CHAPTER

3

ANALYSIS OF
EXPERIMENTAL
DATA

3-1 INTRODUCTION

Some form of analysis must be performed on all experimental data. The
analysis may be a simple verbal appraisal of the test results, or it may take the
form of a complex theoretical analysis of the errors involved in the experiment
and matching of the data with fundamental physical principles. Even new
principles may be developed in order to explain some unusual phenomenon.
Our discussion in this chapter will consider the analysis of data to determine
errors, precision, and general validity of experimental measurements. The
correspondence of the measurements with physical principles is another mat-
ter, quite beyond the scope of our discussion. Some methods of graphical data
presentation will also be discussed. The interested reader should consult the
monograph by Wilson [4] for many interesting observations concerning corres-
pondence of physical theory and experiment.

The experimentalist should always know the validity of data. The auto-
mobile test engineer must know the accuracy of the speedometer and gas gage
in order to express the fuel-economy performance with confidence. A nuclear
engineer must know the accuracy and precision of many instruments just to
make some simple radioactivity measurements with confidence. In order to
specify the performance of an amplifier, an electrical engineer must know the
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38 EXPERIMENTAL METHODS FOR ENGINEERS

accuracy with which the appropriate measurements of voltage, distortion, etc.,
have been conducted. Many considerations enter into a final determination of
the validity of the results of experimental data, and we wish to present some of
these considerations in this chapter.

Errors will creep into all experiments regardiess of the care which is
exerted. Some of these errors are of a random nature, and some will be due to
gross blunders on the part of the experimenter. Bad data due to obvious
blunders may be discarded immediately. But what of the data points that just
“look” bad? We cannot throw out data because they do not conform with our
hopes and expectations unless we see something obviously wrong. If such
“bad” points fall outside the range of normally expected random deviations,
they may be discarded on the basis of some consistent statistical data analysis.
The keyword here is ““consistent.” The elimination of data points must be
consistent and should not be dependent on human whims and bias based on
what “ought to be.” In many instances it is very difficult for the individual to
be consistent and unbiased. The pressure of a deadline, disgust with previous
experimental -failures, and normal impatience all can influence rational thinking
processes. However, the competent experimentalist will strive to maintain
consistency in the primary data analysis. Our objective in this chapter is to
show how one may go about maintaining this consistency.

3-2 CAUSES AND TYPES OF
EXPERIMENTAL ERRORS

In this section we present a discussion of some of the types of errors that may
be present in experimental data and begin to indicate the way these data may
be handled. First, let us distinguish between single-sample and multisample
data.

Single-sample data are those in which some uncertainties may not be
discovered by repetition. Multisample data are obtained in those instances
where enough experiments are performed so that the reliability of the results
can be assured by statistics. Frequently, cost will prohibit the collection of
multisample data, and the experimenter must be content with single-sample
data and prepared to extract as much information as possible from such
experiments. The reader should consult Refs. [1] and [4] for further discussions
on this subject, but we state a simple example at this time. If one measures
pressure with a pressure gage and a single instrument is the only one used for
the entire set of observations, then some of the error that is present in the
measurement will be sampled only once no matter how many times the reading
is repeated. Consequently, such an experiment is a single-sample experiment.
On the other hand, if more than one pressure gage is used for the same total
set of observations, then we might say that a multisample experiment has been
performed. The number of observations will then determine the success of this
multisample experiment in accordance with accepted statistical principles.
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An experimental error is an experimental error. If the experimenter knew
what the error was, he or she would correct it and it would no longer be an
error. In other words, the real errors in experimental data are those factors
that are always vague to some extent and carry some amount of uncertainty.
Our task is to determine just how uncertain a particular observation may be
and to devise a consistent way of specifying the uncertainty in analytical form.
A reasonable definition of experimental uncertainty may be taken as the
possible value the error may have. This uncertainty may vary a great deal
depending upon the circumstances of the experiment. Perhaps it is better to
speak of experimental uncertainty instead of experimental error because the
magnitude of an error is always uncertain. Both terms are used in practice,
however, so the reader should be familiar with the meaning attached to the
terms and the ways that they relate to each other.

It is very common for people to speak of experimental errors when the
correct terminology should be “‘uncertainty.” Because of this common usage,
we ask that the reader accept the faulty semantics when they occur and view
each term in its proper context.

At this point we may mention some of the types of errors that may cause
uncertainty in an experimental measurement. First, there can always be those
gross blunders in apparatus or instrument construction which may invalidate
the data. Hopefully, the careful experimenter will be able to eliminate most of
these errors. Second, there may be certain fixed errors which will cause
repeated readings to be in error by roughly the same amount but for some
unknown reason. These fixed errors are sometimes called systematic errors.
Third, there are the random errors, which may be caused by personal
fluctuations, random electronic fluctuations in the apparatus or instruments,
various influences of friction, etc. These random errors usually follow a certain
statistical distribution, but not always. In many instances it is very difficult to
distinguish between fixed errors and random errors.

The experimentalist may sometimes use theoretical methods to estimate
the magnitude of a fixed error. For example, consider the measurement of the
temperature of a hot gas stream flowing in a duct with a mercury-in-glass
thermometer. It is well known that heat may be conducted from the stem of
the thermometer, out of the body, and into the surroundings. In other words,
the fact that part of the thermometer is exposed to the surroundings at a
temperature different from the gas termperature to be measured may influence
the temperature of the stem of the thermometer. There is a heat flow from the
gas to the stem of the thermometer, and, consequently, the temperature of the
stem must be lower than that of the hot gas. Therefore, the temperature we
read on the thermometer is not the true temperature of the gas, and it will not
make any difference how many readings are taken—we shall always have an
error resulting from the heat-transfer condition of the stem of the thermome-
ter. This is a fixed error, and its magnitude may be estimated with theoretical
calculations based upon known thermal properties of the gas and the glass
thermometer. A
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3-3 ERROR ANALYSIS ON A
COMMONSENSE BASIS

We have already noted that it is somewhat more explicit to speak of ex-
perimental uncertainty rather than experimental error. Suppose that we have
satisfied ourselves with the uncertainty in some basic experimental measure-
ments, taking into consideration such factors as instrument accuracy, compe-
tence of the people using the instruments, etc. Eventually, the primary
measurements must be combined to calculate a particular result that is desired.
We shall be interested in knowing the uncertainty in the final result due to the
uncertainties in the primary measurements. This may be done by a common-
sense analysis of the data which may take many forms. One rule of thumb that
could be used is that the error in the result is equal to the maximum error in
any parameter used to calculate the result. Another commonsense analysis
would combine all the errors in the most detrimental way in order to determine
the maximum error in the final result. Consider the calculation of electric
power from

‘ P=EI
where E and I are measured as
E=100V£2V
I=10A+02A

The nominal value of the power is 100 X 10 = 1000 W. By taking the worst
possible variations in voltage and current, we could calculate

P =(100+2)(10+0.2) = 1040.4 W
P.. =(100—2)(10—0.2) =960.4 W

Thus, using this method of calculation, the uncertainty in the power is
+4.04 percent, —3.96 percent. It is quite unlikely that the power would be in
error by these amounts because the voltmeter variations would probably not
correspond with the ammeter variations. When the voltmeter reads an extreme
“high,” there is no reason why the ammeter must also read an extreme ‘“‘high”
at that particular instant; indeed, this combination is most unlikely.

The simple calculation applied to the electric-power equation above is a
useful way of inspecting experimental data to determine what errors could
result in a final calculation; however, the test is too severe and should be used
only for rough inspections of data. It is significant to note, however, that if the
results of the experiments appear to be in error by more than the amounts
indicated by the above calculation, then the experimenter had better examine
the data more closely. In particular, the experimenter should look for certain
fixed errors in the instrumentation, which may be eliminated by applying either
theoretical or empirical corrections.

As another example we might conduct an experiment where heat is added
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to a container of water. If our temperature instrumentation should indicate a
drop in temperature of the water, our good sense would tell us that something
is wrong and the data point(s) should be thrown out. No sophisticated analysis
procedures are necessary to discover this kind error.

The term “common sense” has many connotations and means different
things to different people. In the brief example given above, it is intended as a
quick and expedient vehicle, which may be used to examine experimental data
and results for gross errors and variations. In subsequent sections we shall
present methods for determining experimental uncertainties in a more precise
manner.

3-4 UNCERTAINTY ANALYSIS

A more precise method of estimating uncertainty in experimental results has
been presented by Kline and McClintock [1]. The method is based on a careful
specification of the uncertainties in the various primary experimental measure-
ments. For example, a certain pressure reading might be expressed as

p =100kN/m*+ 1 kN/m’

When the plus or minus notation is used to designate the uncertainty, the
person making this designation is stating the degree of accuracy with which he
or she believes the measurement has been made.- We may note that this
specification is in itself uncertain because the experimenter is naturally uncer-
tain about the accuracy of these measurements.

If a very careful calibration of an instrument has been performed
recently, with standards of very high precision, then the experimentalist will be
justified in assigning a much lower uncertainty to measurements than if they
were performed with a gage or instrument of unknown calibration history.

To add a further specification of the uncertainty of a particular measure-
ment, Kline and McClintock propose that the experimenter specify certain
odds for the uncertainty. The above equation for pressure might thus be
written

p =100kN/m’ = 1kN/m’* (20 to 1)

In other words, the experimenter is willing to bet with 20 to 1 odds that
the pressure measurement is within +1 kN/ m’ It is important to note that the
specification of such odds can only be made by the experimenter based on the
total laboratory experience.

Suppose a set of measurements is made and the uncertainty in each
measurement may be. expressed with the same odds. These measurements are
then used to calculate some desired result of the experiments. We wish to
estimate the uncertainty in the calculated result on the basis of the uncertain-
ties in the primary measurements. The result R is a given function of the
independent variables x,, x,, x5, ..., x,. Thus,

R=R(x;,x,,X3,...,%,) 3-1)
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Let w, be the uncertainty in the result and w,, w,, . . . , w, be the uncertainties
in the independent variables. If the uncertainties in the independent variables
are all given with same odds, then the uncertainty in the result having these
odds is given in Ref. [1] as

R )2 (aR )2 (aR )2]“2
=[|— +| = +eooot|l— -
Wk [(axl i ox, 2 ox, " (3-2)
If this relation is applied to the electric power relation of the previous section,
the expected uncertainty is 2.83 percent instead of 4.04 percent.

Example 3-1. The resistance of a certain size of copper wire is given as
R=Ry[1+ (T —20)}

where R, =6 Q = 0.3 percent is the resistance at 20°C, a = 0.004°C ™" + 1 percent
is the temperature coefficient of resistance, and ‘the temperature of the wire is
T =30=1°C. Calculate the resistance of the wire and its uncertainty.

Solution. The nominal resistance is
R=(6)[1+(0.004)(30~20)] =6.24Q

The uncertainty in this value is calculated by applying Eq. (3-2). The various
terms are:
JR
IR,

‘;—§= Ry(T = 20) = (6)(30 — 20) = 60

=1+ a(T —20) =1+ (0.004)(30 — 20) = 1.04

oR
oT

e, = (6)(0.003) = 0.018 0
w, = (0.004)(0.01) =4 x 1077 °C "
w,=1°C

= R, = (6)(0.004) = 0.024

Thus, the uncertainty in the resistance is
w, = [(1.04)*(0.018)" + (60)*(4 x 107°)* + (0.024)*(1)*]""*
=0.0305 Q2 0r 0.49%

Particular notice should be given to the fact that the uncertainty propaga-
tion in the result w, predicted by Eq. (3-2) depends on the squares of the
uncertainties in the independent variables w,,. This means that if the uncertain-
ty in one variable is significantly larger than the uncertainties in the other
variables, say, by a factor of 5 or 10, then it is the largest uncertainty that
predominates and the others may probably be neglected.

To illustrate, suppose there are three variables with a product of sensitivi-
ty .and uncertainty [(dR/dx)w,] of magnitude 1, and one variable with a
magnitude of 5. The uncertainty in the result would be
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(5*+17+1°+1%)"*=v28=5.29

The importance of this brief remark concerning the relative magnitude of
uncertainties is evident when one considers the design of an experiment,
procurement of instrumentation, etc. Very little is gained by trying to reduce
the “small” uncertainties. Because of the square propagation it is the “large”
ones that predominate, and any improvement in the overall experimental result
must be achieved by improving the instrumentation or technique connected
with these relatively large uncertainties. In the examples and problems that
follow, both in this chapter and throughout the book, the reader should always
note the relative effect of uncertainties in primary measurements on the final
result. :
In Sec.2-11 (Table 2-7) the reader was cautioned to examine possible
experimental errors before the experiment is conducted. Equation (3-2) may be
used very effectively for such analysis, as we shall see in the sections and
chapters that follow. A further word of caution may be added here. It is
equally as unfortunate to overestimate uncertainty as to underestimate it. An
underestimate gives false security, while an overestimate may make one
discard important results, miss a real effect, or buy much too expensive
instruments. The purpose of this chapter is to indicate some of the methods for
obtaining reasonable estimates of experimental uncertainty.

In the previous discussion of experimental planning we noted that an
uncertainty analysis may aid the investigator in selecting alternative methods to
measure a particular experimental variable. It may also indicate how one may
improve the overall accuracy of a measurement by attacking certain critical
variables in the measurement process. The next three examples illustrate these
points.

Example 3-2 Selection of measurement method. A resistor has a nominal stated
value of 1042 =1 percent. A voltage is impressed on the resistor, and the power
dissipation is to be calculated in two different ways: (1) from P = E%R and (2)
from P = EI. In (1) only a voltage measurement will be made, while both current
and voltage will be measured in (2). Calculate the uncertainty in the power
determination in each case when the measured values of E and I are:

E=100V+1% (for both cases)

[=10A£1% A
R
() FIGURE EXAMPLE 3-2
N4 Power measurement across a resistor.

Solution. The schematic is shown in the accompanying figure. For the first case
‘we have
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dP 2E JP E?

JE R R R
and we apply Eq. (3-2) to give

e[ (B ]

Dividing by P = E’/R gives
=)+ () T
P -INE) R )
Inserting the numerical values for uncertainty,
% = [4(0.01)* + (0.01)2)'"* = 2.236%

For the second case we have
oP oP
-1 aTE
and after similar algebraic manipulation, we obtain
2 2q1/2
F-C5) +(7)]
P I\E/)T\T ©
Inserting the numerical values of uncertainty,
w
—Pﬁ =[(0.01)* + (0.01)°]""* = 1.414%

Thus, the second method of power determination provides considerably less
uncertainty than the first method, even though the primary uncertainties in each
quantity are the same. In this example the utility of the uncertainty analysis is that
it affords the individual a basis for selection of a measurement method to produce
a result with less uncertainty.

Example 3-3  Instrument selection. The power measurement in Example 3-2 is to
be conducted by measuring voltage and current across the resistor with the circuit
shown in the accompanying figure. The voltmeter has an internal resistance R,,
and the value of R is known only approximately. Calculate the nominal value of
the power dissipated in R and the uncertainty for the following conditions:

R=1000Q (not known exactly)
R, =1000Q+5%

I=5A*1%

E=500V+1%

FIGURE EXAMPLE 3-3
Effect of meter impedance on measurement.
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Solution. A current balance on the circuit yields
L+1L,=1
E E
= 4 —=
RTR. !
and

L=I-— (a)

The power dissipated in the resistor is

2
P=EI, =EI- If )

m

The nominal value of the power is thus calculated as

2
P = (500)(5) — fggo =2250 W

In terms of known quantities the power has the functional form P=f(E, I, R, ),
and so we form the derivatives

JP 2FE dP

G I"rR, a~E
9P _E’
iR, R,

The uncertainty for the power is now written as

o (G SEe - e @

m

Inserting the appropriate numerical values gives

4 1/2

[(5 -~ ié—'gg) 524+ (25X 10)(25 X 107*) + (25 x ﬂ)2(2500)]

=[16 + 25+ 6.25]'%(5)
' =344W
or

w, 344

P 2350 - 193%

In order of influence on the final uncertainty in the power we have

1. Uncertainty of current determination
2. Uncertainty of voltage measurement
3. Uncertainty of knowledge of internal resistance of voltmeter

Comment. There are other conclusions we can draw from this example. The
relative influence of the experimental quantities on the overall power determina-
tion is noted above. But this listing may be a bit misleading in that it implies that
the uncertainty of the meter impedance does not have a large effect on the final
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uncertainty in the power determination. This results from the fact that R, >
R (R,, = 10R). If the meter impedance were lower, say, 200 Q, we would find that
it was a dominant factor in the overall uncertainty. For a very high meter
impedance there would be little influence, even with a very inaccurate knowledge
of the exact value of R,,. Thus, we are led to the simple conclusion that we need
not worry too much about the precise value of the internal impedance of the
meter as long as it is very large compared with the resistance we are measuring
the voltage across. This fact should influence instrument selection for a particular
application.

Example 3-4 Ways to reduce uncertainties. A certain obstruction-type flowmeter
(orifice, venturi, nozzle), shown in the accompanying figure, is used to measure
the flow of air at low velocities. The relation’ describing the flow rate is’

m=ca| %, —pz)]l‘/z @

Flow

FIGURE EXA -
0 @ 9 G : .MPLE34

Uncertainty in a flowmeter.

where C is an empirical-discharge coefficient, A is the flow area, p, and p, are the
upstream and downstream pressures, T, is the upstream temperature, and R is the

gas constant for air. Calculate the percent uncertainty in the mass flow rate for the
following conditions:

C=10.92+0.005 (from calibration data)
p, =25 psia + 0.5 psia
T,=70°F £2°F T, =530°R
Ap=p,—p,=L.4psiax0.005psia  (measured directly)
A=1.0in" =0.001 in*

Solution. In this example the flow rate is a function of several variables, each
subject to an uncertainty.

m=f(C, A, p,,Ap, T,) (2]
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Thus, we form the derivatives:

. 2 1/2
ont _ A(ﬂ_l Ap)

aC RT,

% = O'SCA<I§§:1 Ap)llzp;”z (©)
%=0.50A(%‘§"T—pj)mm“’2

37”;" = ~0.5ca( Eebr Ap)mr,*/2

The uncertainty in the mass flow rate may now be calculated by assembling these
derivatives in accordance with Eq. (3-2). Designating this assembly as Eq. (c) and
then dividing by Eq. (@) gives '

2 2 2 2 271/2
e[ () ) 2 3]
m [(C * A +4 D, +4 Ap +4 T (d)

1

We may now insert the numerical values for the quantities to obtain the percent
uncertainty in the mass flow rate.

W, _[(0.005>2+<0.001)2+ 1(0;5)2+ 1(0.005)2+ 1(1)2]”2

m  L\0.92 1.0 4\25/ "4\'14 4\530
=[29.5%X107°+1.0x 107 +1.0x 107* +3.19x 107° +3.57 x 10" °]**
=[1.373x107*]"* = 1.172% (e)

The main contribution to uncertainty is the p, measurement with its basic
uncertainty of 2 percent. Thus, to improve the overall situation the accuracy of
this measurement should be attacked first. In order of influence on the flow-rate
uncertainty, we have

1. Uncertainty in p, measurement (*+2 percent)
2. Uncertainty in value of C

3. Uncertainty in determination of T,

4. Uncertainty in determination of Ap

5. Uncertainty in determination of A

By inspecting Eq. (e) we see that the first two items make practically the whole
contribution to uncertainty. The value of the uncertainty analysis in this example
is that it shows the investigator how to improve the overall measurement accuracy
of this technique. First, obtain a more precise measurement of p,. Then try to
obtain a better calibration of the device, i.e., a better value of C. In Chap. 7 we
shall see how values of the discharge coefficient C are obtained.
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3-5 EVALUATION OF UNCERTAINTIES
FOR COMPLICATED DATA REDUCTION

We have seen in the preceding discussion and examples how uncertainty
analysis can be a useful tool to examine experimental data. In many cases data
reduction is a rather complicated affair and is often performed with a computer
routine written specifically for the task. A small adaptation of the routine can
provide for direct calculation of uncertainties without resorting to an analytical
determination of the partial derivatives in Eq. (3-2). We still assume that this
equation applies, although it could involve several computational steps. We
also assume that we are able to obtain estimates by some means of the
uncertainties in the primary measurements, i.e., wy, W,, etc.

Suppose a set of data is collected in the variables x,,x,,...,x, and a
result calculated. At the same time one may perturb the variables by Ax,, Ax,,”
and so on, and calculate new results. We would have

R(x)=R(x;,x5,...,x,)

R(x, +Ax,)=R(x; +Ax}, x,,...,x,)
R(x,)=R(x;, x5, ...,x,)

R(x, + Ax,) = R(x,, x, + Ax,, ..., x,)

For small enough values of Ax the partial derivatives can be well approximated
by

ﬂ _ R(xl + A"51) — R(xl)

dx, Ax,
IR R(x, + Ax,) — R(x,)
dx, Ax,

and these values could be inserted in Eq. (3-2) to calculate the uncertainty in -
the result. '

At this point we must again alert the reader to the ways uncertainties or
errors of instruments are normally specified. Suppose a pressure gage is
available and the manufacturer states that it is accurate within *+1.0 percent.
This statement normally refers to percent of full scale. So a gage with a range of
0 to 100kPa would have an uncertainty of +10 percent when reading a
pressure of only 10kPa. Of course, this means that the uncertainty in the
calculated result, either as an absolute value or percentage, can vary widely
depending on the range of operation of instruments used to make the primary
measurements. The above procedure can be used to advantage in complicated
data-reduction schemes.

A very full description of this technique and many other considerations of
uncertainty analysis are given by Moffat [7]. An example of an industry
standard on uncertainty analysis is given in Ref. [8].
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Example 3-5. Calculate the uncertainty of the wire resistance in Example 3-1
using the technique of this section.

Solution. In Example 3-1 we have already calculated the nominal resistance as
6.24 (2. We now perturb the three variables R,, a, and T by small amounts to
evaluate the partial derivatives. We shall take

AR;=0.01 Aa=1x10"° AT=0.1
Then
R(R, + AR,) =((6.01){1 + (0.004)(30 — 20)] = 6.2504
and the derivative is approximated/as

dR _ R(R,+AR))—R _ 6.2504—6.24
R, AR, 0.01

=1.04

or the same result as in Example 3-1. Simjlarly,
R(a + Aa) = (6.0)[1 + (0.00401)(30 — 20)] = 6.2406
4R R(a + Aa)— R—6.2406—6.24
da Aa T o1x10°°

=60

R(T + AT) = (6)[1 + (0.004§(30.1 3} 20)] = 6.2424

ﬂ R(T+AT)—R _ 62424 -6.24

aT AT 0.1 =0.24

All the derivatives are the same as in Example 3-1 so the uncertainty in R would
be the same, or 0.0305 Q.

3-6 STATISTICAL ANALYSIS OF
EXPERIMENTAL DATA

We shall not be able to give an extensive presentation of the methods of
statistical analysis of experimental data; we may only indicate some of the
more important methods currently employed. First, it is important to define
some pertinent terms.

When a set of readings of an instrument is taken, the individual readings
will vary somewhat from each other, and the experimenter is usually concerned
with the mean of all the readings. If each reading is denoted by x, and there are
n readings, the arithmetic mean is given by

1 n
TR 3
The deviation d; for each reading is defined by

d=x,—x, (3-4)

‘We may note that the average of the deviations of all the readings is zero since
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1
=%, = = (nx,) =0 (3-5)
The average of the absolute values of the deviations is given by
- 1 & 1<
|| = 2 ld| = 5 2l = x| (3-6)
n - n -

Note that this quantity is not necessarily zero.
The standard deviation or root-mean-square deviation is defined by

o= [%; (x, —x,,,)‘z]ufZ (3-7)

and the square of the standard deviation o’ is called the variance. This is
sometimes called the population or biased standard deviation because it strictly
applies only when a large number of samples is taken to describe the
population.

In many circumstances the engineer will not be able to collect as many
data points as necessary to describe the underlying population. Generally
speaking, it is desirable to have at least 20 measurements in order to obtain
reliable estimates of standard deviation and general validity of the data. For
small sets of data an unbiased or sample standard deviation is defined by

[é(xi - xm)2:|1/2

n—1 (3-8)
Note that the factor n — 1 is used instead of n as in Eq. (3-7). The sample or
unbiased standard deviation should be used when the underlying population is
not known. However, when comparisons are made against a known population
or standard, Eq. (3-7) is the proper one to use for standard deviation. An
example would be the calibration of a voltmeter against a known voltage
source.

There are other kinds of mean values of interest from time to time in
statistical analysis. The median is the value that divides the data points in half.
For example, if measurements made on five production resistors give
10, 12,13, 14, and 15kQ, the median value would be 13kQ. The arithmetic
mean, however, would be

_10+12+13+14+15

" 5
In some instances it may be appropriate to divide data into quartiles and
deciles also. So, when we say that a student is in the upper quartile of the class

we mean that that student’s grade is among the top 25 percent of all students in
the class.

=12.8kQ
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Sometimes it is appropriate to use a geometric mean when studying
phenomena which grow in proportion to their size. This would apply to certain
biological processes and to growth rates in financial resources. The geometric
mean is defined by '

xgz[xl-'x'Z.XS...xn]I/tl (3-9)

As an example of the use of this concept, consider the 5-year record of a
mutual fund investment:

Asset Rate of increase
Year value over previous year
1 1000 ‘
2 890 0.89
3 990 1.1124
4 1100 1.1111
5 1250 1.1364

The average growth rate is therefore
Average growth =[(0.89)(1.1124)(1.1111)(1.1364)]""*
=1.0574
To see that this is indeed a valid average growth rate we can observe that
(1000)(1.0574)* = 1250

Example 3-6. The following readings are taken of a certain physical length.
Compute the mean reading, standard deviation, variance, and average of the
absolute value of the deviation, using the “‘biased” basis. '

Reading X, cm

5.30
5.73
6.77
5.26
433
5.45
6.09
5.64
5.81
575

SLC RTINS NN

[

Solution. The mean value is given by

=

x,=— 2 x,= 5(56.13)=5.613cm
i=1

The other quantities are computed with the aid of the following table:
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Reading d=x,—x, (x,—x, ) x10*
1 ' —0.313 9.797
2 0.117 1.369
3 1.157 133.865
4 —0.353 12.461
5 —1.283 164.609
6 —0.163 2.657
7 0.477 22.753
8 0.027 0.0729
9 0.197 3.881

10 0.137 1.877

n 1/2
o= [% 2 (x;—x, 2] =[%(3.533)]"? = 0.5944 cm

i=1

o’ =0.3533cm’

= 4(4.224) = 0.4224cm

Example 3-7. Calculate the best estimate of standard deviation for the data of
Example 3-6 based on the “sample” or unbiased basis.

Solution. The calculation gives
1 1/2
o= [10—_1 (3.536)] =(0.3929)""* =0.627 cm

Suppose an “honest” coin is flipped a large number of times. It will be
noted that after a large number of tosses heads will be observed about the
same number of times as tails. If one were to consistently bet on either heads
or tails the best one could hope for would be a break-even proposition over a
long period of time. In other words, the frequency of occurrence is the same for
both heads or tails for a very large number of tosses. It is common knowledge
that a few tosses of a coin, say 5 or 10, may not be a break-even proposition, as
a large number of tosses would be. This observation illustrates the fact that
frequency of occurrence of an event may be dependent on the total number of
events which are observed.

The probability that one will get a head when flipping an unweighted coin
is 3, regardless of the number of times the coin is tossed. The probability that a
tail will occur is also 3. The probability that either a head or a tail will occur is
3 + 3 or unity. (We ignore the possibility that the coin will stand on edge.)
Probability is a mathematical quantity that is linked to the frequency with
which a certain phenomenon occurs after a large number of tries. In the case of
the coin, it is the number ‘of times heads would be expected to result in a large
number of tosses divided by the total number of tosses. Similarly, the toss of an
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unloaded die results in the occurrence of each side one-sixth of the time.
Probabilities are expressed in values of less than one, and a probability of unity
corresponds to certainty. In other words, if the probabilities for all possible
events are added, the result must be unity. For separate events, the probability
that one of the events will occur is the sum of the individual probabilities for
the events. For a die, the probability that any one side will occur is §. The
probability for one of three given sides is ¢ + 3 + &, or 3, and so on. :

Suppose two dice are thrown and we wish to know the probability that
both will display a 6. The probability for a 6 on a single die is . By a short
listing of the possible arrangements that the dice may have, it can be seen that
there can be 36 possibilities and that the desired result of two 6’s represents
only one of these possibilities. Thus, the probability is 35. For a throw of 7 or
11, there are 6 posS’ible ways of getting a 7; thus the probability of getting a 7 is
£ or L. There are only 2 ways of getting an 11; thus the probability is 5 or f5.
The probability of getting either a 7 or an 11 is 55 + 3.

If several independent events occur at the same time such that each event
has a probability p,, the probability that all events will occur is given as the
product of the probabilities of the individual events. Thus, p =II p,, where the
IT designates a product. This rule could be applied to the problem of determin-
ing the probability of a double 6 in the throw of two dice. The probability of
getting a 6 on each die is 1, and the total probability is therefore (£)(3), or .
This reasoning could not be applied to the problem of obtaining a 7 on the two
dice because the number on each die is not independent of the number on the
other die, since a 7 can be obtained in more than one way.

As a final example we ask what the chances are of getting a royal flush in
the first five cards drawn off the top of the deck. There are 20 suitable
possibilities for the first draw (4 suits, 5 possible cards per suit) out of a total of
52 cards. On the second draw we have fixed the suit so that there are only 4
suitable cards out of the 51 remaining. There are three suitable cards on the
third draw, two on the fouth, and only one on the fifth draw. The total
probability of drawing the royal flush is thus the product of the probabilities of
each draw, or

20 4 3 2 1 1

52 X351 ° 50 * 49 X 38 ~ 649,740

In the above discussion we have seen that the probability is related to the
number of ways a certain event may occur. In this case we are assuming that all
events are equally likely, and hence the probability that an event will occur is
the number of ways the event may occur divided by the number of possible
events. Our primary concern is the application of probability and statistics to
the analysis of experimental data. For this purpose we need to discuss next the
meaning and use of probability distributions. We shall be concerned with a few
particular distributions that are directly applicable to experimental data
analysis.



54 EXPERIMENTAL METHODS FOR ENGINEERS

3-7 PROBABILITY DISTRIBUTIONS

Suppose we toss a horseshoe some distance x. Even though we make an effort
to toss the horseshoe the samée distance each time, we would not always meet
with success. On the first toss the horseshoe might travel a distance x,, on the
second toss a distance of x,, and so on. If one is a good player of the game,
there would be more tosses which haveé an x distance equal to that of the
objective. Also, we would expect fewer and fewer tosses for those x distances
which are further and further away from the target. For a large nuniber of
tosses, the probability that it will travel a distance is obtained by dividing the
number traveling this distance by the total number of tosses. Since each x
distance will vary somewhat from other x distances, we might find it advantage-
ous to calculate the probability of a toss landing in a certain increment of x
between x and x + Ax. When this calculation is made, we might get something
like the situation shown in Fig. 3-1. For a good player, the maximum
probability is expected to surround the distance x,, designating the position of
the target.

The curve shown in Fig. 3-1 is called a probabzlzty distribution. It shows
how the probability of success in a certain event is distributed over the distance
x. Each value of the ordinate p(x) gives the probability that the horseshoe will
land between x and x + Ax, where Ax is allowed to approach zero. We might

1
Xm
)»———)x -
p(x)A
x x+ Ox ;
Xm
FIGURE 3-1

Distribution of throws for a “good” horseshoes player.
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consider the deviation from x,, as the error in the throw. If the horseshoe
player has good aim, large errors are less likely than small errors. The area
under the curve is unity since it is certain that the horseshoe will land
somewhere.

We should note that more than one variable may be present in a
probability distribution. In the case of the horseshoes player, a person might
throw the object an exact distance of x,, and yet to one side of the target. The
sideways distance is another variable, and a large number of throws would
have some distribution in this variable as well.

A particular probability distribution is the binomial distribution. This
distribution gives the number of successes n out of N possible independent
events when each event has a probability of success p. The probability that n
events will succeed is given in Ref. [2] as

N! N—
p(n)= N=nin p'-p)y " (3-10)

It will be noted that the quantity (1 — p) is the probability of failure of each
independent event.

Example 3-8 Binomial distribution. An unweighted coin is flipped three times.
Calculate the probability of getting zero, one, two, or three heads in these tosses.

Solution. The binomial distribution applies in this case. The probability of getting

a head on each throw is p = 3 and N = 3, while n takes on the values 0, 1, 2, and
3. The probabilities are calculated as

3!
PO Ene)

(5 (3) -3

p(1)= (2!?(!1!) @)1(%)2:%
(3)(3) =5

1

8

3!
PO =@y

3t 11\
P3)=onay (E) (E) =
Now suppose that the number of possible independent events N is very
large and the probability of occurrence of each p is very small. The calculation
of the probability of n successes out of the N possible events using Eq. (3-10)
would be most cumbersome because of the size of the numbers. The limit of
the binomial distribution as N—« and p— 0, such that

Np = a = const
is called the Poisson distribution and is given by

a

a"e”

P =" (3-11)
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The Poisson distribution is applicable to the calculation of the decay of
radioactive nuclei, as we shall see in a subsequent chapter. It may be shown
that the standard deviation of the Poisson distribution is

c=Vva (3-12)

We have noted that a probability distribution like Fig. 3-1 is obtained
when we observe frequency of occurrence over a large number of observations.
When a limited number of observations is made and the raw data plotted, we
call the plot a histogram. For example, the following distribution of throws
might be observed for a horseshoes player:

Distance from Number of
target, cm throws
0-10 5
10-20 15
20-30 13
30-40 11
40-50 9
50-60 8
60-70 10
70-80 6
80-90 7
90-100 5
100-110 5
110-120 3
Over 120 2
Total 99

These data are plotted in Fig. 3-2 using increments of 10 cm in Ax. The
same data are plotted in Fig. 3-3 using a Ax of 20 cm. The relative frequency, or

151
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-

20 40 60 80 100 120 FIGURE 3-2

Distance from target, cm Histogram with Ax =10cm.
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20 40 60 80 100 120 FIGURE 3-3
Distance from target, cm Histogram with Ax =20 cm.

fraction of throws in each Ax increment, could also be used to convey the same
information. A cumulative frequency diagram could be employed for these
data, as shown in Fig. 3-4. If this figure had been constructed on the basis of a
very large number of throws, then we could appropriately refer to the ordinate
as the probability that the horseshoe will land within a distance x of the target.

3.8 THE GAUSSIAN OR NORMAL
ERROR DISTRIBUTION

Suppose an experimental observation is made and some particular result
recorded. We know (or would strongly suspect) that the observation has been
subjected to many random errors. These random errors may make the final
reading either too large or too small, depending on many circumstances which
are unknown to us. Assuming that there are many small errors that contribute
to the final error and that each small error is of equal magnitude and equally
likely to be positive or negative, the gaussian or normal error distribution may
be derived. If the measurement is designated by x, the gaussian distribution
gives the probability that the measurement will lie between x and x + dx and is
written '

1 _
P(x)= e G207 (3-13)
oV2m

In this expression, x,, is the mean reading and o is the standard deviation.
Some may prefer to call P(x) the probability density. The units of P(x) are
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Cumulative frequency diagram.

those of 1/x since these are the units of 1/0. A plot of Eq. (3-13) is given in
Fig. 3-5. Note that the most probable reading is x,,. The standard deviation is a
measure of the width of the distribution curve; the larger the value of o, the
flatter the curve and hence the larger the expected error of all the measure-
ments. Equation (3-13) is normalized so that the total area under the curve is
unity. Thus,

Ij:»P(x) dx=1.0 (3-14)

At this point we may note the similarity between the shape of the normal error
curve and the expected experimental distribution for tossing horseshoes as
shown in Fig. 3-1. This is what we would expect, because the good horseshoes
player’s throws will be bunched around the target. The better the player is at
the game, the more closely the throws will be grouped around the mean and
the more probable will be the mean distance x,,. Thus, in the case of the
horseshoes player, a smaller standard deviation would mean a larger percen-
tage of “ringers.”

We may quickly anticipate the next step in the analysis as one of trying to
determine the precision of a set of experimental measurements through an
application of the normal error distribution. One may ask: But how do you
know that the assumptions pertaining to the derivation of the normal error
distribution apply to experimental data? The answer is that for sets of data
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FIGURE 3-5
0, 1 P 3 1 5 ¢ The gaussian or normal error distribution for
x two values of the standard deviation.

where a large number of measurements are taken, experiments indicate that
the measurements do indeed follow a distribution like that shown in Fig. 3-5
when the experiment is under control. If an important parameter is not
controlled, one gets just scatter, i.e., no sensible distribution at all. Thus, as a
matter of experimental verification the gaussian distribution is believed to
represent the random errors in an adequate manner for a properly controlled
experiment. ' :

. By inspection of the gaussian distribution function of Eq. (3-13) we see
that the maximum probability occurs at x = x, , and the value of this probabili-
ty is

1
oV27w

It is seen from Eq. (3-15) that smaller values of the standard deviation produce
larger values of the maximum probability, as would bé expected in an intuitive
sense. P(x,,) is sometimes called a measure of precision of the data because it
has a larger value for smaller values of the standard deviation.

We next wish to examine the gaussian distribution to determine the
likelihood that certain data points will fall within a specified deviation from the
mean of all the data points. The probability that a measurement will fall within
a certain range x, of the mear reading is

P(x,)= (3-15)
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Xt Xy 1 s
P ovmm e (3-16)
Making the variable substitution,
XX,
= a
Equation (3-16) becomes
1 e 2y
P= ﬁf‘m e " d1] (3-17)
X
where m= ;1 (3-18)

Values of the gaussian normal error function

1 -n%2

V2 ¢

and integrals of the gaussian function corresponding to Eq. (3-17) are given in
Tables 3-1 and 3-2. ;

If we have a sufficiently large number of data points, the error for each
point should follow the gaussian distribution and we can determine the
probability that certain data fall within a specified deviation from the mean
value. Example 3-9 illustrates the method of computing the chances of finding
data points within one or two standard deviations from the mean. Table 3-3
gives the chances for certain deviations from the mean value of the normal-
distribution curve.

Example 3-9. Calculate the probabilities that a measurement will fall within one,
two, and three standard deviations of the mean value, and compare them with the .
values in Table 3-3.

Solution, We perform the calculation using Eq. (3-17) with 5, =1, 2, and 3. The
values of the integral may be obtained from Table 3-2. We observe that

o —n%2 _ m —n%2
e dn=2 , ¢ dn

-

so that
P(1) = (2)(0.34134) = 0.6827
P(2) = (2)(0.47725) = 0.9545
P(3) =(2)(0.49865) = 0.9973

Using the odds given in Table 3-3, we would calculate the probabilities as

2.15

P(1)=
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P(2) = 5 =0.9545
369
P()= 3¢5 =0.9973

It is a rare circumstance indeed when an experimenter does not find that
some of the data points look bad and out of place in comparison with the bulk
of the data. The experimenter is therefore faced with the task of deciding if

TABLE 3-1 .
Values of the gaussian normal error distribution

Values of the function (1/V 271-)8"’2/2 for different values of the argument 5. (Each figure in the
body of the table is preceded by a decimal point.)

n 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 39894 39892 39886 39876 39862 39844 39822 39797 39767 39733
0.1 39695 39654 - 39608 39559 39505 39448 39387 39322 39253 39181
0.2 39104 39024 38940 38853 - 38762 38667 38568 38466 38361 38251
0.3 38139 38023 37903 37780 37654 37524 37391 37255 37115 36973
0.4 36827 36678 36526 36371 36213 36053 35889 35723 35553 35381

0.5 35207 35029 34849 34667 34482 34294 34105 33912 33718 33521
0.6 33322 33121 32918 32713 32506 32297 32086 31874 31659 31443
0.7 31225 31006 30785 30563 30339 30114 29887 29658 29430 29200
0.8 28969 28737 28504 28269 28034 27798 27562 27324 27086 26848
0.9 26609 26369 26129 25888 25647 25406 25164 24923 24681 24439

1.0 24197 23955 23713 23471 23230 22988 22747 22506 22265 22025
1.1 21785 21546 21307 21069 20831 20594 20357 20121 19886 19652
1.2 19419 19186 18954 18724 18494 18265 18037 17810 17585 17360
1.3 17137 16915 16694 16474 16256 16038 15822 15608 15395 15183
1.4 14973 14764 14556 14350 14146 13943 13742 13542 13344 13147

1.5 12952 12758 12566 12376 12188 12001 11816 11632 11450 11270
1.6 11092 10915 10741 10567 10396 10226 10059  09893° 09728 09566
1.7 09405 09246 09089 08933 08780 08628 08478 08329 08183 08038
1.8 07895 07754. 07614 07477 (07341 07206 07074 06943 = 06814 06687
1.9 06562 06438 06316 06195 06077 035959 05844 05730 05618 05508

2.0 05399 05292 05186 05082 (04980 04879 (4780 04682 04586 04491
2.1 04398 04307 04217 04128 04041 03955 03871 03788 03706 03626
2.2 03547 03470 03394 03319 03246 03174 03103 03034 02965 02898
2.3 02833 02768 02705 02643 02582 02522 02463 02406 02349 02294
24 02239 02186 02134 02083 02033 01984 01936 01888 01842 01797

2.5 01753 01709 01667 01625 01585 01545 01506 01468 01431 01394
2.6 01358 01323 01289 01256 01223 (1191 01160 01130 01100 01071
2.7 01042 01014 00987 00961 00935 00909 00885 00861 00837 00814
2.8 00792 00770 00748 00727 00707 00687 00668 00649 00631 00613
2.9 00595 00578 ~ 00562 00545 00530 00514 00499 00485 00470 00457

3.0 00443
3.5 008727
4.0 0001338
4.5 0000160

5.0 - 000001487
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TABLE 3-2

Integrals of the gaussian normal error functlon

Values of the integral (1/V27) (1 e™” 2 dn are given for different values of the argument »,. It
may be observed that

1 [

—1,2/2 -
— dn=2 —— J d
V2w J-m n

The values are related to the error function since
+fj1

1 2
el'f‘rh=7—; € " d?]

-m

so that the tabular values are equal to i erf (,/V2). (Each figure in the body of the table is
preceded by a decimal point.)

7, 0.00 001 002 0.03 004 005 006 007 0.08 0.09
0.0 00000 00399 00798 01197 01595 01994 02392 02790 03188 03586
0.1 03983 04380 04776 05172 05567 05962 06356 06749 07142 07355
02 07926 08317 08706 09095 09483 09871 10257 10642 11026 11409
03 11791 12172 12552 12930 13307 13683 14058 14431 14803 15173
0.4 15554 15910 16276 16640 17003 17364 17724 18082 18439 18793
0.5 19146 19497 19847 20194 20450 20884 21226 21566 21904 22240
0.6 22575 22907 23237 23565 23891 24215 24537 24857 25175 25490
0.7 25804 26115 26424 26730 27035 27337 27637 27935 28230 28524
0.8 28814 29103 29389 29673 29955 30234 30511 30785 31057 31327
0.9 31594 31859 32121 32381 32639 32894 33147 33398 33646 33891
1.0 34134 34375 34614 34850 35083 35313 35543 35769 35993 36214
1.1 36433 36650 36864 37076 37286 37493 37698 37900 38100 38298
1.2 38493 38686 38877 39063 39251 39435 39617 39796 39973 40147
1.3 40320 40490 40658 40824 40988 41198 41308 41466 41621 41774
1.4 41924 42073 42220 42364 42507 42647 42786 42922 43056 43189
1.5 43319 43448 43574 43699 43822 43943 44062 44179 44295 44408
1.6 44520 44630 44738 44845 44950 45053 45154 45254 45352 45449
1.7 45543 45637 45728 45818 45907 45994 46080 46164 46246 46327
1.8 46407 46485 46562 46638 46712 46784 46856 46926 46995 47062
1.9 47128 47193 47257 47320 47381 47441 47500 47558 47615 47670
20 47725 47778 47831 47882 47932 47962 48030 48077 48124 48169
2.1 48214 48257 48300 48341 48382 48422 48461 48500 48537 48574
22 48610 - 48645 48679 48713 48745 48778 48809 48840 48870 48899
23 48928 48956 48983 49010 49036 49061 49086 49111 49134 49158
2.4 49180 49202 . 49224 49245 49266 49286 49305 49324 49343 49361
2.5 49379 49296 49413 49430 49446 49461 49477 49492 49506 49520
2.6 49534 49547 49560 49573 49585 49398 49609 49621 49632 49643
2.7 49653 49664 49674 49683 49693 49702 49711 49720 49728 49736
2.8 49744 49752 49760 49767 49774 49781 49788 49795 49801 49807
2.9 - 49813 49819 49825 49831 49836 49841 49846 49851 49856 49861
3.0 49865

3.5 4997674

4.0 4999683

4.5 4999966

5.0 4999997133
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TABLE 3-3
Chances for deviations from mean

value of normal-distribution curve

Chance of results falling

Deviation within specified deviation
+0.67450 1-1 )
o 2.15-1
20 21-1
3¢ 369-1

these points are the result of some gross experimental blunder and hence may
be neglected or if they represent some new type of physical phenomenon that
is peculiar to a certain operating condition. The engineer cannot just throw out
those points that do not fit with expectations—there must be some consistent
basis for elimination. :

Suppose n measurements of a quantity are taken and n is large enough
that we may expect the results to follow the gaussian error distribution. This
distribution may be used to compute ‘the probability that a given reading will
deviate a certain amount from the mean. We would not expect a probability
much smaller than 1/n because this would be unlikely to occur in the set of n
measurements. Thus, if the probability for the observed deviation of a certain
point is less than 1/#, a suspicious eye would be cast at that point with an idea
toward eliminating it from the data. Actually, a more restrictive test is usually
applied to eliminate data points. It is known as Chauvenet’s criterion and
specifies that a reading may be rejected if the probability of obtaining the
particular deviation from the mean is less than 1/2n. Table 3-4 lists values of
the ratio of deviation to standard deviation for various values of n according to
this criterion.

TABLE 34
Chauvenet’s criterion for rejecting a reading
Number of readings, Ratio of maximum acceptable deviation
n to standard deviation, d,, /o
3 1.38
4 1.54
5 1.65
6 1.73
7 1.80
10 1.96 -
15 2.13
25 2.33
50 . 2.57
100 2.81
300 3.14
- 500 ©3.29

1,000 3.48
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In applying Chauvenet’s criterion to eliminate dubious data points, one
first calculates the mean value and standard deviation using all data points. The
deviations of the individual points are then compared with the standard
deviation in accordance with the information in Table 3-4 (or by a direct
application of the criterion), and the dubious points are eliminated. For the
final data presentation a new mean value and standard deviation are computed
with the dubious points eliminated from the calculation. Note that Chauvenet’s
criterion might be applied a second or third time to eliminate additional points;
but this practice is unacceptable, and only the first application may be used.

Example 3-10. Using Chauvenet’s criterion, test the data points of Example 3-6
for possible inconsistency. Eliminate the questionable points and calculate a new
standard deviation for the adjusted data.

Solution. The best estimate of the standard deviation is given in Example 3-7 as
0.627 cm. We first calculate the ratio d,/c and eliminate data points in accordance
with Table 3-4. :

Reading dlo

0.499
0.187
1.845
0.563
2.046
0.260
0.761
0.043
0.314
0.219

DO OB WN -

—

In accordance with Table 3-4, we may eliminate only point number 5. When this
point is eliminated, the new mean value is

x,,= 3(51.80) = 5.756 cm

The new value of the standard deviation is now calculated with the foliowing
table:

Reading d=x,—x, (x,— x, )’ x 10

1 —0.456 20.7936
2 -0.026 0.0676
3 1.014 102.8196
4 —0.496 24.602
6 —0.306 9.364
7 0.334 11.156
8 —-0.116 1.346
9 0.054 0.292
10 —0.006 0.0036
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o]

=(0.213)""* = 0.4615 cm

nil i:El(xi—xm)z] = [1(1.7044)]'"

Thus, by the elimination of the one point, the standard deviation has been
reduced from 0.627 to 0.462 cm. This is a 26.5 percent reduction.

3-9 PROBABILITY GRAPH PAPER

We have seen that the normal error distribution offers a means for examining
experimental data for statistical consistency. In particular, it enables us to
climinate questionable readings with the Chauvenet criterion and thus obtain a
better estimate of the standard deviation and mean reading. If the distribution
of random errors is not normal, then this elimination technique will not apply.
It is to our advantage, therefore, to determine if the data are following a
normal distribution before making too many conclusions about the mean value,
variances, etc. Specially constructed probability graph paper is available for
this purpose and may be purchased from a technical drawing shop. The paper
uses the coordinate system shown in Fig. 3-6. The ordinate has the percent of
readings at or below the value of the abscissa, and the abscissa is the value of a
particular reading. The ordinate spacings are arranged so that the gaussian-
distribution curve will plot as a straight line on the graph. In addition, this
straight line will intersect the 50 percent ordinate at an abscissa equal to the
arithmetic mean of the data.

Thus, to determine if a set of data points is distributed normally, we plot
the data on probability paper and see how well they match with the theoretical
straight line. It is to be noted that the largest reading cannot be plotted on the
graph because the ordinate does not extend to 100 percent. In assessing the
validity of the data we should not place as much reliance on the points near the
upper and lower ends of the curve since they are closer to the “tails” of the
probability distribution and are thus less likely to be valid.

Percent of readings at or
below value of abscissa

—»x FIGURE 3-6
Reading Probability graph paper.
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Example 3-11. The following data are collected for a certain measurement. Plot
the data on probability paper and comment on the normality of the distribution.

Reading x;, cm

—

4.62
4.69
4.86
4.53
4.60
4.65
4.59
4.70
4.58
4.63
> x,=46.45

A= T B Y R )

—
[==]

From these data the mean value is calculated as
X, =& 2 x, = (46.45) = 4.645 cm

The data are plotted in the accompanying figure indicating a reasonably normal
distribution. It should be noted that the straight line crosses the 50 percent
ordinate at a value of approximately x = 4.62, which is not in agreement with the
calculated value of x,,. Note that point 3, x = 4.86, does not appear on the plot
since it would represent the 100 percent ordinate.

95
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/
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Percent of readings at or below the abscissa

4.5 46 4.7 48
X; FIGURE EXAMPLE 3-10
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3-10 THE CHI-SQUARE TEST OF
GOODNESS OF FIT

In the previous discussion we have noted that random experimental errors
would be expected to follow the gaussian distribution, and the examples
illustrated the method of calculating the probability of occurrence of a particu-
lar experimental determination. We might ask how it is known that the random
errors or deviations do approximate a gaussian distribution. In general, we may
ask how we can determine if experimental observations match some particular
expected distribution for the data. As a simple example, consider the tossing of
a coin. We would like to know if a certain coin is “honest;” i.e:, unweighted
toward either heads or tails. If the coin is unweighted, then heads should occur
half the time and tails should occur half the time. But suppose we do not want
to take the time to make thousands of tosses to get a frequency distribution of
heads and tails for a large number of tosses. Instead, we toss the coin a few
times and wish to infer from these few tosses whether the coin is unweighted or
weighted. Common sense tells us not to expect exactly six heads and six tails
out of, say, twelve tosses. But how much deviation from this arrangement
could we tolerate and still expect the coin to be unweighted? The chi-square
test of goodness of fit is a suitable way of answering this question. It is based
on a calculation of the quantity chi squared, defined by

_ i [(observed value), — (expected value),]’ (3-19)

(expected value),

where n is the number of cells or groups of observations. The expected value is
the value which would be obtained if the measurements matched the expected
distribution perfectly.

The chi-square test may be applied to check the validity of various
distributions. Calculations have been made [2] of the probability that the actual
measurements match the expected distribution, and these probabilities are
given in Table 3-5. In this table, F represents the number of degrees of
freedom in the measurements and is given by

F=n—k (3-20)

where 7 is the number of cells and & is the number of imposed conditions on
the expected distribution. A plot of the chi-square function is given in Fig. 3-7.

While we initiated the discussion on the chi-square test in terms of
random errors following the gaussian distribution, the test is an important tool
for testing any expected experimental distribution. In other words, we might
use the test to analyze random errors or to check the adherence of certain data
to an expected dxstrlbu‘uon We interpret the test by calculating the number of
degrees of freedom and y* from the experimental data. Then consulting Table
3-5, we obtain the probability P that this value of y* or higher value could
occur by chance. If y>=0, then the assumed or expected dlsmbutlon and
measured distribution match exactly. The larger the value of x7, the larger is
the disagreement between the assumed distribution and the observed values, or
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Number of degrees of freedom The chi-square function.

the smaller the probability that the observed distribution matches the expected
distribution. The reader should consult Refs. [2] and [4] for more specific
information on the chi-square test and the derivation of the probabilities
associated with it.

One may note that the heading of this section includes the term “good-
ness of fit.”” We see that the chi-square test may be used to determine how well
a set of experimental observations fits an assumed distribution. In connection
with this test we may remark that data may sometimes be “too good” or “too
consistent.” For example, we would be quite surprised if in the conduct of an
experimental test, the results were found to check with theory exacily or to
follow some well-defined relationship exactly. We might find, for instance, that
a temperature controller maintained a set point temperature exactly, with no’
measurable deviation whatsoever. Experienced laboratory people know that
controllers usually do not operate this way and would immediately suspect that
the temperature recorder might be stuck or otherwise defective. The point of
this brief remark is that one must be suspicious of high values of P as well as
low values. A good rule of thumb is that if P lies between 0.1 and 0.9, the
observed distribution may be considered to follow the assumed distribution. If
P is either less than 0.02 or greater than 0.98, the assumed distribution may be
considered unlikely.

Let us return for a moment to the tossing of a coin. Suppose a coin is
tossed twice, resulting in one head and one tail. This observation certainly
matches exactly with what would be expected for an unweighted coin; how-
ever, our common sense tells us not to believe the coin is unweighted on the
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basis of only two tosses. In other words, we must have a certain minimum
number of samples for statistics to apply. For the chi-square test the generally
accepted minimum number of expected values for each ith cell is 5. If some
frequencies fall below 5 it is recommended that the cells or groups be redefined
to alleviate the problem.

For example, a plastics company produces two types of styrofoam cups
(call them A and B) which can experience eight kinds of defects. One hundred
defective samples of each cup are collected and the number of each type of
defect determined. The following table results: '

Type defect Cup A CupB
1 1 5
2 2 3
3 3 3
4 25 23
5 10 12
6 15 16
7 38 30
8 _6 _8
Total 100 100

We would like to know if the two cups have the same pattern of defects. To do
this we could compute chi squared for cup B assuming cup A has the expected
distribution. But we encounter a problem. Defects 1, 2, and 3 do not meet our
criterion of a minimum of 5 expected values in each cell. So we must
reconstruct the cells by combining 1,2, and 3 to obtain:

Type defect Cup A CupB
1,2,3 6 11
4 25 23
5 10 12
6 15 16
7 38 30
8 _6 _8
Total 100 100

For the former case we had eight cells or groups and one imposed condition
(total observations = 100), so F=8 —1=7. After grouping defects 1,2, and 3
we have F=6—1=35. Using this new tabulation the value of chi-squared is
calculated as 7.145. Consulting Table 3-5, we obtain the value of P as 0.43.
Thus, we might expect that the two cups have approximately the same pattern
of defects.

Example 3-12. Two dice are rolled 300 times and the following results are noted:
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Number Number of occurrences

2 6
3 9
4 27
5 36
6
7
8
9

39
57
45
39
10 24
11 12
12 6

Calculate the probability that the dice are unloaded.

Solution. Eleven cells have been observed with only one restriction: the number
of rolls of the dice is fixed. Thus, F =11 — 1 = 10. If the dice are unloaded, a short
listing of the combinations of the dice will give the probability of occurrence for
each number. The expected value of each number is then the probability
multiplied by 300, the total number of throws. The values of interest are tabulated
below.

Number Observed Probability Expected
2 6 1/36 8.333
3 9 1/18 16.667
4 27 1/12 25.0

5 36 1/9 33.333
6 39 5/36 41.667
7 57 1/6 50.0
8 45 5/36 41.667
9 39 1/9 33.333

10 24 1/12 25.0

11 12 1/18 16.667

12 6 1/36 8.333

From these data the value of chi squared is calculated as 8.034. If Table 3-5 is
consulted the probability is given as P =0.626.

Example 3-13. A coin is tossed 20 times, resulting in 6 heads and 14 tails. Using
the chi-square test, estimate the probability that the coin is unweighted. Suppose
another set of tosses of the same coin is made and 8 heads and 12 tails are
obtained. What is the probability of having an unweighted coin based on the
information from both sets of data?

Solution. For each set of data we may make only two observations: the number of
heads and the number of tails. Thus, n=2. Furthermore, we impose one
restriction on the data: the number of tosses is fixed. Thus, k =1 and the number
- of degrees of freedom is
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F=n—-k=2-1=1

The values of interest are

Observed Expected

Heads 6 10
Tails 14 10

For these values x° is calculated as

2 2
= (6 —-10) + (14 - 10)
10 10
Consulting Table 3-5 we find P =0.078; that is, there is an 8 percent chance that
this distribution is just the result of random fluctuations and that the coin may be
unweighted. .

Now consider the additional information we gain about the coin from the
second set of observations. We now have four observations: the number of heads
and tails in each set. There are only two restrictions on the data: the total number
of tosses is fixed in each set. Thus, the number of degrees of freedom is

F=n—k=4-2=2

=3.20

For the second set of data the values of interest are

Observed Expected

Heads 8 10
Tails 12 10

Chi squared is now calculated on the basis of all four observations.
. (6—-10Y  (14—10Y  (8—10)°  (12-10)° _
=" *T 1 1 1w
Consulting Table 3-5 again, we find P = 0.15. So, with the additional information

we find a stronger likelihood that the tosses are following a random variation and
that the coin is unweighted.

Example 3-14. A test is conducted to determine the effect of cigarette smoke on
the eating habits and weight of mice. One group is fed a certain diet while being
exposed to a controlled atmosphere containing cigarette smoke. A control group
is fed the same diet but in the presence of clean air. The observations are given
below. Does the presence of smoke cause a loss in weight?

Gained Lost

weight weight Total
Exposed to smoke 61 89 150
Exposed to clean air 65 77 142

Total 126 166 292
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Solution. Clearly, there are four observations in this experiment, but we are faced
with the problem of deciding on the expected values. We cannot just take the
“clean-air” data as the expected values because some of the behavior might be a
result of the special diet that is fed to both groups of mice. Consequently, about
the best estimate we can make is one based on the total sample of mice. Thus, the
expected frequencies would be

Expected fraction to gain weight = 33
Expected fraction to lose weight = 158

The expected values for the groups would thus be

Gained weight Lost weight
Exposed to smoke 128 150=64.7 292 % 150=285.3

Exposed to clean air 8 142=61.3 12142 =180.7

We observe that there are three restrictions on the data: (1) the number exposed
to smoke, (2) the number exposed to clean air, and (3) the additional restriction
involved in the calculation of the expected fractions which gain and lose weight.
The number of degrees of freedom is thus

F=4-3=1
The value of chi squared is calculated from
2 (61—64.7) + (89 — 85.3)° + (65 — 61.3) L 7= 80.7)°
647 85.3 61.3 80.7

From Table 3-5 we find P=0.41, or there is a 41 percent chance that the
difference in the observations for the two groups is just the result of random
fluctuations. One may not conclude from this information that the presence of
cigarette smoke causes a loss in weight for the mice.

=0.767

3-11 METHOD OF LEAST SQUARES

Suppose we have a set of observations x,, x,, . . . , x,,. The sum of the squares
of their deviations from some mean value is

S= 2 (x,—x,)° (3-21)

Now suppose we wish to minimize § with respect to the mean value x,,. We set

g 2(x; — x,,)= —2(2": X, — nxm) (3-22)

i=1

dx

where n is the number of observations. We find that
1 n
= -— . 3-2
. 2% (3-23)

or the' mean value which minimizes the sum of the squares of the deviations is
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the arithmetic mean. This example might be called the simplest application of
the method of least squares. We shall be able to give only two other
applications of the method, but it is of great utility in analyzing experimental
data.

Suppose that the two variables x and y are measured over a range of
values. Suppose further that we wish to obtain a simple analytical expression
for y as a function of x. The simplest type of function is a linear one; hence we
might try to establish y as a linear function of x. (Both x and y may be
complicated functions of other parameters so arranged that x and y vary
approximately in a linear manner. This matter will be discussed later.) The
problem is one of finding the best linear function, for the data may scatter a
considerable amount. We could solve the problem rather quickly by plotting
the data points on graph paper and drawing a straight line through them by
eye. Indeed this is common practice, but the method of least squares gives a
more reliable way to obtain a better functional relationship than the guesswork
of plotting. We seek an equation of the form )

y=ax+b (3-24)
We therefore wish to minimize the quantity

§= Z [y; — (ax, + b)]* (3-25)

This is accomplished by setting the derivatives with respect to.a and b equal to
zero. Performing these operations, there results

nb+a 2 X, = 2 y; (3-26)

b2x+adx=2xy, (3-27)
Solving Eqgs. (3-26) and (3-27) simultaneously gives

nxy— (2 x,)(z y,—>

a= (3-28)

s ﬂ/%é _ — nzx?_<le_>2

(Z2)(Z )~ (E)(E )
nSx-(Sx)

Designating the computed value of y as y, we have

b

Il

(3-29)

\

y=ax+b

and the standard error of estimate of y for the data is
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) (y,-—y‘,-)z]m

Standard error = [
n—2

[ Z (y;—ax,— b)z]l/z

n—2

(3-30)

(3-31)

The method of least squares may also be used for determining higher-order
polynomials for fitting data. One only needs to perform additional differentia-
tions to determine additional constants. For example, if it were desired to
obtain a least-squares fit according to the quadratic function

y=ax*+bx+c
the quantity
§= 2 [y~ (@x} + bx; + F
i=1

would be minimized by setting the following deivatives equal to zero:
as
da
as
ab
S
ac

=0=2,2[y, — (ax? + bx, + X)](— x7)
=0=22[y,.—(ax? + bx,—'*'c)](—xi)'
=0=3 20y, ~ (@ + bx, + )~ 1)

Expanding and collecting terms,

azxf+b2x?+c2xf=zxfy,. (3-32)
aZx?+b2x?+c2xi=Exiyi (3-33)
afo+b2x,.+cn=2y,- . (3-34)

These equations may then be solved for the constants a, b, and c.

Regression analysis

In the above discussion of the method of least squares no mention has been
made of the influence of experimental uncertainty on the calculation. We are
considering the methad primarily for its utility in fitting an algebraic relation-
ship to a set of data points. Clearly, the various x; and y, could have different
experimental uncertainties. To take all these into account requires a rather
tedious calculation procedure which we shall not present here; however, we
may state the following rules:

1. If the values of x; and y; are taken as the data value in y and the value of x
on the fitted curve for the same value of y, then there is a presumption that
the uncertainty in x is large compared with that in y.
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2. If the values of x; and y, are taken as the data value in y and the value on the
fitted curve for the same value of x, the presumption is that the uncertainty
in y dominates.

3. If the uncertainties in x; and y, are believed to be of approximately equal
magnitude, a special averaging technique must be used.

In rule 1 we say we are taking a regression of x on y, and in rule 2 there is
a regression of y on x. In the second case we are minimizing the sum of the
squares of the deviations of the actual points from the assumed curve and also
assuming that x does not vary appreciably at each point. If we obtained

y=a+bx

and then solved to get
1, _a
T

this second relation would not necessarily give a good calculation for x, since
the minimization was carried out in the y direction, and not the x direction. In
Example 3-15, rule 2 is assumed to apply.

Example 3-15. From the following data obtain y as a linear function of x using the
method of least squares:

Y: X

1.2 1.0
2.0 1.6
24 34
3.5 4.0
3.5 52

2y =126 2x,=152
Solution. We seek an equation of the form
y=ax+b

We first calculate the quantities indicated in the following table:

XY x?
1.2 1.0
3.2 2.56
8.16 11.56

14.0 16.0

18.2 27.04-

2xy,=4476 2 x?=58.16
We calculate the value of a and b using Eqgs. (3-28) and (3-29) with n =5:

_(5)(44.76) — (15.2)(12.6)
~ (5)(58.16) — (15.2)°

=0.540
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_ (12.6)(58.16) — (44.76)(15.2)

(G)(58.16) - (152)° 0.879

Thus, the desired relation is
y=0.540x + 0.879

A plot of this relation and the data points from which it was derived is shown in
the accompanying figure.

4 | =

[e]

FIGURE EXAMPLE 3-15

3-12 THE CORRELATION COEFFICIENT

Let us assume that a suitable correlation between y and x has been obtained,
either by least-squares analysis or graphical curve fitting. We want to know
how good this fit is, and the parameter which conveys this information is the
correlation coefficient r defined by

0.2 1/2 :
r=[1- 2 (3-35)
UY

where o, is the standard deviation of y given as

[gg(yi~)uJ2]“2

— (3-36)
and

, 2 iy

0= | T (3-37)

The y, are the actual values of y, and the y, are the values computed from the
correlation equation for the same value of x. It may be noted that many
calculators have built-in routines which calculate the correlation coefficient as
well as. other statistical functions. In addition, there are many computer
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software packages which accomplish these calculations, for example, those of
Ref. [9-13].

Example 3-16. Calculate the correlation coefficient for the least-square correla-
tion of Example 3-15.

Solution. From Example 3-15
2y 126
Ym = n - 5
and from the correlating equation y,. = 0.540x + 0.879

=2.52

i Y: Yie (yi_yic)z
1 1.2 1.419 0.048
2 2.0 1.743 0.066
3 2.4 2.715 0.0992
4 3.5 3.039 0.0212
5 35  3.687 0.035

> =0.2694
so that a2

0.2694
o,,= (———3 ) =0.2997

Also, o, =0.987, so that the correlation coefficient is

2q1/2
[ (52" oo

3-13 STANDARD DEVIATION OF
THE MEAN

We have taken the arithmetic mean value as the best estimate of the true value
of a set of experimental measurements. Considerable discussion has been
devoted to the gaussian normal error distribution and to an examination of the
various types of errors and deviations that may occur in an experimental
measurement. But one very important question has not yet been answered;
i.e., how good (or precise) is this arithmetic mean value which is taken as the
best estimate of the true value of a set of readings? To obtain an experimental
answer to this question it would be necessary to repeat the set of measurements
and find a new arithmetic mean. In general, we would find that this new
arithmetic mean would differ from the previous value, and thus we would not
be able to resolve the problem until a large number of sets of data were
collected. We would then know how well the mean of a single set approxi-
mated the mean which would be obtained with a large number of sets. The
mean value of a large number of sets is presumably the true value. Con-
sequently, we wish to know the standard deviation of the mean of a single set
of data from this true value.
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It turns out that the problem may be resolved with a statistical analysis
which we shall not present here. The result is

v (3-38)

where o, = standard deviation of the mean value
o = standard deviation of the set of measurements
n = number of measurements in the set

The following example illustrates the use of Eq. (3-38).

Example 3-17. For the data of Example 3-6, estimate the uncertainty in the
calculated mean value of the readings.

Solution. We shall make this estimate for the original data and for the reduced
data of Example 3-10. For the original data the standard deviation of the mean is

o 0.627.
g, = 7—;{ = W =0.198 cm
The arithmetic mean value calculated in Example 3-6 was x,, =5.613cm. We
could now specify the uncertainty of this value by using the odds of Table 3-3:
x,, =5.613+0.198cm (2.15t0 1)

=5756+0.39%cm  (21to1)
=5613+0.594cm  (369to1)

Using the data of Example 3-10, where one point has been eliminated by
Chauvenet’s criterion, we may make a better estimate of the mean value with less
uncertainty. The standard deviation of the mean is calculated as

_ o 0465
mTNVn T VS
for the mean value of 5.756 cm. Thus, we would estimate the uncertainty as

x,, =5.756 £0.155cm (215t01)

=5.756 £ 0.310cm (21to1)
=5.756 = 0.465 cm (36910 1)

We should note that the calculation of statistical parameters like standard
deviation and least-square fits to data is easily performed with standard
computer programs which are available on even small hand calculators. Rapid
expansion of the availability of compact programs for data analysis is to be
expected.

=0.155¢cm

3-14 GRAPHICAL ANALYSIS AND
CURVE FITTING

Enginéers are well known for their ability to plot many curves of experimental
data and to extract all sorts of significant facts from these curves. The better
one understands the physical phenomena involved in a certain experiment, the
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better is one able to extract a wide variety of information from graphical
displays of experimental data. Because these physical phenomena may encom-
pass all engineering science, we cannot discuss them here except to emphasize
that the person who is usually most successful in analyzing experimental data is
the one who understands the physical processes behind the data. Blind
curve-plotting and cross-plotting usually generate an excess of displays, which
are confusing not only to the management or supervisory personnel who must
pass on the experiments, but sometimes even to the experimenter. To be blunt,
the engineer should give considerable thought to the kind of information being
looked for before even taking the graph paper out of the package.

Assuming that the engineer knows what is to be examined with graphical
presentations, the plots may be carefully prepared and checked against approp-
riate theories. Frequently, a correlation of the experimental data is desired in
terms of an analytical expression between variables that were measured in the
experiment. When the data may be approximated by a straight line, the
analytical relation is easy to obtain; but when almost any other functional
variation is present, difficulties are usually encountered. This fact is easy to
understand since a straight line is easily recognizable on graph paper, whereas
the functional form of a curve is rather doubtful. The curve could be a
polynomial, exponential, or complicated logarithmic function and still present
roughly the same appearance to the eye. It is most convenient, then, to try to
plot the data in such a form that a straight line will be obtained for certain
types of functional relationships. If the experimenter has a good idea of the
type of function that will represent the data, then the type of plot is easily
selected. It is frequently possible to estimate the functional form that the data
will take on the basis of theoretical considerations and the results of previous
experiments of a similar nature.

Table 3-6 summarizes several different types of functions and plotting
methods that may be used to produce straight lines on graph paper. The
graphical measurements, which may be made to determine the various con-
stants, are also shown. It may be remarked that the method of least squares
may be applied to all these relations to obtain the best straight line to fit the
experimental data. A number of personal computer software packages are
available to accomplish the functional plots illustrated in Table 3-6. See, for
example, Refs. [9], [11], 'and [12].

Please note that when using logarithmic or semilog graph paper it is
unnecessary to make log calculations; the scaling of the paper automatically
accomplishes this.

Incorporation of graphics in reports and presentations is discussed in
Chapter 15.

3-15 GENERAL CONSIDERATIONS IN
DATA ANALYSIS

Our discussions in this chapter have considered a variety of topics: statistical
analysis, uncertainty analysis, curve plotting, least squares, etc. With these
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tools the reader is equipped to handle a variety of circumstances that may
occur in experimental investigations. As a summary to this chapter let us now
give an approximate outline of the manner in which one would go about
analyzing a set of experimental data.

1. Examine the data for consistency. No matter how hard one tries, there will
always be some data points that appear to be grossly in error. If we add heat
to a container of water, the temperature must rise, and so if a particular
data point indicates a drop in temperature for a heat input, that point might
be eliminated. In other words, the data should follow commonsense consis-
tency, and points that do not appear proper should be eliminated. If very
many data points fall in the category of “inconsistent,” perhaps the entire
experimental procedure should be investigated for gross mistakes or miscal-
culation.

2. Perform a statistical analysis of data where appropriate. A statistical analysis
is only appropriate when measurements are repeated several times. If this is
the case, make estimates of such parameters as standard deviation, etc.

3. Estimate the uncertainties in the results. We have discussed uncertainties at
length. Hopefully, these calculations will have been performed in advance,
and the investigator will already know the influence of different variables by
the time the final results are obtained.

4. Anticipate the results from theory. Before trying to obtain correlations of the
experimental data, the investigator should carefully review the theory
appropriate to the subject and try to glean some information that will
indicate the trends the results may take. Important dimensionless groups,
pertinent functional relations, and other information may lead to a fruitful
interpretation of the data.

5. Correlate the data. The word “correlate” is subject to misinterpretation. In
the context here we mean that the experimental investigator should make
sense of the data in terms of physical theories or on the basis of previous
experimental work in the field. Certainly, the results of the experiments
should be analyzed to show how they conform to or differ from previous
investigations or standards that may be employed for such measurements.

3-16 SUMMARY

By now the reader will have sensed the central theme of this chapter as that of
uncertainty analysis and the use of this analysis to influence experiment design,
instrument selection, and evaluation of the results of experiments. At this point
we must reiterate statements we have made before. We still must recognize
that uncertainty is rnot the same as error, even though some people interchange
the terms. As we saw in Chap. 2, the determination of “error” is eventually
related to a comparison with a standard. Even then, there is still “uncertainty”
in the error because the “standard” has its own uncertainty.
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TABLE 3-6
Methods of plotting various functions to obtain straight lines
Functional
relationship Method of plot Graphical determination of parameters
y=ax+b y versus x on linear Y
paper
Slope=a
b
b
Ol x
y=ax’ log y versus log x log y
on log-log paper
Slope=5
log a
log x = 0‘ log x
orx=10
y = ae™ log y versus x on log y
semilog paper
Slope=b5log e
loga
0| X
x 1 1 . i
y= = versus — on linear y
a+bx y X
paper / Slope=a
Extrapolated\ Jrad
// [ ‘
b
¥
0 1
x
=a+bx+cx’ -
ymamoxTex Y71 versus x on
x—x,
linear paper

wY

(Continued)
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TABLE 3-6
Methods of plotting various functions to obtain straight lines (Continued)
Functional
relationship Method of plot Graphical determination of parameters
_ X + X —x x-x;
Y= oTm e =7, Versus x on Py ,
linear paper Slope=b+ bT xy
R
a+bx;
Y
O, x
_ . _bx+cx? 1(x—x)) NESENaTY
y=ae ¥y Y
ol | ()
g Y1 i
VErsus x on /Slope =cloge
semilog paper A
b+cx; loge
Y
0 x
y=1—e" ( 1 )
log versus x 1
1=y log( 1 )
on semilog paper -
Slope = b
0
x
b 1 y
y=at< y versus —
on linear paper
Slope = b
rd
i
Vi
y=a+bvx y versus Vx Y
on linear paper
Slope = b
A
i
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In the chapters which follow we shall examine a large number of

instruments and measurement devices and will see how the concepts of error,
uncertainty, and calibration apply to each.

REVIEW QUESTIONS

3-1. How does an error differ from an uncertainty?

3-2. What is a fixed error; random error?

3-3. Define standard deviation and variance.

3-4. In the normal error distribution, what does P(x) represent?

3-5. What is meant by measure of precision?

3-6. What is Chauvenet’s criterion and how is it applied?

3-7. What are some purposes of uncertainty analyses?

3-8. Why is an uncertainty analysis important in the preliminary stages of experiment
planning?

3-9. How can an uncertainty analysis help to reduce overall experimental uncertainty?

3-10. What is meant by standard deviation of the mean?

3-11. What is a least-squares analysis?

3-12. What is the correlation coefficient?

3-13. What is meant by a regression analysis?

PROBLEMS

3-1. The resistance of a resistor is measured 10 times, and the values determined are
100.0, 100.9, 99.3, 99.9, 100.1, 100.2, 99.9, 100.1, 100.0, and 100.5. Calculate the
uncertainty in the resistance.

3-2. A certain resistor draws 110.2V and 5.3 A. The uncertainties in the measure-
ments are +0.2V and +0.06 A, respectively. Calculate the power dissipated in
the resistor and the uncertainty in the power.

3-3. A small plot of land has measured dimensions of 50.0 by 150.0 ft. The uncertainty
in the 50-ft dimension is *+0.01 ft. Calculate the uncertainty with which the 150-ft
dimension must be measured to ensure that the total uncertainty in the area is not
greater than 150 percent of that value it would have if the 150-ft dimension were
exact. -

3-4. Two resistors R, and R, are connected in series and parallel. The values of the
resistances are

R,=100.0+0.1Q

R,=50.0+0.03Q
Calculate the uncertainty in the combined resistance for both the series and the
parallel arrangements.

3-5. A resistance arrangement of 50 ) is desired. Two resistances of 100.0 + 0.1 €} and

two resistances of 25.0 £0.02 Q) are available. Which should be used, a series
arrangement with the 25-Q resistors or a parallel arrangement with the 100-Q
resistors? Calculate the uncertainty for each arrangement.



3-6.

x | 2040 | 2580 | 2980
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The following data are taken from a certain heat-transfer test. The expected
correlation equation is y = ax”. Plot the data in an appropriate manner, and use
the method of least squares to obtain the best correlation.

y I 33.2

Calculate the mean deviation of these data from the best correlation.

3-7 A horseshoes player stands 30 ft from the target. The results of the tosses are

3-8.

3-10.

3-11.

3-12.

3-13.

Deviation from Deviation from
Toss target, ft Toss target, ft
1 0 6 +2.4
2 +3 7 -2.6
3 —4.2 8 +3.5
4 0 9 +2.7
5 +1.5 10 0

On the basis of these data would you say that this is a good player or a poor
player? What advice would you give this player in regard to improving at the
game?

Calculate the probability of drawing a full house (three of a kind and two of a
kind) in the first 5 cards from a 52-card deck.

Calculate the probability of filling an inside straight with one draw from the
remaining 48 cards of a 52-card deck.

A voltmeter is used to measure a known voltage of 100 V. Forty percent of the
readings are within 0.5V of the true value. Estimate the standard deviation for
the meter. What is the probability of an error of 0.75V?

In a certain mathematics course the instructor informs the class that grades will be
distributed according to the following scale provided that the average class score
is 75: ’

Grade|A|B lC‘D' F
Score | 90-100 | 80-90 [ 70-80 | 60-70 | Below 60

Estimate the percentage distribution of grades for 5, 10, and 15 percent failing.
Assume that there are just as many A’s as F’s.

For the following data points y is expected to be a quadratic function of x. Obtain
this quadratic function by means of a graphical plot and also by the method of
least squares.

x|1L2L3l4|5

y | 19 | 931215 a0]1s7

It is suspected that the rejection rate for a plastic-cup-molding machine is
dependent on the temperature at which the cups are molded. A series of short
tests is conducted to examine this hypothesis with the following results:

3220 | 3870 | 1690 | 2130 | 2420 | 2900 ] 3310 | 1020 | 1240 | 1360 | 1710 | 2070
| 20l 271 578 T 6ol 17a T2ta s T 520 Tsx Tuss T o2 1 150 | 129 | 785



86 EXPERIMENTAL METHODS FOR ENGINEERS

3-14.

3-16.

3-17.

3-18.

Temperature Total production Number rejected
T, 150 12
T, 75 8
T, 120 10
T, 200 13

On the basis of these data do you agree with the hypothesis?

A capacitor discharges through a resistor according to the relation E/E, = e
where E, = voltage at time zero; R = resistance; C = capacitance. The value of
the capacitance is to be measured by recording the time necessary for the voltage
to drop to a value E,. Assuming that the resistance is known accurately, derive an
expression for the percent uncertainty in the capacitance as a function of the
uncertainty in the measurements of E, and ¢.

In heat-exchanger applications, a log mean temperature is defined by

~t/RC

AT = (Thl - Tcl) - (Th2 - Tcz)
' ™ In( T, — Tcl) Ty, — T )I

where the four temperatures are measured at appropriate inlet and outlet
conditions for the heat-exchanger fluids. Assuming that all four temperatures are
measured with the same absolute uncertainty w,, derive an expression for the
percentage uncertainty in A7, in terms of the four temperatures and the value of
w,. Recall that the percentage uncertainty is

War,,

AT,

A certain length measurement is made with the following results:

% 100

Reading | 1 | 2 | 3 J 4 | 5| 6] 7] 81]9]1w0
xin  |49.36 [50.12 [ 48.98 [49.24 [ 49.26 | 50.56 [ 49.18 [ 49.89 { 29.33 | 49.30

Calculate the standard deviation, the mean reading, and the uncertainty. Apply
Chauvenet’s criterion as needed.

Devise a method for plotting the gaussian normal error distribution such that a
straight line will result. (Ans. (1/7) In [V27P(%)] versus 1.) Show how such a
plot may be labeled so that it can be used to estimate the fraction of points which
lie below a certain value of 7. Subsequently show that this plot may be used to
investigate the normality of a set of data points. Apply this reasoning to the data
points of Example 3-6 and Probs. 3-6 and 3-7.

A citizens’ traffic committee decides to conduct its own survey and analysis of the
influence of drinking on car accidents. By some judicious estimates the committee
determines that in their community 30 percent of the drivers on a Saturday
evening between 10p.M. and 2 A.M. have consumed some alcohol. During this
same period there were 50 accidents, varying from minor scratched fenders to
fatalities. In these 50 accidents 50 of the drivers had had something to drink
(there are 100 drivers for 50 accidents). From these data what conclusions do you
draw about the influence of drinking on car accidents? Can you devise a better
way to perform this analysis?



3-19.

3-20.

3-21.

3-22.

3-23.

3-24.

3-25.

3-26.

3-27.

328,
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The grades for a certain class fall in the following ranges:
Number{ 10 | 30 | s0 [ 40 | 10 | 8
Score | 90-100]80-901 70-80 | 60-70 | 50-60{ Below 50

The arithmetic mean grade is 68. Devise your own grade distribution for this
class. Be sure to establish the criteria for the distribution.

A certain length measurement is performed 100 times. The arithmetic mean
reading is 6.823 ft, and the standard deviation is 0.01 ft. How many readings fall
within (a) *0.005ft, () =0.02ft, (c) +0.05ft, and (d) 0.001 ft of the mean
value? :

A series of calibration tests is conducted on a pressure gage. At a known pressure
of 1000 psia, it is found that 30 percent of the readings are within 1 psia of the true
value. At a known pressure of 500 psia, 40 percent of the readings are within
1psia. At a pressure of 200 psia, 45 percent of the readings are within 1 psia.
What conclusions do you draw from these readings? Can you estimate a standard
deviation for the pressure gage?

Two resistors are connected in series and have the following values:

R,=10,000Q+5% R,=1MQ*10%

Calculate the percent uncertainty for the series total resistance.

Apply Chauvenet’s criterion to the data of Example 3-11 and then replot the data
on probability paper, omitting any excluded points.

Plot the data of Example 3-6 on probability paper. Replot the data, taking into
account the point eliminated in Example 3-10. Comment on the normality of
these two sets of data.

Two groups of secretaries operate under the same manager. Both groups have the
same number of people, use the same equipment, and turn out about the same
amount of work. During one maintenance period, group A had 10 service calls on
the equipment while group B had only 6 calls. From these data would you
conclude that group A was harder on the equipment?

A laboratory experiment is conducted to measure the viscosity of a certain oil. A
series of tests gives the values as 0.040, 0.041, 0.041, 0.042, 0.039, 0.040, 0.043,
0.041, and 0.039 ft*/s. Calculate the mean reading, the variance, and the standard
deviation. Eliminate any data points as necessary.

The following data are expected to follow a linear relation of the form y = ax + b.
Obtain the best linear relation in accordance with a least-squares analysis.
Calculate the standard deviation of the data from the predicted straight-line
relation.

x |09 [23 ]33 455767
y J1til16]26132140]50

The following data points are expected to follow a functional variation of y = ax”.
Obtain the values of a and b from a graphical analysis.

x | 121 135 | 240 [ 275 | 450] 5.1 | 7. | 81
y 11201 182150 1880 {195 325 550 800
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3-29.

3-30.

3-31.

3-32.

3-33.

3-34.

3-3s.

3-36.
3-37.
3-38.
3-39.
3-40.
3-41.
3-42.

EXPERIMENTAL METHODS FOR ENGINEERS

The following data points are expected to follow a functional variation of y = ae”*,
Obtain the values of a and b from a graphical analysis. ‘

x [ 0 | 043 125|140 | 260 2.9 |43
vyl 94l 71 Is35la20l260] 105! 15

The foliowing heat-transfer data points are expected to follow a functional form
of N = aR”. Obtain the values of @ and b from a graphical analysis and also by the
method of least squares.

R[12 |20 | 30 |40 |10 [300 | 400 | 1000 | 3000
Nl 2 | 251 3133 salw] ul vl 2

What is the average deviation of the points from the correlating relationship?
In a student laboratory experiment a measurement is made of a certain resistance
by different students. The values obtained were

Reading |1|2|3|4J5|6|7|8|9|1(ﬂ11|1z
Resistance, k@ |12.0 [12.1] 12.5]11.8]13.6 ol 122] 110} 12.0 f123 1121 11 85

Calculate the standard deviation, the mean reading, and the uncertainty.

In a certain decade resistance box resistors are arranged so that four resistances
may be connected in series to obtain a desired result. The first selector uses 10
resistances of 1000, 2000, . . . , 9000, the second uses 10 of 100, 200, . . . , 900, the
third uses 10 of 10, 20, ...,90, and the fourth, 1,2, ...,9. Thus, the overall
range is 0 to 9999 Q. If all the resistors have an uncertainty of *1.0 percent,
calculate the percent uncertainties for total resistances of 9, 56, 148, 1252, and
9999 ).

Calculate the chances and probabilities that data following a normal-distribution
curve will fall within 0.2, 1.2, and 2.2 standard deviations of the mean value.
Suggest improvements in the measurement uncertainties for Example 3-4 which
will result in reduction in the overall uncertainty of flow measurement to *+1.0
percent.

What uncertainty in the resistance for the first part of Example 3-2 is necessary to
produce the same uncertainty in power determination as results from the current
and voltage measurements?

Use the technique of Sec. 3-5 with Example 3-4.

Use the technique of Sec. 3-5 with Examples 3-3 and 3-2.

Obtain the correlation coefficient for Prob. 3-27.

Obtain the correlation coefficient for Prob. 3-28.

Obtain the correlation coefficient for Probs. 3-29 and 3-30.

Obtain the correlation coefficient for Probs. 3-6 and 3-12.

For the heat exchanger of Prob. 3-15 the temperatures are measured as T, =
100°C, T,,=80°C, T, =75°C, and T =55°C. All temperatures have an uncer-

tainty of +1°C. Calculate the uncertainty in AT,, using the technique of Sec. 3-5.
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3-4.

3-45.

3-46.

3-47.

3-48.

3-49.

3-50.

3-51.

ANALYSIS OF EXPERIMENTAL DATA 89

Repeat Prob. 3-41 but with T, =90°C and T_ =70°C.

Four resistors having nominal values of 1, 1.5, 3, and 2.5k are connected in
parallel. The uncertainties are *10 percent. A voltage of 100V=1.0V is
impressed on the combination. Calculate the power drawn and its uncertainty.
Use Sec. 3-5.

A radar speed-measurement device for state police is said to have an uncertainty
of =4 percent when directed straight at an oncoming vehicle. When directed at
some angle ¢ from the straight-on position, the device measures a component of
the vehicle speed. The police officer can only obtain a value for the angle 8
through a visual observation having an uncertainty of +10°. Calculate the
uncertainty of the speed measurement for 8 values of 0, 10, 20, 30, and 45°. Use
the techniques of both Secs. 3-4 and 3-5.

An automobile is to be tested for its acceleration performance and fuel economy.
Plan this project taking into account the measurements which must be performed
and expected uncertainties in these measurements. Assume that three different
drivers will be used for the tests. Make plans for the number of runs which will be
used to reduce the data. Also prepare a detailed outline with regard to form and
content of the report which will be used to present the results.

A thermocouple is used to measure the temperature of a known standard
maintained at 100°C. After converting the electrical signal to temperature the
readings are: 101.1, 99.8, 99.9, 100.2, 100.5, 99.6, 100.9, 99.7, 100.1, and 100.3.
Using - whatever criteria seem appropriate, make some statements about the
calibration of the thermocouple. '
Seven students are asked to make a measurement of the thickness of a steel block
with a micrometer. The actual thickness of the block is known very accurately as
2.000 cm. The seven measurements are: 2.002, 2.001, 1.999, 1.997, 1.998, 2.003,
and 2.003 cm. Comment on these measurements using whatever criteria you think
appropriate.

A collection of 120 rock aggregate samples is taken and the volumes measured for
each. The mean volume is 6.8 cm® and the standard deviation is 0.7 cm®. How
many rocks would you expect to have volumes ranging from 6.5 to 7.2 cm>?
Plot the equation y =5e'** on semilog paper. Arbitrarily assign fictitious data
points on both sides of the line so that the line appears by eye as a reasonable
representation. Then, using these points, perform a least-squares analysis to
obtain the best fit to the points. What do you conclude from this comparison?
The following data are presumed to follow the relation y = ax”. Plot the values of
x and y on log-log graph paper and draw a straight line through the points.
Subsequently, obtain the values of a and b. Then determine the values of @ and b
by the method of least squares. Compute the standard deviation for both cases. If
a packaged computer routine for the least-squares analysis is available, use it.

X Y

4 - 105

5.3 155
11 320
21 580
30 1050

50 1900
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3-52.

3-53.

3-54.

3-55.

3-56.

The variables x and y are related by the quadratic equation
y=2-0.3x+0.01x*

for 0 <x <2. Compute the percentage uncertainty in y for uncertainties in x of
+1, 2, and 3 percent. Use both an analytical technique and the numerical
technique discussed in Sec. 3-5.
For the relation given in Prob. 3-52 consider y as the primary variable with
uncertainties of *1, 2, and 3 percent. On this basis, compute the resulting
uncertainties in x. Use both the analytical and numerical techniques.
Reynolds numbers for pipe flow may be expressed as
_ 4id

1
where m is mass flow in kg/s, d is pipe diameter in m, and p is viscosity in
kg/m-s. In a certain system the flow rate is 12 1bm/min, +0.5 percent, through a
0.5-in diameter (+0.005-in) pipe. The viscosity is 4.64 X 10™*Ibm/hr-ft, *1
percent. Calculate the value of the Reynolds number and its uncertainty. Use
both the analytical and numerical techniques.
The specific heat of .a gas at constant volume is measured by determining the
temperature rise resulting from a known electrical heat input to a fixed mass and
volume. Then

Re

P=El=mc, AT=mc,(T,—T,)
where the mass is calculated from the ideal gas law and the volume, that is,

_ p.V
RT,

Suppose the gas is air with R=287J/kg-K and ¢, =0.714 kJ/kg-°C, and the
measurements are to be performed on a 1-liter volume (known accurately)
starting at p, = 150kPa and T, = 30°C., Determine suitable power and tempera-
ture requirements, assign some uncertainties to the measured variables, and
estimate the uncertainty in the value of specific heat determined.

A model race car is placed on a tethered circular track having a diameter of 10 m
+1cm. The speed of the car is determined by measuring the time required for
traveling each lap. A hand-held stopwatch is used for the measurement, and the
estimated uncertainty in both starting and stopping the watch is *0.2 sec. For a
nominal speed of 100 mi/hr calculate the uncertainty in the speed measurement
when made over 1, 2, 3, and 4 laps.
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