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ABSTRACT 
 

Regression techniques are commonly used for addressing complicated 
prediction and classification problems in civil engineering thanks to its simplicity. For 
a given dataset, the linear regression from the input space to the output variables can 
be achieved by using the “least square error” approach, which minimizes the 
difference between the predicted and actual outputs. The “least mean square” rule can 
also be used as a generic approach to deriving solutions on linear or non-linear 
regressions. The paper addresses the fundamental algorithms of “least square error” 
and “least mean square” in order to facilitate the prediction and classification of cycle 
times of construction operations. The classic XOR problem is selected to verify and 
validate their performances. A viaduct bridge was installed by launching precast 
girders with a mobile gantry sitting on two piers. The effectiveness of regression 
techniques in classifying and forecasting the cycle time of installing one span of 
viaduct considering the most relevant input factors in connection with operations, 
logistics and resources are demonstrated. 

 
INTRODUCTION 
 

Classification and predication play an important role to the success of 
planning and control of a construction project. The production rate tracking can be 
beneficial to forecasting project performances such as the expected activity and 
project completion times. Corrective actions or changes can be made to tackle any 
adverse impact on schedule. Yet, applications of artificial intelligence are hampered 
by its complexities. The operations simulation and artificial neural computing are the 
two main streams of research which have focused on cycle-time and production rate 
predictions of construction operation processes. Previous research efforts by Teicholz 
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(1963), Ahuja and Nandakumar (1985), Halpin (1977), Lu (2003), AbouRizk (2010) 
have greatly contributed to advancing production rate predictability by implementing 
simulation techniques. Contributions are claimed to have better planning and control 
during the project executions, such as estimating the project duration and cost under 
uncertainty, productivity improvement and potential savings in time or cost (Halpin, 
1977, Pritsker et al. 1989, Sawhney and AbouRizk 1995, AbouRizk and Mohamed 
2000, Lu 2003 and Tian et al. 2010). 

The regression modeling, formally named as linear regression analysis, is 
profoundly addressed in this paper, which is the earliest prototype that heralded the 
later development of artificial neural networks. Linear regression techniques are 
widely applied in the construction field, such as Thomas and Sakarcan (1994); 
Sanders and Thomas (1993). The basic mechanism is to determine the output y by 
multiplying each input variable x and an associated weight w as shown in Eq. (1). The 
weights can be determined by using historical records. As linear regression evolved 
into neural network computing, research efforts such as Mutlu al et. (2008) used 
artificial neural networks to forecast the daily water flow at multiple gauge stations in 
the agricultural domain; Portas and AbouRizk (1997), Lu et al. (2000), embedded 
fuzzy logic into neural computing and implemented sophisticated probabilistic 
inference neural networks to estimate labor production rates, respectively. The neural 
network computing research has mainly focused on advancing methodologies (single- 
and multi-layer perceptrons, radial-basis functions and support vector machines) in 
terms of computing efficiency and effectiveness (Haykin, 1998).  

However, sufficient knowledge of neural network computing is required on 
construction professionals in order for them to fully trust and harness these advanced 
tools instead of simply using them as “black box”. This research has contributed to 
elucidating on fundamental regression analysis techniques underlying neural network 
computing, namely: (1) the “least square error” and (2) the “least mean square” 
algorithms, in an effort to facilitate prediction and classification applications in 
construction engineering. The following sections provide mathematical background, 
algorithmic verification using the XOR dataset, and implementation of regression 
techniques to predict and classify precast bridge segment erection cycle times. 

+++= 22110 xwxwwy  (1) 
 
LEAST SQUARE ERROR APPROACH 
 

The least square error approach is the earlier form used for numerical 
regression and prediction. The general equation of linear regression model is in the 
form of Eq. (1). The weight parameters (wn) could be optimized and stabilized by 
analyzing available input data (xn). The analytical matrix-approach transforms Eq. (1) 
in forms of vector as given in Eqs. (2) and (3). The error is defined as the difference 
between the actual output y and the model’s output (summation of xw.) By least 
square adjustment techniques, the error of the system can be minimized by taking its 
partial derivatives with respect to wn which are set as zero to derive optimal solutions, 
as shown in Eqs. (4) to (6). The Eqs. (7) to (9) show a system of rearranged equations 
which can be expressed in a compact matrix form as Eq. (10). The weight w 
parameters can be easily calculated by matrix manipulations only involving 
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parameters of input x and output y. It is noteworthy that w0 in Eq. (1) is the error 
(noise or disturbance) term commonly defined in applied statistics. This term is 
essential to account for any unobserved random variable that presents noise to the 
linear relationship between input x and output y. According to Harrell (2001), the 
error term should be statistically independent and identically distributed, 
approximately normally distributed and have a common variance. To prove the effect 
of unobserved random variables on the linear regression model, Eq. (1) can be 
interpreted as Eq. (11). The linear regression system explicitly considers the inputs 
from 1 to p while factoring in both observed inputs (1 to p) and unobserved inputs (p 
to ). The indispensable bias term maintains the integrity of regression techniques 
resulting in a unique solution. In contrast, the “least mean square rule” approach 
utilizes iterative procedures to stabilize the weights for each input variable along with 
the bias, eventually minimizing errors on model outputs. 
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LEAST MEAN SQUARE APPROACH 
 

The least mean square rule expresses the partial derivative in terms of vector 
G


defined as the system error in linear regression analysis, as given in Eq. (12). The 
least mean square rule represents a generic approach to optimize the weights by 
continuously seeking stabilized value of the bias w0 expressed as Eq. (13). The 
objective is to progressively evaluate w by applying iterative procedures aimed at 
minimizing the system error, as given in Eqs. (14) to (17). )(iY in Eq. (14) denotes the 
output. The error in relation to each input pattern can be computed by subtracting the 
desired output )(id and )(iY  as Eq. (15). W in Eq. (16) and w0 in Eq. (17) can be 
updated by using the learning rate parameterη  until the values are steady, when the 
optimum solution of W(i) is reached. The range of η can be estimated by the 

∞
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eigenvalue of the correlation matrix X. Generally, more time is needed to search the 
optimum solution if the step-size chosen is too small, while no solution can be 
reached if the value is too large due to increased chances of divergence. As the data 
may be highly linearly-non-separable, pre-processing data is essential to transform 
the data from being linearly-non-separable to being linearly-separable. 
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DATA PRE-PROCESSING 
 

Data can be difficult to be classified if the input data of the problem are 
characteristic of high non-linearity. The XOR (eXclusive OR) problem is used to 
illustrate the “non-linearity” problem. The inputs and outputs are shown in Table 1. 
Figure 1 graphically plots the four corresponding points; no straight line can be drawn 
to cluster the points having the same outputs. Thus, direct classification based on 
linear regression is not feasible owing to the non-linearity in data. To tackle the 
problem, the raw data is firstly normalized. K-means clustering technique is 
employed to evaluate the distances between the input pattern and the center of a 
cluster ir . Note that the K-means clustering algorithm is a special case of self-
organizing maps (Haykin, 1998). The P-nearest neighbor algorithm is then applied to 
determine the sigmaσ of the Gaussian function for each cluster. Finally, the data is 
transformed by using the Gaussian function as shown in Eq. (18).  

The K-means clustering and P-nearest neighbor algorithms are implemented 
considering two clusters on the XOR dataset. The two clustering centers coordinates 
are determined as (0, 0), (1, 1) and σ as 1.414. The transformed inputs are thus 
obtained by data pre-processing, ready for regression analysis. A straight line can 
separate the four points with into respective classifications. Figure 2 shows the 
linearly-separable transformed inputs. Both least square error and least mean square 
rule approaches were applied, achieving the same results. w1 and w2 are evaluated 
both as 20.438 and w0 is –31.834. A multivariate regression equation can be 
expressed in Eq. (19) to represent the complete prediction model, where 1x and 2x are 
the two input parameters. 
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Table 1. XOR Inputs and Outputs 
Inputs Before Transformation Inputs After Transformation 

x1 x2 y x1 x2 y 
0 0 1 1.000 0.607 1 
0 1 0 0.779 0.779 0 
1 0 0 0.779 0.779 0 
1 1 1 0.607 1.000 1 

 

  

Figure 1. Linear Non-separable Figure 2. Linear Separable 
  

BRIDGE SPAN ERECTION CASE STUDY 
 

A bridge construction project is used to demonstrate the effectiveness in 
implementing cycle-time prediction and classification by using regression analysis 
techniques. The bridge is a new artery linking Hong Kong and Shenzhen, China, and 
consists of 227 post-tensioned spans of viaduct. A typical span is made up of 14 
precast segmental box girders (12m×2.5m×2.8m of each). The stepping girder precast 
installation method was used to accelerate the viaduct construction process (Chan and 
Lu, 2009). The precast segments were fabricated near Shenzhen and hauled to the site 
for installation. The site was too congested to keep all segments in the convenient 
proximity of the site crew. As an alternative, the precast segments were partially 
stored in a remote storage area and transported to the working span by trailer trucks, 
without any intermediate storage or buffer. 

In order to assist the contractor in deciding on how many precast segments to 
be placed at the remote storage area and how far away to locate the remote storage 
area while maintaining the target one-span erection cycle time of four and half 
working days, four input factors relevant to site operations and logistics planning 
were identified and assessed, namely: (1) the number of trailer trucks rented for 
hauling segments (the site only considered the options of two trailer trucks or three), 
(2) one-batch or two-batch precast segment delivery modes (14 segments can be 
delivered either in one batch on the night before installation operations starts or in 
two batches, which means the first batch of seven segments would be delivered on the 
night before installation starts and the second batch delivered on the following night), 
(3) the percentage of the total number of segments on one span to be placed in the 
remote storage area and (4) the haul duration for a trailer truck to transit from the 
remote storage area to the working span. Table 2 shows the 30 cycle-time records 
resulting from simulations, which define 30 different scenarios. 
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Table 2. Viaduct Installation Cycle-Time Records for Regression Analysis 
Rec 
ID 

No. of 
Tracker 

Delivery 
Batch 

Segment  
at 

RSA (%) 

Duration  
to 

RSA 

Desired 
Install 
Hours 

Predicted 
Install  
Hour 

Desired 
Prod 
Class 

Predicted 
Prod 
Class 

1 2 1 0.00 0.00 103.61 - 0 0 
2 3 1 0.50 0.50 104.76 - 0 0 
3 3 1 0.29 0.33 104.76 - 0 0 
4 3 1 0.50 0.33 104.78 - 0 0 
5 3 1 1.00 0.50 105.78 - 0 0 
6 3 1 1.00 0.33 105.78 - 0 0 
7 3 1 0.29 0.75 108.38 - 1 0 
8 3 1 0.50 0.75 109.36 - 1 1 
9 2 1 0.50 0.50 111.51 - 1 1 

10 3 1 1.00 0.75 112.05 - 1 1 
11 3 1 0.71 0.75 112.41 - 1 1 
12 2 1 0.29 0.75 112.72 - 1 1 
13 2 1 1.00 0.50 114.15 - 1 1 
14 2 1 0.50 0.75 115.70 - 1 1 
15 2 1 0.71 0.75 116.47 - 2 2 
16 2 1 1.00 0.75 116.61 - 2 2 
17 2 2 0.29 0.50 116.67 - 2 2 
18 2 2 1.00 0.33 116.70 - 2 2 
19 2 2 1.00 0.75 116.71 - 2 2 
20 2 2 0.00 0.00 116.74 - 2 2 
21 2 2 0.57 0.50 116.74 - 2 2 
22 2 2 0.57 0.75 116.74 - 2 2 
23 3 2 0.57 0.50 116.74 - 2 2 
24 3 2 0.57 0.75 116.74 - 2 2 
25 3 1 0.29 0.50 104.76 - 0 0 
26 3 1 0.71 0.50 104.89 - 0 0 
27 3 1 0.71 0.33 104.89 - 0 0 
28 3 1 0.00 0.00 105.77 - 0 0 
29 2 1 0.71 0.33 106.00 - 0 0 
30 2 1 0.29 0.50 108.47 - 1 0 
31 2 2 0.29 0.75 N/A 118.118 2 2 
32 3 2 1.00 0.50 N/A 114.425 2 2 
33 2 2 1.00 0.50 N/A 118.010 2 2 
34 3 2 1.00 0.75 N/A 114.763 2 2 
35 2 1 0.29 0.33 N/A 104.030 0 0 
36 2 1 0.50 0.33 N/A 105.373 0 0 
37 2 1 1.00 0.33 N/A 110.371 1 1 
38 2 1 0.71 0.50 N/A 111.135 1 1 
39 2 2 0.29 0.33 N/A 115.589 2 2 
40 2 2 0.57 0.33 N/A 116.276 2 2 

 
To facilitate the implementation of the algorithms, data normalization, K-

means clustering analysis and P-nearest neighbor algorithm were programmed to 
normalize the non-linear data. Both least square error and least mean square 
algorithms were coded. It is noteworthy that the number of cluster centers was 
estimated before executing the K-means clustering algorithm. Cluster center 
initialization is controlled by a random seed in the computer program. One proposed 
solution is to evaluate the root mean square error (RMSE) by using n desired and 
computed outputs given one particular random seed, as shown in Eq. (20). The 
random seed leading to the smallest RMSE will then be used in the regression 
analysis. The accuracy of predictions significantly depends on the selection of 
number of cluster centers, and the quantity and quality of available datasets. In 
general, the larger size of the dataset, the higher quality of the dataset, the higher 
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accuracy the predictions. The smallest root mean square error generated is 1.582 hour 
(Figure 3) by trying 100 random seeds on 30 records (n = 30). Ten “unseen” scenarios 
were predicted by using the derived multivariate regression equation (“predicted 
install hour” column with ID 31 to 40 in Table 2). 

n

xx
n

i∑ =
−

= 1

2
idesired,icomputed, )(

RMSE  (20) 

 

  
Figure 3. Cycle Time Prediction Figure 4. Productivity Classification  

 
Productivity classification is beneficial to decision making during project 

execution. The contractor defined three classes based on span installation hours (less 
than 108 hours is “high”, between 108 hours and 116 hours is “medium” and longer 
than 116 hours is “low”). The 30 data set (ID 1 to 30) were chosen to determine the 
weights of the regression equation. Figure 4 shows the classification results with 
RMSE 0.327. Only two out of thirty records (ID 7 and 30) are incorrectly classified 
(“predicted prod class” differing from “desired prod class”). Input patterns can be 
generalized based on classification results: In order to achieve high productivity, 
segments must be delivered in one batch, less than 29% segments are stored at remote 
storage area, and the trailer truck transit time must be within half an hour. 

 
Table 3: Data Manipulations of the Predicted Productivity Classes 

Prod Class No. of Tracker Delivery Batch Segment at  
RSA (%) 

Duration to  
RSA 

0 (Class 1 – High) 2 to 3 1 0.00 – 1.00 0.00 – 0.75 
1 (Class 2 – Med) 2 to 3 1 0.29 – 1.00 0.50 – 0.75 
2 (Class 3 – Low) 2 to 3 1 to 2 0.00 – 1.00 0.00 – 0.75 
 
CONCLUSION 
 

Regression techniques are effective to analyze construction operations in 
terms of cycle-time prediction and productivity classification.  The fundamentals of 
the “least square error” and the “least mean square” algorithms are contrasted and 
clarified. Both techniques are verified and validated by using the classic XOR 
problem and a bridge construction project. Also, the “best fit” classification model is 
obtained through assigning the number of cluster centers by trial and error. Analytical 
methods or guidance on how to set up the clusters given a particular dataset can be 
further generalized. 
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