
ENGR-1330-Lesson00

August 29, 2021

Download this page as a jupyter notebook at Lesson 0

1 ENGR 1330 Computational Thinking with Data Science
Copyright © 2021 Theodore G. Cleveland and Farhang Forghanparast

Last GitHub Commit Date: 13 July 2021 ## Lesson 0 Introduction to Computational Thinking
with Data Science: - Introduction to Course and Web-enabled content - Computational thinking
concepts - Data science and practices - JupyterLab Environment for ENGR 1330

1.1 Computational Thinking Concepts
Computational thinking (CT) refers to the thought processes involved in expressing solutions as
computational steps or algorithms that can be carried out by a computer.

Much of what follows is borrowed from (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696102/).

Computational thinking is taking an approach to solving problems, designing systems
and understanding human behaviour that draws on concepts fundamental to computing
(http://www.cs.cmu.edu/~15110-s13/Wing06-ct.pdf).

Computational thinking is a kind of analytical thinking:

• It shares with mathematical thinking in the general ways in which we might approach solving
a problem.

• It shares with engineering thinking in the general ways in which we might approach design-
ing and evaluating a large, complex system that operates within the constraints of the real
world. - It shares with scientific thinking in the general ways in which we might approach
understanding computability, intelligence, the mind and human behaviour.

The essence of computational thinking is abstraction and automation. In computing, we abstract
notions beyond the physical dimensions of time and space. Our abstractions are extremely general
because they are symbolic, where numeric abstractions are just a special case.

1.1.1 CT Foundations

CT is literally a process for breaking down a problem into smaller parts, looking for patterns in the
problems, identifying what kind of information is needed, developing a step-by-step solution, and
implementing that solution.

1. Decomposition
2. Pattern Recognition

1

http://54.243.252.9/engr-1330-webroot/1-Lessons/Lesson00/ENGR-1330-Lesson00.ipynb

3. Abstraction
4. Algorithms
5. System Integration (implementation)

Decomposition Decomposition is the process of taking a complex problem and breaking it into
more manageable sub-problems. Examples include:
- Writing a paper:
- Introduction - Body - Conclusion

• Wide-viewed (Panorama) image:
• Taking multiple overlapped photos
• Stitch them

Decomposition often leaves a framework of sub-problems that later have to be assembled (sys-
tem integration) to produce a desired solution.

Pattern Recognition Refers to finding similarities, or shared characteristics of problems. Al-
lows a complex problem to become easier to solve. Allows use of same solution method for each
occurrence of the pattern.

Pattern recognition allows use of automation to process things - its a fundamental drilled shaft
of CT. It also provides a way to use analogs from old problems to address new situations; it also
will require assembly (system integration) to produce a desired solution.

Abstraction Determine important characteristics of the problem and ignore characteristics that
are not important. Use these characteristics to create a representation of what we are trying to
solve.

Books in an online bookstore

Important NOT important
title Cover color
ISBN Author’s hometown
Authors …
… …

Algorithms Step-by-step instructions of how to solve a problem
(https://en.wikipedia.org/wiki/Algorithm). Identifies what is to be done, and the order in
which they should be done.

2

Image from
https://www.newyorker.com/magazine/2021/01/18/whats-
wrong-with-the-way-we-work?utm_source=pocket-newtab

An algorithm is a finite sequence of defined, instructions, typically to solve a class of problems or to
perform a computation. Algorithms are unambiguous and are used as specifications for performing
calculations, data processing, automated reasoning, and other tasks. Starting from an initial state
and initial input (perhaps empty), the instructions describe a computation that, when executed,
proceeds through a finite number of defined successive states, eventually producing “output” and
terminating at a final ending state. The transition from one state to the next is not necessarily
deterministic; some algorithms, known as randomized algorithms, can incorporate random input.

System Integration (implementation) System integration is the assembly of the parts above
into the complete (integrated) solution. Integration combines parts into a program which is the
realization of an algorithm using a syntax that the computer can understand.

1.2 Data Science and Practice
Data science is leveraging existing data sources, to create new ones as needed in order to ex-
tract meaningful information and actionable insights through business domain expertise, effective
communication and results interpretation. Data science uses relevant statistical techniques, pro-
gramming languages, software packages and libraries, and data infrastructure; The insights are
used to drive business decisions and take actions intended to achieve business goals.

Why is this important for engineers? Because engineering is a business!

3

A list of typical skills (https://elitedatascience.com/data-science-resources):

• Foundational Skills
– Programming and Data Manipulation
– Statistics and Probability

• Technical Skills
– Data Collection
– SQL
– Data Visualization
– Applied Machine Learning

• Business Skills
– Communication
– Creativity and Innovation
– Operations and Strategy
– Business Analytics

• Supplementary Skills
– Natural Language Processing
– Recommendation Systems
– Time Series Analysis

• Practice
– Projects
– Competitions
– Problem Solving Challenges

1.3 JupyterLab (iPython) Environment
1.3.1 The tools:

JupyterLab (https://jupyter.org/) is a web-based interactive development environment for
Jupyter notebooks, code, and data.

Jupyter Notebook is an open-source web application that allows you to create and share doc-
uments that contain live code, equations, visualizations and narrative text. Uses include: data
organizing and transformation, numerical simulation, statistical modeling, visualization, machine
learning, and other similar types of uses.

JupyterHub (https://github.com/jupyterhub/jupyterhub) is a multi-user Hub that spawns, man-
ages, and proxies multiple instances of the single-user Jupyter notebook server.

All these tools allow use of various coding languages; Python is the choice for ENGR 1330. In-
stalling JupyterLab on your own computer is relatively straightforward if it is an Intel-based Linux,
Macintosh, or Windows machine - simply use Anaconda (https://www.anaconda.com/) as the in-
staller.

Installing onto an ARM-based machine is more difficult, but possible (this notebook was created
on a Raspberry Pi). With both Apple and Microsoft abandoning Intel you can expect Anaconda
builds for aarch64 (ARM) in the future.

4

1.3.2 This course:

You will create and use Jupyter Notebooks that use the ipython kernel, the notebook files will
look like filename.ipynb; these are ASCII files that the JupyterLab interprets and runs.

1.4 Python
The programming language we will use is Python (actually iPython). Python is an example of a
high-level language; other high-level languages include C, C++, PHP, FORTRAN, ADA, Pascal,
Go, Java, etc (there are a lot).

As you might infer from the name high-level language, there are also low-level languages, sometimes
referred to as machine languages or assembly languages. Machine language is the encoding of
instructions in binary so that they can be directly executed by the computer. Assembly language
uses a slightly easier format to refer to the low level instructions. Loosely speaking, computers can
only execute programs written in low-level languages. To be exact, computers can actually only
execute programs written in machine language. Thus, programs written in a high-level language
(and even those in assembly language) have to be processed before they can run. This extra
processing takes some time, which is a small disadvantage of high-level languages. However, the
advantages to high-level languages are enormous.

First, it is much easier to program in a high-level language. Programs written in a high-level
language take less time to write, they are shorter and easier to read, and they are more likely to be
correct. Second, high-level languages are portable, meaning that they can run on different kinds of
computers with few or no modifications. Low-level programs can run on only one kind of computer
and have to be rewritten to run on another.

Due to these advantages, almost all programs are written in high-level languages. Low-level lan-
guages are used only for a few specialized applications, and for device drivers.

Two kinds of programs process high-level languages into low-level languages: interpreters and
compilers. An interpreter reads a high-level program and executes it, meaning that it does what the
program says. It processes the program a little at a time, alternately reading lines and performing
computations.

Interpreted Program. Image from
(https://runestone.academy/runestone/books/published/thinkcspy/GeneralIntro/ThePythonProgrammingLanguage.html)

A compiler reads the program and translates it completely before the program starts running. In
this case, the high-level program is called the source code, and the translated program is called the
object code or the executable. Once a program is compiled, you can execute it repeatedly without
further translation.

5

Compiled Program. Image from:
(https://runestone.academy/runestone/books/published/thinkcspy/GeneralIntro/ThePythonProgrammingLanguage.html)

Many modern languages use both processes. They are first compiled into a lower level language,
called byte code, and then interpreted by a program called a virtual machine. Python uses both pro-
cesses, but because of the way programmers interact with it, it is usually considered an interpreted
language.

As a language, python is a formal language that has certain requirements and structure called
“syntax.”

Formal languages are languages that are designed by people for specific applications. For example,
the notation that mathematicians use is a formal language that is particularly good at denoting
relationships among numbers and symbols. Chemists use a formal language to represent the chem-
ical structure of molecules. Programming languages are formal languages that have been designed
to express computations.

Formal languages have strict rules about syntax. For example, 3+3=6 is a syntactically correct
mathematical statement, but 3=+6& is not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens are the basic
elements of the language, such as words, numbers, and chemical elements. One of the problems
with 3=+6& is that & is not a legal token in mathematics (at least as far as we know).

The second type of syntax rule pertains to the structure of a statement— that is, the way the
tokens are arranged. The statement 3=+6& is structurally illegal (in mathematics) because you
don’t place a plus sign immediately after an equal sign (of course we will in python!).

When you read a sentence in English or a statement in a formal language, you have to figure out
what the structure of the sentence is; This process is called parsing.

For example, when you hear the sentence, “The other shoe fell”, you understand that the other
shoe is the subject and fell is the verb. Once you have parsed a sentence, you can figure out what
it means, or the semantics of the sentence. Assuming that you know what a shoe is and what it
means to fall, you will understand the general implication of this sentence.

1.5 Readings
Computational and Inferential Thinking Ani Adhikari and John DeNero, Computa-
tional and Inferential Thinking, The Foundations of Data Science, Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND) Chapter 1
https://www.inferentialthinking.com/chapters/01/what-is-data-science.html

Learn Python the Hard Way (Online Book) (https://learnpythonthehardway.org/book/) Recom-
mended for beginners who want a complete course in programming with Python.

6

LearnPython.org (Interactive Tutorial) (https://www.learnpython.org/) Short, interactive tutorial
for those who just need a quick way to pick up Python syntax.

How to Think Like a Computer Scientist (Interactive Book)
(https://runestone.academy/runestone/books/published/thinkcspy/index.html) Interactive
“CS 101” course taught in Python that really focuses on the art of problem solving.

How to Learn Python for Data Science, The Self-Starter Way (https://elitedatascience.com/learn-
python-for-data-science)

Theodore G. Cleveland, Farhang Forghanparast, Dinesh Sundaravadivelu Devarajan, Turgut
Batuhan Baturalp (Batu), Tanja Karp, Long Nguyen, and Mona Rizvi. (2021) Computational
Thinking and Data Science: A WebBook to Accompany ENGR 1330 at TTU, Whitacre College
of Engineering, DOI (pending)http://54.243.252.9/engr-1330-webroot/engr-1330-webbook/
ctds-psuedocourse/site/

[]:

7

http://54.243.252.9/engr-1330-webroot/engr-1330-webbook/ctds-psuedocourse/site/
http://54.243.252.9/engr-1330-webroot/engr-1330-webbook/ctds-psuedocourse/site/

	ENGR 1330 Computational Thinking with Data Science
	Computational Thinking Concepts
	CT Foundations

	Data Science and Practice
	JupyterLab (iPython) Environment
	The tools:
	This course:

	Python
	Readings

