
Download	this	page	as	a	jupyter	notebook	at	Lesson	5

ENGR	1330	Computational	Thinking	with	Data	Science
Copyright	©	2021	Theodore	G.	Cleveland	and	Farhang	Forghanparast

Last	GitHub	Commit	Date:	13	July	2021

Lesson	5	Algorithm	Building	Blocks:
Three	structures:	sequence,	selection	,	repetition	(loops)
Sequence	structures
Selection	structures
Structured	FOR	loops
Structured	WHILE	loops
Representing	computational	processes	with	flowcharts,	a	graphical	abstraction

atomickitty
sensei
/home/sensei/engr-1330-webroot/1-Lessons/Lesson04
/opt/jupyterhub/bin/python3

Objectives
1)	Develop	awareness	of	fundamental	structures	in	algorithms:

sequence
selection
repetition

2)	Develop	awareness	of	loops,	and	their	utility	in	automation.

To	understand	loop	types	available	in	Python.
To	understand	and	implement	loops	in	various	examples	and	configurations.

3)	Develop	awareness	of	flowcharts	as	a	tool	for:

Post-development	documentation
Pre-development	program	design

Algorithm	Structures

Sequence
Sequential	processing	are	steps	performed	in	sequence,	one	after	another.	A	default	spreadsheet	computation	from	top-to-bottom	is	a
sequential	process.

Reliability	Example	Suppose	we	wish	to	estimate	the	reliability	of	a	system	comprised	of	many	indetical	parts	iused	in	multiple	places	in	a

#	Script	block	to	identify	host,	user,	and	kernel
import	sys
!	hostname;	!	whoami;	!	pwd;	
print(sys.executable)

%%html
<!--	Script	Block	to	set	tables	to	left	alignment	-->
<style>
		table	{margin-left:	0	!important;}
</style>

http://54.243.252.9/engr-1330-webroot/1-Lessons/Lesson05/ENGR-1330-Lesson05.ipynb

design,	for	instance	rivets	on	an	airplane	wing.	Using	a	Bernoulli	model	(which	you	will	see	in	your	statistics	class)	we	can	estimate	the
collective	reliability	of	the	system	(all	the	parts	work	as	desired).	The	reliability	is	expressed	as	the	fraction	of	time	that	no	parts	have	failed,	if
the	fraction	is	small	we	would	want	to	either	improve	part	reliability,	or	ensure	redundancy	so	the	system	can	function	with	broken	parts.

Let

be	the	probability	a	single	component	is	good	and

be	the	total	number	of	components	in	the	system	that	work	together	in	a	"series"	context.	The	reliability,	or	the	percentage	of	time	that	none	of
the	components	have	failed	is	given	by	the	Bernoulli	equation:

Suppose	we	want	a	script	to	read	in	a	component	probability	and	count,	and	estimate	system	reliability	--	we	can	apply	our	problem	solving
protocol	and	JupyterLab	to	do	so,	and	the	task	will	be	mostly	sequential

Step	1	Problem	Statement	Estimate	the	reliability	of	a	component	in	an	instrument	relative	to	a	group	of	components	using	a	Bernoulli
approximation.

Step	2	Input/Output	Decomposition	Inputs	are	the	reliability	of	a	single	component	and	the	number	of	components	working	together	in	a
system,	output	is	estimate	of	system	reliability,	governing	principle	is	the	Bernoulli	equation	above.

Step	3	By-Hand	Example	SUppose	the	system	is	a	small	FPGA	with	20	transistors,	each	with	reliability	of	96-percent.	The	entire	array
reliability	is

Step	4	Algorithm	Development	Decompose	the	computation	problem	as:

1.	 Read	reliability	of	a	single	component
2.	 Read	how	many	components
3.	 Compute	reliability	by	bernoulli	model
4.	 Report	result

Step	5	Scripting	Written	as	a	sequence	we	can	have

Component	Reliability:		96.0
Number	of	Components	:		20
System	Relability	is	:		44.2	%

Step	6	Refinement	We	have	tested	the	script	with	the	by-hand	example,	no	refinement	really	needed	here,	but	lets	apply	to	new	conditions

Component	Reliability:		99.0
Number	of	Components	:		20
System	Relability	is	:		81.8	%

Selection	Structures
Selection	via	conditional	statements	is	an	important	step	in	algorithm	design;	its	one	way	to	control	the	flow	of	execution	of	a	program.

Conditional	statements	in	Python	include:

if 	statement	is	true,	then	do	...

% = () ⋅ 100.0
100.0

percentage = ()20 ⋅ 100.0 = 44.2%
96.0
100.0

component	=	float(input('Component	Reliability	(percentage-numeric)?'))
howmany	=	int(input('Number	of	Components	(integer-numeric)?'))
reliability	=	100.0*(component/100.0)**howmany
print('Component	Reliability:	',round(component,1))
print('Number	of	Components	:	',howmany)
print('System	Relability	is	:	',round(reliability,1),'%')

component	=	float(input('Component	Reliability	(percentage-numeric)?'))
howmany	=	int(input('Number	of	Components	(integer-numeric)?'))
reliability	=	100.0*(component/100.0)**howmany
print('Component	Reliability:	',round(component,1))
print('Number	of	Components	:	',howmany)
print('System	Relability	is	:	',round(reliability,1),'%')

if....else 	statement	is	true,	then	do	...,	otherwise	do	something	else
if....elif....else 	statement	is	true,	then	do	...,	if	something	else	is	true	then	do	...,	otherwise	do	...

Conditional	statements	are	logical	expressions	that	evaluate	as	TRUE	or	FALSE	and	using	these	results	to	perform	further	operations	based
on	these	conditions.	All	flow	control	in	a	program	depends	on	evaluating	conditions.	The	program	will	proceed	diferently	based	on	the
outcome	of	one	or	more	conditions	-	really	sophisticated	AI	programs	are	a	collection	of	conditions	and	correlations.

Expressed	in	a	flowchart	a	block	 if 	statement	looks	like:

As	psuedo	code:

if(condition	is	true):	
				do	stuff

Amazon	knowing	what	you	kind	of	want	is	based	on	correlations	of	your	past	behavior	compared	to	other	peoples	similar,	but	more	recent
behavior,	and	then	it	uses	conditional	statements	to	decide	what	item	to	offer	you	in	your	recommendation	items.	It's	spooky,	but	ultimately
just	a	program	running	in	the	background	trying	to	make	your	money	theirs.

Comparison

The	most	common	conditional	operation	is	comparison.	If	we	wish	to	compare	whether	two	variables	are	the	same	we	use	the	==	(double
equal	sign).

For	example	x	==	y	means	the	program	will	ask	whether	x	and	y	have	the	same	value.	If	they	do,	the	result	is	TRUE	if	not	then	the	result	is
FALSE.

Other	comparison	signs	are	 != 	does	NOT	equal,	 < 	smaller	than,	 > larger	than,	 <= less	than	or	equal,	and	 >= 	greater	than	or	equal.

There	are	also	three	logical	operators	when	we	want	to	build	multiple	compares	(multiple	conditioning);	these	are	 and ,	 or ,	and	 not .

The	 and 	operator	returns	TRUE	if	(and	only	if)	all	conditions	are	TRUE.	For	instance	 5	==	5	and	5	<	6 	will	return	a	TRUE	because
both	conditions	are	true.

The	 or 	operator	returns	 TRUE 	if	at	least	one	condition	is	true.	If	all	conditions	are	FALSE,	then	it	will	return	a	FALSE.	For	instance	 4	>	3	
or	17	>	20	or	3	==	2 	will	return	 TRUE because	the	first	condition	is	true.	The	 not 	operator	returns	 TRUE 	if	the	condition	after	the	
not 	keyword	is	false.	Think	of	it	as	a	way	to	do	a	logic	reversal.

Block	 if 	statement

The	 if 	statement	is	a	common	flow	control	statement.	It	allows	the	program	to	evaluate	if	a	certain	condition	is	satisfied	and	to	perform	a
designed	action	based	on	the	result	of	the	evaluation.	The	structure	of	an	 if 	statement	is

if	condition1	is	met:
				do	A
elif	condition	2	is	met:

https://towardsdatascience.com/pseudocode-101-an-introduction-to-writing-good-pseudocode-1331cb855be7

				do	b
elif	condition	3	is	met:
				do	c
else:
				do	e

The	 elif 	means	"else	if".	The	 : 	colon	is	an	important	part	of	the	structure	it	tells	where	the	action	begins.	Also	there	are	no	scope
delimiters	like	(),	or	{}	.	Instead	Python	uses	indentation	to	isolate	blocks	of	code.

This	convention	is	hugely	important	-	many	other	coding	environments	use	delimiters	(called	scoping	delimiters),	but	Python	does	not.	The
indentation	itself	is	the	scoping	delimiter.

Inline	 if 	statement

An	inline	 if 	statement	is	a	simpler	form	of	an	 if 	statement	and	is	more	convenient	if	you	only	need	to	perform	a	simple	conditional	task.
The	syntax	is:

do	TaskA	`if`	condition	is	true	`else`	do	TaskB

An	example	would	be

myInt	=	3
num1	=	12	if	myInt	==	0	else	13
num1

An	alternative	way	is	to	enclose	the	condition	in	brackets	for	some	clarity	like

myInt	=	3
num1	=	12	if	(myInt	==	0)	else	13
num1

In	either	case	the	result	is	that	 num1 	will	have	the	value	 13 	(unless	you	set	myInt	to	0).

One	can	also	use	 if 	to	construct	extremely	inefficient	loops.

Repetition	and	Loops
Computational	thinking	(CT)	concepts	involved	are:

Decomposition 	:	Break	a	problem	down	into	smaller	pieces;	the	body	of	tasks	in	one	repetition	of	a	loop	represent	decomposition	of
the	entire	sets	of	repeated	activities
Pattern	Recognition 	:	Finding	similarities	between	things;	the	body	of	tasks	in	one	repetition	of	a	loop	is	the	pattern,	the	indices
and	components	that	change	are	how	we	leverage	reuse
Abstraction 	:	Pulling	out	specific	differences	to	make	one	solution	work	for	multiple	problems
Algorithms 	:	A	list	of	steps	that	you	can	follow	to	finish	a	task

The	action	of	doing	something	over	and	over	again	(repetition)	is	called	a	loop.	Basically,	Loops	repeats	a	portion	of	code	a	finite	number	of
times	until	a	process	is	complete.	Repetitive	tasks	are	very	common	and	essential	in	programming.	They	save	time	in	coding,	minimize
coding	errors,	and	leverage	the	speed	of	electronic	computation.

Loop	Analogs

If	you	think	any	mass	manufacturing	process,	we	apply	the	same	process	again	and	again.	Even	for	something	very	simple	such	as	preparing
a	peanut	butter	sandwich:

Consider	the	flowchart	in	Figure	1,	it	represents	a	decomposition	of	sandwich	assembly,	but	at	a	high	level	--	for	instance,	 Gather	
Ingredients 	contains	a	lot	of	substeps	that	would	need	to	be	decomposed	if	fully	automated	assembly	were	to	be	accomplished;
nevertheless	lets	stipulate	that	this	flowchart	will	indeed	construct	a	single	sandwich.

Figure	1 Supervisory	Flowchart	Sandwich	Assembly	(adapted	from	http://www.str-tn.org/subway_restaurant_training_manual.pdf)

If	we	need	to	make	1000	peanut	butter	sandwichs	we	would	then	issue	a	directive	to:

1)	Implement	sandwich	assembly,	repeat	999	times	(repeat	is	the	loop	structure)	(A	serial	structure,	1	sandwich	artist,	doing	same	job	over
and	over	again)

OR

2)	Implement	1000	sandwich	assembly	threads	(A	parallel	structure,	1000	sandwich	artists	doing	same	job	once)

In	general	because	we	dont	want	to	idle	999	sandwich	artists,	we	would	choose	the	serial	structure,	which	frees	999	people	to	ask	the
existential	question	"would	you	like	fries	with	that?"

All	cynicism	aside,	an	automated	process	such	as	a	loop,	is	typical	in	computational	processing.

Aside	NVIDIA	CUDA,	and	AMD	OpenGL	compilers	can	detect	the	structure	above,	and	if	there	are	enough	GPU	threads	available	,	create
the	1000	sandwich	artists	(1000	GPU	threads),	and	run	the	process	in	parallel	--	the	actual	workload	is	unchanged	in	a	thermodynamic
sense,	but	the	apparent	time	(in	human	terms)	spent	in	sandwich	creation	is	a	fraction	of	the	serial	approach.	This	parallelization	is	called
unrolling	the	loop,	and	is	a	pretty	common	optimization	step	during	compilation.	This	kind	of	programming	is	outside	the	scope	of	this	class.

Main	attractiveness	of	loops	is:

Leveraging	 pattern	matching 	and	 automation
Code	is	more	organized	and	shorter,because	a	loop	is	a	sequence	of	instructions	that	is	continually	repeated	until	a	certain	condition	is
reached.

There	are	2	main	types	loops	based	on	the	repetition	control	condition;	 for 	loops	and	 while loops.

For	Loop	(Count	controlled	repetition	structure)
Count-controlled	repetition	is	also	called	definite	repetition	because	the	number	of	repetitions	is	known	before	the	loop	begins	executing.
When	we	do	not	know	in	advance	the	number	of	times	we	want	to	execute	a	statement,	we	cannot	use	count-controlled	repetition.	In	such	an
instance,	we	would	use	sentinel-controlled	repetition.

A	count-controlled	repetition	will	exit	after	running	a	certain	number	of	times.	The	count	is	kept	in	a	variable	called	an	index	or	counter.	When
the	index	reaches	a	certain	value	(the	loop	bound)	the	loop	will	end.

Count-controlled	repetition	requires

control	variable	(or	loop	counter)
initial	value	of	the	control	variable
increment	(or	decrement)	by	which	the	control	variable	is	modified	each	iteration	through	the	loop
condition	that	tests	for	the	final	value	of	the	control	variable

We	can	use	both	 for 	and	 while 	loops,	for	count	controlled	repetition,	but	the	 for 	loop	in	combination	with	the	 range() 	function	is
more	common.

Structured	 FOR 	loop

We	have	seen	the	for	loop	already,	but	we	will	formally	introduce	it	here.	The	 for 	loop	executes	a	block	of	code	repeatedly	until	the
condition	in	the	 for 	statement	is	no	longer	true.

Looping	through	an	iterable

An	iterable	is	anything	that	can	be	looped	over	-	typically	a	list,	string,	or	tuple.	The	syntax	for	looping	through	an	iterable	is	illustrated	by	an
example.

First	a	generic	syntax

	

http://www.str-tn.org/subway_restaurant_training_manual.pdf

for	a	in	iterable:
print(a)

Notice	our	friends	the	colon	 : 	and	the	indentation.

The	 range() 	function	to	create	an	iterable

The	 range(begin,end,increment) 	function	will	create	an	iterable	starting	at	a	value	of	begin,	in	steps	defined	by	increment	(begin	
+=	increment),	ending	at	 end .

So	a	generic	syntax	becomes

for	a	in	range(begin,end,increment):
print(a)

The	examples	that	follow	are	count-controlled	repetition	(increment	skip	if	greater)

Example	 for 	loops

Sum	from	1	to		9	is	45.000

Sum	of	Evens	from	1	to		9	is	20.000

*
**

Sentinel-controlled	repetition.
When	loop	control	is	based	on	the	value	of	what	we	are	processing,	sentinel-controlled	repetition	is	used.	Sentinel-controlled	repetition	is	also
called	indefinite	repetition	because	it	is	not	known	in	advance	how	many	times	the	loop	will	be	executed.	It	is	a	repetition	procedure	for
solving	a	problem	by	using	a	sentinel	value	(also	called	a	signal	value,	a	dummy	value	or	a	flag	value)	to	indicate	"end	of	process".	The
sentinel	value	itself	need	not	be	a	part	of	the	processed	data.

One	common	example	of	using	sentinel-controlled	repetition	is	when	we	are	processing	data	from	a	file	and	we	do	not	know	in	advance	when
we	would	reach	the	end	of	the	file.

We	can	use	both	 for 	and	 while 	loops,	for	Sentinel	controlled	repetition,	but	the	 while 	loop	is	more	common.

#	sum	numbers	from	1	to	n
howmany	=	int(input('Enter	N'))
accumulator	=	0.0
for	i	in	range(1,howmany+1,1):
				accumulator	=	accumulator	+	float(i)
print('Sum	from	1	to	',howmany,	'is	%.3f'	%	accumulator)

#	sum	even	numbers	from	1	to	n
howmany	=	int(input('Enter	N'))
accumulator	=	0.0
for	i	in	range(1,howmany+1,1):
				if	i%2	==	0:
								accumulator	=	accumulator	+	float(i)
print('Sum	of	Evens	from	1	to	',howmany,	'is	%.3f'	%	accumulator)

howmany	=	int(input('Enter	N'))
linetoprint=''
for	i	in	range(1,howmany+1,1):
				linetoprint=linetoprint	+	'*'
				print(linetoprint)

Structured	 WHILE 	loop

The	 while 	loop	repeats	a	block	of	instructions	inside	the	loop	while	a	condition	remainsvtrue.

First	a	generic	syntax

while	condition	is	true:
				execute	a
				execute	b
....

Notice	our	friends	the	colon	 : 	and	the	indentation	again.

Example	while 	loops

Sum	from	1	to		9	is	45.000

Sum	of	Evens	1	to		9	is	20.000

*
**

Nested	Repetition
Nested	repetition	is	when	a	control	structure	is	placed	inside	of	the	body	or	main	part	of	another	control	structure.

break 	to	exit	out	of	a	loop

Sometimes	you	may	want	to	exit	the	loop	when	a	certain	condition	different	from	the	counting	condition	is	met.	Perhaps	you	are	looping
through	a	list	and	want	to	exit	when	you	find	the	first	element	in	the	list	that	matches	some	criterion.	The	break	keyword	is	useful	for	such	an
operation.

For	example	run	the	following	program:

#	sum	numbers	from	1	to	n
howmany	=	int(input('Enter	N'))
accumulator	=	0.0
counter	=	1
while	counter	<=	howmany:
				accumulator	=	accumulator	+	float(counter)
				counter	+=	1
print('Sum	from	1	to	',howmany,	'is	%.3f'	%	accumulator)

#	sum	even	numbers	from	1	to	n
howmany	=	int(input('Enter	N'))
accumulator	=	0.0
counter	=	1
while	counter	<=	howmany:
				if	counter%2	==	0:
								accumulator	=	accumulator	+	float(counter)
				counter	+=	1
print('Sum	of	Evens	1	to	',howmany,	'is	%.3f'	%	accumulator)

howmany	=	int(input('Enter	N'))
linetoprint=''
counter	=	1
while	counter	<=	howmany:
				linetoprint=linetoprint	+	'*'
				counter	+=	1
				print(linetoprint)

i	=		0	j	=		2
i	=		1	j	=		4
i	=		2	j	=		6

i	=		0	j	=		2
i	=		1	j	=		4
i	=		2	j	=		6
i	=		3	j	=		8
i	=		4	j	=		10

In	the	first	case,	the	for	loop	only	executes	3	times	before	the	condition	j	==	6	is	TRUE	and	the	loop	is	exited.	In	the	second	case,	j	==	7	never
happens	so	the	loop	completes	all	its	anticipated	traverses.

In	both	cases	an	 if 	statement	was	used	within	a	for	loop.	Such	"mixed"	control	structures	are	quite	common	(and	pretty	necessary).	A	
while 	loop	contained	within	a	 for 	loop,	with	several	 if 	statements	would	be	very	common	and	such	a	structure	is	called	nested
control.	There	is	typically	an	upper	limit	to	nesting	but	the	limit	is	pretty	large	-	easily	in	the	hundreds.	It	depends	on	the	language	and	the
system	architecture	;	suffice	to	say	it	is	not	a	practical	limit	except	possibly	for	general-domain	AI	applications.

We	can	also	do	mundane	activities	and	leverage	loops,	arithmetic,	and	format	codes	to	make	useful	tables	like

					Cosines					
			x				|		cos(x)	
--------|--------
0.000			|		1.0000	
0.100			|		0.9950	
0.200			|		0.9801	
0.300			|		0.9553	
0.400			|		0.9211	
0.500			|		0.8776	
0.600			|		0.8253	
0.700			|		0.7648	
0.800			|		0.6967	
0.900			|		0.6216	
1.000			|		0.5403	
1.100			|		0.4536	
1.200			|		0.3624	
1.300			|		0.2675	
1.400			|		0.1700	
1.500			|		0.0707	
1.600			|		-0.0292	
1.700			|		-0.1288	
1.800			|		-0.2272	
1.900			|		-0.3233	
2.000			|		-0.4161	
2.100			|		-0.5048	
2.200			|		-0.5885	
2.300			|		-0.6663	
2.400			|		-0.7374	
2.500			|		-0.8011	
2.600			|		-0.8569	
2.700			|		-0.9041	
2.800			|		-0.9422	
2.900			|		-0.9710	

#
j	=	0
for	i	in	range(0,9,1):
				j	+=	2
				print	("i	=	",i,"j	=	",j)
				if	j	==	6:
								break			

j	=	0
for	i	in	range(0,5,1):
				j	+=	2
				print("i	=	",i,"j	=	",j)
				if	j	==	7:
								break

import	math	#	package	that	contains	cosine
print("					Cosines					")
print("			x			","|","	cos(x)	")
print("--------|--------")
for	i	in	range(0,157,1):
				x	=	float(i)*0.1
				print("%.3f"	%	x,	"		|",	"	%.4f	"		%	math.cos(x))	#	note	the	format	code	and	the	placeholder	%	and	syntax	

3.000			|		-0.9900	
3.100			|		-0.9991	
3.200			|		-0.9983	
3.300			|		-0.9875	
3.400			|		-0.9668	
3.500			|		-0.9365	
3.600			|		-0.8968	
3.700			|		-0.8481	
3.800			|		-0.7910	
3.900			|		-0.7259	
4.000			|		-0.6536	
4.100			|		-0.5748	
4.200			|		-0.4903	
4.300			|		-0.4008	
4.400			|		-0.3073	
4.500			|		-0.2108	
4.600			|		-0.1122	
4.700			|		-0.0124	
4.800			|		0.0875	
4.900			|		0.1865	
5.000			|		0.2837	
5.100			|		0.3780	
5.200			|		0.4685	
5.300			|		0.5544	
5.400			|		0.6347	
5.500			|		0.7087	
5.600			|		0.7756	
5.700			|		0.8347	
5.800			|		0.8855	
5.900			|		0.9275	
6.000			|		0.9602	
6.100			|		0.9833	
6.200			|		0.9965	
6.300			|		0.9999	
6.400			|		0.9932	
6.500			|		0.9766	
6.600			|		0.9502	
6.700			|		0.9144	
6.800			|		0.8694	
6.900			|		0.8157	
7.000			|		0.7539	
7.100			|		0.6845	
7.200			|		0.6084	
7.300			|		0.5261	
7.400			|		0.4385	
7.500			|		0.3466	
7.600			|		0.2513	
7.700			|		0.1534	
7.800			|		0.0540	
7.900			|		-0.0460	
8.000			|		-0.1455	
8.100			|		-0.2435	
8.200			|		-0.3392	
8.300			|		-0.4314	
8.400			|		-0.5193	
8.500			|		-0.6020	
8.600			|		-0.6787	
8.700			|		-0.7486	
8.800			|		-0.8111	
8.900			|		-0.8654	
9.000			|		-0.9111	
9.100			|		-0.9477	
9.200			|		-0.9748	
9.300			|		-0.9922	
9.400			|		-0.9997	
9.500			|		-0.9972	
9.600			|		-0.9847	
9.700			|		-0.9624	
9.800			|		-0.9304	
9.900			|		-0.8892	
10.000			|		-0.8391	
10.100			|		-0.7806	
10.200			|		-0.7143	
10.300			|		-0.6408	
10.400			|		-0.5610	
10.500			|		-0.4755	
10.600			|		-0.3853	
10.700			|		-0.2913	
10.800			|		-0.1943	
10.900			|		-0.0954	
11.000			|		0.0044	
11.100			|		0.1042	
11.200			|		0.2030	

11.300			|		0.2997	
11.400			|		0.3935	
11.500			|		0.4833	
11.600			|		0.5683	
11.700			|		0.6476	
11.800			|		0.7204	
11.900			|		0.7861	
12.000			|		0.8439	
12.100			|		0.8932	
12.200			|		0.9336	
12.300			|		0.9647	
12.400			|		0.9862	
12.500			|		0.9978	
12.600			|		0.9994	
12.700			|		0.9911	
12.800			|		0.9728	
12.900			|		0.9449	
13.000			|		0.9074	
13.100			|		0.8610	
13.200			|		0.8059	
13.300			|		0.7427	
13.400			|		0.6722	
13.500			|		0.5949	
13.600			|		0.5117	
13.700			|		0.4234	
13.800			|		0.3308	
13.900			|		0.2349	
14.000			|		0.1367	
14.100			|		0.0372	
14.200			|		-0.0628	
14.300			|		-0.1621	
14.400			|		-0.2598	
14.500			|		-0.3549	
14.600			|		-0.4465	
14.700			|		-0.5336	
14.800			|		-0.6154	
14.900			|		-0.6910	
15.000			|		-0.7597	
15.100			|		-0.8208	
15.200			|		-0.8737	
15.300			|		-0.9179	
15.400			|		-0.9530	
15.500			|		-0.9785	
15.600			|		-0.9942	

The	 continue 	statement

The	continue	instruction	skips	the	block	of	code	after	it	is	executed	for	that	iteration.	It	is	best	illustrated	by	an	example.

	i	=		0	,	j	=		2
	this	message	will	be	skipped	over	if	j	=	6	

	i	=		1	,	j	=		4
	this	message	will	be	skipped	over	if	j	=	6	

	i	=		2	,	j	=		6

	i	=		3	,	j	=		8
	this	message	will	be	skipped	over	if	j	=	6	

	i	=		4	,	j	=		10
	this	message	will	be	skipped	over	if	j	=	6	

The	 try ,	 except 	structure

An	important	control	structure	(and	a	pretty	cool	one	for	error	trapping)	is	the	 try ,	 except 	statement.

The	statement	controls	how	the	program	proceeds	when	an	error	occurs	in	an	instruction.	The	structure	is	really	useful	to	trap	likely	errors
(divide	by	zero,	wrong	kind	of	input)	yet	let	the	program	keep	running	or	at	least	issue	a	meaningful	message	to	the	user.

j	=	0
for	i	in	range(0,5,1):
				j	+=	2
				print	("\n	i	=	",	i	,	",	j	=	",	j)	#here	the	\n	is	a	newline	command
				if	j	==	6:
								continue
				print("	this	message	will	be	skipped	over	if	j	=	6	")	#	still	within	the	loop,	so	the	skip	is	implemented

The	syntax	is:

try:
do	something
except:
do	something	else	if	``do	something''	returns	an	error

Here	is	a	really	simple,	but	hugely	important	example:

x	=		12.0	y	=		12.0	x/y	=		1.0
x	=		12.0	y	=		11.0	x/y	=		1.0909090909090908
x	=		12.0	y	=		10.0	x/y	=		1.2
x	=		12.0	y	=		9.0	x/y	=		1.3333333333333333
x	=		12.0	y	=		8.0	x/y	=		1.5
x	=		12.0	y	=		7.0	x/y	=		1.7142857142857142
x	=		12.0	y	=		6.0	x/y	=		2.0
x	=		12.0	y	=		5.0	x/y	=		2.4
x	=		12.0	y	=		4.0	x/y	=		3.0
x	=		12.0	y	=		3.0	x/y	=		4.0
x	=		12.0	y	=		2.0	x/y	=		6.0
x	=		12.0	y	=		1.0	x/y	=		12.0
error	divide	by	zero
x	=		12.0	y	=		-1.0	x/y	=		-12.0
x	=		12.0	y	=		-2.0	x/y	=		-6.0
x	=		12.0	y	=		-3.0	x/y	=		-4.0
x	=		12.0	y	=		-4.0	x/y	=		-3.0
x	=		12.0	y	=		-5.0	x/y	=		-2.4
x	=		12.0	y	=		-6.0	x/y	=		-2.0
x	=		12.0	y	=		-7.0	x/y	=		-1.7142857142857142
x	=		12.0	y	=		-8.0	x/y	=		-1.5
x	=		12.0	y	=		-9.0	x/y	=		-1.3333333333333333
x	=		12.0	y	=		-10.0	x/y	=		-1.2
x	=		12.0	y	=		-11.0	x/y	=		-1.0909090909090908
x	=		12.0	y	=		-12.0	x/y	=		-1.0

So	this	silly	code	starts	with	x	fixed	at	a	value	of	12,	and	y	starting	at	12	and	decreasing	by	1	until	y	equals	-1.	The	code	returns	the	ratio	of	x
to	y	and	at	one	point	y	is	equal	to	zero	and	the	division	would	be	undefined.	By	trapping	the	error	the	code	can	issue	us	a	measure	and	keep
running.

Modify	the	script	as	shown	below,Run,	and	see	what	happens

x	=		12.0	y	=		12.0	x/y	=		1.0
x	=		12.0	y	=		11.0	x/y	=		1.0909090909090908
x	=		12.0	y	=		10.0	x/y	=		1.2
x	=		12.0	y	=		9.0	x/y	=		1.3333333333333333
x	=		12.0	y	=		8.0	x/y	=		1.5
x	=		12.0	y	=		7.0	x/y	=		1.7142857142857142
x	=		12.0	y	=		6.0	x/y	=		2.0
x	=		12.0	y	=		5.0	x/y	=		2.4
x	=		12.0	y	=		4.0	x/y	=		3.0
x	=		12.0	y	=		3.0	x/y	=		4.0
x	=		12.0	y	=		2.0	x/y	=		6.0
x	=		12.0	y	=		1.0	x/y	=		12.0

ZeroDivisionError																									Traceback	(most	recent	call	last)
<ipython-input-20-82eeaceb9a12>	in	<module>
						3	y	=	12.
						4	while	y	>=	-12.:	#	sentinel	controlled	repetition
---->	5					print	("x	=	",	x,	"y	=	",	y,	"x/y	=	",	x/y)
						6					y	-=	1

#MyErrorTrap.py
x	=	12.
y	=	12.
while	y	>=	-12.:	#	sentinel	controlled	repetition
				try:									
								print	("x	=	",	x,	"y	=	",	y,	"x/y	=	",	x/y)
				except:
								print	("error	divide	by	zero")
				y	-=	1

#NoErrorTrap.py
x	=	12.
y	=	12.
while	y	>=	-12.:	#	sentinel	controlled	repetition
				print	("x	=	",	x,	"y	=	",	y,	"x/y	=	",	x/y)
				y	-=	1

ZeroDivisionError:	float	division	by	zero

Flowcharts

What	is	a	Flowchart?

A	flowchart	is	a	type	of	diagram	that	represents	a	workflow	or	process.	A	flowchart	can	also	be	defined	as	a	diagrammatic	representation	of
an	algorithm,	a	step-by-step	approach	to	solving	a	task.

Figure	2 Repair	Flowchart	for	a	Lamp https://en.wikipedia.org/wiki/Flowchart

The	flowchart	shows	the	steps	as	boxes	of	various	kinds,	and	their	order	by	connecting	the	boxes	with	arrows.	This	diagrammatic
representation	illustrates	a	solution	model	to	a	given	problem.	Flowcharts	are	used	in	analyzing,	designing,	documenting	or	managing	a
process	or	program	in	various	fields.

There	is	a	symbol	convention	(a	language)	as	depicted	in	Figure	2	below	(from:	https://en.wikipedia.org/wiki/Flowchart)

Figure	1 Flowchart	Symbols https://en.wikipedia.org/wiki/Flowchart

IBM	engineers	implemented	programming	flowcharts	based	upon	Goldstine	and	von	Neumann's	unpublished	report,	"Planning	and	coding	of
problems	for	an	electronic	computing	instrument,	Part	II,	Volume	1"	(1947),	which	is	reproduced	in	von	Neumann's	collected	works.

https://en.wikipedia.org/wiki/Flowchart
https://en.wikipedia.org/wiki/Flowchart
https://en.wikipedia.org/wiki/Flowchart

The	flowchart	became	a	popular	tool	for	describing	computer	algorithms,	but	its	popularity	decreased	in	the	1970s,	when	interactive	computer
terminals	and	third-generation	programming	languages	became	common	tools	for	computer	programming,	since	algorithms	can	be
expressed	more	concisely	as	source	code	in	such	languages.	Often	pseudo-code	is	used,	which	uses	the	common	idioms	of	such	languages
without	strictly	adhering	to	the	details	of	a	particular	one.

Nowadays	flowcharts	are	still	used	for	describing	computer	algorithms.[9]	Modern	techniques	such	as	UML	activity	diagrams	and	Drakon-
charts	can	be	considered	to	be	extensions	of	the	flowchart.

Nearly	all	flowcharts	focus	on	on	some	kind	of	control,	rather	than	on	the	particular	flow	itself!	While	quaint	today,	they	are	an	effective	way	to
document	processes	in	a	program	and	visualize	structures.	We	recomend	you	get	in	the	habit	of	making	rudimentary	flowcharts,	at	least	at
the	supervisory	level	(the	sandwich	chart	above)

How	are	they	useful?

(paraphrased	from	https://www.breezetree.com/articles/top-reasons-to-flowchart)

Sometimes	it's	more	effective	to	visualize	something	graphically	that	it	is	to	describe	it	with	words.	That	is	the	essence	of	what	flowcharts	do
for	you.	Flowcharts	explain	a	process	clearly	through	symbols	and	text.	Moreover,	flowcharts	give	you	the	gist	of	the	process	flow	in	a	single
glance.	The	following	are	some	of	the	more	salient	reasons	to	use	flowcharts.

Process	Documentation	/	Training	Materials	Another	common	use	for	flowcharts	is	to	create	process	documentation.	Although	this	reason
overlaps	with	regulatory	and	quality	management	requirements	(below),	many	non-regulated	businesses	use	flowcharts	for	their
documentation	as	well.	These	can	range	in	form	from	high-level	procedures	to	low-level,	detailed	work	instructions.

You	may	think	that	this	applies	mainly	to	large	organizations,	but	small	companies	can	greatly	benefit	from	flowcharting	their	processes	as
well.	Small	enterprises	need	to	be	nimble	and	organized.	Standardizing	their	processes	is	a	great	way	to	achieve	this.	In	fact,	the	popular
entrepreneurial	book	The	E-Myth	Revisited:	Why	Most	Small	Businesses	Don't	Work	and	What	to	Do	About	It	by	Michael	Gerber	is	based	on
the	fact	that	small	businesses	are	more	likely	to	succeed	if	they	treat	their	operations	like	a	franchise.	in	a	nutshell,	this	means	standardizing
and	documenting	their	business	processes.	There's	no	better	way	to	do	that	than	with	flowcharts,	right?

Training	materials	are	often	created	using	flowcharts	because	they're	visually	stimulating	and	easy	to	understand.	A	nicely	laid	out	flowchart
will	gain	and	hold	the	reader's	attention	when	a	block	of	text	will	often	fail.

Workflow	Management	and	Continuous	Improvement	Workflows	don't	manage	themselves.	To	ensure	that	you	are	meeting	your
customers'	needs,	you	need	to	take	control	of	your	business	processes.	The	first	step	to	workflow	management	is	to	define	the	current	state
of	your	processes	by	creating	an	"As-Is	Flowchart".	That	allows	you	to	analyze	your	processes	for	waste	and	inefficiency.	After	you	have
identified	areas	for	process	improvement,	you	can	then	craft	new	flowcharts	to	document	the	leaner	processes.

Programming	Information	technology	played	a	big	influence	on	the	use	and	spread	of	flowcharts	in	the	20th	century.	While	Dr.	W.	Edwards
Deming	was	advocating	their	use	in	quality	management,	professionals	in	the	data	processing	world	were	using	them	to	flesh	out	their
programming	logic.	Flowcharts	were	a	mainstay	of	procedural	programming,	however,	and	with	the	advent	of	object	oriented	programming
and	various	modeling	tools,	the	use	of	flowcharts	for	programming	is	no	longer	as	commonplace	as	it	once	was.

That	said,	even	with	in	the	scope	of	object	oriented	programming,	complex	program	logic	can	be	modeled	effectively	using	a	flowchart.
Moreover,	diagramming	the	user's	experience	as	they	navigate	through	a	program	is	a	valuable	prerequisite	prior	to	designing	the	user
interface.	So	flowcharts	still	have	their	place	in	the	world	of	programming.

Troubleshooting	Guides	Most	of	us	have	come	across	a	troubleshooting	flowchart	at	one	time	or	another.	These	are	usually	in	the	form	of
Decision	Trees	that	progressively	narrow	the	range	of	possible	solutions	based	on	a	series	of	criteria.	The	effectiveness	of	these	types	of
flowcharts	depends	on	how	neatly	the	range	of	problems	and	solutions	can	fit	into	a	simple	True/False	diagnosis	model.	A	well	done
troubleshooting	flowcharts	can	cut	the	problem	solving	time	greatly.

Regulatory	and	Quality	Management	Requirements	Your	business	processes	may	be	subject	to	regulatory	requirements	such	as
Sarbanes-Oxley	(SOX),	which	requires	that	your	accounting	procedures	be	clearly	defined	and	documented.	An	easy	way	to	do	this	is	to
create	accounting	flowcharts	for	all	your	accounting	processes.

Similarly,	many	organizations	fall	under	certification	requirements	for	quality	management	systems	-	such	as	ISO	9000,	TS	16949,	or	one	of
the	many	others.	In	such	environments,	flowcharts	are	not	only	useful	but	in	certain	clauses	they	are	actually	mandated.

References

1.	 Computational	and	Inferential	Thinking	Ani	Adhikari	and	John	DeNero,	Computational	and	Inferential	Thinking,	The	Foundations	of	Data
Science,	Creative	Commons	Attribution-NonCommercial-NoDerivatives	4.0	International	(CC	BY-NC-ND)	Chapters	3-6
https://www.inferentialthinking.com/chapters/03/programming-in-python.html

2.	 Learn	Python	the	Hard	Way	(Online	Book)	(https://learnpythonthehardway.org/book/)	Recommended	for	beginners	who	want	a	complete
course	in	programming	with	Python.

3.	 LearnPython.org	(Interactive	Tutorial)	(https://www.learnpython.org/)	Short,	interactive	tutorial	for	those	who	just	need	a	quick	way	to	pick
up	Python	syntax.

https://www.breezetree.com/articles/top-reasons-to-flowchart
https://www.inferentialthinking.com/chapters/03/programming-in-python.html
https://learnpythonthehardway.org/book/
https://www.learnpython.org/

4.	 Brian	Christian	and	Tom	Griffiths	(2016)	ALGORITHMS	TO	LIVE	BY:	The	Computer	Science	of	Human	Decisions	Henry	Holt	and	Co.
(https://www.amazon.com/Algorithms-Live-Computer-Science-Decisions/dp/1627790365)

5.	 Theodore	G.	Cleveland,	Farhang	Forghanparast,	Dinesh	Sundaravadivelu	Devarajan,	Turgut	Batuhan	Baturalp	(Batu),	Tanja	Karp,	Long
Nguyen,	and	Mona	Rizvi.	(2021)	Computational	Thinking	and	Data	Science:	A	WebBook	to	Accompany	ENGR	1330	at	TTU,	Whitacre
College	of	Engineering,	DOI	(pending)

	

https://www.amazon.com/Algorithms-Live-Computer-Science-Decisions/dp/1627790365

