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CE 5333 – Special Studies in Water Resources
Essay 1.2 Analysis and Propogation of Experimental Error

Theodore G. Cleveland, Ph.D., P.E.

1 Introduction

This essay is a continuation of the previous essay on uncertainty analysis and related topics.
The last essay concluded with the first step Estimate the uncertainty interval for each
measured quantity.

This essay covers the next two steps State the confidence limit on each measure-
ment, and Propagate the uncertainty into results calculated from experimental
data.

2 Estimate the uncertainty interval for each measured

quantity

This step was covered in the previous essay.

3 State the confidence limit on each measurement.

The uncertainty interval should be stated at specified odds (specified probability). For
instance, the experimenter may write h = 752.6±0.5 mm (20 to 1)1. This expression implies
that the experimenter is “betting” with 20:1 odds that the height of the mercury column is
actually within ±0.5 mm of the stated value. The experimenter must understand that:

. . . the specification of such odds can only be made by the experimenter based
on . . . total laboratory experience. There is no substitute for sound judgement
in estimating the uncertainty of a measured variable. (Doebelin, 1990)

The importance of this quote cannot be overstated — there is certainly gut feeling involved,
but the results should make sense to the experimenter, they should be consistent with similar

1This expression is probably archaic — a more current way would be to replace the odds with a confidence
limit. For normal distributed measurements 20 to 1 corresponds to ±2 standard deviations or a 95%
confidence interval or a 5% risk level. The thought that goes into making some guess as to the chance of
the actual value being within a measured range is as important as the numbers themselves.
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prior work, and they should agree with some theory. At the very least, the values should be
within physical boundaries known to the researcher.

As a simple example, consider a velocity measurement in a natural system (a river). As of
1994 from 2950 measured values by the U.S. Geological Survey for a set of representative large
rivers in the United States, the median maximum velocity (by a price-current meter), was
4.11 feet per second. For the Mississippi river only, its median maximum velocity was 8.0 feet
per second. The 90-th percentile (90% of values are less than or equal to this value) for the
United States was 13 feet per second. the largest recorded value in a natural river was 22.4
feet per second. The point is that in the absence of any other information, a velocity value
in excess of 10 feet per second is unlikely and the experimenter should check the instrument
and retake the reading if at all possible. The reading could be correct, but a measurement
error is far more likely. Knowledge of such physical or observational boundaries is invaluable
for the experimenter. Again in the absence of any other knowledge, these bounds establish
a quasi six-sigma range2

The confidence interval interpretation is based on the concept of standard deviations for a
normal distribution. Odds of 100:1 correspond to ±3σ; 99 of 100 observations of all future
readings for identical experimental conditions are expected to fall within this interval.
Odds of 20:1 correspond to ±2σ; 95 of 100 observations of all future readings for identical
experimental conditions are expected to fall within this interval. Odds of 2:1 correspond
to±1σ; 50 of 100 observations of all future readings for identical experimental conditions
are expected to fall within this interval.

The 95% interval is typical for engineering work (medical research usually adheres to this
interval although the 99% is common in medical research)3.

To conclude this section — make a statement of the confidence in each measurement; not
how confident you are in making the measurement, but the confidence in the value.

2This is the author’s concept and not standard practice. One sixth of this range can be used to approximate
the variance in Chebychev’s Inequality which states: For X a discrete or continuous random variable with
µ = E(X) and V (X) = σ2 that

P (|X − µ| ≥ ε) ≤ σ2

ε2

This inequality provides a probabilistic bound on the distance from the mean value of any observation
provided the variance is known. Assuming ε is constant, then repeated measurements can reduce the
variance and thus the probability of being far from the desired measurement.

3As a side comment “rare” in medicine is 1 in 100 — thus medicines that have a rare side effect of “death”
are expected to kill 1 of every 100 patients who take the medicine. My advice — read the product literature
and proceed accordingly.
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4 Propagate the uncertainty into results calculated from

experimental data.

This step is important, usually we do not directly measure a useable quantity, but instead
the measurement is used in a calculation of a useful quantity. For example, we generally
do not measure discharge, but instead a set of velocities and depths and then calculate the
discharge4.

Suppose that measurements of independent variables x1, x2, . . . , xn are made in the labo-
ratory Suppose the corresponding relative uncertainty of each quantity is estimated as ui.
The measurements are then used to calculate some result, R, for the experiment. As exper-
imenters we need to know how errors in the xi’s propogate into the calculation of R from
measured values.

The quantityR can be expressed as a function of the measured values asR = R(x1, x2, . . . , xn)
The sensitivity of R to an error in an individual value xi is the partial derivative of R with
respect to that variable.

δR

δxi

=
∂R

∂xi

Typically the sensitivity is normalized by the magnitude of the result5 as

δR

R
=

1

R

∂R

∂xi

δxi

Generally the variation in the xi is also normalized so the relationship is

δR

R
=
xi

R

∂R

∂xi

δxi

xi

Now examine the rightmost fraction — this is the uncertainty, either known or estimated,
so we substitute that value as

δR

R
=
xi

R

∂R

∂xi

ui

This result is really the relative error in R from uncertainty in xi and typically the notation
is

uRi
=
xi

R

∂R

∂xi

uxi

4Direct measurement of discharge is difficult in a laboratory and nearly impossible in most field situations.
Weighing a quantity of water over time is considered the most accurate direct measurement of discharge,
while a volume catch is second most accurate. Weighing 100 cubic feet per second would require a scale
that has a frequency response well in excess of a few milliseconds, and an ability to hold 6400 lbs of water
without failing and then release the water — feasible in a laboratory, not exactly field portable.

5Kind of a relative error concept.
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Generally we are interested in average uncertainty and Kline and McClintock (1953) argue
that the most likely average uncertainty is the root-mean-uncertainty which is expressed
as

uR = ±

√√√√ n∑
i=1

(
xi

R

∂R

∂xi

ui)2

Now there are two tricks worth mentioning about evaluating the partial derivatives. The first
is that they can be approximated by finite difference computations so we don’t necessarily
need to do the calculus for complex result models. The second is a variant of the first — we
can sample from an assumed distribution of each contributing variable, compute the results
and compute their mean and variance. This is called a Monte-Carlo simulation of error
propagation. Neither trick is particularly elegant, but they are brute force techniques that
will work. They generally require the experimenter to be able to program a computer to
“roll the dice.” There are some programs that can do the work for the researcher6

For pedagogical reasons (and the preferable way if you can do the calculus) an example in
the old-fashioned way is presented.

4.1 Example 1: Uncertainty in the Volume of a Cylinder

The volume of a cylinder in terms of radius and height is

V = πr2h

The partial derivatives for the quantity r is,

∂V

∂r
= 2πrh

The partial derivative for the quantity h is

∂V

∂h
= πr2

6The Excel VBA program called @Risk is a business program for financial computations that
can perform perfectly adequate monte-carlo simulations. It [the program] is available from
http://www.palisade.com/RISK/. It is not too hard to write your own code but if you don’t know
how the program can help.

REVISION NO. 1 Page 4 of 7



CE 5333 – Special Studies in Water Resources SUMMER 2009

The fractional uncertainty from the radius is

uVr =
r

V

∂V

∂r
ur =

r

πr2h
(2πrh) ur = 2ur

The fractional uncertainty from the height is

uVh
=
h

V

∂V

∂h
uh =

h

πr2h
(πr2) uh = uh

The uncertainty caused by the radius contribution is twice that of the height, hence more
effort is required for the radius measurement as opposed to the height measurement to achieve
the same absolute uncertainty in the two measurements.

The root-mean-uncertainty is

uV = ±
√

(2ur)2 + (uh)2

4.2 Example 2: Uncertainty in Mass Flow Rate

The mass flow of water is to be determined by collecting water in a vessel (bucket). The mass
flow rate is calculated from the net mass of water collected dived by the time interval.

ṁ =
∆m

∆t

where ∆m = mfull −mempty. Error estimates for the measured quantities are

mfull = mf = 400± 2 g (95% confidence interval)
mempty = me = 200± 2 g (95% confidence interval)

∆t = 10± 0.2 sec (95% confidence interval)

The partial derivatives for the quantities are

∂ṁ

∂mf

=
1

∆t

∂ṁ

∂me

= − 1

∆t

∂ṁ

∂∆t
= −mf −me

∆t2
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The fractional uncertainties for the quantities are

umf
=

mf∆t

mf −me

1

∆t

±
mf

= ± 2g

200g
= ±0.01

ume =
me∆t

mf −me

−1

∆t

±
me

= ± 2g

200g
= ±0.01

u∆t =
∆t2

mf −me

(−mf −me

∆t2
)
±
∆t

= ±0.2s

10s
= ±0.02

The root-mean-uncertainty is

uṁ = ±
√

(0.01)2 + (0.01)2 + (0.02)2 = ±0.0245

Thus the 95% confidence mass flow rate by this method using the tools implied in this prob-
lem would be specified as

ṁ = 20g/s± 0.49g/s

The 95% confidence interval for this measurement means the mass flow reading 95 in 100
readings will fall in the range [19.51, 20.49] g/s. The uncertainty in the time measurement
is the larger contributor to the overall uncertainty, and if lower uncertainty is required, then
a more precise timer is of greater benefit than a more precise scale.

5 Summary

This essay illustrated how, using partial derivatives to propagate measurement uncertainty
into a calculated quantity, and report that quantity using the 95% confidence interval as
the default standard. In class similar examples for discharge are presented. The next essay
illustrates how to use numerical methods (finite-difference approximations) to estimate the
uncertainty.

Statistical methods are not discussed in this class but are an alternate tool to accomplish the
same kind of analysis. Of note, the readings do illustrate a principle to reject what appear to
be poor readings. These rejections are always done after the fact (assuming no gross errors,
in which case the experimenter would re-make the reading on the spot).

Finally uncertainty analysis is a bit of an art, its real purpose is to point out to the experi-
menter and engineer when things are different and when they are not.
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6 Readings

1. Holman (1989) pp. 37-49.

2. Kline and McClintock (1953)

7 Exercises

1. (1) Problem 3-3, Holman (1989) p. 84

2. (2) Problem 3-4, Holman (1989) p. 84

3. (3) Problem 3-20, Holman (1989) p. 87

4. (4) (Extra Credit) Problem 3-21, Holman (1989) p. 87
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