
Download	this	page	as	a	jupyter	notebook	at	Lesson	4

ENGR	1330	Computational	Thinking	with	Data	Science
Copyright	©	2021	Theodore	G.	Cleveland,	Farhang	Forghanparast,	and	Mona	Rizvi

Last	GitHub	Commit	Date:	29	August	2021

Lesson	4	User	Interaction:
The	 input() 	function
triple	quotes
escape	characters
The	 print() 	function

atomickitty
sensei
/home/sensei/engr-1330-webroot/1-Lessons/Lesson04
/opt/jupyterhub/bin/python3

Objectives
1.	 Develop	awareness	of	interactive	inputs
2.	 Implement	interactive	inputs	to	generalize	solution	tools
3.	 Develop	awareness	of	output	formatting	to	improve	readability
4.	 Implement	output	formats

Input	and	Output
Useful	programs	take	input	and	generate	output

Command-line	interface
Graphical	user	interface	(GUI)
Files
Network	sources
Databases

User	Interaction

Until	this	point	we	have	explicitly	specified	input	values	for	variables	(and	constants)	in	a	script;	now	lets	leverage	intrinsic	functions	that	lets
us	makes	use	of	variables.	We’ll	revisit	earlier	examples,	but	this	time	we’ll	make	them	interactive.	Instead	of	just	computing	and	sending
output,	we	want	read	into	variables	values	that	may	change	from	time	to	time.	In	order	to	do	that,	our	script	needs	to	be	able	to	prompt	us	for
information	and	display	them	on	the	screen.

This	whole	process	is	the	essence	of	user	interaction,	and	from	the	simple	examples	herein,	one	builds	more	complex	scripts.

Command-line	input

Function	 input(prompt)

#	Script	block	to	identify	host,	user,	and	kernel
import	sys
!	hostname;	!	whoami;	!	pwd;	
print(sys.executable)

%%html
<!--	Script	Block	to	set	tables	to	left	alignment	-->
<style>
		table	{margin-left:	0	!important;}
</style>

http://54.243.252.9/engr-1330-webroot/1-Lessons/Lesson04/ENGR-1330-Lesson04.ipynb

prints	the	optional	prompt	on	the	command	line,	the	prompt	can	be	a	string	variable,	or	just	a	string	literal
waits	for	the	user	to	type	something
the	text	is	sent	to	the	program	only	after	the	user	types	enter/return
the	entered	data	is	always	interpreted	as	text,	even	if	it's	numeric

About	the	 input() 	function

Consider	the	script	below

Jimmy	Johns

The	 input 	method	sent	the	string	'What	is	your	name	?'	to	the	screen,	and	then	waited	for	the	user	to	reply.	Upon	reply,	the	input	supplied
was	captured	and	then	placed	into	the	variable	named	 MyName .

Then	the	next	statement,	used	the	 print() 	method	to	print	the	contents	of	 MyName 	back	to	the	screen.	From	this	simple	structure	we
can	create	quite	useful	input	and	output.

As	a	matter	of	good	practice,	we	should	explicitly	type	the	input	variable,	as	shown	below	which	takes	the	input	stream	and	converts	it	into	a
string.

Taco	Bell

Below	we	prompt	for	a	second	input,	in	this	case	the	user's	age,	which	will	be	put	into	an	integer.	As	a	sdie	note,	we	are	not	error	checking,
so	if	an	input	stream	that	cannot	be	made	into	an	integer	is	suppplied	we	will	get	an	exception	warning	or	an	error	message.

66

More	examples

'grow	3'

'grow	3'

Command-line	output

Function	 print()
prints	the	value(s)	passed	to	it
automatically	converts	data	values	to	strings
goes	to	the	next	line	by	default
separates	values	with	space	by	default

MyName=input('What	is	your	name	?')
print(MyName)

MyName=str(input('What	is	your	name	?'))
print(MyName)

MyAge=int(input('How	old	are	you	?	'))
print(MyAge)

#	Try	getting	some	input
value	=	input("Please	enter	a	value:	")	#	input	with	a	prompt
#	print(type(value))	#	get	data	type	--	note	always	a	string
#	input()	#	without	the	prompt
#	print(hex(id(value)))	#	get	memory	location	of	value	in	hex	-	sometimes	useful	for	squashing	bugs
value	#return	contents

#	building	the	prompt
string_variable	=	'Enter	a	value'
value	=	input(string_variable)
value

optional	arguments	can	set	different	separator	and	end	of	line	values
Format	output	using	string	formatting	functions

About	the	 print() 	function
The	 print() 	function	is	used	to	display	information	to	users.	It	accepts	zero	or	more	expressions	as	parameters,	separated	by	commas.

Consider	the	statement	below,	how	many	parameters	are	in	the	parameter	list?

Hello	World,	my	name	is	Taco	Bell	and	I	am	66	years	old.

There	are	five	parameters;

1.	 "Hello	World,	my	name	is"
2.	 MyName
3.	 "and	I	am"
4.	 MyAge
5.	 "years	old"

Three	of	the	parameters	are	string	literals	and	are	enclosed	in	quote	marks,	two	are	variables	that	are	rendered	as	strings.

Some	more	examples

Here	is	a	message.
Here	is	a	value:	grow	3
Don't	go	to	next	line.	more	text	same	line
more	text	new	line	

About	Strings

A	string	is	a	complex	data	type
a	sequence	of	characters	that	is	immutable
individual	characters	are	identified	using	indexing	syntax:	 s[position]

the	general	 len() 	function	returns	the	length	of	a	string

d

print	("Hello	World,	my	name	is",	MyName,	"and	I	am",	MyAge,	"years	old.")

#	Examples	of	output

print("Here	is	a	message.")
print("Here	is	a	value:",	value)		#	where	did	val	come	from?
print("Don't	go	to	next	line.",	end	=	'	')
print("more	text	same	line")
print("more	text	new	line	")

#	Experiment	with	indexing	syntax
s	=	"birds"
print(s[3])
print(s[-1])
print(len(s))
type(s[3])

d
s
5

str

String	Operators

+
concatenate	strings

== 	 !=
test	the	equality	of	strings

< 	 <= 	 > 	 >=
compare	strings	alphabetically

catdog
True
False
True

Special	and	unprintable	characters

Represented	with	escape	sequences
preceded	by	backslash	 \

Common	special	characters

Character Escape	Sequence

newline \n

tab \t

backslash \\

quotes \' 	 \"

hello

1	 2
ê

About	Escape	Sequences

Sometimes	we	may	need	to	print	some	special	“unprintable”	characters	such	as	a	tab	or	a	newline.	In	this	case,	you	need	to	use	the	 \
(backslash)	character	to	escape	characters	that	otherwise	have	a	different	meaning.	For	instance	to	print	a	tab,	we	type	the	backslash
character	before	the	letter	t,	like	this	 \t 	using	our	earlier	example	we	have:

Hello	 	World,	my	name	is	Taco	Bell	and	I	am	66	years	old.

Here	are	a	few	more	examples:

#	String	operators
s1	=	"cat"
s2	=	"dog"
s3	=	"cat"
print(s1	+	s2)
print(s1	==	s3)
print(s2	<	s1)
print("Dog"	<	"cat")

#	Escape	sequences
print("hello\n")
print("1\t2")
print("\xEA")

print	("Hello\t	World,	my	name	is	{}	and	I	am	{}	years	old.".format(MyName,MyAge))

#newline	after	World
print	("Hello	World\n,	my	name	is	{}	and	I	am	{}	years	old.".format(MyName,MyAge))	

Hello	World
,	my	name	is	Taco	Bell	and	I	am	66	years	old.

Hello	World\,	my	name	is	Taco	Bell	and	I	am	66	years	old.

I	am	5'9"	tall

If	you	do	not	want	characters	preceded	by	the	 \ 	character	to	be	interpreted	as	special	characters,	you	can	use	raw	strings	by
adding	an	 r 	before	the	first	quote.	For	instance,	if	you	do	not	want	 \t 	to	be	interpreted	as	a	tab	in	the	string	literal
"Hello\tWorld",	you	would	type

Hello\tWorld

String	slicing

expanded	indexing
a	slice	of	a	string	is	a	new	string,	composed	of	characters	from	the	initial	string

Syntax Result

s[start] a	single	character

s[start:end] a	substring

s[start:end:step] a	selection	of	characters

the	end	position	is	not	inclusive	(up	to	but	not	including	end)
the	step	can	be	positive	or	negative

a	negative	step	proceeds	backwards	through	the	string

Empty	and	default	values	in	slicing

the	default	step	is	 1
the	default	end	is	 start+1
an	empty	value	for	end	means	the	end	of	the	string	(in	the	step	direction)
an	empty	value	for	start	means	the	start	of	the	string	(in	the	step	direction)

String	functions

Name Behavior

s.split() Split	a	string	into	pieces	based	on	a	delimiter

s.strip() Remove	leading/trailing	whitespace	or	other	characters

s.upper() Convert	a	string	to	uppercase

s.lower() Convert	a	string	to	lowercase

s.isnumeric() Return	True	if	a	string	is	numeric

s.find() Return	the	index	of	a	substring

s.replace() Replace	one	substring	with	another

Many,	many,	more	... Look	them	up	as	needed

#	backslash	after	World
print	("Hello	World\\,	my	name	is	{}	and	I	am	{}	years	old.".format(MyName,MyAge))	

#	embedded	quotes	in	the	string	literal
print	("I	am	5\'9\"	tall")	

print(r"Hello\tWorld")

#	What	will	this	do?
#	s[-1::-1]

#	some	string	functions
s	=	"hello"
print(s.upper())
print(s)

HELLO
hello
HELLO
I	am	not	a	string.
True

o
.
Fox
Fox.	Sox.	Box.	Knox.	Knox	in	box.	Fox	in	sox.
FSB

The	 % 	operator
Strings	can	be	formatted	using	the	 % 	operator.	This	gives	you	greater	control	over	how	you	want	your	string	to	be	displayed	and	stored.	The
syntax	for	using	the	 % 	operator	is	“string	to	be	formatted”	%(values	or	variables	to	be	inserted	into	string,	separated	by	commas)

An	example	using	the	string	constructor	(%)	form	using	a	placeholder	in	the	print	function	call	is:

Hello	World,	my	name	is	Taco	Bell	and	I	am	66	years	old.

Notice	the	syntax	above.	The	contents	of	the	two	variables	are	placed	in	the	locations	within	the	string	indicated	by	the	 %s 	symbol,	the	tuple
(MyName,MyAge)	is	parsed	using	this	placeholder	and	converted	into	a	string	by	the	trailing	 s 	in	the	 %s 	indicator.

See	what	happens	if	we	change	the	second	 %s 	into	 %f 	and	run	the	script:

Hello	World,	my	name	is	Taco	Bell	and	I	am	66.000000	years	old.

The	change	to	 %f 	turns	the	rendered	tuple	value	into	a	float.	Using	these	structures	gives	us	a	lot	of	output	flexibility.

The	 %f 	formatter	can	also	be	used	to	place	the	decimal	by	preceeding	the	f	with	the	decimal	point	and	the	number	of	digits
after	the	decimal	you	want	to	render	as	in:

Hello	World,	my	name	is	Taco	Bell	and	I	am	66.0	years	old.

About	the	 format() 	method
Similar	to	the	 % operator	structure	there	is	a	 format() 	method.	Using	the	same	example,	the	 %s 	symbol	is	replaced	by	a	pair	of	curly
brackets	 {} 	playing	the	same	placeholder	role,	and	the	 format 	keyword	precedes	the	tuple	as

Hello	World,	my	name	is	Taco	Bell	and	I	am	66	years	old.

str	=	s.upper()
print(str)
str	=	"I	am	a	string."
print(str.replace("am",	"am	not"))
"222".isnumeric()

s	=	"Fox.	Socks.	Box.	Knox.	Knox	in	box.	Fox	in	socks."
print(s[1])
print(s[-1])
print(s[:3])
print(s.replace("ocks",	"ox"))
print(s[0]	+	s[5]	+	s[12])

print	("Hello	World,	my	name	is	%s	and	I	am	%s	years	old."	%(MyName,MyAge))

print	("Hello	World,	my	name	is	%s	and	I	am	%f	years	old."	%(MyName,MyAge))

print	("Hello	World,	my	name	is	%s	and	I	am	%.1f	years	old."	%(MyName,MyAge))

print	("Hello	World,	my	name	is	{}	and	I	am	{}	years	old.".format(MyName,MyAge))

Observe	the	keyword	 format 	is	joined	to	the	string	with	a	dot	notation,	because	 format 	is	a	formal	method	associated	with	all	strings,
and	it	is	attached	when	the	string	literal	is	created.

In	this	example	the	arguments	to	the	method	are	the	two	variables,	but	other	arguments	and	decorators	are	possible	allowing	for	elaborate
outputs.

Triple	quotes
If	you	need	to	display	a	long	message,	you	can	use	the	triple-quote	symbol	(‘’’	or	“””)	to	span	the	message	over	multiple	lines.	For	instance:

Hello	World,	my	name	is	Taco	Bell	and	I	am	a	resturant
that	is	over	66	years	old.	We	serve	sodium	chloride	infused	
lipids	in	a	variety	of	shapes

Future	Versions
repr	and	map	methods
color	codes

Readings
1.	 Computational	and	Inferential	Thinking	Ani	Adhikari	and	John	DeNero,	Computational	and	Inferential	Thinking,	The	Foundations	of	Data
Science,	Creative	Commons	Attribution-NonCommercial-NoDerivatives	4.0	International	(CC	BY-NC-ND)	Chapters	3-6
https://www.inferentialthinking.com/chapters/03/programming-in-python.html

2.	 LearnPython.org	(Interactive	Tutorial)	(https://www.learnpython.org/)	Short,	interactive	tutorial	for	those	who	just	need	a	quick	way	to	pick
up	Python	syntax.

3.	 Brian	Christian	and	Tom	Griffiths	(2016)	ALGORITHMS	TO	LIVE	BY:	The	Computer	Science	of	Human	Decisions	Henry	Holt	and	Co.
(https://www.amazon.com/Algorithms-Live-Computer-Science-Decisions/dp/1627790365)

4.	 Learn	Python	in	One	Day	and	Learn	It	Well.	Python	for	Beginners	with	Hands-on	Project.	(Learn	Coding	Fast	with	Hands-On	Project
Book	--	Kindle	Edition	by	LCF	Publishing	(Author),	Jamie	Chan	https://www.amazon.com/Python-2nd-Beginners-Hands-Project-
ebook/dp/B071Z2Q6TQ/ref=sr_1_3?dchild=1&keywords=learn+python+in+a+day&qid=1611108340&sr=8-3

5.	 Learn	Python	the	Hard	Way	(Online	Book)	(https://learnpythonthehardway.org/book/)	Recommended	for	beginners	who	want	a	complete
course	in	programming	with	Python.

6.	 How	to	Learn	Python	for	Data	Science,	The	Self-Starter	Way	(https://elitedatascience.com/learn-python-for-data-science)

7.	 String	Literals	https://bic-berkeley.github.io/psych-214-fall-2016/string_literals.html

8.	 Tutorial	on	 input() 	and	 print() 	functions	https://www.programiz.com/python-programming/input-output-import

print	('''Hello	World,	my	name	is	{}	and	I	am	a	resturant
that	is	over	{}	years	old.	We	serve	sodium	chloride	infused	
lipids	in	a	variety	of	shapes'''.format(MyName,MyAge))

	
Loading	[MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

https://www.inferentialthinking.com/chapters/03/programming-in-python.html
https://www.learnpython.org/
https://www.amazon.com/Algorithms-Live-Computer-Science-Decisions/dp/1627790365
https://www.amazon.com/Python-2nd-Beginners-Hands-Project-ebook/dp/B071Z2Q6TQ/ref=sr_1_3?dchild=1&keywords=learn+python+in+a+day&qid=1611108340&sr=8-3
https://learnpythonthehardway.org/book/
https://elitedatascience.com/learn-python-for-data-science
https://bic-berkeley.github.io/psych-214-fall-2016/string_literals.html
https://www.programiz.com/python-programming/input-output-import

