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Topic Outline

* Class and Objects in Python

* File Handling in Python
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Objectives

* To understand the use of classes and objects to do
effective coding in Python

* To understand the basic idea of how to manipulate
the data in a file using file handling options in Python
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@@ Computational Thinking Concepts %

Decomposition

Class and Objects — ‘[

Abstraction

File handling —p Decomposition
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Class and Objects in Python
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Object-Oriented Programming ﬁ

 Whatis Object-Oriented Programming (OOP)?

v' Useful paradigm where classes define
concepts and objects are instance of classes

v" Way of thinking and implementing code
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Object-Oriented Programming ﬁ

 How would you describe an apple to a person?
v’ Itis a fruit

v" It has color and flavor

 How would you describe an apple to a computer?

v" O0P comes in handy to communicate with
computers
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Object-Oriented Programming %

 How would you describe an apple to a computer?

v Define a class called ‘Apple’ that contains the
characteristics of an apple

v Define an instance of that ‘Apple’ class called an
object

* You can create many instances and hence, many objects
for the ‘Apple’ class
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i

 Think of class as a blueprint to build a house

* You can build many houses (objects) using a single
blueprint (class)

Figure Source: https://medium.com/@trulymhvu/everything-is-an-object-in-python-29d3aae8de5

Whitacre College of Engineering, Texas Tech University 9




Object-Oriented Programming

* Core concept: Attributes and methods

* Attributes: Characteristics associated to a type

v E.g. color and flavor of an apple

 Methods: Functions associated to a type

v E.g. cutting an apple into 4 slices
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Object-Oriented Programming %

A more relevant example: Accessing a file that contains
data

« Attributes: Characteristics associated to a type

v E.g. file name, size, and creation date

 Methods: Functions associated to a type

v E.g. reading and modifying the data in a file
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Built-In Classes and Objects ﬁ

e (Guess what?....

v" Numbers, strings, lists, and dictionaries are all
objects in Python

v Each of them was an instance of a class

—

In [3]: | print(type(0)) ()
class ‘int

<class 'int'>

\

J

In [9]: | print(type("")) . , (Demo)
class ‘str

<class "str'>

\

J

In [13]: print(type([1, 2, 3, 4])) e
—class ‘list

gelase "list's

—
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In-Built Classes and Objects %

* dir(" ”): To display all the methods associated with the
string class

v upper(): Creates an uppercase version of a string

v count(): Counts the number of occurrences of
a substring

* help(" "): Tells us how to use the methods associated
with the string class
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User-Defined Classes %

 We have been using in-built classes and objects so far

v" We will now define our own classes and objects

* Creating a class named ‘Apple’ with attributes color and
flavor

Class name

}
In [43]: class Apple:

color =
flavor =

_— ]’Attributes

(Demo)

Whitacre College of Engineering, Texas Tech University



User-Defined Objects ﬁ

* Creating objects (new instances) for the ‘Apple’ class

Object name

|

In [35]: gala = Apple()
gala.color = "red-yellow" | Assigning
gala.flavor = "sweet" attributes

Object name

|

In [40]: cripps = Apple()

cripps.color = "pinkish-red” | Assigning
cripps.flavor = "sweet-tart attributes

(Demo)
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Methods

* Methods: Functions that operate on the attributes of a
specific instance of a class

Parameter: represents the instance that the
method is being executed on

In [2]: class Dog: l
def sound(self): ]—Method

print("woof! woof!")

fudge = Dog()
fudge.sound()

maple = Dog()
maple.sound()

(Demo)
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Instance Variables %

Instance variables: Variables that have different values
for different instances of the same class

In [74]:

Instance /

variable

class

fudge
fudge
fudge

maple
maple
maple

Dog:

name =
def sound(self):

print("woof! I am {}! woof!".format(self.name))

= Dog()
.name = "Fudge"”

.sound()

= Dog()
.name = "Maple”

.sound()

(Demo)
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Instance Variables ﬁ

 Methods can also be used to do mathematical operations
to return values

In [75]: class Dog:
years =
Instance /def dog year‘s(self)
variable return self.years*9

fudge = Dog()
fudge.years = 2
print(fudge.dog years())

maple = Dog()

maple.years = 1.5
print(maple.dog years())

(Demo)
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Special Methods: Constructors %

e (Constructors: Used to initialize instance attributes when
an object is created

Constructor

In [93]: class Dog: l |
def _init (self, name, years): Attributes

self.name = name _initialized
self.years = years } | within the
maple = Dog("Maple", 1.5)

Initializing instance attributes

(Demo)
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Discussion Exercise %

* Can you now write a class such that the dog can say its
name and age (in dog years) using constructors?

In [74]: class Dog: In [75]: class Dog:
name = "" years = 0
def sound(self): def dog_years(self):
print("woof! I am {}! woof!".format(self.name)) return self.years*9

fudge = Dog() fudge = Dog()
fudge.name = "Fudge" fudge.years = 2
fudge.sound() print(fudge.dog_years())
maple = Dog() maple = Dog()
maple.name = "Maple" maple.years = 1.5
maple.sound() print(maple.dog_years())

In [93]: class Dog:
def __init_ (self, name, years):
self.name = name
self.years = years

fudge
maple

Dog("Fudge", 2)
Dog("Maple"”, 1.5)
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Discussion Exercise

e Solution:

In [120]: class Dog:
def __init__ (self, name, years):
self.name = name
self.years = years
self.dog age = years*9

def sound(self):
print("woof! I am {} and I am {} dog years old! woof!".format(self.name, self.dog age))

fudge = Dog("Fudge", 2)
maple = Dog("Maple", 1.5)
fudge.sound()

maple.sound()

(Demo)
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Docstrings

* Docstrings: A brief comment that explains the purpose of
the class and the methods used inside the class

* Docstrings are typed between triple quotes

In J131]:

class Dog:

"""This class enables the dog to say its name and age in dog years"""{:f
def __init__ (self, name, years):
"""This function contains all the necessary attributes"""{:f

self.name = name
self.years = years
self.dog_age = years*9

def sound(self): g
"""This function enables the dog to speak"""
print("woof! I am {} and I am {} dog years old! woof!".format(self.name, self.dog_age))

fudge = Dog("Fudge", 2)
maple = Dog("Maple", 1.5)
fudge.sound()

b el ¢ represents docstrings

(Demo)
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Docstrings

Docstrings are useful for others to understand your code
easily

Using help(Class name) displays the docstrings that
explains the user-defined classes and methods

In [132]: help(Dog)

(Demo)
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File Handling in Python
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File Handling

* open( ) function in Python is useful to work with files

* Different modes to open a file:

v “r” - opens a file for reading
v' “w” - opens a file for writing
v' “@” - opens a file for appending

v’ “X” - creates a specified file
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Reading a File

Reading a file named ‘sample.txt’

In [153]: sample file = open("sample.txt", "r")

Y Y |

File object File name Mode

Printing the contents of the file named ‘sample.txt’
using read( ) function

In [154]: print(sample file.read())

(Demo)
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Appending a File

* Appending a file named ‘sample.txt’

In [198]: sample file = open("sample.txt", "a"

Y Y |

File object File name Mode

* Appending text using the write( ) function

In [199]: sample file.write("\nMy hobbies are dancing and playing tennis")

(Demo)
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Summary

* Concepts of class and objects in Python are covered

* Concepts of basic file handling modes in Python are
covered
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