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[39]: import sys
! whoami
print(sys.executable)
print(sys.version)
print(sys.version_info)

# tested on aws lightsail instance 21 July 2020 using python38 kernel spec

orion
/opt/jupyterhub/bin/python3
3.8.2 (default, Jul 16 2020, 14:00:26)
[GCC 9.3.0]
sys.version_info(major=3, minor=8, micro=2, releaselevel='final', serial=0)

1 Hypothesis Testing

In this notebook we introduce tests for two independent groups - a common situation in both
experimental and observational research.

In experimental research, the sample sizes may be quite small. However the methods will work fine
for large data (many records) sets. An important concept is that the two groups are known to be
different by some classification or descriptive variable, and can be separated based on that variable.
Furthermore the ideas of:

1) before vs. after (some treatment);

2) pristine vs. impacted;

3) fractured vs. unfractured;

4) upgradient vs. downgradient;

5) other such exclusive distinctions;

are utterly important in these kinds of comparisons.

Also the concept of pairing

Consider the example of BMP (a stormwater treatment device) performance monitoring. If we
monitor a BMP upstream and downstream during different storms, and a sample is collected at
both locations during the different events, these are PAIRED samples, and are the subject of another
notebook.

1



If on the other hand we collect grab samples from a stream at some location on many different
days, and in the field notes we observe that some days, the bayou smelled bad (a classification
variable), and other days there was no smell, then these two sets of samples (smelly and yummy)
are unpaired.

Before-after sampling is also usually unpaired.

1.0.1 An example -- Assume UNPAIRED

Consider two sets of observations of organic nitrogen in samples from an industrial region and from
a residential region. First build the data model, and make a boxplot to get an idea of what to
expect, our question is are the two areas different? Or more philosophically, given an observation
can we make a good guess of whether it is a residential or industrial sample?

[40]: industrial_organic_nitrogen=[0.59,0.87,1.1,1.1,1.2,1.3,1.6,1.7,3.2,4.0] #␣
↪→industrial data as a list

residential_organic_nitrogen=[0.3,0.36,0.5,0.7,0.7,0.9,0.92,1.0,1.3,8.7] #␣
↪→residential data as a list

import pandas as pd
import numpy as np
# join the two lists
organicNH3 = [industrial_organic_nitrogen,residential_organic_nitrogen]
#transpose them
organicNH3 = np.array(organicNH3).T
#build dataframe
df = pd.DataFrame(organicNH3, columns=['Industrial', 'Residential'])
df.plot.box(grid='True')

[40]: <matplotlib.axes._subplots.AxesSubplot at 0x7fca6654f850>

2



Examine the boxplots, the residential has a slightly smaller mean value, and except for a single
large value all values are smaller than the industrial sample. Lets look closer at the dataframe
statistics

[41]: df.describe()

[41]: Industrial Residential
count 10.000000 10.000000
mean 1.666000 1.538000
std 1.084714 2.534902
min 0.590000 0.300000
25% 1.100000 0.550000
50% 1.250000 0.800000
75% 1.675000 0.980000
max 4.000000 8.700000

Here we see that the IQR (inter-quartile range) for the residential is entirely contained within
the 1st quartile of the industrial sample - an indicator that the two underlying distributions are
different. But from the boxplot the two samples are still kind of close. Now lets consider hypothesis
tests.

1.1 Non-Parametric Tests

A non-parametric test means we make no judgement or claim of underlying distribution type.
Such tests do not depand on the data following some particular probability rules, but have low
power to discriminate (tell if things are different) unless the data are substantially different.
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A common non-parametric test is a Rank-Sum test (https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/ranksum.htm)
in most statistical packages it is some version of the Mann-
Whitney(https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test) or Wilcoxon test
https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test). Mann-Whitney is appropriate for
unpaired samples; Wilcoxon for paired -- there are more tests, these are simply a start.

1.1.1 Mann-Whitney U test.

The default assumption or null hypothesis is that there is no difference between the distributions of
the data samples. Rejection of this hypothesis suggests that there is likely some difference between
the samples. More specifically, the test determines whether it is equally likely that any randomly
selected observation from one sample will be greater or less than a sample in the other distribution.
If violated, it suggests differing distributions.

[42]: from scipy.stats import mannwhitneyu # import a useful non-parametric test
stat, p = mannwhitneyu(industrial_organic_nitrogen,residential_organic_nitrogen)
print('statistic=%.3f, p-value at rejection =%.3f' % (stat, p))
if p > 0.05:

print('Probably the same distribution')
else:

print('Probably different distributions')

statistic=23.500, p-value at rejection =0.025
Probably different distributions

The reported p-value is the level of significance at rejection The interpretation in this example is
that the null hypothesis (distributions are the same) is to be rejected at a significance level of α =
0.05. If the p-value were larger than the significance level, we would not have sufficient evidence to
reject the null hypothesis.

A useful way to check your interpretation is to perform the test on the same data, the result should
do not reject

[43]: stat, p = mannwhitneyu(industrial_organic_nitrogen,industrial_organic_nitrogen)
print('statistic=%.3f, p-value at rejection =%.3f' % (stat, p))
if p > 0.05:

print('Probably the same distribution')
else:

print('Probably different distributions')

statistic=50.000, p-value at rejection =0.485
Probably the same distribution

A useful rule-of-thumb way to interpret p-value, is that it represents a probability that the dis-
tributions are the same. So in the second case just above the probability that the distribution of
industrial organic nitrogen is self-similar is 2∗(0.485) = 0.97, the orginal case is that the probability
that the distribution of industrial organic nitrogen is the same as residential organic nitrogen is
2∗(0.025) = 0.05, quite a bit smaller. This is a gross simplification, but often helpful in remembering
the meaning of p-value.
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1.2 Parametric Tests

A parametric test means we make a judgement or requirement of underlying distribution type,
often normal Such tests depend on the data following some particular probability rules, but better
power to discriminate (tell if things are different) even when the data appear similar.

1.2.1 T-Test

The t-test is a well documented procedure for comparing two sets of data. It assumes normality
of the data, and this assumption is critical to defendable application of the test. One can compute
t-statistics and make decisions from t-tables, but departure from normality means that the level of
significance may be much different than expected. Some considerations about t-tests (as well as the
rank-sum test). 1. t-test compares means between two sets of data. 2. t-test assumes normality
of both sets of data. 3. Both tests compare central tendency of the data. Rank-sum is probably
adaptable to other location measures (i.e. P25).

I am unaware if this is commonly done or not. The URL
(https://machinelearningmastery.com/how-to-code-the-students-t-test-from-scratch-in-python/)
presents the t-test statistic and a python primative implementation (it does use numpy), like
before we compute a statistic from the data, compare it to a critical value, and make a decision. A
script using an already built module is shown below, and implements much of the same decision
logic as the non-parametric test.

[44]: #from statsmodels.stats import weightstats as statsmodelsweightstats
from scipy import stats
#results = statsmodelsweightstats.ttest_ind(x1=industrial_organic_nitrogen,␣
↪→x2=residential_organic_nitrogen, alternative='larger', usevar='unequal',␣
↪→value=0.0)

results = stats.ttest_ind(industrial_organic_nitrogen,␣
↪→residential_organic_nitrogen )

#print('statistic=%.3f, p-value at rejection =%.3f, degrees of freedom =%.3f' %␣
↪→(results[0], results[1], results[2]))

print('statistic=%.3f, p-value at rejection =%.3f ' % (results[0], results[1]))
if p > 0.05:

print('Probably the same distribution')
else:

print('Probably different distributions')

statistic=0.147, p-value at rejection =0.885
Probably the same distribution

1.3 An example -- Assume PAIRED

In some cases, the data samples may be paired.

There are many reasons why this may be the case, for example, the samples are related or matched
in some way or represent two measurements of the same technique. More specifically, each sample
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is independent, but comes from the same population.

Examples of paired samples in data science/machine learning might be the same algorithm evaluated
on different datasets or different algorithms evaluated on exactly the same training and test data.
Usually experiments designed to test a treatment produce paired samples, the control and the
treatment.

The samples are no longer independent, therefore the Mann-Whitney U test cannot be used, and
the T-test assuming independent is also no longer appropriate.

1.3.1 Wilcoxon Signed-Rank Test

For a non-parametric test, the Wilcoxon signed-rank test is used, also called the Wilcoxon T test,
named for Frank Wilcoxon. It is the equivalent of the paired Student T-test, but for ranked data
instead of real valued data with a Gaussian distribution.

The default assumption for the test, the null hypothesis, is that the two samples have the same
distribution. We can build the test in the same fashion. In this example the pairing matters and a
different outcome is inferred

[45]: from scipy.stats import wilcoxon # import a useful non-parametric test
stat, p = wilcoxon(industrial_organic_nitrogen,residential_organic_nitrogen)
print('statistic=%.3f, p-value at rejection =%.3f' % (stat, p))
if p > 0.05:

print('Probably the same distribution')
else:

print('Probably different distributions')

statistic=10.000, p-value at rejection =0.074
Probably the same distribution

1.3.2 T-Test Paired

Dependent t-test for paired_samples is described at (https://en.wikipedia.org/wiki/Student%27s_t-
test). A similarily useful test is the Welch’s T-test, which is left as an exercise. The paired T-test
below is nearly the same function syntax as before

[46]: results = stats.ttest_rel(industrial_organic_nitrogen,␣
↪→residential_organic_nitrogen)

print('statistic=%.3f, p-value at rejection =%.3f ' % (results[0], results[1]))
if p > 0.05:

print('Probably the same distribution')
else:

print('Probably different distributions')

statistic=0.230, p-value at rejection =0.823
Probably the same distribution
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