
ENGR-1330-Lesson02

August 29, 2021

Download this page as a jupyter notebook at Lesson 2

[11]: %%html
<!-- Script Block to set tables to left alignment -->
<style>

table {margin-left: 0 !important;}
</style>

<IPython.core.display.HTML object>

[8]: %reset -f

1 ENGR 1330 Computational Thinking with Data Science
Copyright © 2021 Theodore G. Cleveland and Farhang Forghanparast

Last GitHub Commit Date: 12 August 2021 ## Lesson 2 Programming Fundamentals: - iPython,
tokens, and structure - Data types (int, float, string, bool) - Variables, operators, expressions, basic
I/O - String functions and operations - How to Build a Notebook (Another look at problem solving)

1.1 Programming Fundamentals
Recall the 5 fundamental CT concepts are:

1. Decomposition: the process of taking a complex problem and breaking it into more man-
ageable sub-problems.

2. Pattern Recognition: finding similarities, or shared characteristics of problems to reuse of
solution methods (automation) for each occurrence of the pattern.

3. Abstraction : Determine important characteristics of the problem and use these character-
istics to create a representation of the problem.

4. Algorithms : Step-by-step instructions of how to solve a problem.
5. System Integration: the assembly of the parts above into the complete (integrated) solu-

tion. Integration combines parts into a program which is the realization of an algorithm
using a syntax that the computer can understand.

Programming is (generally) writing code in a specific programming language to address a certain
problem. In the above list it is largely addressed by the algorithms and system integration concepts.

1

http://54.243.252.9/engr-1330-webroot/1-Lessons/Lesson02/ENGR-1330-Lesson02.ipynb

1.1.1 iPython

The programming language we will use is Python (actually iPython). Python is an example of a
high-level language; there are also low-level languages, sometimes referred to as machine languages
or assembly languages. Machine language is the encoding of instructions in binary so that they
can be directly executed by the computer. Assembly language uses a slightly easier format to
refer to the low level instructions. Loosely speaking, computers can only execute programs written
in low-level languages. To be exact, computers can actually only execute programs written in
machine language. Thus, programs written in a high-level language (and even those in assembly
language) have to be processed before they can run. This extra processing takes some time, which
is a small disadvantage of high-level languages. However, the advantages to high-level languages
are enormous:

• First, it is much easier to program in a high-level language. Programs written in a high-level
language take less time to write, they are shorter and easier to read, and they are more likely
to be correct.

• Second, high-level languages are portable, meaning that they can run on different kinds of
computers with just a few modifications.

• Low-level programs can run on only one kind of computer (chipset-specific for sure, in some
cases hardware specific) and have to be rewritten to run on other processors. (e.g. x86-64
vs. arm7 vs. aarch64 vs. PowerPC …)

Due to these advantages, almost all programs are written in high-level languages. Low-level lan-
guages are used only for a few specialized applications.

Two kinds of programs process high-level languages into low-level languages: interpreters and
compilers. An interpreter reads a high-level program and executes it, meaning that it does what the
program says. It processes the program a little at a time, alternately reading lines and performing
computations. Recall how an Excel spreadsheet computes from top to bottom, left to right - an
interpreted program is much the same, each line is like a cell in a spreadsheet.

As a language, python is a formal language that has certain requirements and structure called
“syntax.” Syntax rules come in two flavors, pertaining to tokens and structure. Tokens are the
basic elements of the language, such as words, numbers, and chemical elements. The second type
of syntax rule pertains to the structure of a statement specifically in the way the tokens are
arranged.

1.2 Tokens and Structure
Consider the relativistic equation relating energy, mass, and the speed of light

e = m · c2

In this equation the tokens are e,m,c,=,·, and the structure is parsed from left to right as into the
token named e place the result of the product of the contents of the tokens m and c2. Given that
the speed of light is some universal constant, the only things that can change are the contents of
m and the resulting change in e.

In the above discourse, the tokens e,m,c are names for things that can have values – we will call these
variables (or constants as appropriate). The tokens =,·, and 2 are symbols for various arithmetic

2

operations – we will call these operators. The structure of the equation is specific – we will call it
a statement.

When we attempt to write and execute python scripts - we will make various mistakes; these will
generate warnings and errors, which we will repair to make a working program.

Consider our equation:

[9]: #clear all variables# Example
Energy = Mass * SpeedOfLight**2

NameError Traceback (most recent call last)
<ipython-input-9-1c1f1fa5363a> in <module>

1 #clear all variables# Example
----> 2 Energy = Mass * SpeedOfLight**2

NameError: name 'Mass' is not defined

Notice how the interpreter tells us that Mass is undefined - so a simple fix is to define it and try
again

[]: # Example
Mass = 1000000
Energy = Mass * SpeedOfLight**2

Notice how the interpreter now tells us that SpeedOfLight is undefined - so a simple fix is to define
it and try again

[]: # Example
Mass = 1000000 #kilograms
SpeedOfLight = 299792458 #meters per second
Energy = Mass * SpeedOfLight**2

Now the script ran without any reported errors, but we have not instructed the program on how
to produce output. To keep the example simple we will just add a generic print statement.

[]: # Example
Mass = 1000000 #kilograms
SpeedOfLight = 299792458 #meters per second
Energy = Mass * SpeedOfLight**2
print("Energy is:", Energy, "Newton meters")

Now lets examine our program. Identify the tokens that have values, Identify the tokens that are
symbols of operations, identify the structure.

3

1.3 Variables
Variables are names given to data that we want to store, manipulate, and change in programs.
A variable has a name and a value. The value representation depends on what type of object the
variable represents. The utility of variables comes in when we have a structure that is universal,
but values of variables within the structure will change - otherwise it would be simple enough to
just hardwire the arithmetic.

Suppose we want to store the time of concentration for some hydrologic calculation. To do so, we
can name a variable TimeOfConcentration, and then assign a value to the variable, for instance:

TimeOfConcentration = 0.0

After this assignment statement the variable is created in the program and has a value of 0.0. The
use of a decimal point in the initial assignment establishes the variable as a float (a real variable is
called a floating point representation – or just a float).

1.3.1 Naming Rules

Variable names in Python can only contain letters (a - z, A - Z), numerals (0 - 9), or underscores.
The first character cannot be a number, otherwise there is considerable freedom in naming. The
names can be reasonably long. runTime, run_Time, _run_Time2, _2runTime are all valid names,
but 2runTime is not valid, and will create an error when you try to use it.

[]: # Script to illustrate variable names
runTime = 1
_2runTime = 2 # change to 2runTime = 2 and rerun script
runTime2 = 2
print(runTime,_2runTime,runTime2)

There are some reserved words that cannot be used as variable names because they have preassigned
meaning in Parseltongue. These words include print, input, if, while, and for. There are several
more; the interpreter won’t allow you to use these names as variables and will issue an error message
when you attempt to run a program with such words used as variables.

1.4 Operators
The = sign used in the variable definition is called an assignment operator (or assignment sign).
The symbol means that the expression to the right of the symbol is to be evaluated and the result
placed into the variable on the left side of the symbol. The “operation” is assignment, the “=”
symbol is the operator name.

Consider the script below

[]: # Assignment Operator
x = 5
y = 10
print (x,y)
x=y # reverse order y=x and re-run, what happens?
print (x,y)

4

So look at what happened. When we assigned values to the variables named x and y, they started
life as 5 and 10. We then wrote those values to the console, and the program returned 5 and 10.
Then we assigned y to x which took the value in y and replaced the value that was in x with this
value. We then wrote the contents again, and both variables have the value 10.

1.5 Arithmetic Operators
In addition to assignment we can also perform arithmetic operations on variables. The fundamental
arithmetic operators are:

Symbol Meaning Example
= Assignment x=3 Assigns value of 3 to x.
+ Addition x+y Adds values in x and y.
- Subtraction x-y Subtracts values in y from x.

Multiplication x*y Multiplies values in x and y.
/ Division x/y Divides value in x by value in y.
// Floor division x//y Divide x by y, truncate result to whole number.
% Modulus x%y Returns remainder when x is divided by y.

Exponentation x ** y Raises value in x by value in y. (e.g. x ** y)
+= Additive assignment x+=2 Equivalent to x = x+2.
-= Subtractive assignment x-=2 Equivalent to x = x-2.
= Multiplicative assignment x*=3 Equivalent to x = x*3.
/= Divide assignment x/3 Equivalent to x = x/3.

Run the script in the next cell for some illustrative results

[]: # Uniary Arithmetic Operators
x = 10
y = 5
print(x, y)
print(x+y)
print(x-y)
print(x*y)
print(x/y)
print((x+1)//y)
print((x+1)%y)
print(x**y)

[]: # Arithmetic assignment operators
x = 1
x += 2
print(type(x),x)
x = 1
x -= 2
print(type(x),x)
x = 1
x *=3

5

print(type(x),x)
x = 10
x /= 2
print(type(x),x) # Interesting what division does to variable type

1.6 Data Type
In the computer data are all binary digits (actually 0 and +5 volts). At a higher level of abstraction
data are typed into integers, real, or alphanumeric representation. The type affects the kind of
arithmetic operations that are allowed (as well as the kind of arithmetic - integer versus real
arithmetic; lexicographical ordering of alphanumeric , etc.) In scientific programming, a common
(and really difficult to detect) source of slight inaccuracies (that tend to snowball as the program
runs) is mixed mode arithmetic required because two numeric values are of different types (integer
and real).

Learn more from the textbook

https://www.inferentialthinking.com/chapters/04/Data_Types.html

Here we present a quick summary

1.6.1 Integer

Integers are numbers without any fractional portion (nothing after the decimal point { which is
not used in integers). Numbers like -3, -2, -1, 0, 1, 2, 200 are integers. A number like 1.1 is not an
integer, and 1.0 is also not an integer (the presence of the decimal point makes the number a real).

To declare an integer in Python, just assign the variable name to an integer for example

MyPhoneNumber = 14158576309

1.6.2 Real (Float)

A real or float is a number that has (or can have) a fractional portion - the number has decimal
parts. The numbers 3.14159, -0.001, 11.11, 1., are all floats. The last one is especially tricky, if
you don’t notice the decimal point you might think it is an integer but the inclusion of the decimal
point in Python tells the program that the value is to be treated as a float. To declare a float in
Python, just assign the variable name to a float for example

MyMassInKilos = 74.8427

1.6.3 String(Alphanumeric)

A string is a data type that is treated as text elements. The usual letters are strings, but numbers
can be included. The numbers in a string are simply characters and cannot be directly used in
arithmetic. There are some kinds of arithmetic that can be performed on strings but generally we
process string variables to capture the text nature of their contents. To declare a string in Python,
just assign the variable name to a string value - the trick is the value is enclosed in quotes. The
quotes are delimiters that tell the program that the characters between the quotes are characters
and are to be treated as literal representation.

For example

6

MyName = 'Theodore'
MyCatName = "Dusty"
DustyMassInKilos = "7.48427"

are all string variables. The last assignment is made a string on purpose. String variables can
be combined using an operation called concatenation. The symbol for concatenation is the plus
symbol +.

Strings can also be converted to all upper case using the upper() function. The syntax for the
upper() function is 'string to be upper case'.upper(). Notice the “dot” in the syntax. The
operation passes everything to the left of the dot to the function which then operates on that
content and returns the result all upper case (or an error if the input stream is not a string).

[]: # Variable Types Example
MyPhoneNumber = 14158576309
MyMassInKilos = 74.8427
MyName = 'Theodore'
MyCatName = "Dusty"
DustyMassInKilos = "7.48427"
print("All about me")
print("Name: ",MyName, " Mass :",MyMassInKilos,"Kg")
print('Phone : ',MyPhoneNumber)
print('My cat\'s name :', MyCatName) # the \ escape character is used to get␣
↪→the ' into the literal

print("All about concatenation!")
print("A Silly String : ",MyCatName+MyName+DustyMassInKilos)
print("A SILLY STRING : ", (MyCatName+MyName+DustyMassInKilos).upper())

Strings can be formatted using the % operator or the format() function. The concepts will be
introduced later on as needed in the workbook, you can Google search for examples of how to do
such formatting.

1.6.4 Changing Types

A variable type can be changed. This activity is called type casting. Three functions allow type
casting: int(), float(), and str(). The function names indicate the result of using the function,
hence int() returns an integer, float() returns a oat, and str() returns a string.

There is also the useful function type() which returns the type of variable.

The easiest way to understand is to see an example.

[]: # Type Casting Examples
MyInteger = 234
MyFloat = 876.543
MyString = 'What is your name?'
print(MyInteger,MyFloat,MyString)
print('Integer as float',float(MyInteger))
print('Float as integer',int(MyFloat))
print('Integer as string',str(MyInteger))

7

print('Integer as hexadecimal',hex(MyInteger))
print('Integer Type',type((MyInteger))) # insert the hex conversion and see␣
↪→what happens!

1.7 Expressions
Expressions are the “algebraic” constructions that are evaluated and then placed into a variable.
Consider

x1 = 7 + 3 * 6 / 2 - 1

The expression is evaluated from the left to right and in words is

• Into the object named x1 place the result of:

integer 7 + (integer 6 divide by integer 2 = float 3 * integer 3 = float 9 - integer 1 = float 8)
= float 15

The division operation by default produces a float result unless forced otherwise. The result is the
variable x1 is a float with a value of 15.0

[]: # Expressions Example
x1 = 7 + 3 * 6 // 2 - 1 # Change / into // and see what happens!
print(type(x1),x1)
Simple I/O (Input/Output)

1.7.1 Summary

So far consider our story - a tool to help with problem solving is CT leading to an algorithm.
The tool to implement the algorithm is the program and in our case JupyterLab running iPython
interpreter for us.

As a formal language we introduced: - tokens - structure

From these two constructs we further introduced variables (a kind of token), data types (an
abstraction, and arguably a decomposition), and expressions (a structure). We created simple
scripts (with errors), examined the errors, corrected our script, and eventually got an answer. So
we are well on our way in CT as it applies in Engineering.

1.8 How to Build a Program/Notebook
Recall our suggested problem solving protocol:

1. Explicitly state the problem
2. State the input information, governing equations or principles, and the required output in-

formation.
3. Work a sample problem by-hand for testing the general solution.
4. Develop a general solution method (coding).
5. Test the general solution against the by-hand example, then apply to the real problem.
6. Refine general solution for deployment (frequent use)

8

The protocol below is shamelessly lifted from http://users.csc.calpoly.edu/~jdalbey/101/
Lectures/HowToBuildAProgram.html here we are using the concept of program and notebook as
the same thing.

Building a program is not an art, it is an engineering process. As such there is a process to follow
with clearly defined steps.

1.8.1 Analysis (Understand the Requirements)

In this class you will usually be given the problem requirements, unlike the real-world where you
have to elicit the requirements from a customer. For you the first step will be to read the problem
and be sure you understand what the program must do. Summarize your understanding by writing
the Input data, Output data, and Functions (operations or transformation on the data). In the
context of our (WCOE) protocol this step comprises Steps 1 and 2.

1.8.2 Create a Test Plan

You must be able to verify that your program works correctly once it is written. Invent some
actual input data values and manually compute the expected result. In the context of our (WCOE)
protocol this step comprises Steps 3.

1.8.3 Invent a Solution

This is the creative, exploratory part of design where you figure out how to solve the problem. Here
is one strategy:

• Solve the problem manually, the way you would do it as a human. Pay careful to attention
what operations you perform and write down each step.

• Look for a pattern in the steps you performed.
• Determine how this pattern could be automated using the 3 algorithm building blocks (which

we learn about a few lectures from now) (Sequence, Selection, Iteration).

1.8.4 Design (Formalize your solution)

Arrange your solution into components; this is called the architecture. Write the algorithm for each
component. Refine your algorithm in a step-wise manner if necessary. Determine the data types
and constraints for each data item. Review

Perform a hand trace of your solution and simulate how the computer will carry out your algorithm.
Make sure your algorithm works correctly before you put it into the computer.

1.8.5 Implementation (coding)

Translate your algorithm into a programming language and enter it into the computer.
Compile your source code to produce an executable program. You may want to compile and test
each subprogram individually before combining them into a complete program.

1.8.6 Testing

Execute the program using the Test Plans you created above. Correct any errors as necessary.

9

http://users.csc.calpoly.edu/~jdalbey/101/Lectures/HowToBuildAProgram.html
http://users.csc.calpoly.edu/~jdalbey/101/Lectures/HowToBuildAProgram.html

1.8.7 Example of Problem Solving Process

Consider an engineering material problem where we wish to classify whether a material is loaded
in the elastic or inelastic region as determined the stress (solid pressure) in a rod for some applied
load. The yield stress is the classifier, and once the material yields (begins to fail) it will not carry
any additional load (until ultimate failure, when it carries no load).

Step 1. Compute the material stress under an applied load; determine if value exceedes yield
stress, and report the loading condition

10

Step 2. - Inputs: applied load, cross sectional area, yield stress - Governing equation: σ = P
A when

P
A is less than the yield stress, and is equal to the yield stress otherwise. - Outputs: The material
stress σ, and the classification elastic or inelastic.

Step 3. Work a sample problem by-hand for testing the general solution.

Assuming the yield stress is 1 million psi (units matter in an actual problem - kind of glossed over
here)

Applied Load (lbf) Cross Section Area (sq.in.) Stress (psi) Classification
10,000 1.0 10,000 Elastic
10,000 0.1 100,000 Elastic

100,000 0.1 1,000,000 Inelastic

The stress requires us to read in the load value, read in the cross sectional area, divide the load by
the area, and compare the result to the yield stress. If it exceeds the yield stress, then the actual
stress is the yield stress, and the loading is inelastic, otherwise elastic

σ =
P

A

If σ >= Yield Stress then report Inelastic

Step 4. Develop a general solution (code)

In a flow-chart it would look like:

11

Flowchart for Artihmetic Mean Algorithm

Step 5. This step we would code the algorithm expressed in the figure and test it with the by-hand
data and other small datasets until we are convinced it works correctly. We have not yet learned

12

prompts to get input we simply direct assign values as below (and the conditional execution is the
subject of a later lesson)

In a simple JupyterLab script

[]: # Example 2 Problem Solving Process
yield_stress = 1e6
applied_load = 1e5
cross_section = 0.1
computed_stress = applied_load/cross_section
if(computed_stress < yield_stress):

print("Elastic Region: Stress = ",computed_stress)
elif(computed_stress >= yield_stress):

print("Inelastic Region: Stress = ",yield_stress)

Step 6. This step we would refine the code to generalize the algorithm. In the example we want a
way to supply the inputs by user entry,and tidy the output by rounding to only two decimal places.
A little CCMR from https://www.geeksforgeeks.org/taking-input-in-python/ gives us a
way to deal with the inputs and typecasting. Some more CCMR from https://www.programiz.
com/python-programming/methods/built-in/round gets us rounded out!

[]: # Example 2 Problem Solving Process
yield_stress = float(input('Yield Stress (psi)'))
applied_load = float(input('Applied Load (lbf)'))
cross_section = float(input('Cross Section Area (sq.in.)'))
computed_stress = applied_load/cross_section
if(computed_stress < yield_stress):

print("Elastic Region: Stress = ",round(computed_stress,2))
elif(computed_stress >= yield_stress):

print("Inelastic Region: Stress = ",round(yield_stress,2))

So the simple task of computing the stress, is a bit more complex when decomposed, that it first
appears, but illustrates a five step process (with a refinement step), and we have done our first
classification problem, albeit a very simple case!

1.9 Readings
1. Computational and Inferential Thinking Ani Adhikari and John DeNero, Computa-

tional and Inferential Thinking, The Foundations of Data Science, Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND) Chapter 3
https://www.inferentialthinking.com/chapters/03/programming-in-python.html

2. Computational and Inferential Thinking Ani Adhikari and John DeNero, Computa-
tional and Inferential Thinking, The Foundations of Data Science, Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND) Chapter 4
https://www.inferentialthinking.com/chapters/04/Data_Types.html

3. Learn Python in One Day and Learn It Well. Python for Beginners with Hands-on Project.
(Learn Coding Fast with Hands-On Project Book – Kindle Edition by LCF Publishing

13

https://www.geeksforgeeks.org/taking-input-in-python/
https://www.programiz.com/python-programming/methods/built-in/round
https://www.programiz.com/python-programming/methods/built-in/round

(Author), Jamie Chan https://www.amazon.com/Python-2nd-Beginners-Hands-Project-
ebook/dp/B071Z2Q6TQ/ref=sr_1_3?dchild=1&keywords=learn+python+in+a+day&qid=1611108340&sr=8-
3

4. Theodore G. Cleveland, Farhang Forghanparast, Dinesh Sundaravadivelu Devarajan, Turgut
Batuhan Baturalp (Batu), Tanja Karp, Long Nguyen, and Mona Rizvi. (2021) Computational
Thinking and Data Science: A WebBook to Accompany ENGR 1330 at TTU, Whitacre
College of Engineering, DOI (pending)

[]:

14

	ENGR 1330 Computational Thinking with Data Science
	Programming Fundamentals
	iPython

	Tokens and Structure
	Variables
	Naming Rules

	Operators
	Arithmetic Operators
	Data Type
	Integer
	Real (Float)
	String(Alphanumeric)
	Changing Types

	Expressions
	Summary

	How to Build a Program/Notebook
	Analysis (Understand the Requirements)
	Create a Test Plan
	Invent a Solution
	Design (Formalize your solution)
	Implementation (coding)
	Testing
	Example of Problem Solving Process

	Readings

