing stability condition was satisfied.

This type of analysis is weak in a number of significant ways. In the
first place, it ie predicated upon finearity of the fundamental equations, or
equivalently, the assumption of smell devigtions from equilibrium,
Seecondly, it is not suited to discuss stochastie processes and particularly
those of adaptive type. Consequently, we shall not devote any further
attention to problems of this nature. The reader interested in these studies
will find a number of references at the end of the chapter.

3. Deterministic Feedback Gontrol

Our mathematical models will be built upon. the following scheme.
Consider the diagram of Fig. 79,
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This diagram is to be interpreted in the following way. At time ¢,
the system 8 emits an output signal 2(¢). This signal is compared with 2
desired output signal w(t), in the comparizon unit. 1 theve is any significant
deviation, a corrective signal y == y(x, i, £) 1s supplied to S for the purposea
of forcing z(?) Lo correspond more closely to w(t).

System § += OQutput x(¢)—7= x{I)

y[’;’=f{’r|w,(l ¥

Comparison
of - T
{2} with w(t)

Figure 79

One analytie formulation of a simple feedback control system of this
type is the following. In place of the original equation governing the
system,

1) — = g{x, 1), x() = e,

dat

we have the new equation
(2) g-:i =hkix. t;p), z(0)=c¢,

where ¥ is to be chosen, subject to certain constraints, so ag to mininmize
some criterion functicn which evaluates both the cost of deviation of
z{t) from & desired state vector w{{) and the cost of applying the control
vector y{l).

Pursuant to our usual approach to variational problems, we shall
consider these problems (which can be posed as questions within the
domain of the caleulus of variations) to be multistage decision processes of
continuous type. However, as mentioned above, for computational
purposes, and to avoid rigorous matters, we shall consider ouly diserete
versions.
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4., Time Lags

In many cases, the use of the auxiliary comparison stage, and the
application of the controlling force introduce a delay, or time lag. What
this means is that #(t) is actually dependent not upon x(t) and wi{r}, but
rather upon x(f — A) and w(t — A), and, more often, upon more complex
forms of the past history of the process. These realistic considerations
introduce some quite interesting mathematical complications, which,
however, we shall not take up here. References to many papers an the
subject will be found at the end of the chapter.

3. Formulation of Variational Problems

Let us suppose that w(f) is the desired state vector and that
Fla(@ — w(it)A | ofA) measures the deviation between v and u over the
time interval [, & + A].

The functional

T
(1) J(#) :J Bl — w)dt
a

is then taken to be the total measure of deviation., As in most of our
studies, we are assurning an additive utility. T

There are now two ways of imposing realistie constraints. We can first of
all suppose that we have a limited quantity of resources for control, which
leads to a constraint of the form

T
2) J; glz, y}dt < by

Secondly, we can impose a set of constraints on the rate at which control
is applied,
(3 rlr, y) = 0, r=12,...,k
Let us then consider the variational problem of minimizing J{y) subject to
the differential equation of {3.2).

The problem has now been formulated in the conventional terms of the
calculus of variations.

6. Analytic Aspects

Problems of the foregoing type are of great difficulty, as we have pointed
out in Chapter V. Nevertheless, perseverance, ingetuity, and a certain
amount of good fortune, enable us to resolve some of these. Unfortunately,
the vast majority of the questions which arise even in simplified versions
of feedback contirol processes easily escape the small set of soluble problers.

With these comments in mind, we shall henceforth devote owr energies
to the determination of algorithms which yield numerical solutions. As we
shall see, a great deal of analysis will be required in order to attain thiis end.,
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7. Discrete Version

As long as we are going to present a gencral method, we will do well to
consider a general form of the problem. Let us suppose that we wish to
minimize the functional

T
(1) J{y) =f giz, y) dt,
0

where x and ¥ are connected by the cquation

(2] dT == h(xr y]! x(OJ =,

and the constraints .

T
(3) (a) J- q.lx, ) di < b, r=1,2....1
0
) @y <0, i=12....5 0<t<T

In place of this continuous variational prablem, we consider the follow-
ing discrete problem. Minimize

x
(4) Jy) = kgog(r‘k:.y}.:)r -

aver all ¥, satisfying the relations

(5) Ty = F + }"(xk’ yk): Ty = £
and the constraints
N
© (@ Sofnow st i=L%o.n
=
b) rlr,wm)=03i=12...,s 0<k<N.

We can either regard the veetor ¢ aud the &, as state variables, or we can
use Lagrange parameters and minimize

hY r N )
(7) Jl{y) = z g(xfu y-‘r_) - z ’;'x' z QI'l:xk! yk))
k=0 i=1 k=0

of, as we have previously done, consider various combinations of situations.
All of this iz a review of what we have presented in Chapter V.

8. Functional Equations

Considering, for example, the problem in {7.7), we obtain a recurrence
relation of the form

: r .
(1) fyle)= min [9(6, ¥) — 2 Agile. ¥) -+ fy-ale + hle, y)):l-
rule, 50 i=1

As before, the computational feasibility of a solution along these lines
depends upon the dimension of ¢. We shall diseuss various ways in which
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the method of successive approximations can be ulilized in subsequent
scetions.

9. The “Bang-bang” Control Problem

An interesting problem with an fmplicit eriterion function is the follow-
ing. We wish to minimive the time required to convert a system from one
state into another. This is a problem which oceurs in a number of different
fields under varied guiscs.

A particularly simple case is the following. Given the Hnear system

dr

) S drty a0 =

where the components of y are subject to the constraints

2) 1-_y‘.[ = g, =12 . N

1

we wish to determine ¥ so as to minimize the time required for z to go from
the initial position ¢ to a prescribed state, say @ — 0.

If the y, are allowed to assnme only the values 4-m,, the problem is called
one of “bang-bang’ control. A great deal of theoretical work hag been done
on this problem, using various methods, However, the problem of obtaining
simple computational algorithms remains.

If we replace (1) by a nonlinear cquation

dx
{3) —=glzy )=

PSR {0)
then the situation is quite different. Denote the minimumm time required to
go from ¢ to 0 by fic}. Then we have

(4) f(e) = min [A + fic — Agle, ))] + o(4),
¥
which in the limit vields the nonlinear partial differential equation

{5} min (glc, y), grad f) = —1,
¥

where y is subject to (2), or to the “bang-bang” condition. We are using a
small amount of vector notation: grad f is the vector whaose tth component
is 9ffde; and {x,¥) = Di .y, where z, and y, i =1,2,..., N, are
respectively the components of x and y.

A great deal of information can be obtained from this relation, hut the
general solution is one of some subtlety. _

Since the same function appears on both sides of the equation in (4}, &
computational solution can 'be made to depend upon either successive
approximations, or an approximation in policy space. Another approach is
by way of dual problem:. In place of the original problem, eonsider the
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question of determining ¥ so as to minimize the distance from the origin

at the end of time 1",
Calling this minimum distance f{, T'), we have the furctional equation

(6) fie,T) =min[fle+ gle. A, T — A)] + ofd),  fie, 0) — e,

where
N 142
(7) le] = (Z,IC;?) -
The first valuc of 7" for which fte, T) == 0is the function f{c} defined above.

10. Nuclear Reactor Shutdown

‘When a high flux thermal nuclear reactor is shut down, the presence of a
fission product, iodine, which decomposes into xenon-135, can cause the
econcentration of xenon to rise for many hours. This is quite unzatisfactory
sinece it may postpone for several hours the time at which the reactor may
be restarted, with a resultant loss of efficiency. One way of overcoming this
defect is by using many times more fuel than that required by the criticalitx
relations. Another procedure is to carefully control the shutdown procedure
so as to minimize reactor poisoning. It is this control problem which we
wish to discuss,

Using a simplified model of the actual process, we assume that the
state of the reactor at any time can be specified by means of

{I} (a) the neutron flux, &,
{b) the iodine eoncentration, f,
{¢) the xenon cencentration, x.

Let us suppose that we can regulate the neutron flux ¢. The equations
determining I and z are

dr

(2) 5 =ty P — ayul, I0) = ¢,
dx '
a =ty + a1l — {ag + ayddz, z{0) = ¢,

It is required that the neutron flux be reduced to zero by time &, with the
process beginning at time zero. At time b, the state of the reactor will be
given by

(3) (a) $(d) =0,
(k) I(b) = ¢,
{c} z(b) = ¢,

The guantities 33 and ¢, are functionals of ¢. Following the time 5, the
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xenon concentralion may rise for several hours due to the xenon concentra-
tion imbalanece cansed by shutdown, The eguations governing this phase of
the process are then

al : .

(4—) &-t_ — _‘a'IBIJ I(D} — £,
dz
EE = ] -y, . ald) =,

The function «(¢) for ¢ = b will have a graph of the form shown in Fig. 80.
Tn this casze, there is little diffienlty in determining the value of ¢ which
yields the maximum value of & for £ = &. Let us, however, bypass this

:c'{t}Jsl

—

Y

t :D tl‘\'\al : r

Figurg 80

problem for the moment and denote this maximum value by plcy, ¢,). We
shall discuss below the problemn of determining pley, €,) in more general
cases where the equations in {4) are nonlinear,

Then we wish to determine ¢(f) over 0 = ¢ =< b, subject to various
constraints such as :

()
50 as to minimize pley, 6;). This is a complex variational problem of implicit
type, with the usnal difficolties,
Writing
(8) Jier, 65, b) = min pley, ¢y),
we have the recurrence relation
{7) Slen e b) = ?;:il)l [Fley + Alay; ${0) — ayeey),
4.
o+ Aloy 4 agse; — (@5 + ayd)en), b — A)]+ o(B).

This yields a feasible compulational scheme, provided that we possess a
digital computer capable of handling functions of two variables,

< &,

dg/d: |
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11, Maximum Peviation
Let us pow discuss in more detail the problem of determining the
function ple, c,). Consider the recurrence relation

(IJ Fpey = 91(-37,,, yn)’ Ty = €,
¥ = 92(1"11! yn)r Yy = €n,

and suppose that we wish io determine the quantity max |z, This
Bzl

quantity is clearly a function of the initial values ¢, ¢,. Write

(2) f(cl‘ CE) = max ['TNI' ’

nZ '
In ovder to obtain a reeurrence relation for this function, let us analyze
what we have been doing so far. In studying the linear operator, we sot, for
N =1, and all =,
() Ll 2, . 2y =2 + 2 + -+ 4 4,
and use the functional equation
{4} iy, 2, o oo xn) = L{L{a), og, . ..,z g) i)
We now observe that the maximum operator
(5) My, T, - . ., 3Ty) = max [z, T, .. ., Ty]
satisfies the relation
(6) Mz, 2y, ..., 2y = M{(M{x), 20, ..., Zay), Ty).

This observation permits us to treat a number of problems involving the
maximu {functional by means of essentially the same techniques that
we have employed in studying processes characterized by linear utility
functions. :

For example, the function defined in (2) satisfies the eguation

() Jieqs c3) = max [¢,, figy(ey, €2}, galey, ca])]-

In order to compute fle,, c,) we may have to use g method of successive
approximations, based upon an introduction of time, as in §13, or upon
somge other technique.

12. Maximum Range

There are a number of interesting descriptive processes in which the
functional equation technique can be used to {urnish a novel analytic
approach and an economical computational method. Among these are a
number of trajectory processes in which attention is focussed upon the
determination of maximum range, minimum miss distance, and so on.
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The standard approach to these problems involves the caleulation of the
entive trajeciory, and then the determination of the specific information
that is desired. As a simple example of & superior technique based upon the
functional equation technigue, an approach which yields precisely the
desired information and no other, let us consider the following problen.

An object is shot straight up from a flat earth, subject to the retarding
forces of gravity and friction. We wish to determine the maximum height
that it aitains.

A )
¥

0 x r

Figure 51
The equation of motion is
d2x (dx]

1 2r 5 — %), 20y =0, 20— r,

) a’ g dat

where h{») is the frictional force duc to velocity v. Let

(2} f(z) = the maximum altitude, starting with initial npward velocity s.
Regarding A as an infinitesimal, we have the equation

3) ) = v + fiv — (g + A(2)A)) + o(d).

Expanding and letting A 0, we obtain the differential cquation

@

4 W)= ——, 0) =0,
@ - SO = SO
which yiclds

. W o— T rdy )

) e J; g + k{vy)

{See Fig. 81.)
Similarly, given the two-dimensional path determined by the equations

d%z dr dy ,

6) Pt (-‘5, % EE)’ ) =c, () =g
d2y ( dx dy) .
— - ¥ —,—1. 0} = e, ¥'(0) = ¢4,
o\ ¥0)=1¢y { 1
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we can determine the waximum range and altitude in the same fashion. A
discussion of this may be found in the references cited at the end of the
chapter.

13. Minimum of Maximum Deviation

Consider, finally, a control problem involving the minimization of
maximum deviation. Suppose the equation has the form

d? du
(I} dt_;& =9 (-—?-{ 2 ?J) » o w{0)=2¢y, #'(0) = ¢,

At

and we wish to choose #, subject to the constraint [¢ff)] <m, 0 <f < T,
so as to minimize the funetional

2) J{r) = max |ul.
pSesT

Write

(3} min J{z} = f{c;, ¢, T).

Then we obtain the approximate funetional equation

(4) Jleg 60, Ty — max [, min [fe; — 64,

[e(0)] <
ce + glcp, € ONA, T — AY]] + ofA).

This relation permits us to cbtain a computational solution of a variational
problem.

4. Reduction in Dimensionality

We have previously pointed cut that the sole hindrance to a straight-
forward computational solution of wide classes of variational processes by
dynamic programming techniques lies in the dimension of the state vector.

For example, if x and y are ¥-dimensional, a terminal control process
involving the minimization of a functional such as

T
{H) Jiy} = g(=(Th + lJ- kly) dt
over all ¥ where °
@) f,—f — Roy)  #0)=¢,

involves the tabulation of functions, f{e, T), of ¥ variables. If{ N = 1, this
is a trivial problem; if &% = 2, this is feasible, but not trivial, and if ¥ = 3,
ingenuity and analytic effort are required, unless we use fairly coarse grids
or restriet ourselves to quite small regions of phase space,
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Iet us now proceed to document the important observation that if {(2) s
a linear cquation

x

3) P At)z + v, z(0) — ¢,

and g(x(T)) is actually 2 function of only k of the components of 2{7T), say
{7, 2(7T), . .., 2,(T), then this variational problem can be treated by

means of funetional equation techniques with recourse to funetions of only
k variables.

The bazic idea is that the linearity of {3) enables us to separate the effect
of the initial state from the effect of the forcing vector. As is well known, we
have from (3) the equation

) o = Xt + [ XOX eyt s,
L]
where X(¢) is the matrix solution of
dX
5 — — A{HX, =(0) = 1.
(5) 7 0x. (0)
Then T
(6) #(T) — b -+ f Kisyls) ds,
] -

where b and K depend vpon 7. From this, we see that the problem is now
that of minimizing the functional

I
(1) gla(T), ..., 5T} + EJ; kiy)

T[N [ ¥ T
= g(bl +f [z kljyj(s):|d-s, e by +f [z b }(s)]ds) - }.f Ky} di
o i=1 a =1 o

over all y Let us then consider the new problem of minimizing the
funectional

T[N ! T[N 2
(8) g(bl +f [Z k“yj{s}_] ds, ... b+ [ [2 b,cjyj(s)jl ds) - /'.f Rly) dt.
g Li=l a

Jo Lish
Call the minimum value f{&,, b,, ..., by, a). Then, using the principle of
optimality, '
hY
®) fiby by b0y = min [?}L(y(a}}i& +f(b1 + A[ > kl,-y,-m)], . )}
ve i=1
+ oA},

a functional equation involving functions of only % variables.

15. Discussion

In addition to the direct application of these technigues, other important
uses are possible. In the first place, if the eriterion function glx(T)} is
quadratic, we know that the variational problewn gives rise to a linear Euler
equation which can then be treated by means of an explicit solution.
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Iowever, the cxplicit analytic solution of a linear system of large dimension
is no simple matter. Consequently, even in this case, it will be far more
profitable to employ the functional equation approach. It turns out that
the limiting form of {14.9) can be resolved explicitly, since the function
1B Bay ... b a) will be a guadratic form in the b, with coefficients
dependent upon a. These coefficients will satisfy a system of quadratically
nonlinear differential equations, of dimension k(& +— 1}/2 with initial values,
as comparcd to the linear systemn of dimension 25 obtained from the
variational equations with two-point conditions.

Secondly, the results of the previous section can be used as the starting
point for the method of successive approximations in two ways. In the
first place, we can approximate to a general eriterion function by one
dependent upon only & of the ¥ components, and, in the second place, we
can approximate to an original nonlinear equation by a linear eguation.
We shall not discuss these approaches to any further extent hers sinee we
have not experimented with these techniques.

16. Stochastic Control Processes

Let us now suppose that the physical system which we are trying to
regulate is subject to internal and external forces whese origins and effects
are not thoroughly understood. This is, of course, always the actnal situa-
tion. In many situations, however, the uncertainties produce such small
effects that they may be ignored. Let s assume that we are in a sitnation
where this is not the case.

One way to circumvent the apparent roadblock which this ignorance
interposes is to introduce the fiction of “'random’” or stockastic influences.
This very ingenious artifice of the mathematical theory of probability
enables us to obiain a number of significant results. It turns out that even
in the discussion of many processcs where the cause and effect relations
are known a great mathematical simplification resuits from this assumption
of stochastic behavior. An outstanding example of this is the Gibbsian
theory of statistical mechanies.

In what follows, we shall as before assume that the rcader is acquainted
with the fundamentals of probability theory and the elementary aspects of
the concept of a random variable. In order to avoid complications which
are extraneous to the issuc we wish te analyze, we shall consider only
processes which are discrete in time. Tn subsequent numerical work in
Chapter IX, we shall consider only the simplest discrete distributions.
Throughout only the most rudimentary aspects of probability theory will
be required,

Consider the recurrence relation

(l} Lol = g(x‘?!’ Yrs ?-‘R)

where x,, is a state vector, y,, is the control vector, and r is a random vector
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representing the random influence applied to the system at the nth stage.
To begin with, we shall take the v to be independent, Subsequently, we
shall show how correlation ean be introdueed.

Again, as before, we suppose that the elfect of a choice of the vector ¥
when the systermn is in the state z Tesults in a “‘refurn” or “deviation,”
depending upon how we regard the process, of

2) klz, v, 1)

where r is the same random vector gceurring in (L)
Taking for the sake of simplicity the case of additive utilities, we have as
the total measure of the N.stage proeess the expression

(3) Byo= Alxy, gy, 1) 1 B2, e 70) + - 4 Ry, Yas 1)

Since this quantity is itself a stochastic quantity, we cannot immediately
examine the guestion of maximizing or minimizing. Indeed, in the study
of stochastic processes there is no unique way of introducing a preecise
optimization problem. One way of doing this is to nse the expected value
of Ry, taken over the random variables r_, as the eriterion function. We
shall do this, while softe roce warning the reader of the arbitrariness
invelved, Another important criterion function is the prebability that R
will exceed a specified value. One of the advantages of the functional
equation technigue is that it enables us to use realistic criteria without
worrying about analytic expediency.

What males the use of expected valves reasonable is the existence in the
methematical theory of probability of a large body of theorems which
assert that in many cases the behavior of the system over a long period
of time approximates more and more closely its average behavior. On the
other hand, one also knows that in the study of nonlinear systerms, this may
not be the case. Consequently, linear nfility functions, i.e., expected values,
must be used with considerable ecare and caution. The esseniial point is to
keep in mind that we ave following only one of many paths. Too often in
applications of mathematics to the physical wozld, particular methods are
taken as gospel, and it is often forgotien that other methods exist.

37. What Constitutes an Optimal Policy?

It is rather remarkable that the foregoing discussion does not vet permit
us to study optimal control policy. It is still not clear what we mean by an
optimal policy.

In order to elucidate this point, let us review some previous remarks. In
our study of the caleulus of variations and dynamic programming, in the
chapter devoted to trajectory problems, and, more generally in all of our
previous work on deferministic contro] processes, we pointed out that we
could determine the y, all at onee, or one at a time, as functions of the state
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vectors, The identity of these two approaches i a consequence of the
fundamental duality between poinls and lines in Euclidean space. Puot
another way, a curve can be regarded simultaneously as a locus of poiuts
and as an envelope of tangents.

When we enter a discussion of stochastic phenomena, the situation
changes radically. In general, the two approaches arc greatly different,
due to the uncertainty of the future.

Borrowing the classical approach, we might pose the following problem.

Determine a priori a set of vectors ¥y, ¥, - - - , ¥y Which minimize the

Yy Yoo oo Yy) = exp By

function

In this formulation, we reject the possibility of using the actual state of
the system at any particular time to guide our decisions. It is easy to see
that situations can arise in which this formulation may be the ounly one
available, since the required information may be unattainable.

In place of problems of this nature, we wish to posc one which takes
account of feedback, which is to say the use of the actual knowledge of some .
or all of the components of the state vector at each stage of the provess,
We consider then that the decisions will be made in the following fashion. -
Starting in state #;, the decision ¥, is made. The combination of 2, y,, and
71, the random vector, produces by way of (16.1) the new state «,, Starting
with the knowledge of x,, this process is repeated. We now wish to deter-
mine the sequence of veetors y, which minimizes the expected value of 2.

It is rather surprising that the first problem, which involves only a
minimization over a finite dirnensional space, is genuinely ditfieult, while the
seconid problem, which requires a minimization over function space, the
space of the policies y;(2,), y,(x.), and so on, can be treated by means of the
functional equation techniques of dynamie programming.

This is & good example of the fact that mare sophisticated and move
realistic versions of actual physical processes may be far easier to treat
mathematically than the version which has been apparently softened up
for mathematical treatment. This is only one of the reasons why it is
important to explore meny different mathematical formulations of a
process before plunging into a sea of equations and a deluge of caleulations.,

18. Functional Eguations
Introducing the function
o)) Jlel = min exp By
. v Ty

where exp denotes the expected value over the r,, for a process of feedback
type as described above, we can now write some equations of familiar
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form. We have
(2} fi{e) = min exp ke, gy, 1y),

¥1 ¥i

Jule) = min exp [Ae, ¥y, 73} + Fa-ilgle, vy, 7))

i
Let us suppose that the », have a common distribution function d&(r).
Then the relations take the form

{3 fife) = min fk{c, ¥y, 1) dG(r),

vi

Fyle) = min f[k(c, Yo 1)+ v oalgle, 31, D] dGG)
1 -
Tt follows that apart from the introduction of some average values, the

formalism is precisely that given in the deterministic case.

19. Computational Aspects
In order to reduce (18.3) to arithmetical form, we take the distribution
for r to be discrete. Then in place of dG{r), we have a set of probahilities

Epys Pas + « -y Pyl with p; the probability that r assumes the value r,.
In this case {3) has the form
M
M file) = min ]izlpjktﬂs Y1 '-"_f],
LB} I=

M
f;\r’(c} = min [glp;'{ﬁ'(c= H1: 'rj) + f_\'—l(g(c’: Y1, T:”}:l .

1
It follows that the computational solution for stochastic control processes
is almost precisely the same as for diserete processes, although some addi-
tional time will be required to perform the averaging operations involved
in (1).

20. Correlation

Let us now supposc that the random vectors are not independeunt.
Perhaps the simplest step in the direction of interaction is to supposze that
the distribution for #, depends upon the value of r,_,, but upon ne other of
the r,. At the nth stage, we must theun add to the state vector the value of
ry_1- The veetors x, and r,_, then constitute the “state” of the system at
time n. As we shall sce when we come to the study of adaptive control
processes, the coneept of “state of a system”” can be considerably extended
beyond this.

Yet dGi{r,, r,._,} represent the distribution function for r,, given the
value of ,_,. Then we may write
() fxle, ro) = min exp Ry,

¥ ¥
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and in place of {18.3) we obtain the relations

(2) file, 1) = mip J}"(Cx #1> 1) E0r, 1),

¥

Fale, 7g) = min j[h(c, ¥y 1) T+ Sralgle, vy, 1) dG{ry, vg).

£}
The computational solution will be complicated by the introduction of
correlation effects if r assumes a large nuniber of values. If, however, risa
scalar taking on two or three different values, say +4-1,0r 1,0, and —1, then
correlation introduces little additional diffculty.

21. An Example Due to Aoki

Let us illustrate this discussion by means of a stochastic control provess
extensively treated by Aoki. We shall also consider the adaptive version of
the process. Detailed nuwmerical results will be found in papers by Aoki
cited in the bibliography at the end of this chapter, and some particular
cases are discussed in Chapter TX.

Suppose 7 is a scalar random variable, capable of assuming only the =
values —:I1. Let ¢ denote the value obtained from a choice of g when
r = 41 and c_ denote the value obtained when r 1s —1.

Consider a terminal control process in which we desire to minimize the
expected value of a function ¢ of the terminal state z,. As far as the
statistics of » are conecerned, let

{1) p = the probability that » == -1,

sa that (1 — p) is the probability that r = -1.
Then, if we write

(2) fx(c) = mim exp dizy),

we have the relations

3) file) = min [pdle,) + (1 — p)de.)),

Y1

Sfaley = min[pfy 4l + (1 — )y _1le )]

Subsequently, we shall contrast these results with those derived for a
corresponding adaptive control process.

22. Games Against Nature

We have attempted to overcome ignorance of precise cause and effect
by introducing randem variables with known distributions. It is easy to
concelve of situations where so little is known that we cannet even assume
that the distributions are known. One way of handling this, and a v
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pessimistic way indecd, is to suppose that the unknown effects will always
oceur in the worst possible way. In other words, we can assume that some
opponent, which we rather unfairly call Natuve, is choosing the probability-
distributions at each stage in such a way as to maximize our minirmum
deviation, or to minimize onr maximum return.

Thus we conceive of a control process of this kind as a gome egainst
nature. The type of feedback control process we have treated in the pre-
vigus pages becomes a multistage game which can be readily treated by the
functional equation techniques we have repeatedly used. The reader
interested in these matters will find detailed disenssion in the references
cited at the end of the chapter. We shall pursue a different approach here.

23. Adaptive Processes

So far we have not utilized the multistage character of feedback control
to eur advantage in our struggle to overcome the handicap of ignorance.
Let us see if we can incorporate into cur mathematical model the fact that
we learn about the structure of the process as time goes on.

A process in which this oceurs is calied a learning or edaptive process. In
order to formulate processes of this type in precise analytic terms, we
extend the concept of state vector, which has been of such value to us, by
the introduction of an information patiern.

This information pattern containg not only our exact knowledge, but
also all the impreeise information we have gathered. Rather than consider
general siluations which lead to complexities of various types, leb us treat
the adaptive version of the terminal control process in §21.

We shall suppose that the probability » is not known initially. Instead,
we shall suppose that we possess an a priori probability distribution for p,
say dH(p). Furthermore (and this is where the adaptive feature enters), we
shall assume that we know how to revise this a priori estimate on the basis
of the random effects that are observed.

It has been supposed that r, the random variable, assumes only two
values, +1 or —1, If a +1 occurs, we agrec to rep]ace dH(p) by the new
distribution funetion

dH
M) a  (p) = L
f pdH(p)
0
while if & —1 oceurs, we replace d#(p) by
— p)dH
@) _ (I —p)dli{p)

f p}ai{p) .

This transformation can be justified on varvious grounds, but it must be
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elearly understood that it is not the only transformation possible, or
necessatily the best. It is, however, certainly a very plausible one, and
quite simple.

The information pattern at each stage of the control process consists of
the state vector ¢ and the a priori distribution funetion dH{p). Given this
information pattern, the foregoing rule for adaptation, and the designated
criterion funetion, we wish to determine an optimal adaptive control
process.

24. Adaptive Feedback Control

Let us now consider the adaptive version of the process diseussed in §21.
We denote by fyle, dH(p)) the expected value of the funtion, ¢z}, of the
terminal state obtained using an optimal policy. The expeeted value is
taken over the set of a prior] distribution functions obtaied as the process
unfolds.

In place of the probability p, we have the expected probability

1 ..
(1) 2 '—'J;P dH{p). i
We then have

(2) Sile, dH(p)) = min [Bdic,) + (b — Pydle. )]

and, for ¥ =2,
I
(3) fxlo, dH(p)) = min [ﬁf_\-_l(h@ dH(p) / J;pcih’ (p))

+ =Py (G-, {1 -P)JH(P)/.{O (L —p) CUI'(I?))]

‘We see then that the same formalism used for deterministic and stochasztic
control processes can be used to treat adaptive eontrol processes,

25. Computational Aspects

We have worried at considerable length in the foregoing pages about the
problem of using functions of many variables for computational purposes.
How then can we use fanctions of functior:s, of the type appearing in {24.3)2
The answer is, of course, that we cannot directly use them. We must, in
gome fashion, reduece them to functions of 2 finite number of variables, and,
indeed, to a small finite number of variables.

In some eases this can be done easily, in other eases only by use of quite
advanced technigues, and, in still other cases no methods exist at the
present time. In the present case, we can perform this essential reduction,
due fo the special structure of the process.
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After m + » stages in which m 4- I's and # — 1's have been cheerved,
the initial a priori distribution d#(p} has heen transformed into

M — pYtdilp)
. }
fnp”‘(l — Pt dH (p)

Hence, the numbers m and » ean be used in place of 2 distribution function.
The information pattern can be replaced by the current state vector and
the number of plus and minus ones which have been observed.

The recurrence relation in (24.3) can now be written

(1}

(2) Joloym m) = win [P, fuoifos, m 4 1, %)
¥
+ {I - pmn)f_\'-l{c-= W, _al 1)]v
where
1
[pml{l — p)" dH(p)
(3) P = o - B

- .
J p™(1 — p)" dH{p) B
a .

Although we now have a function of three variables, we face an
“expanding grid,” since (m, n) goes into {(m + 1, &) or (m,n - 1) A
discussion of various techniques that ean be used to handle this situation
will be found in the work of Acki referved to in the bibliography at the end
of the chapter,

26. Communication Theory and Information

A basic problem of our eiviization is that of conveyving information
from one person to another, or from one device to another. Perhaps the
most baffling and formidable part of the problem is that of specifyving what
we mean by informafion, and how we shall agree to measure it. ,

Fortunately, in some cases, there is a very siinple way of resolving this
difficulty. In place of attempting to treat information as “a smile of a
Cheshire cat,”’ we consider an actual physieal process in which the informa-
tion is being used to make decisions. The value of the information ean
then be gauged in terms of the cffects of the decisions.

Thus the utility of information depends upon the use to which it is put—
2 most reasonable concept. :

Let us view a communication process as composed of three separate
clements, a souree of signals, 2 communicationchannel which transformsthe
signals emitted by the source into other signals, and a receiver which inter-
prets the signals for an observer. The nbserver makes decisions on the basis
of the signals he receives. These decisions affeet the state of another
system S,
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}.§0URCE —»[COMMUNICATION CHANX‘EI{—» \DBSERVER]

5

In order to reduce the foregoing to a precise mathematical problem, let
us proceed as follows, At any particular time, the source emits one of a set
of K different signals, which we denote by the symhols i =1,2, ..., K.
The eommunication channel, due to various internal imperfections and
external influences, converts an ¢-signal jnto a j-signal, j=1,2,..., ],
with probability p,;. Initially we shall take this to be known,

The cbserver, upon receiving this signal is required to make a decision
which affects the subsystern 8. This decision is based upon his knowledge of
the probability », with which the ith signal is transmitted, the aforemen.
tioned set of channel probabilities, p,,, and the state vector of the system .

The effect of a deeision is to transforin z into a stochastic vector 2, whose
distribution is determined by the cmitted signal, the received signal, the
present state of the system, and the decision.

27, Utility a Function of Use

In order to compare different designs, we must be able to evaluate the
performance of a communication system. This evaluation is most naturaily
carried out in terms of its use. Although in some speeial cases it is possible
to assign figures of merit to transmitters, reccivers, or communication
channels, without reference to the other components of the svstem, in
general, in realistic and significant processes it is necessary to consider the
entire system as one unit.

As we shall sce, not only is this description of the problem useful in
elarifying our ideas, buf it also points ws in the direction of the mathe-
matical techuiques we shall employ.

28. Dyn-amic Programming Formulation

Let us suppose that we are dealing with a multistage process at each stage
of which a signal is emitted by the source, transformed by the channel,
received by the observer, and made the basis for a decision. This process
eontinues for V stages at the end of which the process is evaluated in terms
of a prescribed function ¢{z,) of the final state z, of the system S.

We introduce the sequence of functions defined by

(1) falx} = the expected value of ¢z} obtained from an N-stage process
starting with .S in the state x and using an optimal policy,
for ¥ =1,2,...,and all allowable x.

Let dG(4, j, x, q; 2) denote the distribution function for z, where 4, j, and
x are as above, and ¢ denotes the choice of & decision.
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Then, in these terms, we have
K

2} Jylx) = max [2 il 2 Z P f_ B(2) dG(3, J. =, ¢; Z)}]

and

(3) fN z) = h [g {g o f f\'~1(*~) dGi, j, =, 4; ~)}1
for N —2,3,. )

29, An Adaptive Process

Let us now consider the following proeess—a relatively simple version
of & situation in which we do not have complete information concerning
the properties of the communication channel.

Assume that a source is cmitting two types of signals, O's and 1’s.
Passing through a communication channel, there is a probability p of
correct transmission, i.e., that a 0 is transformed intoa O, or o 1 into a 1.
The observer, upon receiving the signal, a 0 or I, wagers a certain sum of
money, anything from 0 to the total amount in his possession, that the
signal he has received s the same as the signal sent. Let us suppose that
there are even odds, a matter of no moment for this discussion. Assuming
that this process is repeated N times, we wish to deterniine the policy
which maximizes the expected value of a prescribed function, &, of the
final quantity of money.

There are many ways of formulating questions of this nature. We zhall
begin in the following fashion. Based on whatever information is available,
we assume an a priori distribution for p, d6{p), which 1z not a step-function
with a single jump at pg.

We ghall further suppose that a successful wager revizes our estimate for

1

g from d0{p) to p dti{p}/ [ ¢ d6, and an unsuccessful one from 4% p) to
(1—p de'J. {1 — p}dit
Under these assumptions we wish to determine the poliev which maxi-

mizes the expected value of a prescribed function ol the final quantity of
maoney.

30. Dynamic Programming Formulation

Let = be the initial quantity of money available, and introduce the
funiction
{1} fylz; m, #) = the cxpected value of @zy) where 2z, is the quantity of
money after N stages, starting with a guantity r and
using an optimal palicy, given the information that
there have been m successful wagers and n unsuccessful
wagera.
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Let us introduce the notation

H
f Pl — p)ndR
1]

(2) * gmn’ == ] - Trn-

gl"l‘ﬂ = 1
J. pm(l _ PJ n dG
0

. We then obtain the following recurrence relations:

(B) Syl mon) = max [guufyale + ¥im o+ L)
0=yss
+ ganvatf;\'—l(x — ¥y + 1]]’
Ne=23...,with .
(4} file; m, 1) = max (g4 + ) + gua'Plz — Y-
[LE T 4

Here y is the quantity wagered.

31, Power Law

The preblem can be solved explicitly if ¢(z) == 22, a, b = Oor, alimiting
case, ¢(z) = log 2, Let us consider the power funetion case first. We have,
fore=-:1,

{l) fl(‘t! m, ?L) = Iax [Qm n(r' + ?f}b + gmn!(‘r - y}b]
0vEsr
= 2” max [g,,(1 + %) + ¢l — 1))
Gyl

It is now easy to prove inductively that
(2) o Jalmm, w) = cx(m, e,
where the sequence {¢y(m, n}} iz determined by

(3} ex{m, R} == max {g, cv_{m + 1, 2)(1 + y®

bEysl
+ mnCx—am 7w + 11— )%},
32. Logarithm Law
Similarly in the logarithmic case, we can show that
(1) Julesm, n)y =log = | cyfm, n}
where
(2) C'N(m’ ?1) == QHIRG;\"—I(”!‘ _L 1! ?‘!.) + an’c,\'—l{?n! ki "IL 1)

-+ max [g,,,log (1 + ) + g,,," log (1 — y}.

b=l
Although it is not easy to evaluate {c..(m, n)} explicitly, it is easy to
determine the optimal policy. We see that
: 1
{3) ¥= {Qan - Iz, if Qoan = é_ '

= { otherwisc.
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Figure 82, The initial density for p.
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33. A Further Simplification, and Numerical Results

If the initial distribulion is given in the form

1)

a—1 1 — b=1
a6(p) =2 ;E;ﬁl—— 2p, @ b0,

where B(a, &) is the beta-function, a choice which allows great flexibility in
the form of the init{al distribution ecurve, then we can write

(2)

Dollars

1
[; pm'i u(l o p)n+b—1{lp

Dmun = o]
[ pm+a—‘.|(1 __ p)n+b—-l dp .
0
. Blm +a+1,n+ 5 _ {me 2 a)

Bim+ant b  (mta)tintd

Complete
informotion
_ Incomplete
informaotion
Expected
capital

10 20 30 40 50 60 70 20 50 160
Number of trigls

Figure 83
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For the logarithmic case this implies that following m wins and # losses the
optimal policy iz to wager the fraction

{m+a)—{n—5n

(m+a)+ (m 8

provided that q.,,, > 1/2, and nothing otherwise. This yieldz a particalarly
simple technique for altering the a priori probability of success from trial to
trial.

(3)

100 -

20

olf] -
o \F/\ Aln || -

60 I— - \
V\x\/\\/\/"\/\//f"w

30

20 ‘ : :
0 6 20 30 40 50 60 TO BO @D 100

Number of bets
Figure 84

A numerical experiment was carried out for the values a =4, 5 = 1/2,
which yields a curve for G'(p) having the shape shown io Tig. 82. It was
assumed that the channcl has an actual probability of correct transmission
given by p = .75. Then, using a table of random numbhers, sequences of 100
bets were Tun in two ways: first with knowledge that the underlxing p is
75, so that the fraction 12 of the available capital is bet at each oppor-
tunity, and then without this knowledge and using the above scheme.

The results are displayed in Fig, 83 from which the appropriareness of
the policy may be judged. Figure 84 shows the fraction bet at each stage;
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after 100 bets only 68 have been won, so approximately 40 per cent of the
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CHAPTER 1IX

Con-:pr-tratz'onal Results for Feedback Control
Processes

1. Introduction

At this point, we wish to present some numerical solutions of typical
feedback control processes. One will involve a stochastic control preblem
connected with the Van der Pol equation
(n 2"+ pl? — 12 - x = f{t) + g(t),
where f{!j is a random disturhing force with known characteristics, and
the other will pertain to a vacuum tube affected by random effects of

unknown characteristics. The latter we will treat as an adaptive process.
The results of this chapter are based upon the work of AL Aoki.

2. A Discrete Stochastic Process

In place of the differential equation in (1.1), let us use the difference

equations
(1) =z,==,— At o = Cp

Ya+1 = ¥Yn "[_ A[_‘,“(Iﬂz - ijn - xn] _]I—fn -+ Far ¥p = €3
n=101,....Herez, represents the position of the system at time n and

¥, the velocity, £, is the random force, and g, is the foreing term resulting
from the control that is applied.

For the sake of simplicity, the random force is taken to be a stochastie
quantity with the stationary distribution
2) Ju = b with probability p,

= —b with probability 1 — p.

Let us veview briefly the salient facts about the homogeneous Yan der
Pol equation
(3) o 4 pla? — 1) tx =0,
with z > 0. The origin in the phase plane, + = 0, &’ = 0, is an unstable
equilibrinm point, Consequently, a random perturbation of the system will
force the system into periedic oscillation corresponding to the unique
limit cycle.
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We shall suppose that our aim is to prevent this oscillation and to
maintain the system in the equilibrium position, Towards this goal, we
shall choose the control variable g, overn == 0,1, 2, ..., N, insncha way
as to minimize the expected value of the maximum deviation of the system
from equilibrium position over the time-interval 0 < n < V.

3. Recurrence Relations
Let us define, as usual, the function

(1) fviz. ¥) = the expected maximum deviation of the point in the phase
plane representing the control system from the origin in
the N-stage control process, beginning with the initial
state {x, ¥), using an optimal policy.

Meaguring the deviation from equilibrium by means of the distance

V2 L y?, we obtain as in the preceding chapter the relations

(2) fl(x} y) = ¥ xﬂ + 3;’2;
fk{xi y} = max ( ¥ z? —;_ .1)’2, min [pfk—-l(x+9 .f.a’_} + (] - f))fi'—l{i‘—ﬁ-y—”)s
¥

where we have set

(3) x, =z =24+ ¥,
yp=y+[—pE*—ly —z]A+ b4y,
Yo =y, — 2b.

We shall use these equations to compute the sequence {f,{z, #)}.

4, Choice of Parameters
The numerical results that follew were obtained for a range of values of
pover § =X p << 1, and for
{1} p=1 A= .05 —25<zy-=.25 b .08625
The choice of the control variable g was constrained by the follawing:
2) g= 5128 if filx, y) < 2
g=+1/d if flx,y) =.2.

The sensitivity analysis of f (x, ¥) as a function of p is simplified by the
following considerations. Suppesing, without loss of generality, that the
optimal control iz such that g{—2, —¥) = —g(z, ¥}, we have

@ (2l = (-2 ={—2) + (A= —(z) = - (=},
(=@ = —y+[—p@® —IH—p) — (—2JA+ b+ g= —(v).

(=9 = —y +[—p® — -y —(—]A —b+g=— (v )
It follows, inductively, that
) fez v p) = fil—=, —y, (1 — p)).
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Henee if we know the opthnal poliey for p for all &, ¥ in the phase plane,
we know the optimal policy for {1 — p). This reduees by one half the
problem of determining the dependence upon p.

In [imiting the range of 2 and ¥ to the rectangle —1/4 <2,y < 1/4, we
create the problem of specifying suitable conditions for the sequence
{f{=, o)} at the boundary and beyond. There are several difTerent ways of
meeting this situation. One way is to set

{9) He gy =Ly, zz2i —i=sy<i
— M=%y = —§ —F=<y=<i}
=i y=h -i=e <}
=film =3 v=—§ —F<x<}

Another way is to choose the control variable in such a way that the
system is always forced into the region --1/4 < {x, ) < 1/4 in the phase
plane, whenever it strays outside of it. We shall follow the first method in
the caleulations which folow.

5. Discussion of Results

Let uz henceforth write

(]) fk{xiy) Ef;:(xsy,P}: L: I; 2:"')

and indicate the specific dependence upon p. It is clear that f, is non-
decreasing as k increascs.
In the neighborhood of the origin, it is reasonable to suppose that

(2} Va? 3y = pflrnyep) + 0 — pifile_ g, p).

This is seen to be true i the computational results which foilow. As a
matter of fact, it is seen that in a narrow strip including the z-axis this
result holds.

It is of interest to plot the set of (z, y)-values of equal maximum
expected deviation, which is the eurve in the (z, ¥)-plane determined by the
equation

(3) Silx, ,0) = ¢,

for fixed & and p. Typical curves are shown in Figs. 85 and 86.

For sufficiently large |y|, the expression \/;E:__;,E is seen to dominate
Jul2: 3, »). This is indicated in Figs. 85 and 86 by the fact that for large ,
part of the curves arc seen to be parts of Vit + y:=c.

This can also be shown (Figs. §7 and 88) by taking a cross-section of the

function f(x, y, p} for constant &, p, and =
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6. A Final Valuee Problem

As the second problem we wish to treat numerically, let us take a
discrete control process governed by the scalar equation

(1) Ep == AT, +f;: + HES Ty =10,
where f, is a random forcing term, and g, is the control variable, We are

interested in the case where the distribution funetion for f, is not
completely known.

¥ ¥
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Figure 85. Cuntours of equal f,{z, v, p).

We shall make the following assumptions:
 (2) (a) f, is allowed to assume only two values, b, with respective
probabilities y and {1 — p), where p is not known.
{b) g, is allowed to assume only two values, =m, with m = &

{c) The purpose of the process is to minimize the expected value of
2
:C.\_' .

7. Stochastic Version
If p is taken as known, we obtain the functional egnation

(1} hyfx) = mi“ [ph, (e, ) - {1 — ph_(x_}), k=2,

g=XTm

hy(x) = min [pe,? + (1 — pl 2,

g=%m
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Figure 86, Contours of equal fo(x, ¥, p).

for the function Ay(x} = min exp 2,% Here

)

sequence of functions, {4
number of trials increases

of the observed frequency

¥ =ax+b+ty,

This equation can be used to obtain a great deal of information concern-
ing the analytic nature of the optimal policy. It is important to discuss this
(@)}, since it is intuitively clear that as the
. the adaptive case will approximate more and
more closely the stochastic case in which p has been estimated on the basis

. =aexr—b g

of +&s.
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8. Adaptive Process

R, FEEDBACK CONTROL PROCESSES

Let us now consider a simple adaptive process in the situation where the

unknown probability p Is cither
probability

() Pr(p
QOur assuniption will now be that
probability will be

) 23 =
X =25
—_——-——Xx=0,125
_____ XYz—0
- - x ==0.25
—e— % :-0.25
12,000 -
11,000
t0,000
9,000
8,000
-
o
—~ T0COo
y
Ny 6,000 b .
=
= 5,000
4,000
3,000 -
2,000
00464 0.8536
||000 - 1 i1
0.CI70 03708 0.6294 0.9830

Z =i

Py OF Py, P, > Pp, with the a priori

=p) =z :
il f= 40 is oliserved, the a posteriori

2P

o+ (1—z2py

e =8
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m = 9/128

- 0.25%5x20.25
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Figure 89, The criterion function, k,{z, 2}, 2s the function of the a
priori probability 2.
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Figure 90. The criterion funetion, k_{r, 2), as the foncticn of the
priori probability z.
and if f = —b, the a posteriori probability will be taken to he
z(l —
(3) 2. — ( ) .
2l —py) + (1 —2)(1 — py}

Introducing the funetions
(4) kylz, z) = min cxp 2,2,

we obtain the functional equations

G kyfz, z) = min {{zp, + (1 — 2)pyle,*

71

+ 1 —p) + 0 — 21— pyle 7

Ey@, 2) = min {zp, + (1 = 2polky_sley, 22)

Fad
+ [ —p) + 0 — 2)(1 — pe)Yey_y{z_, 2_)}
The graphs in Figs. 8% and 90 show the dependence of k,(z, z) upon z
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for various values of & and z. The particular values used for the par-

ameters were

{6) @ =35 =75  Mm=71im

and the z-range was taken to be —1/4 < 2 <2 1/4. The same technique as
before was used to keep the x-interval fixed from stage to stage.

Comments and Bibliography

The material contained in this chapter is taken from the Ph.D. Thesis of
Masanan Acki, Department of Engineering, Urnaversity of California at Loz
Angelss, 1960. .
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CHAPTER X
Linear Equations and Quadratic Criteria

1. Iniroduction

In the preceding chapters we have focussed our attention in the main
upon the derivation of fairly straightforward computational algorithrms.
Our goal was to obtain methods which would provide numerical solutions
regardless of the particular structural features of the individual problems,
However, as we have constantly emphasized in the foregoing pages,
dimensionality difficulties stymie direct approaches in the majority of
cases. Consequently, a certain amount of ingenuity is required. We must
combine the specific analytic properties of the process under consideration
with the functional equation approach in order to derive feasible tech-
niques, or quicker and more efficient methods. )

As we shall see, in 2 number of cases where the equations describing the
process ave lnear and the criterion functions are quadratic, we can arrive
at computational procedures which are far superior to these yislded by the
usual classical technigues. This is the case despite the fact that the classical
variational equations are lincar as contrasted with the nonlinear equations
cbtained from dynamic programming.

These results arve, of course, important in their own right. In addition,
however, they seive as vital steps in a chain of snccessive approximations
to the solution of more complex problems. Finally, the satne methods are
applicable to stochastic and adaptive control processes, where the con-
ventional methods do not seem at all useful.

In much of this chapter we shall merely sketch the results, referring the
reader to original sources for more detailed accounts,

2. A Smoothing Problem
In order to illustrate in simple terms the analytie technique we shall use
repeatedly in different contexts, let us return to a “smoothing’” process we
discussed in Chapter L11.
Let us suppose that we wish to determine the values of the z; which
minimize the function
(H Qizy, Ty, o o, Zx) = 0y(2; — €12 + aplzy — 7,)%
+ o ayley — Ty g)?
4 by ® ot byme® e A byt
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Proceeding in the accustomed fashion, we set

(2) file) = min [ay(z, — ) + - -+ aplzy — 2y0)®

+hal 4 b;\'xwz]:
fork=1,2,..., N. Then, as before,
(3) Suley = min[ayley — ¢)® 4 by 3%,
Zy

and for k —1,2,..., N — 1, we have the recurrence relation
(4) Sile) = mjn [a,(zy, — &) 4+ bz’ 4 fria(@)].
i3

Thus far we have not added anything new to our previous discussion. Let
us now use the important fact that each of the functions fy(c), folel, . - .,
Sal(e) is a quadratic function of ¢. Specifically,

) fe) = e, k=12, N,

where u, is independent of c. Perhaps the simplest way to establish this is
inductively. The result is elearly true for & = N, and the relation in (4}
shows that this structure perpetuates,

Once we have obtained the result in (5), it is easy to obtain a recurrence
relation connecting w, and u,,,. Combining (4) and (3), we obtain the
equation

(8) we® = min [g{z, — )" + b’ + w37l
T

The minimizing value of 2, Is easily seen to be

(7 T = apef{ty + by + ugyq).

Substituting this value in (6), we derive the simple recurrence relation

(8) uk:ai_'bkﬂﬁ}_., E—1,2,...,¥ —1,
@ + by 4wy

with
. Elrar

© ey —

iy + b;v.

Having determined the sequence {u;} in this way, we obtain the mini-
mizing values of the z, from (7).
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A MORE COMFLEX SMOQOTHING PROBLEM

3. Discussion
The usnal method of caleulus applied to the minimization problem of the
previous section leads to the system of simultaneous linear equations

(1) ay(m — ¢} — aglty — xy) + bywy =0,

O[Ty — Tpg) ~= BTy -~ %) b Tz =0,

ey — Tyq) + by = 0.

Although the time required to solve a system of N simultaneous linear
equations is usunally proportional to N2, at least, the special form of the
matrix associated with the linear system appearing abave permits one to
use special technigues which make the time proportional to V. Tn this case,
then, there is no particular advantage to using the functional equation
approach if only a numerical solution is desired.

4. A More Complex Smoothing Problem
Let us now suppose that we wish to minimize the function
{1 Qp Ty, -+ By) = Gglay — ) b aplze — 27y + 0)?
+ aglwy — 2 + 25)F 4 -
O R e T
Introducing the sequence of functions

2) fley, 6) = min [ (e, — 61)° + gy 1(2y 4y — 2%+ 65)°
‘J:' b Bt b b o Byas®l,

we obtain the reeurrence relation

(3)  filonea) = ﬂlin [z, — ) + Bm® + S (22 — €2 2,

E=1,2,...,N —2 with

4} fy-alep ) = . miz [Bx-1{Ty-1 — &) - aylEy -~ 22y ; 4 )"
N=L1%N
+ bNulz.-zv—1 + b;\'x_wﬁ]-
It is now simple to show inductively that

(8)  filey, c) = m,e,® + 2wp0.0; + wies?, E=1,2...,N ~1.

Once this result has been obtained it is easy to obtain a recurrence relation
connecting the triple [, v, w,] with [u,,, v,;, w1, as above,
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5. Slightly Intertwined Systems

Let us now consider a generalization “of the linear system appearing
in (3.1),

(1 @)% - Gpoty T @35%5 =
A%yt Gapy + Apg¥y = £
O3 Ty + GgaTp + HgsTy - YTy = €
by + @y + ATy + ety = €y
g2y + g5y - Uzee = €5
gy GgTs T ZgaT -+ Doy = €,

by a%an—s + Banop gv_eTav_s T Zavom 3y Tavog T Tax—p avTay = Cavozs
] ! —

Zarv—1s ax-e¥av—e T Can—rrav—1¥ayv—1 T Fav—1 anvTay = Cavo1
1

Gan ax-2av_z F Paxs sy-1%axno1 T Doy aa¥ay = Cay-

Systems of this type arise in the treatment of economic and engineering
systems in which there is only a smail amount of coupling between different
subsystems.

Let us now emplov a small amonunt of matrix theory— essentially, only
the nolation. Introduce the matrices

(2) 4, = (a’i+3k—3, itak ~g)s .5— 1,23,
and the vectors

Tar -z Cap—2
(3) = | ayeoq | = | ey

L3z Cax

Suppose that the matrix associated with the linear system in (1) is
positive definite. Then the solution of the lincar system is the solution to
the problem of determining the minimum of the inhomogeneous guadratic
form
{4} (21, 42} + (22, Az?) 4 - - - {2Y, daY)

— 20, ) — e, 2y — - — 20, )
+ 2bygmy + 2hy7e; 0 - 4 2y %gxoafay e

Introduce the sequence of functions {f (2}, —oo <z <C o0, N 1,2,
defined by the relation

N X
(5) Fx(z) = min [2 (2, 4.2') — 2 21 (c', 29)

Xi =1
A1
+2 E bory p ity T+ 235‘3_-'»':1-
i=1
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CHARACTERISTIC VALUES

Then we oblain the recurrence relation

(6)

Fylz) = If,ii“ [N, Apx) + 2zzyy — 2(e™, 2%) F fyo1fbyv_1Zax—2)],

where Ry is the threc-dimensional region — oo < 23y, 750,, Z3x, <7 00,
It is easy to estabiish inductively that each function f(z) is a quadratic

function of z:

N Su(2) = uy + 2uyz 4 wyet

Using (6), we readily obtain recurrence relations for the w,, v, and w,
sitnilar to those derived above, )

There is no difficulty in using the same techniques to handle the general
case where each matrix A, is of a different dimension.

6. Characteristic Values
The problem of determining nontrivial solutions of the equation
(1) w” - Ad{)u = 0, =0) = n{l) =0,

can be considered, under reasonable assumptions concerning (1), to be the
same as that of determining the relative minima of the funetional

1
@) iy = f vt
subject to the constraints ’
1
(3) (a) j Aty de =1,
L]
(b) u(0) = u(l) = 0.

Let us consider only the problem of determining the abseolute minimum,
the smallest characteristic value of the foregoing Sturm-Licuviile problem.

-A diserete version of the variational question posed above is that of
minimizing the quadratic form

{4)
Qg 7py - xy) = {1y — ) | (g — 2)® o ] [Ty - 2yg)E @t
subject to the constraint
N
“(B) 2 dat=1
. i=1

Let us suppose that 0 << e = ¢, = b < e for all 4, and introduce the
sequence of functions {f ()}, & — 1,2, ..., N — 1, defined by the relation

© feley = min[{z, — e)* + {2,y — x)* + ...

+ (zy — 3"'.\'—1)2 + 247,
28g
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where the », are subject {0 the relation

N
(1) 3 et = L

It is casily scen that

() Syl = , mir: [(zy_y — € + za2).
where w—1s I

(9 Pa—1Tg + dryi=1,

and

; x
(10} f(c} = min [(-’b’k — o + (1 = 6,25 s ('_‘“"_?'_n]jﬁ)]
e (1 ~ dry”)
where ¢,x,% < L.
The value f;(0) is an approximation to the lowest characteristic value of
the Sturm-Licuville equation.

7. Stochastic Smoothing

Let ns now discuss briefly a stochastie version of the smoothing problem
discussed in §2. Suppose that we wish to miniinize the expected value of the
function

.
n Q. 1) = 3, (23} -+ bah),
i=1
where
@) Ty =dx, + ¢+, =0,1,2, N1

Here the r, are independent random variables with given distributions.
Writing, for k =1,2, ..., 8 — 1

(3) file) = min exp [i {ay® + b,«'t’;2]]= ’

i= i
where z,_, = ¢, we have

4) filey = rf:fin l:a;.-yf + bk'92 +J.f crlddie +y 4+ ) de(’k)_l,

-

fork=1,2,..., N, with

(5} Jley = byet
1t is easy to show inductively that each f,(c) is a quadratic function of ¢,
(6) Jele) = uy + 210 -+ wpe?,

and then to derive recurrence relations similar to those obtained in §2.
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STOCHASTIC CASE

8, Linear Control! Processes with Quadratic Criteria—
Dcterministic Case

Consider the problem of determining the control vector w{f) which
minimizes the quadratic functional

T
(1) Jwy =1 f vt di 4 w(TY,
0
where % and » are connected by the relation
du
2 : —_ = 2, 0y =¢.
(2) 7 4o, uf0)

Tet us discuss the diserete version, We wish to minimize the guadratic

form
. N=1
) Onle) — st + 4 3 07

i=q
over all v, where %, and », ate connected by the relation

{4) g = Ut + 2, £=0,1,... , N—1, uz=c. _
Writing -

(5) Sxle) = min Qx(v),

we have

(6) fife) = min [{ac - v9)* 4 Avg¥),

andfor N=2,3,.. ., "

(7 Sle) = min [Avg® + [y lac + w)l.

o
Using the fact that each function in the sequence {f.(c}} is & quadratic
fonetion of ¢, f{o} == u, + 2ve + wic?, we readily obtain recurrence
relations for the u, ¢, and w,.

9. Stochastic Case
Similarly, if
{1) Upyy = OUy ¥ + Tp, Uy =,

where {r.} is a sequence of random variables with given distributions, we
consider the problem of minimizing the expected value of

H-1

@) Qu) = uy® + 13 o2
Writing e
{3J fg\l'(c) = min Q;\" ('U),
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where we now minimize over all feedback control policies, it follows, as
before, that
{4) Fule) = min [:21-'02 +ff_\'__,(m + oy o) dG(ro):l,
wg
where d0(r) s the distribution function for .
It is casy to see induetively that each element of the sequence {f\(c)}isa
quadratic in ¢,

{5) Jule) = wp + 2v0 + wpc?,
and onee again to derive recurrence relations for the coefficients.

Similar results can be obtained for the adaptive case. References may be
found at the end of the chapter.

¥0. Reduction in Dimensionality

We pointed out in a previous chapter that the problem of minimizing
gl (T, 2o, . .., £ T} over all y{t), where

1 — =4 '}_1 0:C3
(1 L ety 20 B

can be treated in terms of functions of k variables, regardless of the
dimension of z. Let us now point cut that we ean do very much better if g
is a goadratic function of its arguments.

The solution of (1) has the form

14
(2) z=¢le L [ e 00) ds.

~f
T N
[ 1:2 pk,-(s}y,-(-s}] ds)

0 =1

Hence the problem is that of minimizing

T AY
(3) 9(61’ +J; L:lpl,-{S)y,-(S)] ds, .o ey +

f

whete the constants ¢, and the functions p,{s) are known.

Introducing the new functions
(4) flees .o e, T)=ming,
v}

it is easy to see that fis a quadratic function of the ¢,". If we allow T to be
continuous, the functional equation of (14.9} of Chapter VIII yields a
set of differential equations for the eoefficients g,,( T}, in the expression

k

(5) = zlgu(T)cs'C;-

i 5=
If we take T 1o be discrete, we obtain a set of monlinear recurrence
relations.
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11. Linear Prediction Theory

The treatment of linear prediction theory due to elmogorov and
Wiener leads to the problem of minimizing the quadratic form

: N ar
0 DN,M == Z (b, — z Wﬂ%_f}z
k=0 i-u

over the real quantities u,, where the quantities ¢, and 4, are given real
numbers. We suppose that a_, =0, r = 1, and that N = ., Since =
direct approach leads to the problem of solving a system of linear equations,
we wish to present & method based upon functional equation techniques
which circumvents this. -

Following this, we shall consider the minimization of the quadratic form

x M 2

(2) exp { > (bk +r—> ’h‘ffak_f) }
T L=0 F=0

where the #, are first independent random variables, then corrclated

random variables where the distribution of r, depends only upon »,_;, and

then random variables with unknown distributions to be determined on

the basis of observation.

12. Deterministic Case

'The minimum of Dy , aver the ¥, is a quadratic form in the &,

1 min Dy 3, = (b, @y 30},
o

where @y 3; is @ syminetric nonnegative definite (N + 1) X (N 4 1)
matrix defined for N = W =0, and & is the (¥ + 1) dimnensional column
vector whose components are by, by, . . ., by. Write
(2) min Dy 3r = min  [(by — ugagl? + (by — wgay — wymp)?

w ' By tey,0ee,tiy]

F o by — gty — Uy — e — Uge2g) ]

If u, is chosen, we see thatl we face an analogous problem in the determina-
tion of u,, #,, . . ., %, with

{a) b, replaced by b; — uga,, i=12,...,N,
(3) (b) M replaced by M — 1,
{c) N + 1 replaced by N.
Hence in terms of the function defined by (1), we have
{4) (b, Q,\-";‘Ifb) = min [(by — wueay)?
]

“+ (B — upa, Dot 318" — o' ))],
203
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where &' and & are now Nl.dimensional vectors with eomponents

Q. 4y, - ., Gy, by, by, ..., by, Tespectively. Set
1 0
5 Py = ( )
(8) Ll R N
Then (4) takes the form '
() (8, Q@ b)) = min (b — wga, Py 5,00 — ugal},
g

and it iz easy to see that

(6, Py ao)a, Py o) — (@, Py 408
(@, Py 52

{7} (b, &y asb) =

»

with the minimizing cholce of u, given by

_ _Ui!__PN,_Ub}
(2, Py ya)

(8) ”

In this way, we obtain a recurrence relation connecting Qy ,, with
Q.’\‘—I,M—l' Iterating this relation M times, we reach the problem of

minimizing the form
&-M

)] 3 (b, — upe,)?
r=o

OVCT Uy, & problem with a very simple solution. Starting with this solution,
we gbtain the solution of the original problem by means of the recurrence
relation of (6).

13. Stochastic Case

Consider now the problem of determining the minimum of (11.2} where
the », are independent random variables with the same distribution
function d&(r). Then, if we write

(1) (b, Qn,arb) + 28, gy 31) + Py 3 = minexp th
we obtain the recurrence relation
(2) (b, Qw.aD) + 203, gy + Py

= min IiJ.{(bo — wgtty + 7o) dGr)
+ (b — uga, Qu_y ar-1 (b — upa))
+ 200 — uem, gy g ar0) + p.\'—l..‘-[—l}} -

From this relation we ean readily obtain recurrence relations as before.
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14. Correlation

Let us now define 7_; to be z and wrife

) [ % L %)
O B Oyt = min[exp | 5 (107, = 3 uzak_z) ]
. ’ ” r lk:o £=0 {
Then the analogue of {13.2} s
{2) (0, O, »(2I0) 4 205, g 0 (2D) + 2y, (%)

= min [: [{(bo — gy + 7o+ (B — wga, @y g apaq (Pl — uga)
Uy f

o 2(b — ug®, gxo1, a1 (fo)) + P, ar(rol Gy, z}:l )
from which onece again recurrence relations can be obtained.

15. Adaptive Prediction Theory

Let us now consider the case where the process ocours in the following
way. Fivst ug is chosen, then &y -} ry is observed, Then «, is chosen and
b, + r; is observed, and so on. We assume that the sequences {e;} and
{6,} are known. On the basis of observation of ry, 7y, ..., we dedude
the distribution of »,. This is an adaptive process as described in Chapter
VIIL, § 29.

To illustrate the technique we can use to freat prohlems of this nature,
consider the simple case in which each r, assumes only the values =1 with
respective probabilities » and {1 — p), whetc p is not known. Let dG@(p)
be a given a priori distribution for p and suppose that after observation of
m + I'sand n — s, we use

(L 46 =

",

Y - p) dlip)
1L
Lp"‘(l - p)t dGE ()

as the new a priori distribution.
Write
(2) FN, Mim,n;b) = (5, Qy 70m, n}b} + 206, g5, 3s(m w)) = py il )

¥ Y 2y
== min [exp{ > (bk -, = X, () }J,

n r k=0 =

assuming that we have already observed m + 1’s and n — 1’s, Then the

recurrence relation

(B) fIN, M;m,n;b)=min[p,  fIN -1, —~1;m4 1, 0;b--uy,
H

+ (1 - pﬂl,ﬂ)f(N — LM -1mmn +1; b — uof»\‘r)}
permits us to obtain recinrence relations as above for the matrices Qy 4,
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the vectors g, 5y and the sealars p,- 5. The probability p_ . is computed
Ly means of the relation

1
(4) Boun = L p G,
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GHAPTER XI

Markovian Decision Processes

1. Introduction

As the preceding pages demonstrate, dynamic programming processes
assume varied forms. We have examined processes in which the policy
variables may vary over a discrete set of values and those In which they
may assume a continuuin of values. Occasionully, side conztraintz have
limited the range of adrissible policy decisions. The state wvariables
deseribing the system have been: discrete or continuous, and the processes
themselves deterministie, stochastie, or adaptive.

In the first nine chapters, we presented a wuniform computational -
algorithm, equally applicable to linear or nonlincar criteria, to deter-
ministic or stochastic processes. As a general factotum, it was neceszarily
not tailored to fit any particular process. In Chapter X, we showed how
one could tale advaniage of the particular analytic structure of a problem
to provide simpler computational algorithms than those given hy classical
or straightforward dynamie programming approaches.

In the pages that follow, we wish to desertbe some additional
ways In which we can take advantage of individual analytic structure to
simplify in essential ways the computational selution of the assoeiated
optimization preblem. In many cases, these problems are only soluble in
full generality if we mtroduce these more sophisticated and ingenious
techniques.

We wish now to consider some problems which occupy a favored place in
dynamic programming, and, indeed, in all of analysis. These are problems
which possess certain {fnear features.

In the art of mathematical model-building, one of the most difficult
tasks is that of balanecing realistic desoription against the power of avail-
able analytic and computational techniques, Quite often, elaborate solu-
tions are given to problems which have been meaninglessly simplified, and
conversely, overly complicated versions of processes have gone unattended
because of the mathematical difficulties prescnt.

While il is certainly dangerous to construct linear models of real-world
problemns, it is difficult to forego the esthetic pleasure involved in obtaining
explicit solutions. How to reconcile the two is ene of the challenges of
model-huilding.
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The computational results of this chapter are based to a large extent
upon the work of I, Howard. Many further results will be found in his
book eited at the end of the chapter,

2. Markov Processes

Before tallking about Markovian decision processes—the particular types
of sequential decision processes we wish to discuss in this chapter—it is
necessary for us to diseuss what we mean by a Markov process.

Consider a system which at any particular time Is in one of a fiunite
number of states, which we number 7 == 1,2, ., ., ¥, and assume that at
the discerete times ¢ — 0,1, .. ., the system changes from oue of these
admissible states to another. In place of supposing that this change is
deterministic, we assume that it is stochastic, ruled by a transition matrix
F = (p.), where
(1) p,; = the probability that the system is instate jat time ¢ 4 1, given

that it was in state 4 at time £.
We consider here the important case where the fransition matrix P is
independent of timme. This is the most interesting case. —

Let us then introduce the following functions:

(2) =z,({) = the probability that the system is in state ¢ at time ¢,
i=1,2 ...,
with { assuming only the values 0, 1. . . .. The elementary rules of proba-

bility theory then yield the equations

~
(3) 1) = 2 pald), §=1,2,..., N,
i=1
%) = ¢,

The theory of Markov processes is devoted to the study of the asyiap-
totic behavior of the {functions =,(f) asf{— oo, H all of the transition
probabilities p,; are positive, it is not too difficult to show that these
functions converge as { — oo to quantities x(7) which satisfy the “steady-
state’” squation :

N
(4 w(j) — _g]:ﬂu-t(i), j=L2..., 4

That these functions converge as ¢ — oo is perhaps not too surprising,
in view of the mixing property involved in the assumption that all of the
#; are positive. What is surprising is that in this case, the limiting values
are independent of the initial state of the system, the values of x,(2).

This is the mathematical idea behind the validity of shufiling cards.
Actually, most shuffling is done rather carelessly and a great deal of
information concerning the play of a bridge hand can be gleaned from a
knowledge of the tricks on the previous deal.
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EXAMPLE-—A TAXICAB PROBLEM

3. Markovian Decision Process

We now wish to extend the concept of a Markov proeess to more general
situations in which decisions are made at each stage. Let us suppose that
at each stage the transition matrix can be chosen from one of a set of such
matrices, and denote the matrix corresponding to poliey decision ¢ by
Plg) = (p5lg))-

Let us further suppose that not only is there a change of state involved
at cach stage, but alse a return, which is a function of the initial and
terminal state and of the declsion.

Let Rig) = {r,{g)) Tepresent the return matrix defined in this fashion.

A process of this type we call a Markoviarn deciston process. The problem
that we wish to consider is that of choosing the sequence of decisions which
will maximize the expected return obtained from gn .N.stage process,
given the initial state of the system.

4. Example—A Taxicab Problem

Before entering into any analytic discussion of this type of problem, let
us see how problems of this nature enter in a very natural way. Toillustrate,
let us present a simplified version of the operation of a fleet of taxicabs.

The advantage of an example of this nature is that it enables us to give
concrete meanings to such terms as “transition matrix,” “alternetive
decisions,” and s0 on.

Suppose that a faxi driver has an area of operation encompassing three
towns. I he is in town 1, he has three alternatives:

{1} {1) He can cruise in the hope of picking up a passenger by being
hailed.
(2) He can drive to the nearest cab stand and wait in line.
(3) He can pull over to the curb and wait for a radio eall.

In town 3, he has the same alternatives, but in town 2, the last alterna-
tive is not available since there is no radio eab service in that town.

For any given town and any given alternative within this towm, thereisa
probability that the next trip will go to each of the towns 3, 2, and 3, and 2
corresponding known return in monetary units associated with each such
trip. The probabilities of transition and the returns depend upon the
alternative beeause different customer populations will be contacted under
each alternative

Assigning hy pothetical numbers, the data for the problem can be shown
m Table 1. )

As an example of the interprétation of this table, we see from the next
to last row that, if the driver is in city 3 and chooses to drive to a eab stand,
there is a one-cighth chance he will get a customer who wants to go to
city 1, the profit being G, a three-fourths chance of a trip to city 2 yielding a
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profit of 4, and a one-eighth chance of a trip within eity 3, with a profit
of 2 units.

In this problem we have 3 states, {.e., ¥ = 3, there are 3 alternatives in
states 1 and 3, and 2 in state 2, ie, ny == 3, n, = 2, ng =— 3. There are
323 = 18 possible policies.

_ TABLE 1
State Transzition Probalility Return
(City} Alternative j =1 2 3 i=1 2 3
1 1 ! it 1 10 4 8
2 115 % 1'36 8 2 4
3 P ] ] 4 6 4
2 1 3 Q 3 14 1] 18
2 & z & 8 16 8
3 1 } 1 i 10 2 3
2 3 2 ¥ 6 4 2
3 I-;" 5 a 4 ¢ - 8

After the tools of solution have been developed, we will return to this
problem and show its numerical solution.

5. Analytic Formulation

Let us now use funetional equation technigques to obtain an analyvtie
formulation of the problem posed in §3. For? = 1,2, .., , N2 =90,1,...,
let
(1) f.{2) = expected return olitained from an n-stage process, starting in

state 7 and using an optimal policy.

Note that n represents the lengih of a process, whereas ¢, used in earlier
sections, denoted fime. The principle of optimality then yields the re-
currence Telations

& -
{2] fn(i) = max Lgl?’u(g)(fu'(g} +fn-—1(j}):[3 'i' - 1: 2? RIS ) A'Y»

forn=1,2 ..., with fy{i} = 0.
An optimal poliey consists of a veetor (g,(1), g,(2), ..., q,(N)), giving
the choice to be made in the 1th state when » stages remain.

6. Computational Aspects

Ajthough we shall subsequently present some numerical results for a
problem of this general nature arising from an equipment replacement
process, let us make some general comments at this time,
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The computation is complicated not so much by the memory reguire-
ments for the sequences {f,(¢)} and {qﬂ(i}.}, which are negligible, as by the
necessity for storing the transition matrices Ply) == (p;,;{¢)) and E(g) =
(ry;{@))-

If N excecds a valuc such as 1000, these requirements become exeessive.
To treat really large-scale problems, it is necessary to study the analytic
structurc of the process and use the information gained in this way te
develop approximate technigques. We shall use the linearity of the process
and the simple but very important idea that a sultably defined fictitious
infinite process affords an excellent approximation te a process of -even
moderate length, For the study of transient effects, the precise formulation
is still necessary.

7. Asymptotic Behavior

The approximation technigues we shall employ are strongly dependent
upon the asymptotic hehavior of the sequence {f,(7)} as n —w0. Let us then
state the following result.

Theorem 1. Counsider the recurrence relation

; X
(1) Fald) = max [b,-(q) + 2 a-;j(g)fﬂ_l(i)},

where we suppose thai

(2) {a) b,{g) = 0 and by{g) = 0 for some § and all g,
(b) aylg) =d >0, &j=1,2,...,3 uniformly in g,
M
{c) 21 asip =1, i=12,..., M.
=
Tn other words, A(g) is for each g the transpose of o positive Markov matriz.
Assurme also that either:
fa) The funclions b,(q) and a (g} are funclions of finite dimensional
weclors ¢ whose cumponents asswme only a finite set of values, whick,
in general, depend upon i and j.
(b) The functions bly) and a,;(g) are continuous functions of finite
dimensional vectors whose components assume values in certain
closed, bounded regions in g-space.

Set
b,(g)
{3} L= 1}, 8g) = bl |, Alg) = (a,,(g))-
1 b (a}
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Then as n — o0,
(1) Jally ey, i=1.2,..., N,

where the scalar value v is determined by the relation

{5) r]l = max lim
q ot

[b(q) + Alghle) +--- + A{q}""b(q)}_

i

A procf of this result will be found in the reference at the cnd of this
chapter. The quantity &,{7) is the cxpected return at each stage due to a
decision g. The result is intuitively clear when we see that it asserts that we
act a0 as to maximize the average expecied relurn.

8. Discussion

The value of this theorem resides In the fact that it assures us that the
obvicus approach to the determination of an optimal peoliey is indeed a~
eorrect one, Namely, we take a particular policy and use it repeatedly to
obtain the average gain. We then choose a policy which maximizes this
average gain,

Onee this result has been established, the path is open for a number of
simple iterative techniques which can be used to obtain the long-term
policy in a more efficient way.

As in the theory of Markov chains, there is a considerable difference
between the analytic results obtained for the case of positive coefficients,
and those valid for merely non-negative coefficients. In most applications,
we find ourselves in the situation where a large number of the coefficients
are zero, There are several ways around this difficulty. In the first place,
we may iterate the matrices a few times until the zeros fill in. The fact
that a transition probability is ponzero means that there is a way of going
from the ith state to the jth state in any particular stage. The fact that
some iterate of the matrix has all positive entries means that there is a way
of going from the 7th state to the jth state in at most & fixed number of
stages.

In most applications, this is actually the case. 1f it is not the case, thisis
usuaily an indication that in some way we have combined two distinct
processes into one larger process, at the expense of shinplicity.

A sceond way of cireumventing the many fine points that arise in the
consideration of Markov chains with zero coofficients in the matrix is to
replace these zeros by small quantities. Clearly, if the original physical
process is mesningful, small changes in the transition probabilities should
have a negligible effect upon the over-all behavior. Having obtained a
positive transition matrix in this way, we can then use the corresponding
simple theory.

302



THE VALUE DETERMINATION QPERATION

9. Howard’s Policy Space Technique

The details of & policy space iterative technique based on the foregoing
ideas have been worked out by Ronald Howard., We shall discuss his
technique, which furnishes the optimal policy for very long processes
(i.c., “stcady-state processes™) where decisions depend only on the state,
and not ou the stage. Furthermove, we shall adopt his notation, in order
to allow easy reference to his writings.

Defining

(1) V? = ictal expected return from an #-stage process starting in state
i using a fiwed policy, -

one easily sees that I satisfies the recurcence relation

N
(2) Ve = leif(?'u' + V.?—lj-
Also, for large ,
(3) VP =o + ng

if all states belong to the same chain? This will certainly be the case if all
Pi; > 0, as stated in §7. This equation asserts that return will, in general,
be composed of two parts, a steady-state part, ng, resulting from the
behavior as # — co, and a transient part z; which depends only on the
starting state.

Substitution of the limiting expression (3) iu relation (2) vields

N
{4) v ug =2 pylr, + v+ — gl
iT1

Since 33 ,py; — 1 by definition, this relation simplifies to
x

(50 - g v= 2 pylry o) for ¢=1,2,... N
=1

10. The Value Determination Operation

The above is a systern of N equations in ¥ + 1 unknowns, the N v,'sand
g. Observe, however, that the addition of a constant to all the v,’s does not
change the cquations. This means that only the relative values of the #’s,
rather than their absclute values, arc important. Henee one v, can be
arbitrarily designated, leaving ¥ equations in N unknowns, Setting
vy = 0, solution of the equations gives the average long term gain, g, and
relative values of various starting states, »,, for a fixed policy.

Howard ealls the above generation of the gain and values under a given
policy the value delermination operation (VDO).

1 The eoncepts of cheins are discussed in exiense in Howard's bools, and roay &lso be
found in any comprchensive account of Markoy chains.
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11. The Policy Improvement Routine

We come now to the central problem. Having guessed a policy, a choice
of alternatives for each state, we have shown how Lo evaluate this policy.
On the basis of this information, how are we to generate a better policy?
By “better,” we mean one possessing a large expected gain, g.

Returning to ISyuation (9.4}, we can solve for g:

N
{1 S’:Zl?’u(?’-;j“:‘vj) —z, t=12,...,N

=
Reeall that p,; and r,; depend on the partieular policy we have chosen to
pursue‘

Using the +’s associated with the old poliey, we can choose a new policy
which maximizes the right-kand side of (1), Calling this new poliey %, we
choose that & which maximizes 37 p(r8) + v) — v, where p%} denotes
the transition probabilities associated with alternative & in state 1.

Once g and v have been determined for a given policy, the use of the
above rule for gencrating the new policy is called the policy improvement
rouline (PLIR).

One can prove that this rule -

(a) leads at each application to a policy of higher, or at least as large,
gain,
(b} will eventually lead to the optimal policy.
These proofs depeud strongly on the linearity of this simple model, Tt is,
however, not intuitive that a decision dictated by gain and values of one
policy will yield a policy with a larger gain,

12. Solution of the Taxicab Problem
Let us return to the taxicab problem of §4 and apply the above rules.
As an initial guess, we choose the policy vector
1
D=111,
1
which means we cruise in all citics. This is the policy that maximizes the
expected immediate return. For this policy we have the transition proba-
bility matrix

[pi:i] =

e
Tl i e

and immediate return vector



SOLUTION OF THE TAXICAB PROBLEM

et us denote Y3, Py bY ¢, since the expected return depends ouly
ipon 4. The valne determination equations, with v, set equal to 0, are

g-+v =84 ju 1+ tu,
g+ v, =16 L 1w,
g="7+4 v + ivp

rielding the solution

v, = 1.33,
¥, = 7.47,
vy = 0,
g=9.2.

Jsing a policy of “always eruise,” the driver will make 9.2 units per trip
m the average.

Returning to the PIR, we caleulate the quantities ¢* + S>30, p,/%v, for
il © and &:

N
i k g+ z P fkf-’j
i=1

10.50*

8.43

5.51
16.67
21.95%

9.20

9.66*

6.75

We sec that for ¢ = 1, the quantity in the right-hand coleumn is maxi-
mized when & = 1, For ¢ = 2 or 3, it is maximized when % = 2, In other
words, our new policy is

b = B o b

1
D=2
2
This means that if the cab is in town 1, it should eruise; if it is in town 2
ur 3, it should drive to the nearest stand.
We now have

i+ o1 8
[pl= |1 % |, [g]=|[15
It % 4

Returning to the VD, we solve the equations
g+ v =84 v + ju, + iv,,
g4+ v, =15 - Jory + {05 + KAy,
g+ vg=4 -+ fo; + Ju; + fup
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Again with v3 = 0 we obtain

v, = 3.88,
Vg = 12,85
vy = 0,

g =13.15

Note that ¢ has increased from 9.2 10 13.15 as desired, so that the cab earns
13.15 units per irip on the average. Entering the PIR with these values,

ﬁf
2 k g + 2 Pif;
i=1
1 1 9.27
2 12.14%
3 4.91
2 H 14.06
2 26.00%
3 1 9.26
2 12.02¢*
3 2.37
The new policy is thus
2
D=2
2

The cab should drive to the nearcst stand regardless of the town in which
it finds itself. -
With this policy

3 % F 275
=% ¥ %] @)=
LI 4

Entering the VDO
g+ v, =295+ &oy 4 v S
g+ vy =15+ Loy + Zuy + Koy,
g+ vy =4 + fv, + Jv, -+ Lo,

With ¢; = 0,
7 = —1.18,
v, = 12.66,
Yy = 0,
g = 13.34.

Note that there has been a small but definite inerease in g from 13.15 to
13.34.
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THE MORE GENERAf, PROBLEM

Trying the PIE,

I
bl

e
g” + 2 v ;‘k”:'
i=1

10.57
12.16*
5.53

15.41
26.00%
3.86
13.33*
5.40

O3 BD = DY o Lo D e

The new policy is

P4

2

D — 2J,
but this is equal to the last policy, so that the process has converged and g
has attained its maximum; namely 13.34. The cabl driver should drive to
the nearest stand in any city. Following this policy will ¥ield a return of
13.34 units per trip on the average, almost half as much again as the policy
of always cruising found by maximizing immediate return. Summarizing
the caleulations {to two decimal places),

vy 0 1.33 —3.88 —1.18
v 0 7.47 12.85 12.66
v, 0 0 0 0
g — 9.20 1315 13.34
D, 1 1 2 2
D, 1 2 2 2 STOP
D, i 2 2 2
YIR YDo FILR Yo YIR Yoo PR

Notice that the optimal policy of always driving to a stand is the worst
poliey in ferms of immediate return. It often happens in the sequential
decision process that the birds in the bush are worth more than the one in
the hand.

13. The Mare General Problem

In the discussion thus far we have required that there be a unique gain, g,
associated with the problem. This means that there is only one chain and no
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matter what policy we choose it is possible to get from any existent state
to any other, Taking all the p;; pesitive is one way of assuring this result,

We would, however, like our technigue to be valid for the more general
case invelving several chains. A transition matrix having this property is
shown below:

F L0 0
¥ ¥ 0 0
00 ¢ i

Here if we start in state 1 or 2, there is no possibility of transition to states
3 or 4, and conversely. If we have an accompanying return métrix, there
will be one long-term average gain associated with starting in states 1 or 2,
another for states 3 or 4. This leads to a subscripting of gain, g, meaning
gain in chain I, g, for chain 2, and so on, in general. With this notation, we
proceed to a more general algorithm, which we show schematically.

14, The General Solution (sec page 309)

15. Equipment Replacement Problems Revisited

We have, in Chapter III, §12, considered in seme detail equipment
replacement problems, The technigue presented there was to solve a finite
duration problem by means of the iteration of a recarrence relation, This
allowed us to include cost variations as a function of real time as well as of
age.

I the infinite time solution is sought, we can iterate the equation untit
average return per stage is constant to any degree of accuraey desived, but
can rarely by this method categorically assert policy convergence, As an
exampie of this technique we shall consider an industrial replacement prob-
Jem. Fhen we shall apply the policy space technique to o similar problem.

16. A Tire Manufacturing Problem

In the manufacture of rublier tires, a1 machine is used which contnins
two Lladders, and which simultancously produces one tire on each bladder.
If a bladder fails in service, a faulty tire is produced aud a cost ¢, is incurred.
Further, when a bladder fails, the machine must he stripped down for
Teplacement, a process resulting in a charge ¢, representing the labor cost
involved and a cost ¢, representing lost production time. A replacement
bladder costs ¢;. Onee the machine is stripped, the cost of replacing the
second bladder iz the cost of the bladder alone.

By replacing bladders before failure, the faulty tire experise, ¢,, and lost
production cost, ¢, can be avoided. However, such a poliey will necessarily
involve the purchase of more new bledders and require more labor than the
replace-after-failure policy, and thevein lies the problem.
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¥4. The General Salution

Using the p,; and ¢, for a given policy, solve the
doulile set of equations

»
q: — z.(pijGja
j=1 .
. ¥
=g _zlinijv:"
P

for all »; and g,. The solution will involve as many
arbitrary constants as there are independent
Markov chains; these constants may be sct equal to
Zero.

ith state.

assures convergence in the case of equivalent policies.

best policy has been found.

For each state 4, determine the alternative kwhich maximizes
S¥ , pify; and make it the new decision in the ith state, If

z;-\';i p,-;"‘gj is the same for all alternatives, the deelsion must
be made on the basis of values rather than gains. Therefore,
if the gain tesi fajls, determine the alternative % which
maximizes ¢} Z?':lfpij;‘vj and makeit the new decisionin the

Regardless of whether the policy improvement test is
based on gains or values, if the old deeision in the ith state
viclds as high a wvalue of the test quantity as.any other
alternative, leave the old decision unchanged. This rule

When this procedure has been repeated for all states, a
new policy has been determined and new [p,;] and [¢,]
matrices have been obtained, If the new policy is equal o the
previous one, the caleulation process has converged and the
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17. Dynamic Programming Formulation
Let us begin by defining
f{d, 5} = total expected cost of producing N additional tives, where

bladder 1 has already produced ¢ tiresx, and bladder 2 has
produced j tires, where an optimal replacement policy is
used.

We scek [ (0, 3)fV, the expected average cost per tire of prodacing N tires

where we start with new biadders and use an optimal policy. Of even more

interest is the corresponding replacement policy. We define p,, i =

0,1,2,..., as the probabilily of successfully producing a tire with a

bladder that has already produced i tires and assume that these quantities

are known on the hasis of experience. Then, recalling the definition of

(e, 73, we have the tecurrence relation

{1) | Produce:

fN(";lj} = min p;‘pJ'f.-‘V—Z(’: 4 ls J + 1)

+ (0 — p )L — P26 + 2oy 465 L o + f1(G,0)]

+ (1 — pp;min e 4¢3 + €5 + ¢y - [ 50,7 + 1),

2¢;+ ¢ — g+ g 5100, 01
+ 2l —plminle, + ¢ o3 + ¢ + faa (i 41,0,
ey + ey + ¢y +oeg A Fya (0, 00

Replace Bladder ¢: e + oz + £(0,7),

Replace Bladder j: ¢ = oy 1+ ffi, 0),

| Beplace Both: e, + e4 1+ F4(0,0).

The above eguation evaluates the expected costs of each admissible

decision as the sum of the immediate cost plus the cxpected cost of

optimally producing the remaining tives after implementing the decision,

and chooses the best alternative. The problem is solved by computing the

cost of producing oue tire, (i, §), and then using Ecuation (1) to evaluate

fo vsing fi, f5 using f,, cte.

18. A Numerical Example

For purposes of illustration, we adopt the following hypothetical figures:

Cost of purchasing a bladder ¢y —= 80
Cost of serap, per scrapped tire gy == 1
Labor cost of stripping machines ey = 2
Cost of lost production time £, — 3

Probahility of success:

No. Produced = | 0 1 2 3 4] 5] 6

Probability of
Buecess g, P9 818614120
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Successive iteration of recurrence relation (17.1) yields the following
results:
1. For procvesses producing more than 15 tires, the optimal policy
converges to (a) replace any bludder that has made 6 tires,
{b) replace the other bladder at the same time if it has produced 5
or mare tires when the wmachine s stripped dne to cither policy or
failure,
2. The cost of each additional tire converges to 15.94 after about 47
tires have been produced.

19. A Further Example

To show that the optimal policy nced not be so simple, let us reduce
the cost of a new bladder from 50 to 10 units and calculate 2 new expected.
cost and optimal policy.

TABLE il
Table of Results

Average cost per tive: 6.364
Poliey:

]
b
b
e

'
ko
I
o
I
L
v
L2
¥
—_
e
—

4 | B-1 | R1 | P3| P3| P33 B2 | R2

5 | 1| R1|R1|P3|R2]| B2| B2

6 | R-1 | B-1| R-1{ R2 | B2 R2 ]| R-»

where P-1 means produce, and if a bladder fails, replace only that bladder.
P- 2 mceans produce, and if the newer bladder fails replace both, if
the older fails replace only it.
P-3 means produce, and if either bladder fails replace both,
E-1 means replace the older bladder immediately.
E-2 means replace both bladders immediately.
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i is the number of tires previously produced by bladder 1.
# s the numher of tires previously produced by bladder 2.

As indicated in the above table, we now follow a radically different
policy. The policy yielded by iteration of Equation (1) no longer has the
simple form: replace the older bladder when it has made m tires and replace
the other bladder at the same time if it has produced more than n tives,
Indeed, use of any such poliey will yvield an average cost greater than 6.364
per tire.

The numerical caleulations discussed above cach required only one
minute of computing time on the Johnniac computer.

20, An Auntomobile Replacement Problem .

Howard's approach affords an alternutive approach to problems of this
ilk. Tt is informative to see how one formulates and solves & replacement
problem.

In order to fix ideas, let us consider the problem of antomaobile replace-
ment over a thne interval of ten years. We agree {o review our current
situation every three months and to make a deeision on keeping our
present car or irading it in at that thne. The state of the system, 7, is -
deseribed by the age of the car in three-month periods; { may run from 1
to 40. In order to keep the number of states finite, a car of age 40 remains a
car of age 40 forever (it is considered to be essentially worn out). The
alternatives available in cach state are these: the fivst alternative, k == 1,
is to keep the present ear for another quarter. The other alternatives,
kE > 1, arc to buy a car of age £ — 2, where & — 2 may be as largs as 39,
We have then forty states with forty-one alternatives in each state so that
there are 4119 possible policies. ™

The data supplied are the following:

€, the cost of buying a car of age 1,

T',, the trade.in value of a car of age ¢,

E,, the expected cost of operating a car of age ¢ until it reaches age
i1,

B; the probability that a car of age ¢ will survive fo be age § + 1
without incurring a prohibitively expensive repair,

The probability defined above is necessary to limit the number of state.
A car of any age that has a hopeless breakdown is immediately sent to
state 40. Naturally, p,, = O

The basic equations governing the system when it is in state 7 are: If
£ =1 (keep present car)

g+ v, =—E + pr, -+ (1 —plu,.
If k > 1 (trade for car of age k — 2)
g+v;— T, — Cp g — Ep p 4 Prathy T (1 — P plye
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AN AUTOMOBILE REPLACEMENT PROBLEM

It is simple to phrasc these equations in terms of our earlier notation,
For instance,
¢f = —E for k=1,

n j=i+1
P =31 —» F—=40 for k=1,
0 other j

g =T, - Cpy— By, for k> 1,

Dr-2 j=k—1
nr={1—p_, J=40 [fork>1
9 other §

The actnal data used in the problem are listed in Table 111 and. in the
graph shown in Fig. 91. The discontinuities in the cost and frade-in

2000 =) 1.O
1600 i Survival probability, P;

1200 |- \
Cost, £
800 |- \( !

Trade-ik
400 value, 7y
Operating expense,é"\ _
0 b= reve wanare aaeer i TN T N D e

s =l

o] 2 4 6 8 10
Yeors
| W I NI SR ST RIS RIS R S T R I IR BT
0 8 18 24 32 40
Periods,

Figurc 91. Automobile; replacentent data,
functions were introduced in order to characterize typical model year
effects.

The automohile replacement problem was solved by the simuitaneous
equation method in seven iterations. The sequence of policies, gains, and
values is shown in Tables IV, V and VI. The optimal policy given by itera-
tion 7 is this: 1f you have a car which is more than } year old but less
than B} years oM, keep it. If you have a car of any ather age, trade it in
on a 3-year-old car. This seems to correspond quite well with our intuitive
notions concerning the economics of automobile ownership. 1t is satisfying
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‘TABLE 1I1

Replacement Problem Data

Age in Trade-in Operating Survival
Periads Cost Value Expense Probability
i 2 7, E; »;
0 $2,000 $1,600 350 1.000
1 1,840 1,460 54 6.949
2 1,680 1,340 56 0.988
3 1,560 1,230 59 0.997
4 1,300 1,050 62 0.896
'3 1,220 980 65 0.994
G 1,150 910 68 0.991
7 1,080 840 71 0.988
8 900 710 75 0.985
9 840 650 78 0.983
10 750 600 81 09580
11 730 550 84 0.973
12 600 480 87 $.970
13 560 430 50 0.963
14 s20 390 83 0.860
i5 480 360 26 0.955
16 440 330 100 0.850
17 420 310 103 0.645
18 400 290 106 0.940
19 380 270 109 0.935
20 360 255 112 0.930
21 345 240 115 0.925
22 330 225 118 4.019
23 314 210 121 0.910
24 J00 200 125 0.900
25 290 120 129 0.890
26 280 180 133 0.880
27 265 170 137 0.865
28 250 160 141 (.850
29 2490 150 145 0.820
30 230 145 150 0,790
31 220 140 155 0.760
32 2106 135 160 0.730
33 200 130 167 0.660
34 190 120 175 0.580
34 130 115 182 0.516
36 170 110 190 - 0430
37 160 105 205 0.360
38 150 95 220 0.200
39 140 87 233 0.100

40 130 80 250 0
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TABLE 1V

Automobiie Replacement Results

Tteration 1 Itcration 2 Iteration 3
State Gain  —250.00] Gain  —163.80| Gain —162.44
Decision  Value | Decision  Valne | Decision Value

1 | Bny 36 $1373.51 | Buy 20 §1380.00| Buy 19 £1380.00
2 | Buy 36 1233.61 | Buy 20 12060.00 | Buy 19 1260.00
3 | Buy 36 114361 Buy 20  1130.00] Buy 19 1156.00
4 | Buy 30 063.61 | Buy 20 0970.00( Keep 1036.63
5 | Buy 36 $33.061 | Buy 20 ano.on | Reep 939.95
6 | Buy 36 §23.61 | Buy 20 830.001 EKeep 847.60
7 | Buy 36  753.61] Buy 20  T60.00| Buy 19 | 760.00
8 | Buy 36 623.61 | Buy 20 630.00 [ ISeep 64544
9 | Buy 36 563.61 | Buy 20 570.00 | Keep 617.26
10 | Bny 36 a13.61 | Buy 20 320.00 | Keep 542,04
11 | Buy 36 463.61 | Buy 20 470,00 [ Buy 19 470.00
12 | Buy 36 393.61 | Buy 20 400.00 | Buy 19 400.00
13 | Buy 36 343.61 | Buy 20  -330.00| Keep 573.00
14 | Buy 36 303.61 | Buy 20 310,30 | Keep 520.79
15 | Buy 36  273.61] Buy 20  280.00{ Keep 470.15
16 | Tuy 38 243.61 1 Buy 20 250004 Keep . 42274
17 | Buy 36 223.61 | Buy 20 230.00| Keep 79.26
18 Buy 306 203.61 | Buy 20 210,00 Keep 338.44
19 | Buy 36 183.81 | Buy 20 130,00} Ieep 300.00
20 | Buy 36 168.61 | Leep 2580.00| Keep 263.70
21 Keep §75.03 | Keep 213.02 | Keep 22932
22 Keep 801007 Buy 20 115.00 | Ieep 196.62
23 leep 72797 | Buy 20 120,00 Keep 163.60
24 Keep 638.21 | Buy 20 120.60 | Keep 136,44
25 Keep 592.4% | Buy 20 110,06 | Boy 19 1000
26 Keep 520.721 DBuy 20 100.00 | Buy 19 160,00
27 Xeep 469.00 | Buy 20 60.00; Buy 19 80.00
28 Keep 411.56 | Buy 20 80.00 | Buy 19 30.00
29 Keep 35593 | Buy 20 7000 | Buy 19 70.00
30 Keep 306.04 | Buy 20 65.00 | Buy 19 65.00
31 Keep 260.81 | Buy 20 60.00 | Buy 18 60.00
32 Keep 218.18 | Buy 20 55.00 [ Buy 19 53.00
33 Keep 175.58 | Buy 20 A0.00) Buy 19 50.00
31 Keep 140.28 | Buy 20 10.00 | Buy 19 404,00
35 Keep 110.64 | Buy 20 33.00, Buy 19 35.00
36 Keep 83.61 | Buy 20 30.00| Buy 19 30.00
a7 Keep 54,901 Buy 20 25.00| Puy 19 25.00
38 Keep 33.00 | Buy 20 15.00 | Buy 19 15.00
39 Keep 15.00 | Buy 30 7.00 | Buy 19 7.00
40 Keep 0.00| Buy 20 (100 | Buy 19 0.00
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TABLE V

Automobile Beplacement Hesults

Iteration 4

Tteration 5

Tteration G

State | O8N —157.07| Gain  —151.05| Gain
‘Decision  Value | Decision  Value Decision
1 | Buyr12 5138000 Buy 12 $1380.00] Buy 12
2 | Buy12 128000 Buy 12 1260.00 Buy 12
3 Buy 12 1150.00 Buy 12 1150.00 Buy 12
4 | Buylz 970.00 | Keep 100262 Ieep
o | Buyl2 900.00 | Keep 917.24 | Keep
6 | Buyi2 830.00 | Keep 83G.21 ) Keep
7 Buy 12 760.00 ] Buy 12 760.00 | Keep
8 | Buyilz G30.00| EKeep 760.54 | Keep
9 Buy 12 570.00 | Keep 694.91 | Keep
10 | Buy iz 920,00 | Keep 632.62 | Keep
11 Buy 12 470.00 | Kecp 974,05} Keep
12 Keep 52000 Keep 620,00 | Keep
13 Keep 463.84 | Keep £70.05 | Keep
14 Keep 41116 | Keep 423841 Keep
15 Keep 36135 Keep 381.03 1 Keep
16 Keep 31463 | Keep 311.34 | Keep
17 Keep 27111 Keep 303.57 ) Keep
18 Keep 229.67 | Keep 27250 Keep
19 | Buy 12 190.00  IKecp 241.97 1 Keep
20 | Buy iz 7500 | Keep 213.82 | Keep
2] Buy 12 162,001 Keep 187.83 | Keep
22 | Buy12  145.00| Kcep 164.16 | Keep
23 Buy 12 130.00| Xeep 14270 | Kecp
24 | Buy12 120,00, Xeep 12379 | Keep
25 | Buy12  110.00] Xeep 108.60 | Buy 12
26 | Buy 12 100.00 | Keep 97.25 | Buy I2
27 Buy 12 90.06 | Buy 12 90.00 | Buy 12
28 | Buy 12 30.00 1 Buy 12 80.00 | Buy 12
20 | Buy 12 0001 Buy 12 70.06 | Buy 12
30 | Buy 12 6500 Buy 12 65.00| Buy 12
3l | Buy 12 60.00 | Buy 12 G0.00 | Buy 12
32 | Buy 12 55300 Buy 12 55.00| Buy 12
33 Buy 12 450.00 | Buy 12 30.00| Buy 12
34 1 Buy 12 40.00 Buy 12 40.00! Buy 12
35 | Buy 12 35.00 | Buy 12 35.00 | Buy 12
36 | Buy 12 30.00| Buy 12 30.00 | Buy 12
37 | Buy 12 25.00| Buy 12 25.00) Buy 12
38 | Buy 12 15.00] Buy 12 1500 Buy 12
30 | Buy 12 T.00 ] Buy i2 7.00, Buy 12
40 | Buy 12 0.00 | Buy 12 0.00| Buy 12
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—150.99
Value
$1380.00
1260.00
1i50.00
107225
987 .22
- 96667
§31.16
T80.30
604.73
632 .50
- a73.99
520,00
450,12
42307 -
3481.23
211.61
30592
27895
242 81
214.48
188.68
165.07
143.75
124 .99
110.00
100.00
80.00
8G.00
T0.00G
65.00
G0L0D
30.00
50.00
40.00
35.00
30.00
25.00
15.00
7.00
0.00




TABLE VI

Automobile Replacement Results

Tteration 7 Iteration 7 Valucs
Cain —150.45 Vyg = S50,
State Preeision Vatue Trade-in Value
1 Buy 12 $1380.00 S1:£60.00)
2 Buy 12 1260.00 1340.600
3 Keep 1100.606 121066
4 Keep 1071.93 115104
5 Keep 986.93 1066.93
1] Keep 906.43 956,13
7 Keep 830.9G6 910.696
8 Keep T60.13 840.13
Ej Keep 6%31.61 771.61
10 Keep 632.41 v12.41
11 Keep 573.95 633.95
12 Keep 520.00 G0N0
13 Keep 470.16 550.16
14 Keep 42405 50403
15 Keep 381.306 4G1.36
16 Keop 341.80 421 .80
17 Keep 306.16 386.10
18 Keep 273.24 3533.24
19 Keep 24287 3225
20 Keep 214.80 204,59
21 Keep 189.19 269.19
22 Keep 165.67 24567
23 Kecp 14442 224,12
24 Keep 125.80 205,580
25 Kecp 130,95 180,45
26 Buy 12 1060.00 180,00
a7 Buy 12 90,00 170.00)
23 Buy 12 80.00 180,00
29 | Buyiz 70.00 150.00
30 Buy 12 63.00 145.00
3 Buy 12 60.00 140.00
32 Buy 12 85.00 135.00
33 Buy 12 50.00 130.00
34 Buy 12 40.00 120.00
35 Buy 12 35.00 115.00
36 Buy 12 30.00 110.00
37 Buy 12 25.00 105.00
a8 Buy 12 15.00 95.00
39 Bay 12 7.00 §7.00
40 Buy 12 .00 80.00
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to note that the program at any iteration reguires that if we are going to
trade, we must trade for a car whose age is independent of our prezent car’s
age. This is just the result that the logic of the situation would dictate.

If we follow our optimal policy, we will keep a car until it is 8} years
old and then buy a 3-year-old ear, Suppose, however, that when ouv caris
4 years old, a fviend offers to swap his l-vear-old car for ours for an
amouut 4. Should we take up his offer? In order to answer this question,
we must look at the transient values.
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Figure 92, Automobile replacement summinary,

_In each of the iterations, the value of state 47 was set equal to zero, for
computational purposes. Table VI also shows the values under the best
poliey when the value of state 40 is set cqual to $80, the trade-in value of a
car of that age. When this is done, each ¢, represents the value of a ear of
age i to a person who js following the optimal policy. In ovder to answer
the question posed above, we must compare the value of a 1-vear-old car,
v, = $1,151.93, with the value of o 4-year-old car, v, = $421.80. If his
asking price, g, is less than vy - - v, & $730, we should make the trade;
otherwise, we should not. It is, of course, not necessary to change v, from
zero in order to answer this problem; however, making ¢,; = 580 does give
the values an absolute physical interpretation as well as a relative one.

If the optimal policy is followed, the yeatly cost of transportation is
about $604 {4 x $150.93). If the policy of maximizing immediate return
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(shown initeration 1) were followed, the yearly cost would be $1,000. Thus
following a policy which maximizes future return rather than immediate
return has resulted in a saving of almost $400 per year. The decrcase of
period cost with iteration is shown in Fig. 92, The gain approaches the
optimal value roughly exponentially. Notice that the gains for the last
three iterations ave so close that for all practical purpeses the correspond-
ing policics may be considered to be equivalent, The fact that a 3-year-old
car is the best huy is diseovered as early as iteration 4. The model year
discontinuity oceurring at three years is no doubt responsible for this
particalar selection.

21, A Simulation Technigne -

The technigue deseribed above involves the solution of simultancous
equations. When these cquations are poorly determined or when the
number of equations is large, accurate solutions cannot be ohtained analyti-
cally. To remedy this problem, a simulation approach has been developed.

22. Connecction with Linear Programming

A most important feature of the processes we have discussed is the fact
that the detemuination of the asvmptotic steady.state behavior can be
accomplished by means of linear programming. This is significant since
there arc now many very cfficient algorithims within this theory available
for the solution of large.scale problems. Since it would require too much
of a digression to present these results, we shall refer the reader to some
original papers cited at the end of the chapier.

23. Summary

In this chapter we have presented an application of the technigue of
“approximation in policy space’” particularly suited to the study of
Markovian decision processes where the study of asymptotic behavior is
meaningful. In many eascs, it can be shown that the appronch to steady-
state behavior is quite rapid. In other cases, only the steady-state behavior
is meaningful. Consequently, the resulls contained in the preceding sections
can be applied in & number of ways.

The most difficult problem in this area at the present time is that
pertaining to the development of eflicient techniques for the freatment of
transient states. Here one needs policy approximations of a quite different
type.
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CHAPTER XII
Numerical A?zal)/sis

1. Introduction

In this final chapter, we wish to diseuss some matters common to all of
the preblems we have so far treated. These are questions of accuracy,
reduction of computing tine, and reduction of dimensionality. Since very
little has becn done in these areas, our discussion will be necessarily
sketchy.

We shall begin with the question of pelynomial approximation, present-
ing both a theorstical discussion and some numerieal results, Next we.
shall consider the uze of related techniques for allocation and control
processes. Finally, we present a comparison of results obtamed by means
of the functional equation approach with the exact solution for some
simple problems in the calenlus of variations.

2. Dimensionality Difficulties—Reprise
Consider thie problem of maximizing the function
(1) gilmy) = golws) -+ v - - 4 gxlzy)

over all non-negative x; satisfying the conditions
e

{2) Sha,=c¢, di=12,...,M,
i=1

where b,; = 0.

As we know, this leads to the recurrence relation

(8} JSaley oo o ey

= maX [gy(ay) + fy-al6; — bixwins 02— boxTon - - -2 Car — Bagan)ls
N
where

@ by <en  i=1,2,..., M.

The solution is readily obtained computationally if If = 1, and obtained
withalittle move difficulty if 37 == 2, using the technigques we have described
above. IT &/ = 3, we must either use a coarser grid or more sophisticated
techniques to overcorne the memory problem.
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3. Polynomial Approximation

Let us now discuss one of the most promising techniques for overcorning
the “curse of dimensionality,” the approximation of functions by poly-
nomials.

If fix) is a continuous function defined aver the interval 0 < x < 1, we
can store the function by tabulating the values at grid points

=042, ..., NA=1

The accuracy of this representation: is determined by the value of A,
However, the smaller the value of A, the more values of the function must
be computed and stoved. Consequently, in any sitwation we must com.
promise hetween the cost due to increased time of computation and that
duc to inaccuracy of results.

In dealing with functions of several variables, the primary constraint is
not cost or time, but the size of the fast memory. If we have & function of
four variables, f{r;, z;, =, x,}, defined over 0 << @y, =, 25, £, < I, even &
A of 1 for each of the variables leads to a tabulation of 10! points for the
storage of the function.

What we want then Is a far more economical representation of the
function. Beturning to the case of functions of one variable, let us examine
the feazibility of an approximation by means of nolynomials,

x
W F) e S aat,
L—=0
The function is now stored by means of the set of coefficients ey, 4y, . .., 8]

and the instructions for computing the corresponding polyvpemial. We
can thus obtain the value of f{z) for arbitrary values of » in the interval
[0, 17 at the expense of a relatively small amount of storage of information.

4. Orthogonal Polynomials

The problem that now arises is that of determining the coefficients
Qg &y, - . ., &y, given the function f{z). Although we may be tempted to use
the first &¥ + 1 terms of the Tavlor expansion of flx) around x = 0, or
perhaps x = 1/2, we reject this idea for two reasons. In the first place, the
Taylor series may diverge outside of a small interval around x = @, ot
% = 1/2. Far more important is the fact thut we always view with grave
suspicion any method which involves derivatives of fuvetions obtained
numerically or graphically. _

Let us then retain the polynomial concept, but replace the Tavlor
expansion by a far more powerful expansion method, expansion in terms of
an orthogonal sevies. For the interval [0, 1], we use Lezendre polyvromials.
To simplify the notation, let us replace the interval [0, 1} by [—1,1] so
that we can use the Legendre polynomials in their usual form.
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As we know, the Legendre polynomials, {FP.(z)), ==0,1,...,
Pz} == 1, form a sequence of polynomials of inereasing degree, with the
property that

(1) fl P le}P (x)ydx = 0, " = n.
-1

Suitably normalizing the polynomials, we can ensure that

@) _ Jl P2 (g)dz=1.
-1

It follows purely formally that if we write

@ 7 = 3 a,P,fe),

for -1 =x =<1, we can determine the coefficient a, by mecans of the
relation

(4} o TJ.I J e} P {e) dee.
-1

Hence we take as our approximation to f(z) by a polynomial of degree N‘,
the partial sum of degree ¥,

{5} ag + ayly(x) + -+ -k ay D),

where the a . are determined by (3).
This representation of the coefficients has the great merit of depending
only upon functional values and not upon derivatives.

5. Gaussian Quadrature

The question: arises as to the calculation of the coefficients a,. If we
attempt to derive the values by approximating to the integral in (4.4) by
means of a Riemann sur

m C F@P@) de = 3 FRAIP(RAIA,

we find ourselves back in the predicament of tabulating values of f{z) at
grid points. If we are going to do this, we may as well do it directly.

We circumvent this difficulty by using a quadratore formula, in this
case the Gaussian guadrature formula. In place of using a Riemann sum to
evaluate an integral, we use an approximate quadratore formnla. The
resulting formula has the form

1 R
() f glx) dz == 2 gl

-1 x=1
where the weights g, and the grid points z, depend upon E. The E
quantitics g, fey, - . ., pig, and the R points »,, x,, . . ., ¥y can be chosen so
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that the relation in {2) is exact for any polynomial g(z) of degree less than or
equal to 2B - 1.

The coeflicient «,, as determined by integral appearing in (1), will then
be evaluated by means of the expression

{3) = zuulf x.L £ "’r.l)

The quantitics p P (x), &=1,2,..., 8, =n=1,2,..., are com-
puted ahead of time and stored,
To compute a value of f{z), we now use the expression

N
@) J) = 3 a,P, o) -

where the o, is determined by (3). The evaluation of P (x)} for a par-
ticular value n:-f:cls readily obtained from the three-term recurrence relation
(5) (w4 NP e — 2n L DD (x) - P, _(x)=0,

valid for the non-normalized Legendre polynomials.

6. A Numerical Example

Let us now see how this technique is applied in practice, Consider the
problem of minimizing the function

: N N

1) N—Zw 20
where .
(2) (a) wpy =29, — w2+ v, w=c

(b) ¢, must bc choscn to keep ., within the interval [—1, 1].

Writing

3) Jalo) = min Fy
for Jo| = 1, we have

{4) hle) = ¢,
Frle) = min [¢® 4 v 4 fy_1{2c ~ & 1 @]

for ¥ = 2. The first six members of the sequence were determined in the
usual fashion for a grid of values over {—1, 1].

e then used the technique of polynomial approximation, writing each
function in the form

(5) Sule) = Z LN -P{c),
where
1 14
{6 B :_[_lfﬁ'(CJPx(C} de == Zl.ujfm'(c;)Px(Ca)
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Since the ¢; are fixed guantities, indeprudent of iV, the seguence of
functions {fy(e)} need only be computed at the points ¢, 3, .. 1, ¢4y, To
evaluate the cxpression fy_,{%¢ — € + v} appearing on the right side of
{4}, however, we must use the formula

8
(7) Far-1(20 — &2 - v} = 3 ey Pu{2e — & + o).
=0
To evaluate the quantities P,(2c — ¢? + o), we employ the recurrence
relation of (5.5) and then apply & svitable normalization factor.

A comparison of results is given below. The sequence {f,{c)} was ohtained
using (4) in a divect [ashion, and {f,*(c}} was obtained using (4) and
polynomial approximation. As can be seen, the agreement is guite good,

¢ fe*ie) fele)
1.0 1.782 1.57
B 1.370 1.36
2 A53 145
0.0 006 0.0
- .2 202 .20
— .8 4.8786 4.89
—1.0 5.664 8.67

7. Use of Calculus

In some cases where caleulus can bhe used, we can combine the two
technigues, that of continuous variation and that of functional equations,
to obtain more eflicient algorithms.

Consider the problem of maxihmizing

M Fy=gnlm} 4 galm) + - + gulzy)
subject to Lhe constraints

(2} T+t day=e, ;= 0.
We obtain the functional equation

(3) Fule) = Max foxlen) + fy-afe — 230

If all of the functions appearing are differcntiable, and if we know, in
some way or other, that the maximizing point lies inside the interval
0 < xy < ¢, we obtain from (3) the two relations

(4) guley) —fyale—zy) =10,
ff\'(c) = g[\;(xi\') + fN—l(C . ')'
g26



THE BRACHISTOCHREONE TFROBLEM

The quantity zy is determined as a function of ¢ from the first cquation.
Taking this into account arnd differentiating the second relation, we have

(&) fa'e) = [gn'lzp) = fiop lo — wdlan'le) + Flhnp e — iy)
=fy_1 (e —zy)

Hence, we have the the two incremental equations

(6} gn'tex) = a6 — 28),

e =Fx_y e —=y)
We see then that the optimal policy is determined by the marginal retnrns,
the sequence {f,'(c)}.

8. Stability

Let us now discuss a problem which we have systematically bypassed in
all that has preceded. This is the problem of acouracy of the solution.
In treating the typical functional equation that occurs, such as that of
(7.3}, we introduce two approximations, We first replace a funetion of a
eontinuous variable by a set of values at discrete grid points, and then
replace maximization over a conlinuous range by maximization over a
finite set of values. In some special cases, the eriginal problem is formulated
in these terms <o that no approximation is made in this fazhion, Tn general,
however, we must face the question of comparing the solution of the
approximate problem with the solution of the original proldem. Thisis a
problem of stebifity. In changing the structure of the equation derived
from the pliysical process in what we hope is a ¢light way, do we change the
structure of 1the solution in a correspondingly slight fashion?

Questions of this type are notoriously difffcult to answer, even in classical
theorics in which lineav equations are paramount. Some worlt in this arca
has been done in the field of dynamic programming, but net much.
Consequently, we shall attempt, Lo shed some light on these problems by the
simple method of comparing the solutions of sorme problems in the caleulus
of variations, obtained in exact fashion hy analytie technigues, with the
solutions obtlained computaticnally by mceans of functional equation
methods,

9. The Brachistochrone Problem

As an initial cxample, we take one of the first problems attacked by
means of the caleulus of variations, although posed some time before by
Galileo. Indeed, this problem motivated the development of the variational
technique.

Given two points in space, we wish to find that path from the higher to
the lower along which a2 particle, under the influence of gmvity but
without friction, will slide in minimum time.
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It is readily scen that along the straight line path shown in Fig. 93, the
particle will traverse the minimmum distance, but at a low average speed.
The curved path results in the particle attaining a high velocity sooner, but

travelling a greater distance, The proper balancing of these considerations
yiclds the solution.

Figure 93

10. Mathematical Formulation

Let us denote the initial point as the origin, and call the final position
(%, #) as shown in Iig. 94. ’
Then, the equations of mechanics tell us that when the particlehas fallen
a vertical distance ¥ it has veloecity {2gy)V/2, independent of its horizontal

0
~— X
e - -
(x,r)
Y
¥
Figure 93 .

position. Since infinjtesimal arc length ds is given by the expression

iy (L )2 da,
the time of descent, the integral ol distance over velocity is
. =4 24102
(2) . 4. %) =f (ﬂ-) d
o\ 2gy

We seck a function y(z) such that y(0) = 0, #{E) = 7, and ¢ is a minimum,
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11. Variational Solution

The Tuler equation of the calenlus of variations states that the solution
must satisfy the sccond order differential equation

M == -,

where { is defined in (2] above,

In this particular case an analytic soltion of equation (1) is possible.
This rare circumstance accounts for the brachistochrone’s lofty position in
expositions of the caleulus of variations.

Adopting the change of variables

’

@) ¥ = utang,
the golution has the form

(2) 2 — a = b{n + sin =},
y —a = b{1 + cos u).
For the boundary points (0, 0) and (2, 1.8323}, the constants ¢ and b are
easily determined and
{4 = o -+ u -+ sin«,
¥ =1 cozu,
— = u < — 8874,
time = 4501 sec.
It is this solution, and the solution for a related problem with a nonzero

initial veloecity, which we shall compare with the solution obtained via
dynamic programming.

12. Dynamic Prograraming Formaulation
Let us define

(1} fix, y) = time to fall to the point (¥, #) from the point (%, ¥) following
a minimum time trajectory.
Then,

x+Az 1L yrz 12
(2) flx,w) = 111?11 [f (—2‘%—) dzy, + f{z -+ Az, y yrAx)].
¥ a

The first termi of the right-hand side of (2) is the time to traversc an
incremental horizontal distance Ax at angle ¥, and the second term is the
remaining time to achicve (¥, 7). We have assumed that a straight line
path is followed during cach individualineremental interval. It isimportant
to note that an improved result can readily be obtained by use of a better
approximation.
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¥f we make the additional simplifieation that velocity (2gy)/® remains
constant during each small interval, we oblain the equation.

- ] _‘:" 2! vz . t
3) [l = min [(~;{:) Av - flx+Any +y As:)}.

We shall now discuss the numerical solution of this recurrence relation.

13. Computational Procedure

The (z, ) plane was divided into many parts by a grid of width Azin the
x direction and Ay in the ¥ direction, as in Fig. 835,

{0, 0)

Figure 05

Admissible paths are those consisting of straight line segments eonnect-
ing intersection points of the grid.

The calgulation consisted of considering each starting y value for a
particular 2 value, and computing the values of f{r, ¥} along this vertical
linc using a reeurrence relation of the form of {12.2) or {12.3).

The following simplifications were made:

(1} No path will lie above the straight line connecting the initial and
final points.

(2) I, starting at {2, ¥) the optimal value of y al x + Axis 7, then for
initial point {x, y¥*), where y* is lower than v, the optimal y is
lower than 7.
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(3) 1f, as decisions for steeper and steeper descents starting at a given
peint are cxamined, the time decreases and then increases, it is
assumed that the minimum has been found and no further policy
search for that partieular starting point is necessary.,

These properties of the solution can be established rigorously with
some effort,

14, Numerical Resulis

Since the formulation nsing a constant veloecity fixed at its initial value
over an Interval resutts in velocity 0 and hence time oo over the first
inlerval, it was decided to use, in this case, the average of initial and final
veloeity, This formulation is called “'Case A, and the exact incremental
time case (12.2) is ealled “Case B.” The following results were obtained for
initial point (0, 0) and final point {2, 1.8323). The correct minimumn time is
4501 sceonds.

Poliey Trajectory
Case | Ax Ay Accuracy Time
A .25 09161 ] L3843
A 04 01832 R 3976
A 0 01832 1.2 4385
B .25 001681 05 4546
B 03 01832 .02 4513
B .04 01221 01 4511

Note that, due to starting at a singularity, approximation A leads to
gross errors in pelicy, hut comparatively small errors in time. Approxi-
mation B gave as good recults as could be hoped for the grid sizes chosen.

A second caleulation was performed starting at the point (0, 1,3558),1e.,
with initial velocity (2¢)"2, and going to {1, 1,8323). The quaint initial and
final poinis chosen weve dictated by the trigonometric tables available and
the nature of the variable change given by (11.2). For this case, the correct
time of descent iz .1092, Adopting the above definitions of Cases A and B,
we have

Policy Trajectory

Case | Az Ay Avcuracy Time
A 125 01832 .01 1092
B 125 01832 .01 1082

We see that, away from the singular point at (0, 0), results are very good.
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15. A Problem with Consiraints

To evaluate further the aceuracy of dynamie programming solutions and
to investigate the use of the Lagrange multiplier, let us consider anocther
problcain which has been resolved analytically.

We shall seek that eurve of specified length connecting two given points
such that the area under the curve, and above the axis, is 2 minimum. We
shall further require that the absclute value of the slope be at most equal

to 1.
Analytically, we have the problem:

1
{1) min j i dz
Io

PLe

suhject to the constraints
xl o —
2) J Vidy'tds =,
T
ll<1,
¥(me) = wo,  #(7) = oy

6. Analytic Solution

An analytic solution was furnished by M. Hestenes, The simplicity of
the problem made an exact analysis possible. General problems with
constraints possess no straightforward technique of solution.

It can be shown that the optimal solution consists of two (or zero)

straight line segments and a cirenlar are. For end-points (2\/‘_2, 4) and

(—2\/2, 4) and length 4 + &, the solution is

(1) y=4—2V2 -2 AV2<r<2v2 —2V2 <2< A7
y:i—‘\/’i—xz, VB o 5;\/§

17. Dynamic Programming Formulation

We shall adopt the Lagrange multiplier formalism introduced in Chapter
II. Then, defining “adjusted area’ as area plus A times length, we let

(1) fl=, y, /) = minimum adjosted area starting at the polnt {x, y) and
going to the fixed final point {x,, ¥).

This yields the recurrence relation
2) Sz 2)
4+ AT
== min [f y + A1 + yHV8de -+ fiz L+ Az, y + y'Az, }t)],

l¥|=2 T

382



COMPUTATIONAL PROCEDURLE

where 3’ is assumed constant over the interval. Further simplification of
the first term on the right yields

) Jl g d)
= min [Ei-{_—;@ 2 ML 4 YA - f e 4 Ax, v+ y'As, }.}}
| =1

Associated with cach point (x, ¥) i3 the length of the optimal (with
respeet to the given £) curve. Calling this quantity S(z, , 2) we have

(4J S(.‘I:, i ;'} - (l + 3)'(2)1"2 =+ .S{.’L‘ + Afi‘f, Y -+ y’&xr Z)

18. Computational Precedure

We shall consider the problem specified in §16. As in the brachistochrone
problem, we divide the space into rectangles by means of grids and consider
only paths joining intersections. Since the problem is symmetric about the
y-axis, we can consider ouly the interval 0 < x < 2'\/5,

The procedure uscd, for a fixed 2, is to iterate backwards until ()=
FO, 9,0 <y <4 — 2v/2, is known. Then the minimunm of f,{y) over all
is determined, and the minbmizing y s the starting point for the policy
defermination phase of the caleulation. A little reflection shows that it is
this g value that would equal {0} if the entive interval —2V2 2 < 2V2
wore COI]FideI’Ed.

Once {0y is determined, for a given A, S,(»(0)) == 8(0, %(0)) givez the
are length. Unless this are length is the desired one, one adjusts 4 and
reperforms phasce one of the caleulation, the determination of the new f{y),
without bothering to determine the optimal policy, phase two. This means
that during the iterations necessary to determine the correct 2, policy data
need not be stored or used.

As discussed in Chapter IT, §24, the following linear extrapolation rule
was vsed to determine 2:

5=
8 — &

where 23 and 2 are the previous guesses, yielding lengths §; and &
respectively, and S is the desived length.

Since a choice of i = 0 implies no length restriction, this would result
in a solution with length 8 {Iig. 96). This information was used fo initially
evaluate 2; and Sy A guess of 4, then began the computation.

Bummarizing, the computation cycle consisted of: an educated guess of
Z; the backward iteration of equation (17.3): the simultancous evaluation
of length via (17.4); the determination of ¥ such that fu(y) was minimum;
and the recaleulation of 1 dependent upon Syfy).
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(~2/2,4) (2/2,4)

{(0,4—2./2)

0
Figure 96 -
19. Numerical Results
Results are shown helow:

No.1 No. 2
Az 4 03
Ay 035 Rild
initial A 1.4 1.5
final 1 2084 20121
no. of iterations 4 3
max policy error .03 .01
area error .01 01

20. Approximation by Piecewise Linear Functions

In many situations it is convenient to approaimate to a funetion ¢{x)
over an interval [a, §] by means of 2 piecewise linear function

(1) glxy =¢; + b, vy = <, i=1,..., N -1,
where u, = @, uy == b. The coustants a,, &, and the ntervals [4;_;. u,]
can be determined conveniently hy the condition that

(2} Flag s oo 8y, 30 0g o0 By g, g, 00, uy)
N4l pu

= ¥ J‘ {g{ax} — a, — ba)2 dr
F=1 Jup

is minimized. Tf approached in a direct fashion this ninimization problem
leads to a complex computalional problem, Dynamic programming
furnishes a simple numerical algorithm for obtaining the 4, &; and v,
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21. Basic Recurrence Relation

Lot us write, for fixed e and b = a,

(13 Julbf = min Flay, ... .ay; by oo by uy, o an, 28
Leraiiae]
Then
o
2) Ji{by = min [J. l(g(ﬂ:) —a, — b2 ds

b
-{-J (gla) — a, — byz)? da:],

where the minimum over —a0 < ay, @y, 6y, 0y <7 o, a4 < uy < b -This
function is readily determined since we can compute the minima over the
&, and b, and then minimize over »; by means of a discrete search.

It is casy to see that for N = 2 we have

b
(3} fy(b) = min [min ‘- (g(z) — ay — by2)2de -+ f_\.-_l(u;\.}}.

Dz =t Llayby] Juy
This is a particular application of the principle of optimality. Since the
mininum over @y, by can be caleulated explicitly we can write {3} in the
form
@) Fal)y = min [hunb) + froa(uy)].

g =ueh
A computational soluticn along these lines requires a few seconds per
stage, where & is the nmumber of stages.

22, Extensions

It requires very little additional effort to approximate to glx) hy
gquadratic polynomials, or by polynomials of any fixed degree. Similarly,
we can compute the minimum of

e
{1) z f (G(x) - }l(xs a’;: bj}z (f;l,'.,
F=1 vy
provided that we know how o niinimize the funetion
b
(2) f {gix) — hix, ay, b)) dx
My
over ay and &, or the minimum of
N4}
(3) ¥ max  gla) — Rz, a, b))

i=1 u; ;Sz=u;

Comments and Bibliography

§1-£6. We follow the discussion In

R. Bellman and 8. Dreyfus, “Functional approximation and dynamic
programming,” Math. Tebles and Other dids tv Compufation, vol. 13, 1939,
PR 247-231,
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§3. For a systematic use of polynomial approxiimation to resolve dirnension-
ality difficulties, see
C. W. Merriam, III, “An optimization theory for feadback control system
design,” Imformation and Control, val. 8, 1960, pp. 32--30.
For examples of the way the technigue iz used In mathernatical phyeics, see
8. Chandrascikhar, Radialive Transfer, Oxford Univ. Press, 1948,
. Bellman, B, Kalaba, and 3. Prestred, Fnvariant Tmbedding and Radialive
Pransfer—IF: Plane Parallel Sluhs of Finite Thickness, The RAND Corpora-
tion, Lo appear.
§8. For a discussion of the concept of stahility as it pertains to differential
equations, sce
R. Bellman, Stability Theory of Differential Equations, MeGraw-Hill Book
Co., Ine.,, New York, 19534,
Many further references will be found there. There is a bricl disenssion of
stability of solutions of the functional equations we have heen conzidering
in Chapter 1 of Dynamic Frogromming.
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On a Transcendental Curve

BY 0. GROS5S

The following discussion is concerned with the inflection points of a
family of curves defined by the relationship

(L J2) =01 — et 4 22, 220,

with the parameters satisfying y = 1, =z >0, 1 >0,

1. The Number of Inflection Points

We assert that each member of the family has at most one point of
inflection. T'o show this, it ix sufficient to verify that the extended curve on
the range z > —y has exactly one. We proceed to do this.

Note that, for the foregoing result, the presence of 2 in (1} Is inessential.
Also, since nonsingular linear transformations preserve the nnmber of
points of inflection, we can set 2z == aw — y. The condition z > —yisthen
equivalent to w > 0 and the problem thus reduces to determining the
number of points of inflection of

(2) Bl = {1 — e~ Vo), w0,

From {2} we get

(3) ﬂ = {1 — e "Lyl - Y l .
Y w?

Now, the infleetion points of (2) correspond to the relative minima and
maxima of the function (3). But since the transformation w = 1/u Is
a homeomorphic mapping of {0, o) with dwfdi < 0, we sce that the in-
flection points of (2} correspond to the relative interior minima and maxima

of
4) Xwe) = {1 — e u)r—le—vy?, w0,

These, in turn, are included in the set of positive roots of X'{u) = 0. Now,
since e %u? has exactly one interior local maximum {# — 2) and no interior
loeal minima, we can assume that y > 1. Thuas, from (1) we get

(5 X(w) = u{l — e7wp—Tle# — (1 — gmujv=lguy?
+ (r— 1Yl — e 2202 = (),
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Shice
w(i — e M) £ 0,
from (5) we obtain
200 —e ™) — u{l — e} - [y — Lue™ =0,

or

2—uteuy—2)=10
Nowsince ¥ > 1, & = 2is nat a root of the ahove cquation, and we obtain
(8) =2 5.

u—2

Bincee* = 1ifw > 0, and (uy — 2)f(1e - 2} << 1if 0 =2 u <7 2, we see that
there is no root in (0, 2), On the ofher hamd, e¥ strictly increases to infinity
while, for © > 2, {(uy — 2)/fuw — 2} strictly decreases from oo to a finite
value. Thus, we see that theve is exactly one positive root of the above
equation, Since the order of contact is clearly zero, it follows that this
roat corresponds to & unique inflection point of (2) and onr assertion is
proved.

2. A Necessary zand Sufficient Condition for Convexity )

We observe from (1) that the term not involving 7 is positive and tends
to zero as z — co. The presence of the unique inflection point on the
extended curve then guarantees that fis eventually convex. It follows that
a necessary and snfiicient condition that f be convex onthe range z = 0 is
that the inflexion point, 2, on the extended curve satlisfy = < 0, ie, in
accordance with the order of the transformations of §1, wiv — ¥ = 0, or
e — y =< 0, where, from (),
uy — 2
w—2
Sclving this last equation for y in terins of «, we obtain

eﬂ j—

(7) Yy == "% - g {1 —e™) — }"('u).
1

Now, noting that the right-hand side of (6) is a strictly increasing function
of y for % = 2 and that e* is strictly increasing, we see that the root u is a
sirietly increasing function of y, and thus we sec that a necessary and
sufficient condition that zfu — y < 0, ie., that »w = xfy, Is ¥y = Flz/y).
In other words,

¥ > ey + _2.3 (1 — e‘.t.l’!.-’}‘
x

The boundary eurve ¥y = F{zfy) of course can be parametrized as follows:
(8) x = iF(t),
y=Fi), t>2,
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100
/
- I/
f bas o point of inflection //
ot some 7 >C A
// f convex for r 20
x 10 4 ; -

/ T

1 2 3 4 5 & 7 B ¢ 10 H 2 I3 14 15
¥

Figure 97. Region of convexity of the funetion f{z) = [1 — e—=lr+i]r L
Az, A = 0, for z 2> & with paraineters satisfying ¥y = 1, = = 0.
where R '
Fit) = e 4 = (1 — &)
£

We thus obtain the region in the (=, 7) plane in which f is convex, as
shown in Fig, 97.
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A New Approack lo the Dualily Theory
of Mathematical Programming

5, DREYFUS and M. FREIMER

1. Introduction .

In this appendix we shall develop a technigue in which we imbed a
mathematical programming problem in the more general problem i which
the optimal return is considercd to be a functicn of the available inpur
commoadities. This optimal return function is central to our method. A
simple characterization of its propertics leads directly and intuitively to
the duality theory of linear programming and alzo to the Kukn-Tucker
[1] results for quadratic programming. Furthermore, this approach vields
immediate cconomic interpretation of the quantities involved.

2, The Dual Linear Programming Problem

The typical linear progrannming problem requires us to find a vector

(1) | z =

which maximizes the linear objective function

(2) ¢z,
subject to the inequality constraints
(3) Az < b
and
(4) z =0,
where the components of
1
€2
(5) c=|
¢



THIT DUAL LINEAR PROGRAMMING PROBLEM

Ry Fg 7T gy
gy ge "' gy

ﬂ'ml ﬂ‘m‘z Crrt an

and

(7) _ b= |

are given.

Let f{) be the maximum value of the objective function (2), con-
sideved as a function of the right side of the constraint (3). Tf 2% is an
optimal solution Lo the problem, then
{8} JiB) = 20,

In order to study the behavior of f, consider the element x,° of the optimal
solution. If we were to increase 2,° by ¢, then we might have 1o replace
the right side of {3) by & + €A% in order to still satisfy the restriction,

where
) 2y 1
oz
(9) A =
L a‘rrzﬂ'

is the jth column of 1. We are thus led to considering f (b + ed9)), which
is the maximum value of ¢’y sulject to the restrictions

(10} Ay <b 4 ed®

and

{11} y = 0.

Shace (2,0 7

(12) y= o el =0 1 e,
z,0
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where ¢ ¢ the unit vector in the jth direction, satisfies inequalities (10}
and (11) and yields a return of

(13) ¢ + o) = [} + ec
we zee that

(14) F 4 e =70 | e, €= 0,allj.
Expanding! the left side in powers of ¢, we obtain '

i

(15) Ty + € ﬂaﬁ —j- higher order terms = f(b) + ec,

inl 3?;:.
Tzking ¢ small enough and > 0, we sce that for all j .
" af
16 = 3y = ¢
(19) 2%

Now suppose that z,% = 0. Then wo van allow ¢ to be negative in the
above analysis, provided it is close enough to zero {so that i as defined in
{(12) satisfies inequality (11)), But, since ¢ < 0, we conclude from (15} that

L a
{17 ;1 -é—bj: 2y <o if 0 = 0.
Therefore

nog
(18) -_ila_bf- ;= if x® = 0.

We next observe that
af
ob;

This follows, for the problem as stated above, from the fact that changing
the problem by increasing b, {(which is n=ually thought of as the available
amount of some commodity) cannotl lead us to choose an optimal solution
worse than the original one, but may aliow us to improve on the previous
optimal value of the objective funetion.

Ineqgualities (16} and (19} lead us to consider vectors

(19} =0, for all <.

gy
Uy

20 =

1 There may be some values of & for which this expsnsion iz mathematically
impessible, We can get around this difficulty by the simple triek of choosing a well-
behaved b infinitesimally close $o the given one. We shall omit any discussion of this
procedure here, sines it contributes nothing to the understanding of our approach
to duality,
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which salisfy the nequalities

(21 wd =¢
and
(22) ' u =0

Combining inequalities (3}, (4), (21) and (22) we have
{238} o'z < (wd)e = w(dx) < u'b,

which holds for any » and = satisfying (3), (4}, (21) and (22). In particular,
if we choose 2" and %%, where

of
5;

i

(24) Coul=

then tlie two inequalities in (23) become equalities. For, hy equation (1@)
wo have 3,0 = Qor ¢; = Z;‘-'P__, w,%,; (or both), while the very definition of
[ shows that if D% _ja.20 < b, then #,® = 0. (This last statement follows
frow the fact that if a commodity is not used to capacity, then changing
the supply ol the commodity slightly will not change the eptimal return).

We have now shown that
(25) o'r < o'x? = u¥h < u'b,

for all « and « satisfying constrainty (3, (4}, (21) and (22}, We have thus
derived the dual problem: minimize b subject to constraints (21) and (22).

a
We have Introduced the variable «; for —fi to conformn to conventional
i
terminology. The meaning of the imputed value é? is evident, and is used,

throughout the derivation. {lsual derivations ol duality introduce # as
Lagrange multipliees and, after formal manipulation to derive the duality
results, observe that « has ecconomic significance.

1t is intorosting to observe how the particular statement of the problem
affects owr conclusions. If the inequality in the constraint set (3} were
reversed, then our conclusion {19) about the sign of the dual variable
would be reversed. Eguality in (3) would imply nothing about the sign of
the dual variables. (Since all of commodity ¢ would be consumed by any
feasible program, an increase in &; might result in either increased or
decreased return). Changing the problem from one of maximizing a linear
formn to one of minimizing would reverse the sense of the inequalities in
equations (14}, ({15), {18), and (17) and, ultimately in (25) and the con-
clusions based upon it. In this case, of course, one would define f (b} as the
minimum obtainable value of the objective Tunection.
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We present in Table 1 some primal and related dual problems. The
veader can casily verify thesc results using the above considerations.

TABLE |

Objeative, e’z max | min | max | min max max
PRIMAL]|  Comstraints, Az | <b | <b | =b | »b <b -t
Variables, x =0 =0 =0 ‘_2_0_ unrestricted =9
_(;bj c_c:i:'—c, b’u?“_ min | max | min | max i Im.n_ o
DUAL Constraints, 4w | =c | <c ;' = = e
—Va.riables..u _“;_;0 i‘\ﬂ- =0 | =0 =0 unmstri_c;;:i_

3, The Kuhn-Tucker Eqguations: (Juadratic Case

The typical guadratic programming problemn requires us to choose the
veetor z so as to maximize the guadratic objective function

() »'r - 1z Cx,

subject to constraints (2.3) and (2.4). Here 2, 4, and & arc as in Section 2,
and the components cf

#1
P
{2} B =
Py
and
t1 Oz €1a
Ca1 Cop Can
3) € = ' ‘

Ca1 Cpz "0 Cpp

are given. Furthermore, € is assumed to be positive definite.
Let f(b) be the maximum value of the cbjective function. If x° is an
optimal solution then

4) F6) = p'2® — 3200,
We again consider f{i + ¢A%), which is now the maximum value of
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Py — 3y'Cy subject to constraints (2.10) and (2.11}. As before, v = «°
+ e’ satisfies (2.10} and (2.11), now yiclding a return of

B) PP+ ) — Ha® + el O+ el

f{ "} 5(2”; zcn Ty ) 252‘553"

Thus
(6) f(b + E‘{{U’} ‘Zf(b} + G(.'pj z €y ) + e—c,'_f'
Expanding the laft side in powers of ¢, we obtain
n af moom az .
(M fi+ Es§1 5{; a; -+ e 2121 Azl F,35, a4, - higher order terms

:_‘zf[b)—}—.z(jnJ Zch ) - ieley, e 0,allj
Talking e small enough we sce that

n g
() > % Gy =P, —1__2

=1

;x," all §

or, in vector notation,
)] A'u® =g — Oz0

Now suppose that z,° = 0. Then we can allow ¢ to be negative in the
ahove analysis, obtaining the opposite inequality to (8). Combining {his
with (8) we have

Ry af n .
(10} B Oy == Dy — 2 0,0 if 0 > 0,
=100, i

In order Lo make (8} an equality for all 4, we introduce the vector

(11) v= | 1,

v.n |

which is defined by the cquation

(12} A'ul =p — ez + w
It is then clear that

{13) v =0,

and that

(14) u=0 i 20>0
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As in Section 2,
(15) o u >0

follows from the definition of f. .
The equations {12}, (13}, (14}, and (13} are the Kuhn-Tucker optimality
conditions for the above quadratic programming problem.
Combining cquations (7) and {10) we find that
o g

16 ez, if 200,
( ) é-}_-’l k%—']_ ablahh a’uakf = CJJ 1 ‘Cf .

the interpretation of which we leave to the reader as an exercise,

4. The Kuhn-Tucker Eguations: Genexral Case

Suppose that we are required to maximize an arbitrary funetion d{z),
subjeet to constraints (2.3} and (2.4). Defining f(b) to be the maximum
value of the objective function, and 2% to be an optimal solntion, we apply
our usual argument to obtain

(1) Fib 4 €AV = $a® 4 ee') € > 0,allj,
2) Fb 4+ eAD) = ¢la® + o) €< 0,if 20> 0,

Since the expansions of f and ¢ arve

) m af moom a2f
o eAYNYy = f(ly -- = og, 1 Le? )
(3} f{{) | € ) f( ¥ 51_=1 abi Qg I ze igl 1_2=, ab,-ab,, By
) 2 g
) Bt 4 o) = g e g O g
z, oz,
and
{5} Pla®) = f{b},
we conclude (as in Section 3) that
2 of deh ;
(B) 21 3, ay = 5, all j,
= of o6
{7 1_=l'a?r_a='5 = "a';; ifz >0,
EITR T 2 2
) el % epso.

a,..a.k. 2 ———
Sy AT0b0h, Y T Bt
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=

& .
If we roplace _;P in equations (6) and {7) by =, we obtain the Kukn-
i
Twcker eptimality condilions {or the general programming problem stated
above.
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Arpexnix 111

A Computational Technique Bused on Successive
Approzimutions in Policy Space

2. DREYFUS

1. Introduction

In this appendix we wish to present the elements of a theory of numerical
solution of optimization problems that holds great promisze of breaking the
dimensienality barrier. The technique is hasically one based upon gradients
in which the approach to an optimal policy is by successive steps. Our
method of derivation employs the familiar concepts and techniques of
dynamic programming. These results have also been obtained by Bryson
and KelleyH?) ysing more complicated cerivations. Bryson has obtained
in this way numerical solutions of variationa! problerms involving up to
eight state variables, and there seems to be practicallv no limit to the
generality of the method.

The drawbacks to this method of breaking the bonds of dimensionality
are twofold. In the first place, there is the possibility of converging to an
extremal which does not vicld the absolute minimum or maximum.
Consequently, for problems of low dimensionality there i3 much in favor
of the usual technique emphasized in the foregoing pages of this book.
For problems of high dimensionality, however, the simplicity and practi-
cality of the method compensate for the danger of local optimality.
Secondly, inequalily constraints on the state and deeision variabies cause
eonsiderable difficulty. These can to some extent be taken into account
in the suceessive approximations, but not in any routine fashion. Reeall
that in the conventional dynamic programming algorithm constraints
merely limit 1he range of decision space that must be scarched and thus
are desirable rather than inconvenient,

2. The Problem

We shall restrict ourselves throughout this appendix to a discrete
analogue of the type of variatienal problem that bears the name “Problem
of Mayer” fsee §22 of Chapter V). This represents no lozs of generalivy
since to begin with any variational problem can be transformed into a
Mayer problem, and since, secondly, diseretization is neccessary for the
digital eomputation of the numerical solution of continuous variational
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problems. Purthermore, the reader has probably reajized by now that
almost all dynamic programming problems can e viewed as vaciational
problems, and conversely,

Qur problem ceu be stated in the following form.

We wish to minimize a function ¢ of the state variables y,, .. ., v, and
time £ at some unspecified fminre time T where 77 is the first time that a
certain “stopping relation”

(1 Py - Y 8) == 0

is satisfled, The y,’s are determined by their initial values
{2} g - - ,y,,o

and the difference equations

{(3) vt Af) = gl + gyl - - it el ) Ar

where 2(?) is the decision variable and s to be chosen optimally.

That is, we wish to choose that sequence of numbers {2}, where 2, =
z{k Af), so that as the state variables y, develop with time we encounter
the stopping condition w — 0 with minimum . B

Minimum time problems can be considered to be special cazes of this-
genera) problem where ¢ = £ Alternatively, If the final time is required
explicitly to be ';., then

(4) =t Ty = 0

is the stopping condition.
Tn order to avuid treating 7 as a special varinble, we shall let y,_, =
and g ., = 1.

3. The Recurrence Equations

We begin by guessing a presuniably nonoptimal sequence of decisions
{zg 24, ... . 7 .. .} where z, = 2(F Af) and comuute the curve generated
Ly these decisions in eonjunction with equations (2.2) and {2.3).

We define the nonoptimal return function

{13 Flys ..., ¥aeq) = the value of ¢ at stopping condition y = 0~
where westartinstatey,, .. ., ¥, and use
the guessed policy {2}

The function f is immediately seen to satisfy the recurcence relation

(2) Jp oo V) =T+ 00 ALY s AD
where the s arc evaluated using the guessed {z,} und associated trajectory.

In order to discover the first ovder effect of & change in the decision

. af
variable at time ¢t we seek to evaluate —~| where this notation means

=1t
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Bffdz ovaluated in terms of the state and decision variables at time £
By partial differentintion of (2) with respect to » we see that

gz i i1 Sy, r

)Jl At
: y

To cvaluate this expression we =en ihat we need to konow = .
(TN,
A recurrence relation for this quantit v is ohtained by partial differentiation

with respect to g, of (2]

{4)

o/ | {“+l(af )(ayi* 1L -

=] = - — || Aty + 2 . =1,....n+4+ L
;| 2O, o/ NOY .r) J Fy; lt+ar 7

Both cquations (3) and (4) have obvious verhal Interpretations.
Equation (3) states that the rate of change of f with respect to z at time ¢
equals the rate at which the state of the systom at time £ + A2 changes a=
z varies multiplied by the vate at which f changes az the state of the system
changes at thne t -|- AL guation {4) adds the change in f due to the effect
of a change in y; on the g, to the direct, effect of the change in y,(!) on
¥t + At) to obtain the net change in f.

Kguation (4) is seen to be the disercin analogue of the Multiplier Rule
i #wil agi
G T 2 g =0
derived in Chapter V, § 22, equation (10}, If @fjdz = 0 no improvement ia
possible and the nominal curve bs oplimal. This obscrvation leads Lo
equation (6} of § 22, Chapter V.

We now have two ordinary recurrence relations, (3) and (4), that perimis
us to evaluate the eficet of & change inz at any tihme upon the final objective
functjon ¢. We determine the boundary conditions for the recurrence
relationy by eobserving that a change in o state varizble at the final time

(5)

T has two effects, the immediate change in ¢ and the change in ¢ due to the
change in the final time determined by 4 = 0. Applying this reasoning

—(ﬁ'.)(i"“.'-), j=1,...,n- L
" ‘J’IT Oyjli'

We have derived, by two simple differentiations, expressions evaluating
the first order effect of a decision vhange at any time upon the final value
of ¢. Thesc results can be thought of as “influence functions,” or adjoint
equations, and are usnally derived from theorems concerning the re-
presentation of solutions of linear dilferential equations.
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THE MEANS OF IMPROVEMENT

The manner in which these results can be used most efficiently for the
successive improvement of a nonoptimal solution is largely an experi-
mental matter in the realin of numerical analysis. In the following section
we shall present one scemingly very efficient way of using thesze results due
to Bryson.

4, The Means of Improvement
We postulate the rule
{1) zacwll) = za(t) + S2{t)
for adjusting z and seek an expression for dz. We start by adopting the
reasonable policy (there are altcrnatives), of chanping 2 at each time ¢
proportionally to the guantity
") 3,
i< Oy, 02
evaluated at time £ That is, where the potential payofl rate 9f/0z is
greater we will act more deeisively. Writing

n+1 af ag:
@ G
we conclude from (3.3) that
T‘ a T‘ n+‘1 aJr agi_)2
B G A P = 2] At
® AE& :Z'o oz & s'z'o («;=0 By, 0.

where Ad is the change in the final value of ¢ dus to the changes in z{f)
of dz() at all times 0 < ¢ < 7. The summand in the expressien for Ad
is easily computable along a given trajectory by means of the recurrence
relations (3.3) and (3.4).

If we desire an improvement of Ag in the value of ¢, we choose

Ad
(4) . o
T an 39, 2
L) A
f;zo(i§1 ﬁy,- 82)

and use, for the next iteration, the new decision function given by

wtl gf ag;- —_—
(25*EJA¢
=1 yr’ 2
(5) zuew{t) = zofd(t) T I ointl af ag 2 )
. LY I
ggo(igl oy, az) i

We would he well advised to seek only a modest improvement Ad at
each successive iteration since our analysis is first order and only accurate
for small changes.
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Let we now infroduce some notalion and recapitulate results before
deriving successive approximation technigues for more complicated
problems. Wo shall write 1, ($) for 6f/0y,, remembering that 2, (@) can
be interpreted as the offect of a change in y, on the valuo of ¢ at the final
LER! aJ!‘ o

time, For Y == -2 we write 2,(¢). In this notation, the technique of
i=1 a?fr; 0z

successive improvement is:

(1) Guess z({).

{2) Integrate the equations of motion (2.3).

(3) Evaluate 2, () at the final ime T by means of (3.G).

(4} Determine A, () along the nominal trajectory by backwards

reeursion of {3.4) and simultaneously compute 7 {¢) and
7

z (A, {1} At from (3.3).

! J—

{3) Determine z;0 for a specified small Ag by (4.5).

{6} Return to step (2).

Supposc now that an additional relationship

(6) Hyy, o - Y f) =0
must be ratisfied at the stopping time. The same arguments as in the
preceding paragraphs allows us to compute the influence of a change in 2
on the final value of § by means of the furmulas

i H2- 1 "agi ' . .
(M) 2,0 = (2:1 RO (5 )) AL+ 7y s e
ntl R 89‘3
(8) 2000, = 3 (3,00 s 1)
i=1 [ ]
. of g oy
) Y 1| ) B .4 I
e 0|+ ¥ir O¥sir
We now let §z have the form
{10} 6z = kA () | kA
and conclude
T
{11) Ad = 3 3 (0) Al 8z,
=0
T
{12) Al =3 2 10) At 8.
I==0Q

If the nomiual trajectory, due to cither numerical roundoff, nonlinearity,
or difficulties in finding an initial feasible trajeetory, docs not satisfy the

auxiliary condition (6} we choose Aff as minus the deviation for the desired

final condition, If the nominal trajectory is feastble, A is taken to be zero.
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We now solve the simultaneous linear equations
— z il e
(13) Rg = [ S }.z(gi;)g}kl Bt |3 2UBI0) [k M,
=0 Lo

T T
(14) 5§ = [ > zz(«ﬁ}zgw)]fa, AL { ) zz(mﬁ]kz Al
[ ) - i=0

for %, and k, to be used in equation (10) to achieve an iraprovement .}.—é
in the objective function and a correction A in the fina} value of the
subsidiary condition.

The ahove deviee can Lie used to inclide any reasonehle number of
auxiliary final conditions.

In an unpublizhed papor, Bryson has extended the above technique sc
that one can ask for the maximunt improvement in the objective function
given a specified value for

T
(15) EZ)((SZJE

and has also developed techniques that prevent one frow askiog for in-
compatible changes in the objective and auxiliary conditions. The analysis.
however, is beyond the scope of this disecssion.
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Arrexpix IV

On o New Punctional Transform in Analysis:
The Maximum Transform

RICHARD BELLMAN and WILLIAM KARUSH

1. Introduction

We have seen in Chapter I how frequently one ercounters in mathe-
matical economics and operations research the problem of delermining
the maximum of the function

(1) Flaey, wpy oy ay) = file) + folzy) + 0+ flay)
over the region R defined by z, + %, + - + zy = 2, 2; 2 0. Under
varions assumptions concerning the f;, this problem can Le studied analyti-
cally; ef. Karush!?], and it can also Le treated analyticaily by means of
the theory of dynamic programming'®, and, of course, computationally, as
we have seen in what has gone before,

It is patural in this connection to introduce a “eonvolution” of two
functions f and g, B = f 2 g, defined by
@ Bia) == max [f(y) + glz — )}

O=y=x
For purposes of gencral study, it is more convenient to introduce instead
the convolution 2 = f G g defined by
(3) hlz) = max [flylglz —y))
0<p=s .

It is easy to see that the operation & is commutative and assoclative
provided that all functions involved are nonnegative. By analogy with the
relation between the Laplace transform and the usual convolution,

Ed
jf(y}g(a: — ) dy, it iz natural to seek a functional transform
a .

(4) M(f) = F

with the property that

(G} M{f @ gy =M iM{g),
that is,

(6} Hz) = F(2)6()

where H, F, & are the transforms of 7, f, g respectively.
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We shall show that f exists and has & very simple form. In addition,
A2 has & very simple and elegant representation in o nomber of cases.

2, The Maximurn Transform

Let a transform (1.4) be defined by the equation
(1) F(z} = max{e™f(z)], z2=0

=0
Tt will be assumed that f(z) is continuous and nonnegative for z > 0,
Furthermore, since F(z) is unchanged when f is replaced by its monotone
envelope, we shall cnnsider (1} only for mouotone nondecreasing f.
It is now a straightforward maifer Lo prove (1.5} by the method used in
the usual convolution. We have ’

() Hiz) = max Clads max Lf etz — #)])

r “ysa

= max max [e%f{yiglr — y)] — max max ] ]
el 0=Zy=z ye=0 o xzy

= max [f{y) max [e g(x — y]]]
w0 Ty

= max [ {y) max [¢” “*g(w)]]
yz0 w =0

= max [¢7f ()] - max [e~¥g(w)] = F(2)0{z}
L w=0

as desired.

Ta ensure the existence of FF — M{f){for z = 0, it is sufficient to assume
that f satisfics a relation of the form f{x} = 0[2*] for x = 0 where ¢ = 0.
The transform # is decreasing and continuous for z > 0;if ¢ = 0, this holds
forz = 0.

3. Inverse Operatoy

The determination of the existence and uniqueness of i~ is of some
complexity, and at this time we shall consider only special cases, If for
z = 0, the maximum of f{z)e~* can he found by differentiation, we have
the maximizing value the equation f'(z) — zf(z) = 0. Suppose that this
equalion possesses a unique solution x = r(z) with dz/dz 7 0 {and hence
<< 0). For this value of x, we have F(z) = e~**f(x). Differentiating this
relation with respeet to z, we have

y dz e e s dz
() Fa) = = () — af e — af (o~ 2
= — xf {x)e~"* -g; .
Hence,
(2) = —F'(2){Fl2), or Flz2) + 2F(z) = 0.
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Rut this is precisely the relation which gives the z minimizing F{z)e™s,
for fixed z. Hence, we have
(3} f{z) = min e®* F'{z},
z2=0
the required inversion relation.
A simpler way to obtain this relation is the following. By (2.1}, we have,
for z == 0,

{4 Fz) = ef(x),

whenee Fiz}e™ = f{z). If there is a one-to-one correspondence between
« and z values, we have min F{zje™ = f{x}, with equality for one value,

=0 .
whence {3).
4. Application
Lot
{H [y = max (Nlz)folmed - - frlzadl,
where R is as in (1.1}, Then, inductively, i
» by
(2) MUy =TT Mif or Fiz) =T] F(2),
i1 i=1
whenes formally
e
{$ flx} = min [e” 11 F|.(z)—|.
] i=1 J
Similarly, it we Liave a “renewal” equation
(4} i@y = al@) ~ max [flylglz — ¥,
0=y=z .

we have a formal solution
IZA
{5} J(x) = min !—e—-ﬁ-},
=0 L1 — G{z)
where 4 = Mia), G = M{g).
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ArrExDIX V

The RAND Johnniac Compuder

STUART DREYIUS

The majority of the computations reported in this book were performed
on the Johnniac computer at The RANXD Corporation. Since refcrence is
occasionally made to computing {imes and other data peculiar to a
particular computer, we shall briefly sketeh the vital statistics of Johnniae
as it existed at the time of our dynamic programming research.

The machine, built on the bLasic Princeton design and named after
John von Neumann, contained 4000 high-speed magnetic core mermory
celis, 2 magnatic drum capacity of 12,000, and no tape storage facility.
Inpui was by punched card and output by 200 line/minute printer on
punched cards. Each word of storage held 40 binary digits and contained
either numerical data or two single-address instructions. The fixed point
addition of two numbers required about 000080 seconds and multiplication
or division consumed np to 0017300 seconds. Tloating point operation was
obtained by means of interpretive programming and slowed the com-
putaticn by a factor of about ten.

The periormance of the Johnniac, on the whole, was comparable fo its
contemporary, the IBM-701 computer.

To convert, 1 & rough way, computing time quoted in the text to
numbers applicable to present {eirea 1960} machines, divide by 10.
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