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CONVERSION FACTORS

Multiple inch-pound unit By To obtain Sl unit

inch 254 millimeter

inch per hour 254 millimeter per hour

foot (ft) 0.3048 meter

foot per hour (ft/hr) 0.3048 meter per hour

acre 0.4047 hectare

sguare mile 2.590 square kilometer

acre-foot (acre-ft) 0.001233 cubic hectometer

cubic foot per second ( ft¥s , or cfs) 0.02832 cubic meter per second
X
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A Diffusion Hydrodynamic Model
by T. V. Hromadkall and C. C. Yen
Abstract

A diffusion (noninertial) hydrodynamic model of coupled two-dimensional overland flow and one-dimensional open-channel flow
has been developed. Because the noninertial form of hydrodynamic flow equationsis used, several important hydraulic effects that
cannot be handled by the kinematic routing techniques--the approach employed in most watershed models--are accommodated in this
model; namely, the model is capable of treating such effects as backwater, drawdown, channel overflow, storage and ponding.
Although these hydraulic effects were commonly neglected in the past, they are important in drainage studies involving deficiencies
of flood control channel and subtle grade differences between alluvial fan watershed boundaries.
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Introduction

Each year, flood control projects and storm channel systems are constructed by Federal, State, county and city governmental agencies
and also by private land devel opers, which accumulatively cost in the tens of billions of dollars. Additionally, floodplain insurance
mapping, zoning, and insurance rates are continually being prepared or modified by the Federal Emergency Management Agency.
Finally, the current state-of-the-art in flood system deficiency analysis often results in the costly reconstruction of existing flood
control systems. All of these flood control or protection measures are based upon widely used analysis techniques, which commonly
are not adequate to represent the true hydraulic/hydrologic response of the flood control system to the standardized design storm
protection level. The main drawbacks in the currently available analysis techniques liein the ability of the current models to

represent unsteady backwater effectsin channels and overland flow, unsteady overflow of channel systems due to constrictions, such
as culverts, bridges, and so forth, unsteady flow of floodwater across watershed boundaries due to two-dimensional (horizontal plane)
backwater and ponding flow effects.

In this report is developed a diffusion hydrodynamic model, which approximates all of the above hydraulic effects for channels,
overland surfaces, and the interfacing of these two hydraulic systems to represent channel overflow and return flow. The overland
flow effects are modeled by a two-dimensional unsteady flow hydraulic model

2
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based on the diffusion (noninertia) form of the governing flow equations. Similarly, channel flow is modeled using a one-
dimensional unsteady flow hydraulic model based on the diffusion type equation. The resulting models both approximate unsteady
supercritical and subcritical flow (without the user predetermining hydraulic controls), backwater flooding effects, and escaping and
returning flow from the two-dimensional overland flow model to the channel system.

This report is organized into five sections as follows:

1. DHM model theoretical development,

2. Verification of the DHM model,

3. Program description for the DHM,

4. Applications of the DHM, and

5. Comparison between the DHM and the simpler kinematic routing technique.

In this report, the pertinent literature is cited as needed in the text. However, for ageneral overview, the reader is

referred to the Two-Dimensional Flow Modeling Conference Proceedings of the U. S. Army Corps of Engineers
(1981).

The diffusion hydrodynamic model computer code can be easily handled by most current home computers that support a FORTRAN
compiler, FORTRAN listings (and documentation) are included for the reader's convenience.

In typical applicationsinvolving large scale problems, pre- and post-processors should be developed to ease the data entry demands,

and graphically display the tremendous amount of modeling results generated by the computer models.

3
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Ample applications are included in this report which hopefully demonstrate the utility of this modeling approach in many drainage
engineering problems. Problems considered in this report include: (1) one-dimensional unsteady flow problem, (2) rainfall-runoff
model, (3) dam-break flow analysis, (4) esturary model, and (5) channel floodplain interface model. Finally, the diffusion
hydrodynamic model is modified to accommodate the kinematic routing technique, and applications are made to one-dimensional
problems.

Acknowledgments

Acknowledgments are paid to United States Geological Survey, Sacramento, California, for their time and computational assistance
with several sections of this report.
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Model Devel opment

I ntroduction

Many flow phenomena of great engineering importance are unsteady in characters, and cannot be reduced to steady flow by changing
the viewpoint of the observer. A complete theory of unsteady flow is therefore required, and will be reviewed in this section. The
equations of motion are not solvable in the most general case, but approximations and numerical methods can be developed which
yield solutions of satisfactory accuracy.

Review of Governing Equations

The law of continuity for unsteady flow may be established by considering the conservation of massin an infinitesimal space

20
between two channel sections (figure 1). In unsteady flow, the discharge, Q, changes with distance, x, at arate @¥ | and the depth, y,
3y 20
changes with time, t, at arate 3% . The changein discharge volume through space dx inthetime dtis( % ) dx dt. The
sy 38

corresponding change in channel storage in spaceis T dx ( 8T ) dt = dx ( E_t) dt inwhich A = Ty. Because water isincompressible,
the net change in discharge plus the change in storage should be zero; that is

20 ¥ N Ly
(8% )dxdt+ Tdx (3t )dt=(2x )dxdt+dx (#t)dt=0.

Simplifying,

0 &y

ax +T7 4t =0 (1)

or

20 A

ax + ot =0 2

5
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Initial
water

surface
Figure 1.--Continuity of unsteady flow.
du
ACCELERATION LINE,SLOPE=5a | av

el —— e h_=
-’: E"EH‘E'F-‘L: i [ Ihy_Me" 7 7%
.in INE, 515 he=S,dx

ﬂzq .SLGPE'SFyl/“‘—._.—Lf f

‘="I War [

*_ = Wer, vE
= +dtn— )
¥ 1 == 29
—
CH

_I * i+ dz
J_ | ____ _DATUM PLANE J 1

Figure 2.--5implified Representation of Energy in Unsteady Flow.
6
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At agiven section, Q = VA; thus equation 1 becomes

3(va 3
. (3)

ax at

a¥ £ ay
or A—+V—4+T—=0. (4)
ax ax at

Because the hydraulic depth D = A/T and _A =T _Y, the above equation may be written

av dy a3y
D—+V—+—1=0. (5}
ax ax a3t

The above equations are all forms of the continuity equation for unsteady flow in open channels. For arectangular channel or a
channel of infinite width, equation 1 may be written

g By
—_—t — = 0 ] tﬁ‘]
ax 3t

where q is the discharge per unit width.

Equation of Motion

dH
In asteady, uniform flow, the gradient, @x , of the total energy lineis equal in magnitude to the "friction slope” 5t =V*/(C2 R) where
cisthe chezy coefficient and r is the hydraulic radius. Indeed this statement was in a sense taken as the definition of 51 ; however in
the present context we have to consider the more general case in which the flow is nonuniform and the velocity may be changing in
the downstream direction. The net force, shear force and pressure force, is no longer zero, since the flow is accelerating. Therefore,
the equation of motion becomes

av eV
- yAsh - ruP.r.-x = phhx J"i"—*—]
ax &t

7
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that is,

ah W oav 1 av
T S-YR[.—J——-F—-—-]
° ax  gax g at

o1
o= -YR [ — = — {?:l
ax g at
where o iz the shear stress, P iz the hydrostatic pressure, h is
the depth of water, &h is the change of depth of water, v is the
specific weight of fluid, R is the mean hydraulic radius, and p is
T 2
the fluid density. Substituting —2 = E%E into equation 7, we obtain
b

—t——+—1=0 (8)

and this equation may be rewritten as

S¢* Syt S0, (9)

where the three terms of equation 9 are called the energy slope, the
acceleration slope, and the friction slope respectively. Figure 2
depicts the simplified representation of energy in unsteady flow.
v az
By substituting H = £ + y + 2 and the bed slope 50 = - into

equation 8, we obtain

@H @z Ay v AV

—_— e f — = —

ax ax  ax g X

ay ¥ av
l-su'i-_-i-v-_
ax g ax
1 av
sal -5 (10)
g ot
a
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Hence equation 8 can be rewritten as

steady
— ek

uniform flow

steady nonuniform flow —=

unsteady monuniform flow——— (11)

This equation may be applicable to various types of flow as indicated. This arrangement shows how the nonuniformity
and unsteadiness of flows introduce extra terms into the governing dynamic equation.

Diffusion Hydrodynamic M odel
One Dimensiona Diffusion Hydrodynamic Model

The mathematical relationshipsin aone-dimensional diffusion hydro dynamic (DHM) model are based upon the flow
equations of continuity (2) and momentum (11) which can be rewritten (Akan and Yen, 1981) as

an, A

—.5 + __.£ =0 {12]
ax ot

30, 3{Q.2/A.) 3M

_Ee XX gp,x — 4+ S'f;.; =0, (13)
gt ax ax

where Dx is the flowrate; x,t are spatial and temporal coordinates: At
is the flow area; g is gravitational acceleration; H is the water

9
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surface elevation; and Sﬁ is a friction slope. It is assumed that Sfx

is approximated from Manning's equation for steady flow by (e.g. Akan

and Yen, 1981)
(14}
where R is the hydraulic radius; and n 15 a flow-resistance coefficient

which may be increased to account for other energy losses such as

expansions and bend losses. Letting m, be a momentum quantity defined

by
30, 3(Q.2/A)
m = —_— + —--——: X g-n- * {15]
X [ at 3% *
then equation 13 can be rewritten as
s i (16)
| I —_— % m . 1
fx ax X

In equation 15, the subscript x included in m, indicates the directional
term. The expansion of equation 13 to the two-dimensional case leads
directly to the terms {mx, myJ except that now & cross-product of flow
velocities are included, increasing the computaticnal effort comsiderably.
Rewriting equation 14 and including equations 15 and 16, the

directional flow rate is computed by

aH
QK"K;‘[;“'ITII} ¥ {l?}

where l::x indicates a directional term, and Kx is a type of conduction

parameter defined by
10

[Back to DHM Home] [Back to Research] [Cover] [Table of Contents 1] [Table of Contents 2] [Table of Contents 3]



http://www.diffusionhydrodynamicmodel.com/DHM1.html
http://www.diffusionhydrodynamicmodel.com/Research.html

aH
-_
ax &

112
. (18)

1.4B6 EV
K, = AR
X n X

In equation 18, K, 1s limited in value by the denominator term being

1/
>

checked for a smallest allowable magnitude, (such as | % + 1077).

|
Substituting the flow rate formulation of equation 17 into

equation 12 gives a diffusion type of relationship

_K;( —_ % m l__x_ flg}
Bx ax at

3 EL 34
X
The one-dimensional model of Akan and Yen (1981) assumes m = 0 in

equation 18. Thus, the one-dimensional DHM is given by

A
A (20)
ax X ek oat

where K: is now simplified as

1.486 aH W
K == n”y — (21)
* n ax
For a channel of constant width, L equation 20 reduces to
E] aH aH
— K —=K — . (22)
ax ax at

Assumptions other than m, * 0 in equation 19 result in a family of

models:

11
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3(Q,2/A,)
——— gAx, (convective acceleration model)
3x

el
" gh., (local acceleration model)
at

m, = (23)
30, 30,4 |
—_— gA,. (fully dynamic model)
at 3x

0. {DHH}

Two Dimensional Diffusion Hydrodynamic Model

The set of (fully dynamic) 2-D unsteady flow equations consists of

one equation of continuity

4q ag aH
e s _ =g (24)
ax a3y At

and two equations of motion

aq 3 2 H
. Y -q—x— + gh * 3_ =0 . f?5}
st ax | h h ax

3
_.z:+‘ _J.'._ _zq*q son | s, +— =0, ()
at h Y ay

in which 9. qj‘r are flow rates per unit width in the x,y-directions;

Spye Sﬁ, represent friction slopes in x,y-directions; H, h, g stand
for water-surface elevation, flow depth, and gravitaticnal acceleration,

respectively; and x,y,t are spatial and temporal coordinates.
12
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The above equation set is based on the assumptions of constant
fluid density without sources or sinks in the flow field, and of hydro-

static pressure distributions.

The Tocal and convective acceleration terms can be grouped together

and equations 25 and 26 are rewritten as

aH
+— | =0,2=x,5 . (27}

5
fz Az

m, +
z.

where mz represents the sum of the first three terms in equations 25 or
26 divided by gh. Assuming the friction slope to be approximated by the
Manning's formula, one obtains, in the U.5. customary units for flow in

the x or y direction,

1.886 ;5 12
h S ! v 2 ERYy . (28)

q, =
z n

Equation 28 can be rewritten 1n the general case as

3H
qz=-F-za—-K2m=- =%y, (29)
2z
where
1.486 5,5 aH 12
K, =——nh -+ s ILE XY . {3':”
2 n a5 s

The symbel S in equation 30 indicates the flow direction which makes

an angle of & = tan”

{qrquj with the positive x-direction.
Values of m are assumed negligible by several investigators
(Akan and Yen, 1981, Hromadka et al., 1985, and Yanthopoulos and

Koutitas, 1975}, resulting in the simple diffusion model,
13
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aH
q, ==K, —, Z=x,y. (31)
z L

The proposed 2-0 OHM is formulated by substituting eguation 31 into

equation 24
] aH ] dH 3
T R — . (32)

ax Yax ay Yay at

If the momentum term groupings were retained, equation 32 would be written

as
3 EL 3 EL aH
— K — = —_— 5= — (33)
3x 3% a3y By it

where

3 ?
Se— (K m)+— (K mn) ,
ax tr gy ¥V

and Kx' Ky are also functions of m s ’"y respectively.

Humerical Approximation

Numerical Solution Algorithm

The following steps are taken in the one-dimensional model where
the flow path is assumed initially discretized by equally spaced nodal
peints with a Manning's n, an elevation, and an initial flow depth
{usually zero) defined:

(1) between nodal points, compute an average Manning's n, and

average geometric factors,

(2) assuming m ® 0, estimate the nodal flow depths for the

next timestep, (t + at) by using equations 20 and 21

explicitly,
14
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(3) using the flow depths at time t and (t + at), estimate the
midtimestep value of m, selected from equation 23,
(4) recalculate the conductivities ICJg using the appropriate
m, values,
(5} determine the new nodal flow depths at time (t + at) using
equation 19, and
(6) return to Step (3) until K, matches midtimestep estimates.
The above algorithm steps can be used regardless of the choice of
definition for m, from equation 23. Additionally, the above program
steps can be directly applied to a two-dimensional diffusion model with

the selected l:rl'lx, my} relations incorporated.

Numerical Model Formulation (Grid element)

For uniform grid elements, the integrated finite difference version
of the nodal domain integration (NDI) method (Hromadka et al., 19B1) is
used. For grid elements, the NDI nodal equation is based on the usual
nodal system shown in figure 3. Flow rates across the boundary T are

estimated by assuming 2 linear trial function between nodal points.

For a square grid of width 3,

R Y R

where
[ 1.436 He - Ho |2
. s 3 -
n"’ JL_.E :|HE-I-I':[2:
l n r 4 cos @
" E
Te
03 [Hg-Hl <e . (35)
15
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In Equation 35, h (depth of water) and n (the Manning's coefficient)
are both the average of their respective values at C and E, i.e.

h = “"E + hEL#E and n = {nc + n[]JE. {Additionally, the denmominator of
K, s checked such that K, is set to zero if JHE -HCI is less than a

tolerance £ such as 107" ft.)
The net volume of water in each grid element between timestep i and i+1 is

“ci = q’rz +al, +al. +aq|. and the change of depth of water is
W N 5

aH; = ﬂq; * atf4% for timestep i and 1 #1 with st interval. Then
the model advances in time by an explicit approach

i+l i i
He'' =l + He {386)

where the assumed input flood flows are added to the specified input
nodes at each timestep. After each timestep, the hydraulic conductivity
parameters of equation 35 are reevaluated, and the solution of equation 36

reinitiated.
17
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Model Timestep Selection

[

The sensitivity of the model to timestep selection is dependent upon the slope of the discharge hydrograph (ﬁ! ) and
the grid spacing. Increasing the grid spacing size introduces additional water storage to a corresponding increase in
nodal point flood depth values. Similarly, a decrease in timestep size allows arefined calculation of inflow and outflow
values and a smoother variation in nodal point flood depths with respect to time. The computer algorithm may self-
select atimestep by increments of halving (or doubling) the initial user-chosen timestep size so that a proper balance of
inflow-outflow to control volume storage variation is achieved. In order to avoid a matrix solution for flood depths, an
explicit timestepping algorithm is used to solve for the time derivative term. For large timesteps or arapid variation in

[
the dam-break hydrograph (such as 3_2 islarge), alarge accumulation of flow volume will occur at the most upstream
nodal point. That is, at the dam-break reservoir nodal point, the lag in outflow from the control volume can cause
unacceptable error in the computation of the flood depth. One method that offsets this error is the program to self-
select the timestep until the difference in the rate of volume accumulation iswithin a specified tolerance.

Dueto the form of the DHM in equation 22, the model can be extended into an implicit technique. However, this
extension would require a matrix solution process which may become unmanageable for two dimensional models
which utilize hundreds of nodal points.

18
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VERIFICATION OF DIFFUSION HYDRODY NAMIC MODEL
Introduction

An unsteady flow hydraulic problem of considerable interest is the analysis of dam-breaks and their downstream hydrograph. In this
section, the main objective is to evaluate the diffusion form of the flow equations for the estimation of flood depths (and the flood
plain) resulting from a specified dam-break hydrograph. The dam-break failure mode is not considered in this section. Rather, the
dam-break failure mode may be included as part of the model solution (such as for a sudden breach) or specified as a reservoir
outflow hydrograph.

The use of numerical methods to approximately solve the flow equations for the propagation of a flood wave due to an earthen dam
failure has been the subject of several studies reported in the literature. Generally, the flow is modeled using the one-dimensional
equation wherever there is no significant lateral variation in the flow. Land (1980a,b) examines four such dam-break modelsin his
prediction of flooding levels and flood wave travel time, and compares the results against observed dam failure information. In dam-
break analysis, an assumed dam-break failure mode (which may be part of the solution) is used to develop an inflow hydrograph to
the downstream flood plain. Consequently, it is noted that a considerable sensitivity in modeling resultsis attributed to the dam-break
failure rate assumptions. Ponce and Tsivoglou (1981) examine the gradual failure of an earthen embankment (caused by an
overtopping flooding event) and present detailed analysis for each part of the total system: sediment transport, unsteady channel
hydraulics, and earth embankment failure.

19
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In another study, Rajar (1978) studied a one-dimensional flood wave propagation from an earthen dam failure. His model solvesthe
St. Venant equations by means of either afirst-order diffusive or a second-order Lax-Wendroff numerical scheme. A review of the
literature indicates that the most frequently used numerical scheme is the method of characteristics (to solve the governing flow
equations) such as described in Sakkas and Strelkoff (1973), Chen (1980), and Chen and Armbruster (1980).

Although many dam-break studies involve flood flow regimes which are truly two-dimensional (in the horizontal plane), the two
dimensional case has not received much attention in the literature. Katopodes and Strelkoff (1978) use the method of bicharacteristics
to solve the governing equations of continuity and momentum. The model utilizes a moving grid algorithm to follow the flood wave
propagation, and also employs several interpolation schemes to approximate the nonlinearity effects. In amuch simpler approach,
Xanthopoulos and Koutitas (1976) use a diffusion model (i.e. the inertiaterms are assumed negligible in comparison to the pressure,
friction, and gravity components) to approximate a two-dimensional flow field. The model assumes that the flow regime in the flood
plain is such that the inertiaterms (local and convective acceleration) are negligible. In a one-dimensional model, Akan and Yen
(1981) also use the diffusion approach to model hydrograph confluences at channel junctions. In the latter study, comparisons of
modeling results were made between the diffusion model, a complete dynamic wave model solving the total equation system, and the
basic kinematic wave equation model (that is, the inertia and pressure terms are assumed negligible in comparison to the friction and
gravity terms). The differences between the diffusion model and the dynamic wave model were small, showing only minor
discrepancies.

20
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The kinematic-wave flow model has been recently used in the computation of dam-break flood waves (Hunt, 1982). Hunt concludes
in his study that the kinematic-wave solution is asymptotically valid. Since the diffusion model has awider range of applicability for
varied bed slopes and wave periods than the kinematic model (Ponce et al., 1978), the diffusion model approach should provide an
extension to the referenced kinematic model.

Because the diffusion modeling approach leads to an economic two-dimensional dam-break flow model (with numerical solutions
based on the usual integrated finite-difference or finite element techniques), the need to include the extra componentsin the
momentum equation must be ascertained. For example, evaluating the convective acceleration termsin atwo-dimensional flow

model requires approximately an additional 50-percent of the computational effort required in solving the entire two-dimensional
model with the inertia terms omitted. Consequently, including the local and convective acceleration terms increases the computer
execution costs significantly. Such increasesin computational effort may not be significant for one-dimensional case studies;
however, two-dimensional case studies necessarily involve considerably more computational effort and any justifiable simplifications
of the governing flow equationsis reflected by a significant decrease in computer software requirements, costs and computer
execution time,

Ponce (1982) examines the mathematical expressions of the flow equations which lead to wave attenuation in prismatic channels. It
is concluded that the wave attenuation process is caused by the interaction of the local acceleration term with the sum of the terms of
friction slope and channel slope. When local acceleration is considered negligible, wave attenuation is caused by the interaction of
the friction slope and channel slope terms with the pressure gradient or convective acceleration terms

21
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(or acombination of both terms). Other discussions of flow conditions and the sensitivity to the various terms of the flow equations
are given in Miller and Cunge (1975), Morris and Wool hiser (1980), and Henderson (1963).

It is stressed that the ultimate objective of this paper is to develop a two-dimensional diffusion model for use in estimating flood plain
evolution such as occurs due to drainage system deficiencies. Prior to finalizing such amodel, the requirement of including the
inertiaterms in the unsteady flow equations needs to be ascertained. The strategy used to check on this requirement isto evaluate the
accuracy in predicted flood depths produced from a one-dimensional diffusion model with respect to the one-dimensional U.S.G.SK-
634 dam-break model which includes all of the inertia term components.

One-Dimensiona Analysis

Study Approach

In order to evaluate the accuracy of the one-dimensional diffusion model (equation 22) in the prediction of flood depths, the U.S.G.S.
fully dynamic flow model K-634 (Land, 1980a,b) is used to determine channel flood depths for comparison purposes. The K-634
model solves the coupled flow equations of continuity and momentum by an implicit finite difference approach and is considered to
be a highly accurate model for many unsteady flow problems. The study approach isto compare predicted: (1) flood depths, and (2)
discharge hydrographs from both the K-634 and the diffusion hydrodynamic model (equation 22) for various channel slopes and
inflow hydrographs.

It should be noted that different initial conditions are used for these two models. The U.S.G.S. K-634 model requires a base flow to
start the simulation; therefore, the initial depth of water cannot be zero. Next, the normal depth assumption is used to generate an
initial water depth before the simulation starts. These two steps are not required by the DHM.

22
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In this case study, two hydrographs are assumed; namely, peak flows to 120,000 cfs and 600,000 cfs. A baseflow of 5,000 cfsand
40,000 cfswas used for hydrographs with peaks of 120,000 and 600,000 cfs respectively for all K-634 simulations. Both
hydrographs are assumed to increase linearly from zero (or the base flow) to the peak flow rate at time of 1-hour, and then decrease
linearly to zero (or the baseflow) at time of 6-hours (see figure 4 inset). The study channel is assumed to be a 1000 feet width

rectangular section of Manning's n equal to 0.040, and various slopes o in the range of 0.001_Sc_0.01. Figures 4 shows the
comparison of modeling results. From the figure, various flood depths are plotted along the channel length of up to 10-miles. Two

reaches of channel lengths of up to 30-miles are also plotted in figure 4 which correspond to aslope o = 0.0020. In all tests, grid
spacing was set at 1000-feet intervals. Time steps were 0.01 hours for K-634 and 7.2 seconds for DHM.

From figure 4 it is seen that the diffusion model provides estimates of flood depths that compare very well to the flood depths
predicted from the K-634 model. For downstream distances at up to 30 miles, differences in predicted flood depths are less than 3
percent for the various channel slopes and peak flow rates considered.

Infigures 5 and 6, good comparisons between the diffusion hydrodynamic and the K-634 models are observed for water depths and
outflow hydrographs at 5 and 10 miles down stream from the dam-break site. It should be noted that the test conditions are
purposefully severein order to bring out potential inaccuraciesin the diffusion hydrodynamic model results. Less severe test
conditions should lead to more favorable comparisons between the two model results. Although offsets do occur in timing, volume
continuity is preserved when allowances are made for differences in baseflow volumes.

23
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Grid Spacing Selection

The choice of timestep and grid size for an explicit time advancement is arelative matter and is theoretically based on the well-
known Courant condition (Basco, 1978). The choice of grid size usually depends on available topographic data for nodal elevation
determination and the size of the problem. The effect of the grid size (for constant timestep for 7.2 seconds) on the diffusion model
accuracy can be shown by example where nodal spacings of 1,000, 2,000 and 5,000-feet are considered. The predicted flood depths
varied only dlightly from choosing the grid size between 1,000-feet and 2,000-feet. However, an increased variation in results occurs
when agrid size in 5,000-feet is selected. For the example of peak flow rate test hydrograph of 600,000 cfs, the differences of
simulated flow depths between 1,000-feet and 5,000-feet grid are 0.03 feet, 0.06 feet and 0.17 feet at 1 mile, 5 miles and 10 miles,
respectively, downstream from the dam-break site for the maximum flow depth with the magnitude of 30 feet.

Because the algorithm presented is based upon an explicit timestepping technique, the modeling results may become inaccurate
should the timestep size versus grid size ratio become large. A simple procedure to eliminate this instability isto half the timestep
size until convergence in computed results is achieved. Generally, such atimestep adjustment may be directly included in the
computer program for the dam-break model. For the cases considered in this section, timestep size of 7.2 second was found to be
adequate when using the 1,000-feet to 5,000-feet grid sizes.
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Conclusions and Discussion

For the dam-break hydrographs considered and the range of channel slopes modeled, the simple diffusion dam-break model of
equation 12 provides estimates of flood depths and outflow hydrographs which compare favorably to the results determined by the
well-known K-634 one-dimensional dam-break model. Generally speaking, the difference between the two modeling approachesis
found to be less than a 3 percent variation in predicted flood depths.

The presented diffusion dam-break model is based upon a straightforward explicit timestepping method which allows the model to
operate upon the nodal points without the need to use large matrix systems. Consequently, the model can be implemented on most
currently avail able microcomputers. However, as compared to implicit solution methods, time steps for DHM use are extremely
small. Thus, relatively short simulation times must be used.

The diffusion model of equation 22 can be directly extended to a two-dimensional model by adding the y-direction terms which are
computed in asimilar fashion as the x-direction terms. The resulting two-dimensional diffusion model is texted by modeling the
considered test problems in the x-direction, the y-direction, and along a 45-degree trgjectory across a two-dimensional grid aligned
with the x-y coordinate axis. Using a similar two-dimensional model, Xanthopoul os and Koutitas (1976) conceptualy verify the
diffusion modeling technique by considering the evolution of atwo-dimensional flood plain which propagates radially from the dam-
break site.
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From the above conclusions, use of the diffusion approach, equation 22, in atwo-dimensional DHM may be justified due to the low
variation in predicted flooding depths (one-dimensional) with the exclusion of the inertiaterms. Generally speaking, a two-
dimensional model would be employed when the expansion nature of flood flows is anticipated. Otherwise, one of the available one-
dimensional models would suffice for the analysis.

Two-Dimensiona Analysis

Introduction

In this section, atwo-dimensional DHM is developed. The model is based on a diffusion approach where gravity, friction, and
pressure forces are assumed to dominate the flow equations. Such an approach has been used earlier by Xanthopoulos and Koutitas
(1976) in the prediction of dam-break flood plainsin Greece. In those studies, good results were also obtained by using the two-
dimensional model for predicting one-dimensional flow quantities. In the preceding section a one-dimensional diffusion model has
been considered and it has been concluded that for most vel ocity flow regimes (such as Fronde Number less than approximately 4),
the diffusion model is a reasonabl e approximation of the full dynamic wave formulation.

An integrated finite difference grid model is devel oped which equates each cell-centered node to a function of the four neighboring
cell nodal points. To demonstrate the predictive capacity of the flood plain model, a study of a hypothetical dam-break of the
Crowley Lake dam near the City of Bishop, California (figure 7) is considered (Hromadka, et al., 1985).
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The steepness and confinement of the channel right beneath the Crowley Lake dam results atranslation of outflow hydrographin
time. Therefore, the dam-break analysisis only conducted on the neighborhood near City of Bishop where the gradient of topography
ismild.

K-634 Modeling Results and Discussion

Using the K-634 model for computing the two-dimensiona flow was attempted by means of the one-dimensional nodal spacing
(figure 8). Cross sections were obtained by field survey, and the elevation data were used to construct nodal point flow-width versus
stage diagrams. A constant Manning's roughness coefficient of 0.04 was assumed for study purposes. The assumed dam failure
reached a peak flow rate of 420,000 cfs within one hour, and returned to zero flow 9.67 hours later. Figure 9 depicts the K-634 flood
plain limits. To model the flow break-out, a slight gradient was assumed for the topography perpendicular to the main channel. The
motivation for such alateral gradient isto limit the channel flood-way section in order to approximately conserve the one-
dimensional momentum equations. Consequently, fictitious channel sides are included in the K-634 model study which resultsin an
artificial confinement of the flows. Hence, anarrower flood plain is delineated in figure 9 where the flood flows are falsely retained
within a hypothetical channel confine. An examination of the flood depths given in figure 11 indicates that at the widest flood plain
expanse of figure 9, the flood depth is about 6-feet, yet the
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flood plainis not delineated to expand southerly, but is modeled to terminate based on the assumed gradient of the topography
towards the channel. Such complications in accommodating an expanding flood plain when using a one-dimensional model are
obviously avoided by using atwo-dimensiona approach.

The two-dimensional diffusion hydrodynamic model is now applied to the hypothetical dam-break problem using the grid
discretization shown in figure 10. The same inflow hydrograph used in K-634 model is also used for the diffusion hydrodynamic
model. Again, the Manning's roughness coefficient at 0.04 was used. The resulting flood plain is shown in figure 12 for the 1/4
square-mile grid model.

The two approaches are comparable except at cross-sections shown as A-A and B-B in figure 8. Cross-section A-A corresponds to
the predicted breakout of flows away from the Owens River channel with flows traveling southerly towards the City of Bishop. As
discussed previously, the K-634 predicted flood depth corresponds to a flow depth of 6 feet (above natural ground) which is actualy
unconfined by the channel. The natural topography will not support such aflood depth and, consequently, there should be southerly
breakout flows such as predicted by the two-dimensional model. With such breakout flows included, it is reasonable that the two-
dimensional model would predict alower flow depth at cross-section A-A.

At cross-section B-B, the K-634 model predicts aflood depth of approximately 2 feet less than the two-dimensional model. However
at thislocation, the K-634 modeling results are based on cross-sections which traverse a 90-degree bend. In this case K-634 model
will over-estimate the true channel storage, resulting in an underestimation of flow-depths.
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In comparing the various model predicted flood depths and delineated plains, it is seen that the two-dimensional diffusion
hydrodynamic model predicted more reasonable flood plain boundary, which is associated with broad, flat plains such as found at the
study site, than the one-dimensional model. The diffusion hydrodynamic model approximates channel bends, channel expansions and
contractions, flow breakouts, and the general area of inundation. Additionally, the diffusion hydrodynamic model approach allows
for the inclusion of return flows (to the main channel), which were the result of upstream channel breakout, and other two-
dimensional flow effects, without the need for special modeling accommodations that would be necessary with using a one-
dimensional model.
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PROGRAM DESCRIPTION OF THE DIFFUSION HY DRODY NAMIC MODEL
Introduction

A computer program for the two-dimensional diffusion hydrodynamic model which is based on the diffusion form of the St. Venant
equations where gravity, friction, and pressure forces are assumed to dominate the flow equation will be discussed in this section.

The DHM modé consists of a 1-D channel and 2-D flood plain models, and an interface sub-model. The one-dimensional channel
element utilizes the following assumptions:

(1) infinite vertical extensions on channel walls (figure 13),

(2) wetted perimeter is calculated as shown on figure 133,

(3) volumes due to channel skew isignored (figure 13b), and

(4) all overflow water is assigned to one grid element (figure 14).

The interface model calculates the excess amount of water either from the channel element or from the flood plain element. This
excess water is redistributed to the flood plain element or the channel element according to the water surface elevation.

This FORTRAN program has the capabilities to simulate both one-and two-dimensional surface flow problems, such as the one-
dimensional open channel flow and two-dimensiona dam-break problemsillustrated in the preceding pages. Engineering
applications of the program will be presented in the next section.
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I nterface Model
Introduction

The interface model modifies the water surface elevations of flood plain grids and channel elements at specified time intervals
(update intervals). There are three cases of interface situations: (1) channel overflow, (2) grid overflow, and (3) flooding of channel
and grid elements.

Channel Overflow

When the channel is overflowing; the excess water istemporarily stored in the vertically extended space (figure 15b). Actualy, itis
the volume per unit length. This excess water is the product of the depth of water, width of the channel and length of the channel and
is subsequently uniformly distributed over the grid elements. In other words, the new grid water surface elevation is equal to the old
water surface elevation plus a depth of hw/L, and the channel water surface elevation now matches the parent grid water surface
elevation.

Grid Overflow

When the water surface elevation of the grid element is greater than a specified surface detention (figure 15a), the excess water drains
into the channel element and the new water surface elevation is changed according to the following two conditions (figure 15c¢), (a) if
v > V', where v denotes the excess volume of water per unit length and v' denotes the available volume per unit length, the new water

surface of the grid element isA MER AT (v-v')/L and the new water surface elevation of the channel element is also equal to
NEW . . . . NEW OLD .

A ; (b) if v < V', the new water surface elevation of the grid element is A =A - h and the new water surface elevation of

the channel elementisB™ " =B +viw.
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Flooding of Channel and Grid

When flooding occurs, the water surface elevations of the grid and
channel elements are both greater than the specified surface detention
elevation. Two cases have to be considered as follows:

(1) 1f A> B (figure 15d), the new water surface elevation of

the grid element is ANEW o gOLD th'"]{L and the new water
surface elevation of the channel element is equal to A"E”.
(2) 1f A < B (figure 15e), the new water surface elevation of the

grid element is A“E” = ADLD + h'"fL and the new water surface

elevation of the channel element is equal to ANEH.
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APPLICATIONS OF THE DIFFUSION HYDRODYNAMIC MODEL

One-Dimensional Model

Application 1: Steady Flow in an Open Channel

Because the DHM is anticipated for use in modeling watershed phenomena, it isimportant that the channel models represent known
flow characteristics. Unsteady flow is examined in the previous section. For steady flow, a steady-state, gradually varied flow
problem is simulated by the 2-D diffusion model. Figure 16 depicts both the water levels form the 2-D diffusion model and from the
gradually varied flow eguation. For an 8000 cfs constant inflow rate, the water surface profiles from both the 2-D diffusion model
and the gradually varied flow equation match quite well. The discrepancies of these profiles occur at the break points where the
upstream channel slope and downstream channel slope change. At the first break point where the upstream channel slopeis equal to
0.001 and the downstream channel slope is equal to 0.005, the water surface level is assumed to be equal to the critical depth.
However, Henderson (1966), notes that brink flow is typicaly less than the critical depth (Dc). The DHM water surface closely
matches the 0.72 Dc brink depth.

Itisclear to see that the DHM cannot simulate the hydraulic jump, but rather smoothes out the usually assumed "shock front".
However, when considering unsteady flow, the DHM may be a reasonabl e approach for approximating the jump profile. For a higher
inflow rate, 20,000 cfs, the surface water levels differ in the most upstream reach. Again, thisis due to the downstream control,
critical depth, of the gradually varied flow equation.
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Two-Dimensiona Applications

Application 2: Rainfall-Runoff Model

The DHM can be used to develop a runoff hydrograph given the time distribution of effective rainfall. To demonstrate the DHM
runoff hydrograph generation (Hromadka and Nestlinger, 1985), the DHM is used to devel op a synthetic S-graph for a watershed
where overland flow is the dominating flow effect.

To develop the S-graph, a uniform effective rainfall is assumed to uniformly occur over the watershed. For each timestep (5-
seconds), an incremental volume of water is added directly to each grid-element based on the assumed constant rainfall intensity,
resulting in an equivalent increase in the nodal point depth of water. Runoff flows to the point of concentration according to two-
dimensional diffusion hydrodynamics model.

The 10 sguare mile Cucamonga Creek watershed (California) is shown, discretized by 1000-foot grid elements, in figure 17. A
design storm (figure 18) was applied to the watershed and resulting runoff hydrographs are depicted in figure 19 for DHM model and
synthetic unit hydrograph method. From figure 19, the diffusion model generates runoff quantities which are in good agreement with
the values computed using synthetic unit hydrograph method derived from stream gage data.

Next, the DHM is applied to three hypothetical dam-failuresin Orange County, California (see figure 20). Applications of the DHM
illustrates its use in amunicipal setting where flood flow patterns are affected by railroad, bridge undercrossings, and other man-
made obstacles to flow.

50
[Back to DHM Home] [Back to Research] [Cover] [Table of Contents 1] [Table of Contents 2] [Table of Contents 3]



http://www.diffusionhydrodynamicmodel.com/DHM1.html
http://www.diffusionhydrodynamicmodel.com/Research.html

o ':5:3:. r_in-..‘. -‘. '-.":

4 Wl 2w e lig ; 5.G P e

‘-#j HHJ CHos IR yn £ Yr: A s S AL =8 ?.{'\::dq: RO

i':'i:\gf"l" e\ P @IS gl = 7 He j' s £ \,‘rﬂm"-&
-*'. L =, i 4 Ty !

AT~ e

¥

-+ NSTATION]. T T e —/
£ R

==

Figure 17.--Lucamonga Creek Discretization
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Major assumptions used in these assumptions are as follows:

(1) In each grid, an area-averaged ground elevation was estimated
based on the topographic map and a Manning's roughness
coefficient was used for each application

(2) A1l storm drain systems provide negligible draw off of the
dam-brezk flows. This assumption accommodates a design storm in
progress during the dam failure. This assumption also implies
that storm water runoff provides a negligible increase to the
dam-break flow hydrograph.

(3) A1l canyon damming effects due to culvert crossings provide
negligible attenuation of dam-break flows. This assumption is
appropriate due to the concurrent design storm assumption, and
due to sediment deposition from transport of the reservoir
earthern dam materials.

(4) The reservoir failure yields an outflow hydrograph as depicted

in figure 21.

Application 3: Small-Scale Dam-Break Flood Plain Analysis

Study of a hypothetical failure of the Orange County Reservoir north-
east of the City of Brea, California (figure 22) was conducted by Hromadka
and Lai (1985). Using current USGS topographic quandrangle map (photo-
revised, 1981), a 500-foot grid discretization was prepared (figure 23),
and nodal-area ground elevations were estimated based on the map. A
Manning's roughtness coefficient of n = 0.040 was used throughout the study,
except in canyon reaches and grassy plains, where n was selected as 0.030
and 0.050, respectively. In this study, the resulting flood plain and the
comparison of the model-simulated flood plain to a previous study by the

Metropolitan Water District of Southern California (1973), are shown in
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MODEL TIME (MINUTES)

Figure 21.--Stuay dam-break cutflow hydrograph for
Orange County Reservoir.
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figure 24. The main difference in the estimated flood plains is due to the dynamic nature of the DHM model, which accounts for the
storage effects resulting from flooding, and the attenuation of a flood wave because of 2-D routing effects. From this study, the
estimated flood plain isjudged to be reasonable.

Application 4: Small-Scale Flows Onto aFlat Plain

A common civil engineering problem is the use of temporary detention basins to offset the effects of urbanization on watershed
runoff. A problem, however, isthe analysis of the basin failure; especially, when the floodflows enter a wide expanse of land surface
with several small channels. This application isto present study conclusions in estimating the flood plain which may result from a
hypothetical dam-failure of the LO2P30 Temporary Retarding Basin. The results of this study are to be used to estimate the potential
impacts of the area if the retention basin berm were to fail.

The study site includes the area south of Plano Trabuco, Phasell. It is bounded on the north of LO2P30 Retarding Basin Berm, on the
east and south of Portola Parkway and on the west by the Arroyo Trabuco bluffs (see figure 25).

Using a1" = 300" topographic map, a 200-foot grid control volume discretization was constructed as shown in figure 26. In each grid,
an area-averaged ground el evation was estimated based on the topographic map. A Manning's roughness coefficient of n = 0.030 was
used throughout the study.
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STuUDY AREA MAP NOT TO SCALE

Figure 25.--Location map for LO2P30 temporary retarding basin.
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The profile of Portola Parkway varies approximately 2 feet above and below the adjacent land. Consequently, minor ponding may
occur where Portola Parkway is high and sheet flow across Portola Parkway will occur at low points. It should be noted that depths
along Portola Parkway are less than 1 foot (figure 26). Figure 27 shows lines of arrival times for the basin study. It is concluded that
Portola Parkway is essentially unaffected by a hypothetical failure of the LO2P30 Temporary Retarding Basin.

Application 5: Two-Dimensional Floodflows Around a Large Obstruction

In another temporary detention basin site, floodflows (from a dam-break) would pond upstream of alandfill site, and then split, when
waters are deep enough, to flow on either side of the landfill. An additional complication is arailroad berm located downstream of
the landfill, which forms a channel for floodflows. The study site (see figure 28) is bounded on the north by a temporary berm
approximately 300 feet north of the Union Pacific Railroad, bounded on the east by Milliken Avenue, bounded on the south by the
Union Pacific Railroad and bounded on the west by Haven Avenue.

A 200-foot grid control volume discretization was constructed as depicted in figure 29. In each grid, an area-averaged ground
elevation was estimated based on the topographic map. A Manning's roughness coefficient of n = 0.030 was used throughout the

study.

From figure 30 it is seen that flood plain spreads out laterally and flows around the landfill. The flow ponds up around the landfill;
along the north side of the landfill, the water ponds as high as 9.2 feet, and along the east and west sides of the landfill, the water
ponds up to 5.1 feet high. Asthe flow travels south, it ponds up to a depth of 4.8
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feet against the railroad near Milliken Avenue. Because the water spreads laterally, Milliken Avenue runs the risk of becoming
flooded; however, the water only ponds to 0.6 feet along the street. A more in-depth study is needed to seeif the water would remain
in the gutter or flood Milliken Avenue.

By observing the arrival times of the flood plain in figure 31, it is seen that the flood plain changes very little on the west side of the
landfill once it reaches the railroad (0.6 hours after the dam-break). But on the east side of the landfill it takes 2.0 hours to reach the
railroad.

Application 6: Estuary Modeling

Figure 32 illustrates a hypothetical bay, which is schematized in figure 33. Stage hydrographs are available at seven stations as
marked in figure 32 and are numbered 1 through 7 (counterclockwise). Stage valuesin this application are expressed by sinusoidal
equations (see Table 1). Some DHM-predicted flow patterns in the estuary are shown in figures 34 to 36. The flow patterns appear
reasonable by comparing the fluctuations of the water surface to the stage hydrographs. DHM computed flow patterns compare well
to asimilar study prepared by Lai (1977).
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Table 1 -~ Boundary values for flow computation
in a hypothetical bay

Boundary value equation:

2n{t - £)
z=asin | ——— |+ M + 100.
T

in which

a = amplitude, t = time, in second.
£ = phase lag, T = tidal period = 12.4 hr.
M = mean water level, = 44640 sec.
NODE a(ft) £(sec) M(ft)

63 5 0 0

70 4.95 60 0

74 4.85 180 0

75 4.85 180 0

46 4.75 1200 0.3

39 4,725 1260 0.35

33 4.7 1320 0.4

4.5 1800 0.7
4 . 4.45 1860 0.75
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Application for Channel and Flood Plain Interface Model

Application 7: Channel-Flood Plain Model

Figure 37 depicts a discretization of atwo-dimensional hypothetical watershed with three major channels crossing through the flood
plain.

Figure 38 depicts the inflow and outflow boundary conditions for the hypothetical watershed model. Input data and partial output
results of this application are included in Attachment D. Figures 39 through 44 illustrates the evolutions of the flood plain.

The shaded areas indicate which grid element are flooded. From figure 39, it is seen that the outflow rates at nodes 31, 71 and 121 are
less than the corresponding inflow rates which results in a flooding situation adjacent to the outflow grid elements. The junction of
channel B and B' is aso flooded. At the end of the peak inflow rate (figure 41), about 1/3 of the flood plain is flooded. Figure 44
indicates a flooding situation along bottom of the basin after 10 hours of simulation. Figure 45 shows the maximum depth of water at
4 downstream cross-sections. It is needed to point out that the maximum water surface for each grid element are not necessarily
incurred at the same time. Finally, figures 46 and 47 depict the outflow hydrographs for both the channel system and the flood plain
system.

Until now, no existing numerical model can successfully simulate or predict the evolution of the channel-flood plain interface
problem. The proposed DHM model uses asimple diffusion approach and interface scheme to simulate the channel-flood plain
interface development.
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Figure 38. --Inflow and outflow boundary conditions for the hypothetical watershed model
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REDUCTION OF THE DIFFUSION HY DRONAMIC MODEL TO KINEMATIC ROUTING
Introduction

The two-dimensional DHM formulation of equation 32 can be simplified into a kinematic wave approximation of the two-
dimensional equations of motion by using the slope of the topographic surface rather than the slope of the water surface is the friction
slopein equation 28. That is, flowrates are driven by Manning's equation, while backwater effects, reverse flows, and ponding effects
are entirely ignored. As aresult, the kinematic wave routing approach cannot be used for flooding situations such as considered in the
previous chapter. Flows which escape from the channels cannot be modeled to pond over the surrounding land surface nor move over
adverse slopes, nor are backwater effects being modeled in the open channels due to constrictions which, typicaly, are the source of
flood system deficiencies.

In arecent report by Doyle et a. (1983), an examination of approximations of the one-dimensional flow equation is presented. The
authors write:

"It has been shown repeatedly in flow-routing applications that the kinematic wave approximation always predicts a steeper wave
with less dispersion and attenuation than may actually occur. This can be traced to the approximations made in the development of
the kinematic wave equations wherein the momentum equation is reduced to a uniform flow eguation of motion that simply states the
friction dope is equal to the bed slope. If the pressure term is retained in the momentum equation (diffusion wave method), then this
will help to stop the accumulation of error that occurs when the kinematic wave approximation procedure is applied."”

Application 8: Kinematic Routing (One-Dimensional)
To demonstrate the kinematic routing feature of the DHM, the one-dimensional channel problem used for the verification of the

DHM is now used to compare results between the DHM model and the kinematic routing.
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For the steep channel, both techniques show similar results up to 10 miles for the maximum water depth (figure 48) and discharge
rates at 5 and 10 miles (figures 49 and 50). For the mild channel, the maximum water surface and discharge rates deviate increasingly
as the distance increases downstream from the point of channel inflow.
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CONCLUSIONS

A diffusion hydrodynamic model is developed for usein civil engineering flood plain studies. The diffusion hydrodynamic model
capabilities may provide the practicing engineer with a flood control modeling capability not previously available, and only at the
price of ahome computer. Although several applications are provided in this report, further research is required for the verification of
predicted flooding depths, travel times, and other important hydraulic information.

For one-dimensional unsteady flow channel routing problems where back-water effects are negligible, the comparisons made
between the diffusion and kinematic routing approximations have shown significant differences, which may be important to
watershed models based on the kinematic routing technique. Because the diffusion (noninertia) routing technique is simpleto
implement, and includes additional terms for better hydraulic approximation, it is recommended that all kinematic-wave based
hydrologic models be modernized by using the diffusion-routing technique. Especially for the backwater effects, ponding and
flooding due to the deficiencies of the capacities of the flood control channels can now be modeled by the DHM simultaneously.

The current version of the diffusion hydrodynamic model has been successfully applied to a collection of one- and two-dimensiona
unsteady flows hydraulic problems including dam-breaks, and flood system deficiency studies. Consequently, the diffusion
hydrodynamic model promisesto result in a highly useful, accurate, and simple to use (although considerabl e topographic data may
be needed depending on the size of the problem) computer model, which is of immediate use of practicing flood control engineers.
Use of the diffusion hydrodynamic model in surface runoff problems will result in a highly
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versatile and practical tool which significantly advances the current state-of-the-art in flood control system and flood plain mapping
analysis procedures, resulting in more accurate predictions in the needs of the flood control system, and potentially proving a

considerable cost saving due to reduction of conservation used to compensate for the lack of proper hydraulic unsteady flow effects
approximation.
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ATTACHMENT A
COMPUTER PROGRAM
Introduction

Figures A.1 and A.2 depict the simple flow chart for the DHM Model. Because the DHM computer code is relatively small, it can be
handled by most current home computer that supports a FORTRAN compiler. Computer listings are included herein for reader's
convenience.
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Figure A.1.--Flow chart for diffusion hydrodynamic
model.
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Figure A.2-- Flow chart for channel and
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Input File Descriptions

The DHM model calls for the following data entries:

Line Variables
1 OTMIN,DTMAX ,DTI,DTD,SIMUL,ITER,TOUT ,KODE,
KMODEL

2 NNOD, NODC, SIDE, TOL, DTOL, DTOLP

3 FP(1,J), J = 1,7
NNOD+2 FP(NNOD,J), J = 1,7
NNOD+3 NERI
NNOD+4 (R(1,J), 4 =1,2), I = 1,NERIL
NNOD+5 NFPI, NPFPI
NNOD+6 KINP(1), (HP{1,0,1), HP(1,0,2), J = 1, NPFPI)
NNOD+5+NFP] KINP(NFPI), (HP(NFPI,J,1), HP(NFPI,J,2),

J = 1,NPFPT)

NNOD+NFPI+6 ~NDC

NNOD+HFP1+7 NODDC(1),1=1,NOC
NHOD+NFP1+8 NFLUX, NFOUT
NNOD+NFP1+9 NODFX(I),I = 1, NFLUX
NNOD+NFPI+10 KK, (FC(KK,d), J = 1,5)

L4 L
- -

NNOD+NFPI+NODC49 KK, (FC{KK,J), J =1,5)
NNOD+NFPI+NODC#10  NCHI,NPCHI,NCHO,NPCHO,NSTA,NPSTA
NNOD+NFPI+NODC+11  XKIN(1),({H(1,9,1),H{1,9,2)),J =1,NPCKI)

- 3
L3 Ll

- L]

NNOD+NFPI+NODC#NCHI+10 KIN(NCHI ), ( (H(NCHI,J,1),H(NCKI,J,2)),J =1,NPCHI)
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where

NNOD+NFPI+NODC+NCHI+11

NNOD+NFPI+NODC+NCHI+
NCHO+10

NNOD+NFPI+NODC+NCHI+
NCHO+11

NNOD+NFPI+NODC+NCHI+
NCHO+10+NS5TA

KOUT(1),(HOUT(1,J,1),HOUT(1,9,2),
HOUT(1,J,3), J = 1,NPCHO)

KOUT(NCHO) , (HOUT(NCHO,J,1) ,HOUT(NCHOD,J,2},
HOUT(NCHO,J,3), J = 1, NPCHO)
NOSTA(1),(STA(1,J,1),STA(1,d,2), J = 1,
NPSTA)

NOSTA(NSTA),{STA(NSTA,J,1),STA(NSTA,J,2),

J = 1,NPSTA)

CTMIN  is the minimum allowable timestep in second, (R)

DTMAX  is the maximum allowable timestep

in second, (R)

DTI is the increment of timestep in second, (R)

DTD is

the decrement of timestep in second, (R)

SIMUL  is the total simulation time in hour, (R)

ITER is
is called, (1)

the update interval {timestep) that interface model

TOUT is the output period in hour, (R)

KODE

b

suppress the efflux velocities

(1)

output the efflux velogities

kinematic routing technique

1,
KMODEL
otherwise ,

NNOD
NODC
SIDE
TOL

oToL
timestep; {R}

(1)

diffusion hydrodynamic model
is the total number of nodal points for flood plain, (I)

is the number of channel element, (I)

is the length of the uniform grid side in feet, (R)

is the specified surface detention in feet, (R)

is the minimum change of water depth in feet for each
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DTOLP

FP(I,1)
FP(1,2)
FP(I1,3)
FP(1.4)
FP(I,5)

FP(I,6)

FP{I,7)
NERI

R(1,1)

R(I,2)

NFPI
NPFPI
KINP (1)

is defined as

change of water depth
DTOLP = x 100% (R)
pervigus water depth

is the northern nodal point of node I, (R)
is the eastern nodal point of node I, (R)
is the southern nodal point of node I, (R)
is the western nodal point of node I, (R)

is the averaged Manning's roughness coefficient for
node I, (R}

is the averaged ground surface elevation for node I
in feet, (R)

is the initial water depth for node I in feet, (R)

is the number of data pairs for uniform effective
rainfall rate, {I)

is the time (hour) corresponding to the effective
rainfall rate, (R)

is the effective rainfall intensity (in/hr) ordinate
for effective rainfall rate, (R)

is the number of input nodal points for the flood plain, (1)
is the number pair of inflow hydrograph rate entires, (I}

is the array that stores the inflow boundary condition
nodal points (1)

HP(1,J,1) s the time (hour) corresponding to the inflow hydrograph, (R)

HP(I,0,2) is the inflow rate (cfs) ordinate for the inflow hydrograph, (R

NDC
NODDC (1)

NFLUX

TFOUT
NODFX{I)

KK
FC(KK,1)

is the number of critical-depth outflow nodal points, (I}

is the array which stores the critical-depth outfliow
nodal points, (I)

is the number of nodal points where outflow hydrograph are
being printed, (I)

is the interval for outflow hydrograph (in timesteps), (R}

is the array which stores the nodal points where outflow
hydrographs are being printed, (I)

is the nodal point for channel element, (I)

is the array which stores the averaged Manning's coefficient
of the channel elements, (R)
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FC(KK,2) is the array whirh stores the width of the channel
elements, (R)

FC(KK,3) is the array which stores the depth of the channel
elements, (R)

FC(KK,4) is the array which stores the bottom elevation of the
channel elements, (R)

FC(KK,5) is the array which stores the initial water depth of the
channel elements, (R)

NCHI is the number of the inflow boundary conditions for the
channel system, (I)

NPCHI is the number of pairs of inflow hydrograph entries of
the channel system, (1)

NCHO is the number of the cutflow boundary conditions for the
channel system, (I)

NPCHO is the number of sets of ocutflow hydrograph entires of the
channel system, (I)

NSTA is the number of the stage station nodal points, (1)
NPSTA is the number of pair of stage curve entries, (I)

KIN(1) is the array which stores the nodes of inflow hydrograph
of the channel cystem, (I)

H(I,J,1) is the time (hour) corresponding to the inflow hydrograph
for the channel system, (R)

H(I,J.2) is the inflow rate (cfs) ordinate for the inflow hydrograph
for the channel system, (R)

KOUT(I) 1is the array which stores the nodes of ocutflow hydrograph
of the channel system, (I)

HOUT(I,J,1) is the array which stores the depth that a specified
stage--discharge curve is used, (R)

HOUT(1,J,2) is the array which stores the coefficient of a stage--
discharge curve, (R)

HOUT(I,J,3) is the array which stores the exponent of a stage--discharge
curve, (R)

NOSTA(I) is the array which stores the node of stage curve for the
channel system, (1)

STA(I,J,1) is the array which stores the time (hour) corresponding
to the time-stage curve, (R)

STA(1,J,2) is the array which stores the water surface elevation
(feet) of the time-stage curve, (R)
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Note:

1. If any value of NERI, NFPI, NDC, NFLUX and NODC is equal to
zero, then the values for the corresponding array need not be
entered in the input file.

For an example, if NERI = 0 then R(I,J) needs not be included
in the input file.

2. If NODC equals to zero, then entire channel element informa-
tion need not be entered in the input file.

3. R denctes real number and I denotes integer number.

ATTACHMENT B
USER'S INSTRUCTIONS
Introduction
The DHM model has the capabilities to perform: (1) one-dimensional
analysis, (2) two-dimensional analysis and (3) one- and two-dimensional
interface analysis.

One-Dimensional Analysis

For one-dimensional analysis, a zero value should be entered for
variable ITER. The entries for array FP{I,J) should reflect the one-
dimensional representation as shown in figure B.1.

Two-Dimensional Analysis

For two-dimensional analysis, zero values should be assigned to
variables ITER and NODC. The entire data entries for the channel
system can be neglected in the input file.

One- and Two-Dimensjonal Interface Model

When variables ITER and NODC are not equal to zero, the interface
model is called at each update interval to calculate the new water surface
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Figure B.1.-- One-dimensional grid element.
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elevations for both the grid and channel elements., A negative sign should
be included in the Manning's roughness coefficient for a grid element where

a channel element passing through a grid element.

Inflow Boundary Conditions
Inflow boundary conditions are described by a linear time-inflow

rate hydrograph for each specified inflow grid or channel element.

Qutflow Boundary Conditions

Outflow boundary conditions for channel element (figure B.2.a) are:

(1) unidirectional critical depth assumption, i.e., discharge per
unit length is g = 5.67 (depth)"s, and

(2) the boundary conditions where no water flows across element
boundary (figure B.3).

Outflow boundary condition for channel system is described by the

following equation (figure {B.2.b) as:

0 If 0 < depth of water ¢ specified surface
detention
8, . .
u]{depth) If specified surface detention < depth of water < d,
Qli
g,
uE{depth) 1f d: < depth of water < d2

where d,, d,,**+, are the pre-determined depth values from a stage-discharge
station and up to 10 sets of data can be used to represent the stage-discharge
relationship for each station.
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Figure B.2.--Diffusion hydrodynamic boundary condition models.
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Variable Time Step

Variable time step dramatically reduces the computational time.

The algorithm of the variable time step is depicted in figure B.4.

BEGIN

NO

YES

RETURN

RECALCULATE
THE WNEW WATER
SURFACE

Figure B.4.-- Algorithm for the variable time step.
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where
sh' (1) is
Delh  is
bti is
at ;s
oty is
TOLP  is

Dcheck is

the change of water depth for Node I at time step i,
the user specified tolerance,

the interval for time step i,

the user specified incremental time interval,

the user specified decremental time interval,

the user specified percentage of water depth, and

defined as Delh/TOLP.

Kinematic Routing Techniques

The kinematic routing technique is also included in the DHM model.

By setting KMODEL to 1, the kinematic routing is evoked.
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ATTACHMENT C
COMPUTER LISTINGS

PROGRAM DMHZ1

COMMON/BLK 1/FP(250,8),FC(250,6)

COMMON/BLK 2/KIN(10),H(10,15,2),KOUT(10),HOUT(10,15,3)
COMMON/BLK 3/NOSTA(10),STA(10,15,2) ,NODFX(50)
COMMON/BLK 4/DMaX(250,2),TIMEX(250,2)

COMMON/BLK 5/KINP(10),HP(10,15,2)

COMMON/BLK 6/NODC,NCHI, NCHO, NPCHI , NPCHO, NSTA, NPSTA
COMMON/ELK 7/DTOL,DTOLP, NFLUX ,KFLUX ,CHECKD , ITER
DIMENSION NODDC(S0),VEL(250,4),R(10,2),Q(4)

DATA NR/1/,NW/2/

DEFINITIONS

FLOODFLAIN INFORMATION:

FP{I IJ}=N ,E,E,‘.‘-“H:";HNIHGS,ELE“’, |INITI:‘1L EFIJI,
Q(1)=FLOWRATE PER UNIT WIDTH OF FLOW
R(I,1)=TIME COORDINATE FOR EFFECTIVE RAINFALL INTENSITY IN HOUR
R(1,2)=EFFECTIVE RAINFALL INTENSITY(IN/HKR)

KINP(I1)=INFLOW NODAL POINTS

HP(I,J,K)=INFLOW HYDROGRAPH FOR NODE I

DMAX(I,J)=MAXIMUM WATER DEFTH

TIMEX(I,J)=TIME CORRESPONDS TO MAXIMUM WATER DEPTH
NODDC(I)=CRITICAL DEPTH CUTFLOW NODES

VEL(I,J)=N-,E-,S-,AND W-EFFLUX VELOCITIES

CPEN INPUT AND QUTPUT FILES
OPEN (UNIT=NR,FILE="DHM21.DAT',STATUS="OLD")
OPEN (UNIT=NW,FILE='DHM21.ANS',STATUS="NEW')

DATA INPUT

READ PROGRAM CONTROL DATA

READ (NR,*)DTMIN,DTMAX,DTI,DTD,SIMUL, ITER, TOUT, KODE , KMODEL
READ (NR,*)NNOD,NODC,SIDE,TOL,DTOL,DTOLP

INPUT FLOODPALIN INFORMATION

READ (NR,*)((FP(I,J),J=1,7),1=1,NNOD)

READ EFFECTIVE RAINFALL INTENSITY (LINEAR FUNCTION)
READ (NR,*)NERT

IF(NERI.GE,1)READ (NR,*)((R(1,J),J=1,2),6I=1,NERI)
READ INFLOW HYDROGRAPHS (LINEAR FUNCTION)

READ (NR,*)NFPI NPFPI

IF(NFPI.LT.1)GOTO 10

DO 20 I=1,NFPI

READ (NR,*)KINP(I),(HP(I,J,1),HP(I,J,2),J=1,NPFPI)
CONTINUE
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Cocvvnan READ OUTFLOW CRITICAL DEPTH NODES

10 READ (NR,¥*)NDC
IF(NDC.GE.1)READ (NR,*){NODDC(I),I=1,NDC}
Covinnnn READ SPECIFIED OUTFLOW NODES

READ {NR,*)NFLUX,TFOUT
IF(NFLUX.GE.1)READ (NR,*) (NODFX(I),I=1,NFLUX)
TF(NODC.LT.1)GOTO 30

C.ov....INPUT CHANNEL INFORMATION
DO 25 I=1,NODC
READ (NR,*)KK,(FC(KK,J),J=1,3),FC(KK,5)
FC(KK, 4)=FP(KK,6)-FC(KK, 3)

25 CONTINUE
READ (NR,*)NCHI,NPCHI ,NCHO,NPCHO,NSTA,NPSTA
IF(NCHI.LT.1)GOTO 40

Ceun.n . .READ INFLOW HYDROGRAPHS (LINEAR FUNCTION)

DO 50 I=1,NCHI
READ (NR,*)KIN(I),(H(I,J,1),H(I,J,2),J=1,NPCHI)
50 CONTINUE
40 IF(NCHO.LT.1)GOTO 60
DO 70 I=1,NCHO
Couvensn .READ OUTFLOW BOUNDARY CONDITION NODES
Covennnn QOUT = ALPHA®*(DEPTH OF WATER)*¥BETA

READ (NR,*)KOUT(I),(HOUT(I,J,1),HOUT(I,J,2),
¢ ROUT(I,J,3),J=1,NPCHO)

70 CONTINUE
60 IF(NSTA.LT.1)GOTO 30
Covennnn READ STAGE CURVE (LINEAR FUNCTION)
DO 80 I=1,NSTA
80 READ (NR,*) NOSTA(I),(STA(1,J,1),STA(I,J,2),J=1,NPSTA)
30 CONTINUE
Covennes END OF INPUT DATA
ITTER=ITER
IF(ITTER.EQ.0)ITTER=]
C
C WRITE BASIC INFORMATION TO OUTPUT FILE
C
Conevnnn FORMATS

2001 FORMAT(/, 10X, "*#* FINEMATIC ROUTING ###' /)
2002 FORMAT(/,10X, "#** DIFFUSION ROUTING %*#*' /)
2003 FORMAT(10%, '"MIN. TIMESTEP(SEC.) = ',F5.2,/,
10X, '"MAX. TIMESTEP(SEC.) = ',F5.2,/,

10X, "INCREASED TIMESTEP INTERVAL (SEC.) = ',F5S.
10X, "DECREASED TIMESTEP INTERVAL (SEC.) = ',F5.
10X, "TOTAL SIMULATION(HOUR) = ',F5.2,/,

10X, "UPDATE INTERVAL(TIMESTEPS) = ',15,/,

10X, "OUTPUT INTERVAL(HOUR) = ',F5.2)
FORMAT( 10X, "NUMBER OF NODAL POINTS FOR FLOOD PLAIN = ',I5,/,
10X, "UNIFORM GRID SIDE(FEET) = ',F10.3,/,

10X, "NUMBER OF NODAL POINTS FOR CHANNEL = ',I5,/

10X, "RETENTION WATER DEPTH(FEET) = ',F5.4,/,

10X, "TOLERANCE OF CHANGE IN WATER DEPTH(FEET) = ',F5.4,/,
10X, 'PERCENTAGE OF CHANGE IN WATER DEPTH = ',F5.1," ')

2,/,
2*1"}

2004

OO0 o000
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2005 FORMAT(130("-"))
2006 FORMAT(//,10X, 'NODAL POINT DATA EXTRY:'.//,
7%, '##% FLOOD PLAIN INFORMATION ®##' /,
10X, "NC = CENTRAL GRID NODE',/,
10X, "NN,NE,NS,NW = NORTH, EAST, SOUTH, WEST NODAL POINTS',/,
10X, 'NBAR = NODAL POINT MANNINGS ROUGHKESS COEFFICIENT',/,
12X, ' (NEGATIVE SIGN INDICATES A CHANNEL PASSING THROUGH)',/,
10X, "ELEV = NODAL POINT ELEVATION',/,
10X, 'DEPTH = INITIAL WATER DEPTH AT NODE',//)
2007 FORMAT(11X,' NC NN MNE NS5 NW NBAR ELEV. DEFTH')
2008 FORMAT({10X,514,1X,F6.4,2X,F6.1,1X,F5.1)
2009 FORMAT(//, 10X, 'NUMBER OF EFFECTIVE RAINFALL INTENSITY ',
¢ 'ENTRIES = ',I12,/,4X,'LINEAR FUNCTION IN EFFECTIVE RAINFALL',
C ' INTENSITY (IN/HR) ON WATERSHED:',/,10X,'HOUR  INTENSITY')
2010  FORMAT(8X,F6.2,4X,F6.2)
2011 FORMAT(/,10X,"INFLOW HYDROGRAPH AT NODE #',13,/,
C 12X,"HOUR CFS")
2012 FORMAT(10X ,F5.1,4X,F7.0)
2013 FORMAT(//,10X, '"NUMBER OF CRITICAL-DEPTH OUTFLOM NODES = ',14,/,
C 10X,'CRITICAL-DEPTH OUTFLOW NODE NUMBERS:')
2014 FORMAT(10X,13,1X,13)
2015 FORMAT(//,7X, "#*##*CHANNEL INFORMATIQN®==' /.
C 10X,'SODE NBAR WIDTH DEPTH BOTTCM INITIAL DEPTE')
2016 FORMAT(10X,13,2X,F5.4,1%,F7.1,1X,F7.1,1X,F7.1,5X,F7.1)
2017 FORMAT(10X, "OUTFLOW IS APPROXIMATED AS THE FOLLOWING EQUATION:',
¢ /,12X,'QOUT = ALPHA%*(DEPTH)**BETA')
2018 FORMAT(10X, "OUTFLOW NODE # ',I3,
¢ /,9X,"DEPTH LESS THAN', .
¢ /,9%," OR EQUAL TO  ALPHA BETA')
2019 FORMAT(15%,F4.1,6X,F7.3,1X,F7.3)
2020 FORMAT(/, 10X, 'STAGE CURVE AT NODE #',I3,/,
C 12X,'HOUR  FEET")
2021 FORMAT(10X,F5.1,4X,F7.3)
2022 FORMAT(//,5X, '"MODEL TIME(HOURS) = ',F10.2)
2023 FORMAT(11X, "EFFECTIVE RAINFALL(IN/HR) = ',F6.2,/)
2024 FORMAT(/,5X, "AVERAGE FLOW RATE FOR SPECIFIED FLOOD PLAIN °*,
C 'NODES :',/,10X,'NODE',5X,'QN',9X,'QE',9X,"'QS",9X, 'QW")
2025 FORMAT(10X,14,4(2X,E9.3))
2026 FORMAT(//,5X, "MODEL TIME(HOURS) = ',F10.2,"' (SECONDS) = ',E9.3,
C ' (TOTAL TIMESTEP NUMBER) = ',1PE9.1)
2027 FORMAT(7X, ' #**FLOOD PLAIN RESULTS#***')
2028 FORMAT(10X,"INFLOW RATE AT NODE *,I3,' IS EQUAL TO ',F10.2)
2029 FORMAT(/, 5X, "NODE',7X,10(13,8X))
2030  FORMAT(5X,'DEPTH',10(3X,F8.3))
2031 FORMAT(3X, 'ELEVATION' ,F9.3,10(2X,F9.3))
2032 FORMAT(5X, 'VEL-N",10(3X,F8.3))
2033 FORMAT(5X, 'VEL-E',10(3X,F8.3))
2034 FORMAT(5X, 'VEL-S',10(3X,F8.3))
2035 FORMAT(S5X,'VEL-W',10(3X,F8.3))
2036 FORMAT(/,5X, "OUTFLOW RATE AT CRITICAL-DEPTH NODES:',
¢ /,10%,’NODE OQUTFLOW RATE(CFS)')

SOOO0O0O0O0

109
[Back to DHM Home] [Back to Research] [Cover] [Table of Contents 1] [Table of Contents 2] [Table of Contents 3]

Page -->


http://www.diffusionhydrodynamicmodel.com/DHM1.html
http://www.diffusionhydrodynamicmodel.com/Research.html

2037 FORMAT(10X,14,5X,F10.2)
2038  FORMAT(//,7X, "##%CHANNEL RESULTS###',/)
2038 FORMAT(10X,'OUTFLOW RATE AT NODE ',13,' 1S EQUAL TO ',F10.2)
2040  FORMAT(//,5X,'MIN. TIMESTEP(SEC.) = ',F5.2,
C  SX,'MAX. TIMESTEP(SEC.) = ',F5.2,
C  SX,"MEAN TIMESTEP(SEL.) = ',F5.2,//)
2041 FORMAT(130('="))
2042 FORMAT(///,10X,"MAXIMUM WATER SURFACE VALUES FCR FLOOD',
C ' PLAIN',/)
2043  FORMAT(SX,'TIME ',10(3X,F8.3))
2044 FORMAT(///,10X, "MAXIMUM WATER SURFACE VALUES FOR CHANNEL',/)
2045  FORMAT(2X,'### DEPTH OF WATER IS EITHER GREATER THAN',
1 ' 150 OR LESS THAN Q #=#' [ oy t#x# PROGRAM STOP #*#')
2046  FORMAT(2X,'s®* MINIMUM TIMESTEP ',F4.1,' SEC. IS TOO LARGE!!’,
1 /,2X," ===> A SMALLER TIMESTEP SHOULD BE USED ###')

IF(KMODEL.EQ. 1)WRITE(NW,2001)
IF(KMODEL. NE. 1)WRITE(NW, 2002)
WRITE(NW,2003)DTHIN, DTHAX, DTI,DTD, SIMUL, I'TTER, TOUT
WRITE(NW, 2004 )NNOD, SIDE, NODC , TOL, DTOL, DTOLP
WRITE(NW, 2005)
WRITE(NW, 2006 )
WRITE( KW, 2007)
DO 90 I=1,NNOD
NN=IFIX(FP(I,1))
NE=IFIX(FP(I,2))
NS=IFIX(FP(I,3))
NNW=IFIX(FP(I,4))
WRITE(NW,2008)1,NN,NE, NS, NNW, (FP(I,J),J=5,7)
90 CONTINUE
WRITE(NW, 2005)
IF(NERI,LT.1)GOTO 100
WRITE(NW, 2009 )NERT
WRITE(NW,2010)((R(I,J),J=1,2),I=1,KERI)
WRITE(NW, 2005)
100 IF{NFPI.LT.1)GOTO 110
DO 120 I=1,NFPI
WRITE(NW,2011)KINP(I)
DO 120 J=1,KPFPI
WRITE(NW,2012)HP(1,J,1),HP(1,J,2)
120 CONTINUE
WRITE(NW, 2005)
110 IF(NDC.LT.1)GOTO 130
WRITE(NW,2013)KDC
WRITE(NW,2014)(NODDC(I),I=1,NDC)
WRITE(NW, 2005)
130  IF(NODC.LT.1)GOTO 140
WRITE(MW, 2015)
DO 135 I=1,NNOD
IF(FC(I,1).EQ.0.)G0 TO 135
WRITE(NW,2016)1,(FC(I,J),J=1,5)
135  CONTINUE
WRITE(NW, 2005)
TIF(NCHI.LT.1)GOTO 150
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160
150

180
170

DO 160 1=1,NCHI
WRITE(NW, 201 1)KIN(T)
DO 160 J=1,NPCHI
WRITE(XW,2012)H(I1,J,1),H(1,J,2)
CONTINUE

WRITE(XW, 2005)
IF(NCHO.LT.1)G0TO 170
WRITE(NW,2017)

DO 180 I=1,NCHO
WRITE(NW,2018)KOUT(I)
DO 180 J=1,NPCHO

WRITE(NW,2019)HOUT(1,J,1},HOUT(I,J,2) ,HOUT(I,J,3}

CONTINUE

WRITE( W, 2005)

IF(NSTA.LT.1)GOTO 140

DO 190 I=1,NSTA

WRITE(NW, 2020)NOSTA(I)

DO 190 J=1,NPSTA
WRITE(NW,2021)STA(I,J,1),5TA(T1,],2)
CONTINUE

WRITE(NW,2005)

CONTINUE

MATN PROGRAM

« . INITIALIZE CONSTANTS

ITERA=Q
DSEC=DTMIN
DT=DTMIN/3600.
DTOLP=DTOLP®,01
CHECKD=DTOL/DTOLP
TTIME=0,

QBC=0,

QTEMP=0,

KK=0

TTOUT=TOUT
TTFOUT=TFQUT
KIT=0

TIHE=0.

DO 200 J=1,NKOD
DMAX(J, 1)=0.
TIMEX(J,1)=0,
DMAX(J, 2)=0,
TIMEX(J,2)=0,
FP(J,8)=0,
CONTIKUE

«++.MAIN LOOP FOR MODEL

KEOUT=0
TMIN=9G,
TMAX=-99,
Mﬁ..ﬂ:U -
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C
. Couran .FLOODPLAIN MODEL

C
220 KFLUX=0
IKODE=0
TIME=TIME+DT
230 FPMAX=0.
ITERA=ITERA+1
FCMAX=0.
LJK=0
IF(ITER.EQ.0 .AND. NODC.NE.0)GO TO 240
TTIME=DSEC
GO TO 250
Coveren JUPDATE TIME AND BOUNDARY CONDITION VALUES
240 IF(NFPI.LT.1)GOTO 260
DO 270 J=1,NFFPI
DO 280 I=2,NPFPI
IF(TIME.GT.HP(J,I,1))GOTO 280
QTEMP=HF(J,I-1,2)+(HP{J,I,2)-HP(J,I-1,2) )*(TIME-HP(J, I-1,1))/
C (HP(J,1,1)-HP(J,I-1,1))
~ GO TO 290
280 CONTINUE
QTEMP=EP(J ,NPFPI,2)
290 (BC=QTEMP/SIDE
IF(QBC.LT.0. JQBC=0,
JJ=KINP(J)
FP(JJ,8)=FP(JJ,8)+QBC
270 CONTINUE
Civines ,INCLUDE THE EFFECITIVE RAINFALL ON THE WATERSHED
260 IF(NERI.LT.1)GOTO 300
DO 310 J=2,NERI
IF(TIME.GT.R(J,1))GOTO 310
RRATE=R(J-1,2)}+(R(J,2)-R(J=1,2))*(TIME-R(J-1,1))/
C (R(J,1)-R(J-1,1))
GO TO 320
310 CONTINUE
320 QRAIN=RRATE*SIDE*SIDE/(12.%3600. )
DO 330 J=1,NNOD
FP(J,8)=FP(J,8)+QRAIN/SIDE
330 CONTINUE ¢
300 IF(NFLUX.EQ.Q)GOTO 340
IF(TIME,LT.TTFOUT )GOTO 340
TTFOUT=TTFOUT+TFOUT
IF(ITER.EQ.0 .AND. NODC.NE.O)GO TO 340
WRITE(NW,2005)
WRITE(NW,2022)TIME
IF(RRATE.NE.O. JWRITE(NW,2023)RRATE
1JK=1
WRITE(NW,2024)
340 CONTINUE
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Covnnrnn CALCULATE FLOW VELOCITIES AND FLOWRATES
DO 350 I=1,NNOD
DO 360 II=1,4
NQ=FP(I,II)
IF(NQ.EQ.0. )GOTO 360
CALL QFP(I,NQ,SIDE,QQ,ID,VV,TOL,KMODEL)
IF(ID.EQ.1)GOTO 370

360  Q(II)=0Q
Civivins ADJUST FLOWRATES FOR DIRECTION
Q(3)==0(3)
Q(4)=-Q(4)
L ESTIMATE ACCUMULATION OF INFLOW

ONET=0Q(3)+Q(4)-0(1)-0(2)
TF(NFLUX.EQ.0)GOTO 380
IF(IJK.NE.1)GOTO 380
QN=0(1)*SIDE
QE=Q(2)*SIDE
QS=Q(3)*SIDE
QW=Q(4)*SIDE
DO 390 J=1,NFLUX
IF(1.EQ.NODFX(J))WRITE(NW,2025)1,QN,QE,QS, QW

390 CONTINUE

380 FP(I,8)=QNET+FF(1,8)

350 CONTINUE

Covernns ACCOUNT FOR CRITICAL-DEPTH OUTFLOW NODES
IF(NDC.LT.1)GOTO 400
DO 410 J=1,NDC
JJ=NODDC(J)
QOUT=5.67%(FP(JJ,7)**%0.5)*(FP(JJ, 7)-TOL)
IF(FP(JJ,7).LT.TOL)QOUT=0.
FP(JJ,8)=FP(JJ,8)-Q0UT

410 CONTINUE

Covennnn UPDATE CHANGE OF WATER DEPTH

400 DC 420 J=1,NNOD
FP(J,8)=FP(J,8)*DSEC/SIDE
TEMP=ABS(FP(J,8))
IF(TEMP,LT.DTOL)GOTO 420
IF(FP(J,7).LT.CHECKD)FPMAX=09.
IF(FP(J,7).LT.CHECKD)GOTO 430
TOLP=TEMP/FP(J,7)
IF(TOLP.GE. DTOLP )FPMAX=99,
IF(TOLP.GE.DTOLP)GOTO 430

420 CONTINUE

Covennnn CALCULATE THE EFFLUX VELOCITIES
IF(KODE.NE.1)GOTO 440
DO 450 J=1,NNOD
DO 450 11=1,4
NQ=FP(J,II)
IF(NQ.EQ.0.)GOTO 450
CALL QFP(J,NQ,SIDE,QQ,ID,VV,TOL,KMODEL)
VEL(J,I1)=VV

450 CONTINUE
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Covennnn

540
530

CHECK INTERFACE MODEL UPDATE REQUEST
IF(IKODE.EQ.O)KIT=KIT+1
IF(IKODE.EQ.OQ)TTIME=TTIME+DSEC
IF{KIT.EQ.ITER .AND. NODC,GE.1)GOTO 430

UPDATE WATER DEPTH FOR CHANNEL

CALL FLOODC(TIME,TTIME,NNOD,SIDE,TCL,FCMAX,NW,KMODEL)
UPDATE NEW TIMESTEP SIZE
DD=AMAX] (FPMAX, FCHAX)
IF(DD.GT.0. )DSECP=DSEC-DTD
IF(DD.LE.O. )DSECP=DSEC+DTI
IF(DSECP.LT.DTMIN })DSECP=DTHMIN
IF(DSECP.GT.DTMAX yDSECP=DTHAX
DTT=DSECF/3600,
IF(DD.LE.DTOL)GOTO 460
IF({DSEC.EQ.DTMIN ) IKODE=14+IKODE
IF(DSEC.NE.DTMIN)IKODE=1
IF{IKODE.GE.3)30TO 470
TIME=TIME-DT+DTT
IF(TTIME,EQ,0. YGOTO 480
TTIME=TTIME-DSEC+DSECP
IF{TTIME.LT.DTMIN)TTIME=DTHIN
DO 490 J=1,NKOD

FP(J,8)=0.

CONTINUE

DT=DTT

DSEC=DSECP

GO TO 230

UPDATE DEPTH OF WATER

DO 500 J=1,HNNOD
FP(J,7)=FP(J,7)+FP(J,8)
IF(FP(J,7).LT.0.)FP(J,7)=0.
FFP(J,8)=0,

IF(NODC.LT. 1)GOTO 500
FC(J,5)=FC(J,5)+FC(J,6)
IF(FC(J,5).LT.0.)FC(J,5)=0.
FC(J,6)=0.

CONTINUE
IF(DSEC.GT.THAX)TMAX=DSEC
IF(DSEC.LT.TMIN)TMIN=DSEC
INTERFACE BETWEEN FLOOD PLAIN AND CHANNEL DEPTHS
IF(KIT.NE.ITER)GOTO 510
IF(NODC.LT.1)GOTO 510
IF(ITER.NE.Q)CALL CHANPL{NNOD,SIDE,TOL)
TTIME=D,

EIT=0

CHECK OUTPUT REQUEST
IF{TIME.LT.TTOUT }GOTO 520

USE FC(I,6) AND FP(I,8) TO STORE WATER SURFACE EELEVATIOS
D0 530 J=1,NNOD
IF(NODC.LT,1)GOTO 540
FC(J,6)=FC(J,5)+FC(J,4)
IF(ITER.EQ.Q)GOTO 530
FP(J,8)=FP(J,7)+FP(J,6)
CONTINUE
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550

570
560

610
620

600
590
630
615

625

UPDATE MAXIMUM WATER SURFACE VALUES

DO 550 J=1,NNOD

IF(FP(J,7).LT.DMAX{J,1))GOTQ 550

DMAX.(J,1)=FP(J,7)

TIMEX(J,1)=TIME

CONTINUE

IF(NODC,LT.1)GOTO 560

DO 570 J=1,NNOD

IF(FC(J,5).LT.DMAX(J,2))GOTO 570

DMAX(J,2)=FC(J,5)

TIMEX(J,2)=TIME

CONTINUE

TMEAN=TMEAN+DSEC

KEOUT=KKOUT+1

DT=DTT

DSEC=DSECP

IF(TIME.GE.TI .AND. TIME,LE,TO)GOTO 370

IF(TIME.LT.TTOUT)GOTO 220

STORE FLOODPLAIN AND CHANNEL RESULTS IN OUTPUT FILE

WRITE(NW,2005)

XTIME=TIME*3600.

XTERA=REAL(ITERA)

WRITE(NW,2026)TIME, XTIME, XTERA

WRITE(NW, 2022)TIME

IF(RRATE.NE.O. YWRITE(NW,2023)RRATE

IF(ITER.EQ.O0 .AND. NODC.NE.0)GOTO 580

WRITE(NW,2027)

IF(NFPI.LT.1)GOTO 590

DO 600 J=1,KFPI1

DO 610 I=2,NPFPI

IF(TIME,GT.HP(J,I,1))B0T0 610

QIN=HP(J,I-1,2)+(HP(J,I,2)-HP(J,1-1,2))*(TIME-HP(J,I-1,1))/
(HP(J,1,1)-HP(J,I-1,1))

GO TO 620

CONTINUE

WRITE(NW,2028)KINP(J),QIN

CONTINUE

KO=1

I10=1

JO=10

DO 615 II=10,J0

IF(FP(II,7).GT.0.)GOT0 625

CONTINUE

GO TO 635

WRITE(NW,2029)(J,J=10,J0)

WRITE(NW,2030)(FP{J,7),J=10,J0)

WRITE(NW,2031)(FP(J,8),J=10,J0)

IF(XODE.EQ.1)WRITE(NW,2032)(VEL(J,1),J=10,J0)

IF(KODE.EQ.1)WRITE(NW,2033)(VEL{J,2),J=10,J0)

IF(KODE.EQ. 1)WRITE(NW, 2034)(VEL(J, 3),J=10,J0)

IF(KODE.EQ.1)WRITE(NW, 2035) (VEL{J,4),J=10,J0)
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635

660
580

700
710
690
680

740
750
730
720

KO=K0+1

10=I10+10

JO=10#K0

IF(JO.LE. NNOD)GOTO 630

IF(JO-NNOD,GE. 10)GOTO 640

JO=NNOD

GO TO 630

DO 650 J=1,NNOD

FP(J,8)=0.

QUTPUT OUTFLOW RATE AT CRITICAL-DEPTH NODES

IF(NDC.LT.1)GOTO S80

WRITE(NW,2036)

DO 660 J=1,NDC

JJ=NODDC{J)

QOUT=5.67#(FP(JJ,7)**0,5)*SIDE*(FP(JJ,7)-TOL)

IF(FP(JJ,7).LT.TOL)QOUT=0,

WRITE(NW,2037)3J,QOUT

CONTINUE

WRITE(NW,2005)

IF(NODC.LT.1)GOTO 670

WRITE(NW,2038)

IF(NCHI.LT.1)GOTO 680

DO 690 J=1,NCHI

DO 700 1=2,NPCHI

IF(TIME.GT.H(J,I,1))GOTO 700

QIN=H(J,I-1,2)+(H(J,1,2)-H(J,I-1,2))*(TIME-H(J,I-1,1))/
(H(J,I,1)-H(J,I-1,1))

GO TO 710

CONTINUE

WRITE(NW,2028)KIN(J) ,QIN

CONTINUE

IF(NCHO.LT.1)GOTO 720

DO 730 J=1,NCHO

JJ=KOUT(J)

DO 740 KJ=1,NPCHO

IF(FC(JJ,5).6T.HOUT(J,KJ,1))GOTO 740

QOUT=HOUT(J,KJ,2)*(FC(JJ, 5)**HOUT(J,XJ,3))

IF(FC(JJ,5).LT.TOL)QOUT=0,

GO TO 750

CONTINUE

WRITE(NW,2039)JJ,Q0UT

CONTINUE

CONTINUE
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760
770

780

790

830

KD=1

I0=1

JO=10

Do 770 11=I10,J0
IF(FC(I1,5).GT.0.)GOTO 780
CONTINUE

GO TG 790
WRITE(NW,2029)(J,J=I0,J0)
WRITE(NW,2030)(FC(J,5),J=10,J0)
WRITE(NW,2031)(FC(J,6),J=10,J0)
KQ=K0+1

I0=I0+10

JO=10%KO

IF(JO.LE.NNOD)GOTC 760
IF(JO-NNOD,GE.10)GOTO 800
JO=NNOD

GO TO 760

DO B1O J=1,KNOD

FC(J,6)=0.

END OF MAIN LOCF

IF{ID,EQ.1)GOTO 470
THEAN=TMEAN/FLOAT(KKOUT)

WRITE( Nw, 2040)TMIN , TMAX, TMEAN
TTOUT=TTOUT+TOUT
IF(TIME.LT.SIMUL)GOTO 210
WRITE(NW,2041)

OUTPUT THE MAXIMUM WATER SURFACE

IF(ITER.EQ.O .AND. NODC,NE,0)GOTO 820

WRITE(NW,2042)

KQ=1

I0=1

JO=10
WRITE(NW,2028)(J,J=10,J0)

WRITE(NW,2030) (DMAX(J,1),J=I0,J0)
WRITE(NW,2043)(TIMEX(J,1),J=I0,J0)

KO=KO+1

I0=10+10

JO=10%K0O

IF(JO.LE. NNOD)GOTO 830
IF{JO-KROD,GE. 10)GOTD 840
JO=NKOD

GO TO 830
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E40
820

860
870

880

BS0

WRITE(NW,2041)
IF(NODC.LT.1)GOTO 850

WRITE(NW, 2044)

KO=1

10=1

J0=10

DO 870 1I=10,J0
IF(DMAX(IT,2).GT.0.)GOTO 880
CONTINUE

GO TO 890
WRITE(NW, 2029) (J,J=I10,J0)
WRITE(NW,2030) (DMAX(J, 2) ,J=10,J0)
WRITE(NW,2043) (TIMEX(J,2) ,J=10,J0)
KO=K0+1

10=I10+10

JO=10%K0

IF(JO.LE. NNOD)GOTO 880
IF(JO-NNCD.GE.10)GOTO 850
JO=NNOD

GO TO 880

WRITE(NW,2041)

END OF PROGRAM
IF(ID.EQ.1)WRITE(NW,2045)
IF(IKODE.GE, 3)WRITE(NW, 2046 )DSEC

STCF
END
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SUBROUTINE FLOODC{TIME,TTIME,NNOD,SIDE,TCL,FCMAX,NW,KMODEL)

THIS SUBROUTINE CALCULATES THE DEPTH OF WATER FOR
THE CHANNEL MODEL

COMMON/BLE 1/FP(250,8),FC(250,6)

COMMON/BLK 2/KIN(10),4(10,15,2),K0UT(10},H0UT(10,15,3)
COMMON/BLK 3/NOSTA(10),5TA(10,15,2),NODFX(50)
COMMON/BLK 4/DMAX(250,2),TIMEX(250,2)

COMMOR/BLE 6/NODC, NCHI ,NCHO,NPCHI ,NPCHO,NSTA,NPSTA
COMMON /BLX 7/DTOL,DTOLP, NFLUX, KFLUX , CHECKD, ITER
DIMENSION Q(4)

DEFIRITIONS

FC(I,J)=MANNINGS, WIDTH,DEPTH,BOTTOM ELEVATION,INITIAL DEPTH,
TEMPORARY MEMORY

KIN(I)=ARRAY OF INFLOW NODE

H(1,J,1)=TIME COORDINATE FOR INFLOW RATE IN HOUR

H(1,J,2)=INFLOW RATE(CFS)

KOUT(I)=ARRAY OF OUTFLOW NODE

HOUT(I,J)=PARAMETERS FOR QUTFLOW NODE

Q({I)=VOLUME OF FLOW

NOSTA{I)=ARRAY OF STAGE STATION

STA(1,J,1)=TIME COORDINATE FOR STAGE CURVE

STA(I,J,2)=DEPTH OF WATER IN FEET

CHANKEL MODEL

INITIALIZE CONSTAKTS
QBC=0.

QTEMP=0.

D0 30 J=1,HNOD
FC({J,6)=0,

CONTINUE

FORMATS

FORMAT(//,130("'-"),/,5%, '"MODEL TIME(HOUR) = ',F10.2,/)
FORMAT(/,5X, 'AVERAGE FLOW RATE FOR SPECIFIED CHANNEL NODES :',
/,10X,'NODE',5X,'QN",9%, 'QE',9X, 'QS',9X, "QW")
FORMAT( 10X, I4,4(2X,E2.3))

IF(KFLUX.EQ.1 .AND, ITER,EQ.0)WRITE(NW,212)TIME
IF(KFLUX.EQ.1)WRITE{NW,213)

..MATN LOOP FOR CHANNEL MODEL

- .UPDATE TIME AND BOUNDARY CONDITION VALUES

IF(NCHI.LT.1)GOTO 40

DO 50 J=1,NCHI

DO 60 I=2,NPCHI

IF(TIME.GT.H(J,I,1))GOTO 60

QTEMP=H(J,1-1,2)+(H(J,1,2)-H(J,1-1,2) )*(TIME-H(J,I-1,1))/
(H(J,I,1)-H(J,I-1,1))

GO TO 70
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60 CONTINUE
70 QBC=QTEMP#TTIME
TF(QBC.LT.0. )QBC=0.
Covennn. UPDATE INFLOW BOUNDARY CONDITION KODES
JI=KIN(J)
FC(JJ,6)=QBC
50 CONTINUE
Couns . .CALCULATE FLOW VELOCITIES AND FLOWRATES
40 DO 80 I=1,NNOD
QNET=0.
IF(FP(I,5).GT.0.)GOTO 80
DO 90 II=1,4
NO=FP(I,I1)
IF(NQ.EQ.0)GOTO 90
IF(FP(NQ,5).GT.0. )NQ=0
IF(NQ.EQ.0)GOTO 90
CALL QFC(I,NQ,QQ,SIDE,TOL, KMODEL)

90 Q(I1)=QQ

Covivnnn ADJUST FLOWRATES FOR DIRECTION
Q(3)=-Q(3)
Q(4)=-Q(4)

Covinnns ESTIMATE ACCUMULATION CF INFLOW

QNET=(Q(3)+Q(4)-Q(1)=-0Q(2) )*TTIME
IF(NFLUX .EQ.0)GOTO 80
IF(KFLUX.EQ.0)GOTO 80
DO 100 J=1,NFLUX
IF(I.NE.NODFX(J))GOTO 100
WRITE(NW,214)I,0(1),Q(2),0Q(3),Q(4)
100 CONTINUE
80 FC(T,6)=QNET+FC(I,6)
Covinans ACCOUNT DISCHARGE AT OUTFLOW NODES
IF(NCHO.LT.1)GOTO 110
DO 120 J=1,NCHO
JJ=KOUT(J)
DO 130 K=1,NPCHO
IF(FC(JJ,5).GT.HOUT(J,K,1))GOTO 130
QOUT=HOUT(J, K, 2)*(FC(JJ, 5)**HOUT(J,K,3) )*TTIME
IF(FC(JJ,5).LT.TOL)QOUT=0.
GO TO 140
130 CONTINUE
140 FC(JJ,6)=FC(JJ,6)-Q0UT
120 CONTINUE
Covennnse UPDATE THE WATER ELEVATIONS AT STAGE STATIONS
110 IF(NSTA.LT.1)GOTO 150
DO 160 I=1,NSTA
NN=NOSTA(I)
DO 170 J=2,NPSTA
IF(TIME.GT.STA(I,J,1))GOTO 170
DE=STA(I,J-1,2)+(STA(I,J,2)-STA(I,J=1,2) Y*(TIME-STA(I,J-1,1))
¢ /(STA(I,J,1)-STA(I,J-1,1))
GO TO 180
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220

190

230

CONTINUE

CONTINUE
FC(NN,5)=DE-FC(HN,4)
FC(NN,6)=0.

CONTINUE

++ . CHECK MAXIMUM CHANGE OF WATER DEPTH

DO 190 J=1,NNOD
IF(NSTA.LT,1)GOTO 200

DO 210 JJ=1,NSTA
IF(J.EQ.NOSTA(JJ) )GOTO 190
CONTINUE
IF(FP(J,5).GT.0.)GOTO 190
A=0,

KCO=0

DO 220 JJ=1,4

NQ=FB(J,JJ)
IF(FF(NQ,5).GT.0,)GOTC 220
A=A+( . 25¥FC(NQ,2)+.75%FC(J,2) )*. 5*SIDE
KCO=KCO+1

CONTINUE

IF(XCO.EQ.1)A=2.%A
FC(J,6)=FC({J,6)/A

CONTINUE

DO 230 I=1,NNOD
TEMP=ABS(FC(I,6))
IF(TEMP, LT, DTOL)GOTO 230
IF(FC(I,5).LT,CHECKD)FCMAX=99.
IF(FC(1,5).LT.CHECKD)RETURN
TOLP=TEMP/FC(I,53)
IF(TOLP.GE. DTOLP)FCMAX=99.
IF(TOLP.GE, DTOLP)RETURN
CONTINUE

RETURN

END
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SUBROUTINE CHANFL{NNOD,SIDE,TOL)

THIS SUBROUTINE UPDATES THE WATER SUFRACE ELEVATION
BETWEEN THE FLOODPLAIN AND CHANNEL MODELS

COMMON/BLE 1/FP(250,8),FC{250,6)

0 OO0

DO 100 I=1,NNOD

Couvns CHECK INTERFACE BETWEEN CHANNEL AND FLOOD PLAIN
IF(FP(I,5).GT.0.)GOTO 100

Civune A IS WATER LEVEL AT FLOOD PLAIN

Covunn B IS WATER LEVEL AT CHANNEL

Civuns FC({I,3) IS THE DEPTH OF CHANNEL
A=FP(1,6)+FP(1,7)
B=FC(X,4)+FC(I,5)
IF(A.GT.B)GOTO 110

Covivn FLOODING OF CHARNEL, B > 4
FP(1,7)=FP(I,7)+(B-A)*FC(I,2)/SIDE
GO TO 100

Cosinn FLOW INTO CHANNEL FROM GRID ELEMENT, A > B

110 IF(FC(I,3).LT.FC{I,5))GOTO 120
VAL=(FC{I,3)-FC(I,5)+TOL)*FC(I,2)
VW=( SIDE-FC(I,2))*(FP(I,7)-TOL)

C.....CASE 1 - NO FLOW INTC CHANNEL
IF(VW.LT.0. )GOTO 100
IF(VAL.GE.VW)GOTO 130

Covnn CASE 2 - CHANNEL IS FULL AFTER FILLING
FP{1,7)=TOL+(VW-VAL)/SIDE
FC(I,5)=FC(I,3)+FP(1,7)
GO TO 100

C.....CASE 3 - FC(I,3) > FC(I,5)

130  FC(1,5)=FC(I,5)+VW/FC(I,2)
FP(I,7)=TOL
GOTO 100

Covinn CASE & - FC(I,5) » FC(I,3)

120  FP(I,7)=B+(A-B)*(SIDE-FC(I,2))/SIDE-FP(I,6)
FC(I,5)=FP(1,7)+FC(1,3)

100  CONTINUE
RETUEN
END
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SUBROUTINE QFC(I,NQ,0QQ,S1DE,TOL, XMODEL)

THIS SUBROQUTINE CALCULATES VOLUME OF WATER THAT
FLOWS ACROSS THE ADJACENT CONTROL VOLUMES FOR
CHANNEL FLOW

o EsloEe Ny

SSWIDDHIBLK 1/FP(250,8),FC(250,6)

DCH=, 5%(FC(1,3)+4FC(NG,3))

WID=.5%(FC(I,2)+FC{NQ,2))

HeFC(I,4)4FC(1,5)

1F(KMODEL.EQ. 1)H=FC(I,4)

IF(FC(I,5).EQ.0. .AND.FC{NQ,5).EQ.0. )GOTO 200
Covinn ++DEPTHS ARE NONZERO

HN=FC{NQ,4)+FC(NQ, 5}

IF(KMODEL.EQ. 1 )HN=FC(NQ,4)

GRAD={ HN-H}/SI1DE

IF(GRAD)150,200,170
Covivnn .H > KN
150 IF(FC(I,5).LT.TOL)GOTO 200
YBAR=FC(I,5)
GOTO 180
Covranne HN > H
170 IF(FC{NQ,5).LT.TOL)GOTO 200
YEAR=FC(NQ,5)

180 HBAR=.5*(FC(I,5)+FC(NQ,5))
WETT=2.*HBAR+WID
WETC=2, *DCH+WID
WET=AMIN1(WETC,WETT)
A=WID*HBAR
R=A/WET
IF(HBAR,LT,TOL)GOTO 200
XNBAR= 5% (FC(I,1)+FC(NQ,1))
AGRAD=ABS(GRAD)
IF(AGRAD.LT. .00001 YGOTO 200
XK=(1,486/XNBAR)*R##0, 667 /SQRT (AGRAD)
VEL=~XK*GRAD
QQ=VEL*WID*YBAR

200 CONTINUE
RETURN
END
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IO OOy

200

SUBROUTINE QFP(I,NQ,SIDE,QQ,I1D,VEL,TOL,KMODEL)

THIS SUBROUTINE CALCULATES THE EFFLUX PER UNIT WIDTH
WHICH FLOWS ACROSS THE ADJACENT CONTORL VOLUMES FOR
FLOODPLATN FLOW

COMMON/BLK 1/FP(250,8),FC(250,6)
VEL=0.

ID=0

QQ=0,

H=FP(I,7)+FP(1,6)
IF(KMODEL.EQ.1)H=FP(I,6)
IF(FP(I,7).EQ.0. .AND.FP(NQ,7).EG.0.)GOTO 200
DEPTHS ARE NONZERO
HN=FP(NQ,7)+FP(NQ,6)

IF(KMODEL.EQ. 1)HN=FP(NQ,6)
GRAD=(HN-H)/SIDE

HBAR=, 5*(FP(1,7)+FP(NQ,7))
IF(GRAD)150, 200,170

H > HN

IF(FP(I,7).LT.TOL)GOTD 200
YBAR=FP(I,7)-TOL

GOTO 180

HN > H

IF(FP(NG,7).LT.TOL)COTO 200
YBAR=FP(NQ,7)-TOL

XNBAR=. 5% (ABS(FP(IL,5))+ABS(FP(NQ,5)))
AGRAD=ABS(GRAD)

IF( AGRAD.LT. .00001)GOTO 200
XE=(1.486/XNBARY*YBAR®HBAR®* 667 /SQRT(AGRAD)
IF(HBAR.LT.O. .OR. HBAR.GT.150.)ID=l
QQ=-XK*GRAD

VEL=0Q/YBAR

CONTINUE

RETURN

END
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1. 30. 1. 10.
2 11 0
3 12 1
4 13 2
5 14 3
6 15 4
7 16 5
8 17 6
9 18 7

10 19 8
0 20 9

12 21 0

13 22 11

14 23 12

15 24 13

16 25 14

17 26 15

l8 27 16

19 28 17

20 29 18
0 30 19

22 31 0

23 32 21

24 33 22

25 34 23

26 35 24

27 36 25

28 37 26

29 38 27

30 3% 2B
0 40 25

32 41 0

33 42 131

34 43 32

35 44 33

36 45 34

37 46 35

3B 47 36

3% 48 37

40 49 38
0 50 39

42 51 0

43 52 41

44 53 42

45 54 43

46 55 44

47 56 45

48 57 46
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+ 040
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.n"ﬂ
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ATTACHMENT D
RUN (APPLICATION 7]
Input File
101.000 a.
101.500 0.
102,000 g,
102.500 0.
103.000 0.
103.500 0.
104.000 0.
104,500 0.
105.000 0.
105,500 o,
100,500 0.
101.000 0.
101.500 0.
102,000 0.
102.500 0.
103.000 0.
103.500 0.
104,000 0.
104.500 0.
105.000 0.
100.000 0.
100.500 0.
l10l.000 0.
101.500 0.
102.000 0.
102.500 0.
103.000 0.
103.500 0.
104.000 0.
104.500 0.
99,500 0.
100.000 0.
100.500 0.
101.000 0.
101.500 0.
102.000 0.
102.500 0.
103.000 0,
103.500 Q.
104.000 0.
100.000 0.
100.500 0.
101.000 0.
101.500 0.
102.000 0.
102.500 0.
103,000 0.
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95 104
96 105
97 106
98 107
9% 108

38 .040
39 .040
40 .040
41 .040
42 .040
43 .040
44 .040
45 .040
46 .040
47 .040
48 .040
49 .040
50 .040
51 .040
52 .040
53 .040
54 .040
55 .040
56 ,040
57 .040
58 .040
59 .040
60 .040
61 -.040
62 =-.040
63 -,040
64 ~-.040
65 -.040
66 -.040
67 -.040
68 -.040
69 ~-.040
70 —-.040
71 .040
72 .040
73 .040
74 .040
75 .040
76 -.040
77 .040
78 .040
79 .040
B0 .040
81 .040
B2 .040
83 .040
84 .040
85 .040
86 -.040
87 -.040

103.500
104.000
104.500
100.500
101.000
101.500
102.000
102.500
103.000
103.500
104.000
104.500
105.000
100.000
100.500
101.000
101.500
102.000
102.500
103.000
103.500
104.000
104.500

99.500
100.000
100.500
101.000
101.500
102.000
102.500
103.000
103.500
104.000
100,000
100.500
101.000
101.500
102.000
102.500
103.000
103.500
104.000
104.500
100.500
101.000
101.500
102,000
102,500
103.000
103.500
104.000
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100 109 98 B9 -.040 104.500 0.

0 110 9% 980 ~.040 105.000 0.
102 111 0 91 .040 101.000 0.
103 112 101 92 ,040 101.500 0.
104 113 102 93 .040 102.000 0.
105 114 103 94 .040 102.500 0.
106 115 104 95 .040 103.000 0.
107 116 105 86 .040 103.500 0.
108 117 106 97 .040 104.000 0.
109 118 107 98 .040 104.500 0.
110 119 108 99 ,040 105.000 0.

0 120 109 100 .040 105.500 0.
112 121 0 101 .040 100.500 0.
113 122 111 102 .040 101.000 0.
114 123 112 103 .040 101.500 0.
115 124 113 104 .040 102.000 0.
116 125 114 105 .040 102.500 0.
117 126 115 106 .040 103.000 0.
118 127 116 107 .040 103.500 0.
119 128 117 108 .040 104.000 0.
120 129 118 109 .040 104.500 0.

0 130 119 110 .040 105.000 0.
122 131 0 111 ~.040 100.000 0.
123 132 121 . 040 100,500 0.
124 133 122 113 ~.040 101.000 0.
125 134 123 114 -.040 101.500 0.
126 135 124 115 =-.040 102.000 0.
127 136 125 116 -.040 102.500 0.
128 137 126 117 -.040 103.000 0.
129 138 127 118 -,040 103.500 0.
130 135 128 119 -.040 104.000 0.

0 140 129 120 -.040 104.500 0.
132 141 ¢ 121 .040 100,500 0.
133 142 131 122 .040 101.000 0.
134 143 132 123 .040 101,500 0.
135 144 133 124 ,040 102,000 = O,
136 145 134 125 ,040 102.500 0.
137 146 135 126 ,040 103.000 0.
138 147 136 127 .,040 103.500 0.
135 148 137 128 .040 104.000 0.
140 149 138 129 .040 104.500 0.

0 150 139 130 .040 105.000 0.
142 151 0 131 .040 lol.000 0.
143 152 141 132 .040 101.500 0.
144 153 142 133 .040 102.000 0.
145 154 143 134 .040 l02.500 0,
146 155 144 135 .040 103,000 0.
147 156 145 136 .040 103,500 0.
148 157 146 137 .040 104.000 0.
145 158 147 138 ,040 104,500 0.
150 159 148 139 .040 105.000 D.

[
[
[ 8]
1
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0 160 1495 140 .040 105.500 0.

152 0 0 141 .040 101.500 0.

153 0 151 142 .040 102,000 0.

154 0 152 143 .040 102.500 0.

155 0 153 144 .040 103.000 0,

156 0 154 145 .040 103.500 0.

157 0 155 146 .040 104.000 0.

158 0 156 147 .040 104.500 0.

159 0 157 148 ,040 105.000 0.

160 0 158 145 .040 105.500 0.
0 0 15% 150 .040 106.000 0.

0

00

9

1234567829

oo

31 .015 10. 6. 93.5 0.
32 .015 10, 6. 94.0 0.
33 .015 10, 6. 54.5 0.
34 .015 10. 6. 85.0 0.
35 .015 10, 6. 95.5 0.
36 .015 10, 6. 96.0 0.
37 .015 10, 6. 96.5 0.
3B .015 10. 6. 57.3 0.
3% .015 10, 6. 97.5 0,

40 .015 10. 6. 98.0 0.
71 .015 10. 6. 93.5 0.
72 .015 10. 6. 94.0 0,
73 .015 10. 6. 94.5 0.
74 .015 10. 6. 95.0 0.
75 ,015 10. 6. 95.5 0,
76 .015 10, 6. 96.0 0.
77 .015 10. 6. 96.5 0.
78 .015 10. 6. 97.0 0,
79 .015 10. 6. 97.5 0,

80 .015 10. 6. %8.0 0,
86 .015 10. 5.5 97.0 0.

96 .015 10. 5. 98.0 0,
897 .015 10. 5. 98.5 0.

98 .015 10. 5. 99.0 0.
89 ,015 1l0. 5. 99.5 0.
100 .015 10. 5. 100.0 0.
121 .015 10. 6. 94.0 0.

122 .015 10. 6. 94.5 0.
123 .015 10, 6. 95.0 0.
124 .015 10. 6. 95.5 0,
125 ,015 10. 6. 96.0 0,
126 .015 10. 6. 96.5 0,
127 .015 10. 6. 97.0 0.
128 .015 10. 6. 97.5 0.
129 .015 10. 6. 98.0 0.
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MAXIMUM WATER SURFACE VALUES FOR FLOOD PLATM
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WODE 81 82 B a4 B3 Bb a7 a8 ey 0
DEFTH 1. 627 -1 ] 140 . 0D0 . obo ob0 . opg 00 . Do . 000

- TIME & D20 - 4 334 - 3 B29--"10 O0&° — 10,006 ~ 10, D& TTT10. 006 - " 10. 00 10, 006" —10. O0&~"
NODE 91 LF LE] 94 L1 L L . w8 w7 100
DEPTH - === 334 038 - & -0 B00———  GD0— - QB S GBI 080 - 000 - v L 000 . oo
TIHE 4_ 388 4 306 10, 6Da 10. 60 10. DO& 18 0hé 10, 00é 10, 00b 10, 00& 10, 008
NODE -—-—= 101 - —— 102 - -— 103 “108— 10% 108 107 i = Tl L et 1=
DEPTH .01 . Q00 oo0 . 00D . 00D o] . 000 . 000 -] . 000
TIME 4. 898 10, 008 10. 0D 10 OD& 10. 004 10. O0& 10. 006 10. 00& 10. 008 10, 006
NODE 111 113 112 114 118 114 117 '8 ne - 120
DEFTH -1 ] . 032 =l ] ,ooo . G0 fele . oo . DO . Qoo . Qoo
TIHE —- & &84 - - A4 383 T 10,004 - 10 006 10. DO&—10. GD&—— 10-004 " * 10. 00~ " 10. 004 10, 006
NODE 121 122 123 124 129 126 127 128 129 130
DEPTH —— - 1. 00% —  —  S38—---° 202 . 009 . 0ot T ODO N e - 0o
TIME 4. 303 &, 402 &, 147 3. 313 i. 740 i0. 00& 10, 004 10, 006 10. 0os 10. 00&

T WORE T a3 R & - S 173 - 134 — 133 AIE i r A = |- B R T . e £
DEPTH 511 . 083 ooo . oo . 000 oo . obo . 000 . 000 LoD
TIMNE 4. 380 4, 383 10 008 10, O0& 10. 008 10. 0D& 10. 00D 10, ol 10. 0ds 10, 006
NODE 141 142 143 144 143 144 147 148 149 130
DEPTH . 004 ©oo . oDo , D00 . ooo . , O30 . boo .l
TIME 4 T47 - - 10908 10, 0D ——= 10, Od&— 10 006  —— 10 00& - 10, 606 —— 10. 0046 ——-- 10. DD&-— 10. 08
HODE 151 L 153 194 153 158 157 138 T 1se 160
DEPTH - -+ . DDOD ce 000 L 000 - = ODO— = = Q00— e DOD- = — D00 -- —- 000 = o - 000 -=—- . 000
TIME 10. 0D& 10. 008 10. DD& 10. 00& 10. 004 10. 00& 10. DO& 10. 006 10 o0& 10 00s
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OCC O I == TS = - ———— OO T=Es =

MArTHIM WATER GURFAZE WALUES FOR {HAamMZL -

WICE i H 2 4 — - 5 & 7 B- -- 8 - 1a -
LEFTH el ool oono N ] , DO oon . DoD . oD . Gl
TirE 10 00y 10 Gy 10 D04 10, DD 10 Dbhs 10 O0s 10, Gh& 10 D 10 Do& 10. 006
HOOE 11 2 159 [FY 1= 1L 17 1B 1% =0
TEPTH . D0g 2% ooo -] | OB ,oon . 0D - I . Qo . D
TimeE 10005 - 1D.ODA 10 004 - - t0.006—-- 10 O0&- -- 10 004 - 10006~ 1O O04-- - IC O0& - - 10 006
WILE 21 22 -4 | H 4] 2a -4 b1 o L
LZFTH -~ -0y - — fob-- -+ DRQ———-OD0-——— OfF———, 00— —— Qiy——- - 00D Co g --- - - L 00D
TIME 10, 204 JO. Ol 10 O 10, DD& 10 004 10, Ny 10. DO& 10, DNe 10 Doa 10, ODa&
METE - r—c Ji-- - —— 32 33 --——— 2a - S4— ——— 39— -+ SB-----— - a9--. - 80
LERTH 7. 882 & B & 424 & D71 &, 00 = BED . B8O 3 5% 7. 522 & 330
TIME & &dn 4. 603 4. 526 3. 214 1. B3 1,37 1. 851 i B4% 1. 831 2 987
HODE 4] 42 AT A4 AE Ak F 4R A9 D)
LEFTH - Qoo [#[d_H] OO0 ] s lnlal [+ ]nlu] N a s DM oo . Do0
TINE 10, Oda- 10. DO 10 006 1 DOf-— - 10, Oda——- 10. C04 - - 10,006 - 10 DO 10. 00s = - 10 008
NOOE 51 L] 5% 4 -1 e 5r 1] s =l ]
LEPTH B e oo - O T -y one LOO—-—— DG — - - fep——- - DD
TiNE 10, Obe 10, Dovs 10 Ote 12, obe 10 0ps 19 GoE 10. e -l 10, QDN 15, 0RO
NODE S— Ar—-— - AR - Bl - - -— bk &5 — bk - - - BB —- - - - &% - —- - 7D
CERTR . G0 . Lod T , og ong .00 . o0 . DG . Do . D0
TIME 10, O0& 10 GDa 10 Qbg 10. D0 19, 0Da& 10 DO 10 ol 10,804 L0 0G4 10, Ohe
NODE T r2 73 rd ) 7= Th rai m 9 B
DEFTH ¥, A4 T. DaT & 447 & AZT A 337 A 304 . DBE i, DD 1. TEL 2 &R
TIME — 4 334 - -4 BaY d. Té& = 3. 34 -— X jat 3. 047 G.0la -—— 3 M3 1, 004 —— - 2 JE7?
NORE -} =t B3 -18 a3 a& ar 2 Eq 0
DEFTH - BpR - uls] Oy — - tpl——— D —— — 7482 bl ——— -, Do il ] - . Do
TIHE 10, O0d 10, Db& 1. Q0& 13, 9k 19, HhaE 2. 7 7 10, DhG 10 B 10 o0& 10 Do
NDDE - ®- —-- 82 L Tl T - Ot LE i ¥ HR— - 100 -
TERTH . O R -+ 1x agofy - RO . a3 a Ta4 &, F30 & SB 4 23] 4 1a7
TIME 10 00& 10 DDe 1R 004 10 D04 19, DD& = "E2 =. Mar = = 2 99
NODE 191 102 103 104 10% . 107 [ §=]-] ow i
DEFTH . B . g iy =i=l:] . oo -] ] ol . DOG . QD .
TIME 10, 804 - 49 Die 1T, G04 10, Do —— - J0. C04-— - 10 OO&—— 10 0086 — 10 D& 10 00s -- 10 aDa
HODE i1l 1§44 112 Lid 11% L& 117 118 114 120
PERTH - -—.pd - - ObD Qg ——— & — — - Dh— o——— oD -— - GoD - [ B ]
TImE 10 00g 10 0D& OOk 10, &0k 10 00 10, D0E 10 00 & 1D OO 19 004 10, O0e
NCDE 121 12 12 124 123 184 127 128 129 100
DEFTH T Q0% & 958 & 202 & BOY & 002 5 B7Y L 822 5 247 LA EY 3. 000
TIME 4. 803 4, 408 4. 1&7 1 313 L. 780 o, 933 1. 740 3. 897 1, F4Q L)
wIDE 151 152 123 13% 133 134, a7 133 137 143
DERTH . - oQn -] Q . LoD - OD iy-lel] ] L God A
TIME 10 00s - 10 gos 10 DO& 10 O0e 10 poR — 10 O04 ==t DDA T 10 O - 10 Gid 10 O -
MLLE 141 142 143 144 143 144 147 [El] 149 130
CEPTH . D0 - - L 000 - ] Qog - ---— 0ad - 0l —— o ——— — O —— ] —, 000 -
T1ME 10, E0b 10, 0 10 Lhe 10, D06 10, Gike 10, Lok 10, Ol 10, 0% 10. D04 10, o0&
NEOE 151 - 182 143 154 18%- -—— 1%AE— - —— {5TF----- - 1%@ - 139 180
TEPTH faluta] . aae . Gho . pag . 0o .00 . QoD . O . el . add
TIME 19, 00& 10 00k 10 oDy 10 004 10 00% 16, CO& 10, 008 LD, o0& 10, Qb 10, Qi
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