T

ENGR 1330: Computational Thinking with
Data Science

Lesson 6: Class, Objects, and File Handling

Dinesh S. Devarajan
Whitacre College of Engineering
Texas Tech University

Topic Outline

* Class and Objects in Python

* File Handling in Python

Whitacre College of Engineering, Texas Tech University

Objectives

* To understand the use of classes and objects to do
effective coding in Python

* To understand the basic idea of how to manipulate
the data in a file using file handling options in Python

Whitacre College of Engineering, Texas Tech University

@@ Computational Thinking Concepts %

Decomposition

Class and Objects — ‘[

Abstraction

File handling —p Decomposition

Whitacre College of Engineering, Texas Tech University

Class and Objects in Python

Whitacre College of Engineering, Texas Tech University

Object-Oriented Programming ﬁ

 Whatis Object-Oriented Programming (OOP)?

v' Useful paradigm where classes define
concepts and objects are instance of classes

v" Way of thinking and implementing code

Whitacre College of Engineering, Texas Tech University

Object-Oriented Programming ﬁ

 How would you describe an apple to a person?
v’ Itis a fruit

v" It has color and flavor

 How would you describe an apple to a computer?

v" O0P comes in handy to communicate with
computers

Whitacre College of Engineering, Texas Tech University

Object-Oriented Programming %

 How would you describe an apple to a computer?

v Define a class called ‘Apple’ that contains the
characteristics of an apple

v Define an instance of that ‘Apple’ class called an
object

* You can create many instances and hence, many objects
for the ‘Apple’ class

Whitacre College of Engineering, Texas Tech University

i

 Think of class as a blueprint to build a house

* You can build many houses (objects) using a single
blueprint (class)

Figure Source: https://medium.com/@trulymhvu/everything-is-an-object-in-python-29d3aae8de5

Whitacre College of Engineering, Texas Tech University 9

Object-Oriented Programming

* Core concept: Attributes and methods

* Attributes: Characteristics associated to a type

v E.g. color and flavor of an apple

 Methods: Functions associated to a type

v E.g. cutting an apple into 4 slices

Whitacre College of Engineering, Texas Tech University

Object-Oriented Programming %

A more relevant example: Accessing a file that contains
data

« Attributes: Characteristics associated to a type

v E.g. file name, size, and creation date

 Methods: Functions associated to a type

v E.g. reading and modifying the data in a file

Whitacre College of Engineering, Texas Tech University

Built-In Classes and Objects ﬁ

e (Guess what?....

v" Numbers, strings, lists, and dictionaries are all
objects in Python

v Each of them was an instance of a class

—

In [3]: | print(type(0)) ()
class ‘int

<class 'int'>

\

J

In [9]: | print(type("")) . , (Demo)
class ‘str

<class "str'>

\

J

In [13]: print(type([1, 2, 3, 4])) e
—class ‘list

gelase "list's

—

Whitacre College of Engineering, Texas Tech University

In-Built Classes and Objects %

* dir(" ”): To display all the methods associated with the
string class

v upper(): Creates an uppercase version of a string

v count(): Counts the number of occurrences of
a substring

* help(" "): Tells us how to use the methods associated
with the string class

Whitacre College of Engineering, Texas Tech University

User-Defined Classes %

 We have been using in-built classes and objects so far

v" We will now define our own classes and objects

* Creating a class named ‘Apple’ with attributes color and
flavor

Class name

}
In [43]: class Apple:

color =
flavor =

_—]’Attributes

(Demo)

Whitacre College of Engineering, Texas Tech University

User-Defined Objects ﬁ

* Creating objects (new instances) for the ‘Apple’ class

Object name

|

In [35]: gala = Apple()
gala.color = "red-yellow" | Assigning
gala.flavor = "sweet" attributes

Object name

|

In [40]: cripps = Apple()

cripps.color = "pinkish-red” | Assigning
cripps.flavor = "sweet-tart attributes

(Demo)

Whitacre College of Engineering, Texas Tech University

Methods

* Methods: Functions that operate on the attributes of a
specific instance of a class

Parameter: represents the instance that the
method is being executed on

In [2]: class Dog: l
def sound(self):]—Method

print("woof! woof!")

fudge = Dog()
fudge.sound()

maple = Dog()
maple.sound()

(Demo)

Whitacre College of Engineering, Texas Tech University

Instance Variables %

Instance variables: Variables that have different values
for different instances of the same class

In [74]:

Instance /

variable

class

fudge
fudge
fudge

maple
maple
maple

Dog:

name =
def sound(self):

print("woof! I am {}! woof!".format(self.name))

= Dog()
.name = "Fudge"”

.sound()

= Dog()
.name = "Maple”

.sound()

(Demo)

Whitacre College of Engineering, Texas Tech University

Instance Variables ﬁ

 Methods can also be used to do mathematical operations
to return values

In [75]: class Dog:
years =
Instance /def dog year‘s(self)
variable return self.years*9

fudge = Dog()
fudge.years = 2
print(fudge.dog years())

maple = Dog()

maple.years = 1.5
print(maple.dog years())

(Demo)

Whitacre College of Engineering, Texas Tech University

Special Methods: Constructors %

e (Constructors: Used to initialize instance attributes when
an object is created

Constructor

In [93]: class Dog: l |
def _init (self, name, years): Attributes

self.name = name _initialized
self.years = years } | within the
maple = Dog("Maple", 1.5)

Initializing instance attributes

(Demo)

Whitacre College of Engineering, Texas Tech University

Discussion Exercise %

* Can you now write a class such that the dog can say its
name and age (in dog years) using constructors?

In [74]: class Dog: In [75]: class Dog:
name = "" years = 0
def sound(self): def dog_years(self):
print("woof! I am {}! woof!".format(self.name)) return self.years*9

fudge = Dog() fudge = Dog()
fudge.name = "Fudge" fudge.years = 2
fudge.sound() print(fudge.dog_years())
maple = Dog() maple = Dog()
maple.name = "Maple" maple.years = 1.5
maple.sound() print(maple.dog_years())

In [93]: class Dog:
def __init_ (self, name, years):
self.name = name
self.years = years

fudge
maple

Dog("Fudge", 2)
Dog("Maple"”, 1.5)

Whitacre College of Engineering, Texas Tech University

Discussion Exercise

e Solution:

In [120]: class Dog:
def __init__ (self, name, years):
self.name = name
self.years = years
self.dog age = years*9

def sound(self):
print("woof! I am {} and I am {} dog years old! woof!".format(self.name, self.dog age))

fudge = Dog("Fudge", 2)
maple = Dog("Maple", 1.5)
fudge.sound()

maple.sound()

(Demo)

Whitacre College of Engineering, Texas Tech University

Docstrings

* Docstrings: A brief comment that explains the purpose of
the class and the methods used inside the class

* Docstrings are typed between triple quotes

In J131]:

class Dog:

"""This class enables the dog to say its name and age in dog years"""{:f
def __init__ (self, name, years):
"""This function contains all the necessary attributes"""{:f

self.name = name
self.years = years
self.dog_age = years*9

def sound(self): g
"""This function enables the dog to speak"""
print("woof! I am {} and I am {} dog years old! woof!".format(self.name, self.dog_age))

fudge = Dog("Fudge", 2)
maple = Dog("Maple", 1.5)
fudge.sound()

b el ¢ represents docstrings

(Demo)

Whitacre College of Engineering, Texas Tech University

Docstrings

Docstrings are useful for others to understand your code
easily

Using help(Class name) displays the docstrings that
explains the user-defined classes and methods

In [132]: help(Dog)

(Demo)

Whitacre College of Engineering, Texas Tech University

File Handling in Python

Whitacre College of Engineering, Texas Tech University

File Handling

* open() function in Python is useful to work with files

* Different modes to open a file:

v “r” - opens a file for reading
v' “w” - opens a file for writing
v' “@” - opens a file for appending

v’ “X” - creates a specified file

Whitacre College of Engineering, Texas Tech University

Reading a File

Reading a file named ‘sample.txt’

In [153]: sample file = open("sample.txt", "r")

Y Y |

File object File name Mode

Printing the contents of the file named ‘sample.txt’
using read() function

In [154]: print(sample file.read())

(Demo)

Whitacre College of Engineering, Texas Tech University

Appending a File

* Appending a file named ‘sample.txt’

In [198]: sample file = open("sample.txt", "a"

Y Y |

File object File name Mode

* Appending text using the write() function

In [199]: sample file.write("\nMy hobbies are dancing and playing tennis")

(Demo)

Whitacre College of Engineering, Texas Tech University

Summary

* Concepts of class and objects in Python are covered

* Concepts of basic file handling modes in Python are
covered

Whitacre College of Engineering, Texas Tech University

