“Trodi”— T ouchdown-Rate-of-Descent Indicaror

(An electrical-oprical brain developed by North American Aviation gives instant data on bow fast an airplane "bits the deck’ or lands.

To seck

rate of descent data, Trodi sends out twe parallel beams of light, thin vertically and wide horizontally. They are one foot apart. A mirror system

on the incoming airplane cuts the top beam, reflecting the light back to & photcelecrric cell, which starts an electrical charge into a condenser. The des-

cending airplane then cuts the second and lower beam, reflects it, and stops the charge going into the condenser.  The electrical charge stored during the
interval berieen beams is quickly translared by Trodi from voltage to rate of descent in feet per second.)

InrrRODUCTION

VERYONE who uses the results of experiments must
sooner or later ask, ""How reliable are these results? To
how many figures can they be depended upon?”  In most

cases the experimenter tries to eliminate all errors from his re-
sults, but we all know from experience that this happy goal is
gpattainable, Therefore the honest experimenter must pro-
vide the reader with some measure of the reliability of the re-
sults.
From the point of view of reliability estimates, experiments
fall into two overlapping categories—single-sample and mul-
tiple-sample experiments. Ideally, we would like to repeat all
measurements cnough times using ¢nough observers and enough
diverse instruments so that the reliability of the results could be
assured by the use of statistics. Experiments in which uncer-
tainties arc evaluated by such repetition will be called mulciple-
sample experiments. The estimarion of reliability in multi-
ple-sample experiments has been the subject of many publica-
tions. In particular, the American Society for Testing Materials
has published a manual (1)® covering the presentation of results
in controlled multiple-sample experiments. This manual has
been available for twenty years and can serve as a standard for
the presentation of the type of data covered.

Unfortunately, in most engineering experiments it is not prac-
tical to estimarte all of the uncertainties of observation by repe-

. tition, If for no other reasons, the time required and the coscs

of operation and personnel are too great to permit repetition of
all aspeces of large-scale experiments. Experiments of the
type in which uncertainties are not found by repetition will
be called single-sample expzriments,

There is almost nothing in print on methods for the descrip-
tion and analysis of uncertainties in single-sample experiments.
The authors are not only unaware of a standard on the subject,
but are unawarce of any treatment reinforced by data covering an
appreciable varicty of experiments. Perhaps as a result of this
many engincering colleges hardly mention the subject in their
undergraduate curricula. The engineering literature in rurn re-
flects this lack of instruction. Even a few of the society test
codes which are scrupulous in other matters appear to be in-
correct in the calculation of uncertainties.  For this reason the
authors hope that this presentation will scart discussion of a
possible standard, thac it will stimulate rescarch to provide
b?dl)’ needed data, and tha it will encourage educators to re-
view the adequacy of the treatment in cheir undergraduate cur-
ricula, ’ )

The scope and, consequently, the importance of single-
sample experiments is much greater than at first might be
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SINGLE-SAMPLE EXPERIMENTS

By S. J. KLINE! anp F. A. McCLINTOCK?

imagined. This is due to four factors all of which tend to lessen
the effect of repetition.  Consequently, many experiments that
appear to be multiple-sample are actually in part single-sample
experiments.

The first of these factors was demonstrated by Pearson (2)
who showed that observation of scales by a single observer, in
general, did not give consistent resdfts even though all extrane-
ous variables appeared to have begn removed. In particular,
he showed that even a sample of 20§nr 30 readings might have a
mean value significantly different from the true mean as estab-
lished by 500 or more samples. In the same paper Pearson also
demounstrated that observations of scales by different observers
are not necessarily indepzndent due to some unexplained causes
as well as to number bias, the tendency to read consistently high
or low at certain points, Tuemmler (3) also has noted an ap-
parent difference between the results of various laboratories
using cquipment of the same design to perform the same tests.
The last, and perhaps the most significant factor, since it usually
gives rise to the largest errors, is that instruments of different
designs, in general, will not give the same results, Hence, if a
single instrument is used for a sct of observations, some error
which is inherent in the instrument will be sampled only once,
no matter how many times cach reading is repeated.

In single-sample experiments it is inevitable that the state-
ments of reliability will be based in part on estimates. This
must be true since by definition statistics cannot be applied to all
of the errors.  Very often these estimates will be no better than
=50 per cent of the uncertainty; but =50 per cent may be en-
tirely satisfactory, particularly if the uncertainty is of cthe order
of a few per cent or less of the original data.

A complete method for treatment of uncertainties in a given
experiment must provide the answer to three questions: What
is a rational way for estimating and describing the uncertain-
ties in the variables?  What is a propzr method for calculating
the propagation of these uncertainties into the results? What
must be presented in a report to give a reasonably complete bue
concise picture of the reliability of the experiment?

DEFINITION OF TERMS

Before proceeding, let us define certain terms more carefully.
By “‘uncerrainty’ we mean a possible value the error might
have.* For a single observation, the error, which is the dif-
ference between the true and observed values, is a certain fixed
number. Bur the uncertainty, or what one thinks the error
might be, may vary considerably depending upon the particular
circamstances of the observation. “"Variable” will mean a basic
quantity observed directly in the laboratory as opposed to the
“result’” which is obtained by making corrections to or calcu-
lations with the recorded values of the variables.  The recorded
values of the variables will be called "dara.”” In a few cases,
of course, the results will be the same as the dara, *'Propa-
gation of uncertainty’ will mean the way in which uncertain-
ties in the variables affect the uncertainty in che results.  The

* This important distinction berween error and uncertainty is be-
lieved due to Airy (4.
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terms standard deviation, mean, and frequency-distriburion
function will be used in the accepred statistical meanings as
given for example by Hoel (52,

¥ UNCERTAINTY DISTRIBUTION

In order to arrive at a rational meched for describing che un-
certaintics in the variables, it is necessary ro discuss the sources
and natare of the uncercainties. There are many types of errors
which can contribuce to the uncertainty in cach variable.

Onc uscful classification of these errors is as follows: Ac-
cidental errors, fixed crrors, and mistakes (6, 7). Accidental
errors are those varying errors which cause repeated readings to
differ without apparent reason.  Accidental errors arise from in-
scrument friccion and time lag, personal errors, and many other
causes. Fixed errors are those which cause repeated 1eadings to
to be in error by the same amount without apparent reason.
(If a reason were known, presumably a suitable correction
would be made and the error eliminated.) Fixed errors arisc
from such causes as a burr on the lip of a Pirot tube or a lever
Mistakes are completely crroneous

arm of erroncous length.
Each of these types of

readings of scales, watches, and so on.
errors will be considered in turn.
Accidental errors can be studied by taking repeated observa-
tions of the value of a variable. Such a sequence of readings
may fall into various patterns, some of which arec shown in
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F16. 1 EXPERIMENTAL CBSERVATIONS
Fig.1. The sequences shown in Fig. 1(«, b) are uncontrolled or
inhomogencous; there is no telling what the trends are or how
far they will go.  The sequence of Fig. 1(¢) is more predictable;
even though there is a variation from one reading to another,
the readings all tend to fall in a given region. Such a sequence
is called homogencous. The experiment from which it was ob-
tained is said to be controlled. If a very large number of data
are obtained, a frequency-distribution function can be con-
structed to describe them. The defining characteristic of the
frequency-distribution function, f(x), is that the fraction of
values lying between v and v - do is f (v)dv. The distribution
function corresponding to Fig. 1(¢) is shown in Fig. 2. Acci-

f(v)

40 45 50 55 60
QBSERVED  VALUE, v
FIG. 2 FREQUENCY DISTRIBUTION

dental errors usually have a frequency distribution similar to
that of Fig. 2, in thar small errors are more likely than large
ones and there is no definite upper limit to the possible size of an
error.

The frequency disttibution for accidental errors has been as-
sumed 10 be normal, or Gaussian, by many authors. While this
may be true in many cases, it is not true in all. Cases of dis-
tribution functions for accidenral crrors which are non-normal
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in form (2, 8) er al, are now too well documented to assume
thar all such distributions will be normal.

In the case of a small number of observations, it is no longer
possible to describe the distribution funceion exactly. Yetitis
still possible to make some precise operational statements about
the characteristics of the discribution function, using the sta-
tistical concepe of a confidence limit.

No measure of the scatrer of the errors can be obtained from a
single-sample experiment,  Conscquently, the experimenter
must rely on his past experience and judgment. The best he can
do is make a statement of whar he thinks would happen if the
experiment were repeated an indefinitely large number of times.
It would seem natural ro make such a statement in the language
of probability and statistics. Bur staristics are properly based
on calculations with measured numbers, while statements re-
garding single-sample experiments must be based on what one
thinks these numbers will be.  Hence a statistical descriprion
would be misleading. Therefore, the term “uncertainty dis-
rribution’” will be used instead of frequency distribution.

The uncertainty distribution is the distribution of errors
which the experimenter believes would be found in a given
variable if the variable were sampled a great many rimes. The
uncertainey distribution caused by accidental errors could be
measured by repeated readings of the variable in question. The
uncertainty distribucion then would be exactly the same as the
frequency discribution. Thus che existing frequency distribu-
cions for accidental errors can be used to decermine what the
shape of uncertainty distributions for accidental crrors should
be.

The few available frequency distributions indicate that the
uncertainty distribution caused by accidencal errors should
have a shape similar to the frequency distribution shown in
Fig. 2. Therefore its general characteristics are also the same;
namely, small errors are more likely than large errors, plus and
minus errors are about cqually likely, and no finite maximum
error eXists.

A close examination of fixed errors shows that the classi-
ficarion of errors as accidental and fixed is really a relative
matter. As an example, consider the use of a thermocouple and
precision potentiometer to measure furnace temperacure. Er-
rors may result from variations in temperature within che fur-
nace both in time and space, from the effect of che thermo-
couple on the local temperature, from incorrect calibration of
the wire or porentiometer, from deterioration of the wire or
drift of the porenciometer-batrery calibration during use, and .
from personal errors in balancing and reading the potentiom-
cter. An examination of these crrors shows that which er-
rors are called fixed and which are called accidental depends
largely on the scope of the experiment. If one observer, using
one thermocouple and one potentiometer, were to make read-
ings of cemperacure at one point, then almost all of the errors
must be considered fixed even if the reading were taken many
rimes. However, if several observers, using several different
types of temperature-measuring devices, measured the tem
perature repeatedly at a given point, almost all of the errors
could be called accidental.  If the same type of apparatus must
be used by all observers, a fixed error may remain.

For example, if only one thermocouple installation could be
used in the foregoing experiment an error due to the distortion
of the temperature field by the thermocouple will not be sam-
pled. Such errors can be estimated by theorcetical means, and
the uncertainty in these calculations can be choughe of as hav-
ing an uncertainey distribution. Thus the fixed errors have an
uncertainey distribution which can be visualized in terms of
calculations and the use of more instruments and obscrvers,
Conscquently, the uncertainty distribution developed in con-
nection with the uncerrainties resulting from accidental errors

:I ANUARY, 1;;953

can be 3pplicd directly to the uncertainties which resulr from
fixed crrors. The shape of the uncertainty distribution due o
fixed errors is also believed to be similar to Fig, 2.

Mistakes are those crrors which result from complecely er-
roneous readings of watches, scales, and so on.  These errors
in general, will be discarded by a careful observer if they s,rci
very large. Consequently, small errors are more likely than
Jarge ones, positivg and negarive errors are about equally ‘likcly,
and no finite Maximum error can be stated.  Although che er-
cors cend to occur in discrete steps, they do have an uncertainty
distribution which can be visualized in terms of the use of
many obscrvers and scale intervals.

The entire error in a given reading due to all of the causes
mentioned has no distribution function. It is just a certain
finite number.  On the other hand, the entire uncertainty or
lack of knowledge about the value of a reading can be described
completely in terms of an uncertainty distribution since each of
its components can be described in this way. However, there is
insufficient knowledge of uncertainties to warrant the use of a
complete uncertainty discribution for each variable. In addi-
tion, the distribution would be too cumbersome for rourine use
and would require difhicult if not impossible mathematics for the
calculation of the uncertainties in the results. Some short-
hand notation is needed which is consisten:t borh with the con-
cept of the uncertainty distribution outlined and wich the state
of the experimenter’s knowledge of the uncevtainties, and yet
which is simple enough for routine use. ’

UNCERTAINTY INTERVAL FOR A VARIABLE

A satisfactory notation for the uncertainty of a variable must
include a statement of the best estimate of the true value as well
as a statement about the magnicude of the error in the estimate.
The best escimate of the true value is usually described by giving
the mean of the readings. ' ’
~ Asimple but adequate description of the error in the estimate
is more difficult to frame. In the case of frequency distributions
the statistician often uses the standard deviation. But use of a
standard deviation to describe uncertainties has two distinet dis-
advantages. (@) For nearly normal distributions, it describes an
interval such that the odds are approximartely 2 to 1 that che
error i a particular reading will lic inside the interval. How-
ever, the experimenter usually wants his odds to be at least 10
or 20 co 1, racher than 2to 1. (&) It would be misleading to use
the rerm standard deviation which connotes a root-mean-square
value calculated from actual measured numbers because in
single-sample experiments the numbers muse be estimaced.,

Another measure of scatter sometimes employed is the range.
This measure has been employed in some of che existing litera~
ture under the name of “maximum error.”” In the present
nomenclacure the maximum error would be called the “‘maxi-
mum uncertainty.”’ This concept may have meaning to a magu-
faCtu;cr who must achieve complete interchangeability of parts.
Io critical manufacturing cases 100 per cent inspcctio/n is often
used to forcc amaximuin error.®  But in the case of experimental
uncertainty 100 per cent inspection cannot be applied. If just
Eﬂc of the great nuI:llbcr of causes for error in a given variable
1as an uncertainty distribution with very long tai d
fnal uncertainey distribution also must hyavc léntgltlzil:lcgi;}éz
¢very sampled distribution known to the authors has long tails
1t 1s most unlikely thar any uncertainty distribution for the en
ure error in a given variable can be described properly by a

Maximum uncertainty, One might arguc that there is a maxi-
mum value of the uncertainty which the error will never ex-
Ceed; 7bur even granting this, a rigorous interpretation of the

" Even in these cases we know from experience that assembly some-

tmes fails.  An enlightening discussion of this subjece includi
effeces is given by Pike and Stiverberg (9. } s e
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“never’” almost always leads to values of the uncerta nry which
make the experiment unacceptable. )

Anothcr method of notation for describing a distribution
Whlch is beeter suited for descriprion of uncertzincy distribu-
tions is to specify an interval based on certain odds.

For example, the distribution of Fig. 2 inlicates that the
odds arc roughly 20 to 1 that any given readirg will lic wichin
#4 of the mean of the distribution. Conversely, if only the
value of a single reading is known, the position of the mean can
be described by 20 to 1 the mean of the distribution lies within
#4 of the reading.” The odds the experimenter would be will-
ing to wager on his estimate of where the true value lies would
depend on how large the interval was made,

In the case cited, for example, he would be willing to wager
only 1 to 2 chat the true value lics within =1 of a given reading
but he would be willing to bet 20 ro 1 rhat it lies wichin =4 or7
100 to 1 that it lies within =10. This method of dcscriptio;x is
flexible in that the experiment=r can set his odds co conform
with the standards of reliability required by-any given experi-
ment. A complete description of the uncertainty distribution
could be given by che statement ®f the odds associated with all
possible intervals.  But a statement of just one interval is all
that is justified by our limited knowledge and it does provide a
reasonable index of the reliability.

Considering the various factors just discussed, the authors
believe that a good concise way to describe the uncertainty in
each variable is to specify the mean of the readings and an un-
certainty interval based on specified odds. Representing the
mean by m (arithmetic mean of observed values), the uncer-
tainty interval by w, and the odds by 4, this becomes

mtw Grol)..................
As an example one mighr give

Pressure = 50.2 #+ 0.5 psia (20 to 1)

This states that the best value for the pressure is believed to be
50.2 psia and the odds are 20 to 1 that the true value lies within
=0.5 psia of this best estimare. The uncertainty interval
which is denoted by w, is not a variable but a fixed value se-
lected so that the experimenter would be willing to wager 4 to 1
that the error is less than w.

Determination of the actual value of the uncertainty interval
based on given odds is one of the jobs of the experimenter.
As already noted, at least some of these intervals will have to
be based on estimates rather than experiments, and the esti-
mates often may be no beteer than =50 per cent. Despire this
the experimenter owes it to himself and to his readers to g(;
ahcgd and do the best he can; no one else is in an equally good
position to make the required estimares which are essential to
rational design and to interpretation of the resulcs.

Such estimates are, of course, not pure guesses. Factors such
as instrument backlash, sensitivicy, and fluctuation, as well as
the accuracy of the basic theory of operation of the instrument
sometimes can be accounted for. Calibration of the inscrumcnt’
against some type of standard is somecimes avajlable, and ¢x-
perience based on prior experiments or auxiliary experiments
can be used. This part of the subject is covered already in the
standard textbooks on instrumentation and is oo detailed in
nature for adequate treatment here. Readers desiring further
information should sce (6, 8, 10) and other texts, manufac-
turers’ catalogs, and the literacure of cheir specialty.

Equation 1] rogerher with the foregoing discussion gives a

;thod by which the experimenter can describe the uncer-
taintics in each of the basic variables in what the authors be-
lieve to be a sufficiently accurate and simple manner for routine
use. It is then necessary to determine how these uncertainties
propagate into the results.



. UNCERTAINTY INTERVAL IN THE RESULT

Let the resule R be a function of n independent variables,
P N %

For small variations in the variables, this relation can be ex-
pressed in linear form as
OR oR oR
Suy + o by L e e de, 31
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The uncercainties in the variables v, are represented completely
by an uncertainty distribution but can be adequately described
by uncertainey intervals w; based on certain odds.  Thercfore
we must examine how to find che uncertainty interval for the re-
sult wp based on essentially the same odds as the intervals for
each of the variables. Certain cheorems of statistics concerning
the way in which frequency distributions combine will be help-
fulin finding a reasonable value for wp.

Theorems 1. 1f Ris a lincar function of » independent variables,
and if the maximum deviation of the fth variable from its mean
is (#080)mex then the maximum deviation of R from irs
mean valuc is given by

‘o 1 OR
BRoe = | 2% b, 1 + 0 4+
L ovy max | Ova max
- 0R
iy ) :
| Ovn L"max] [4]

Equation [4] might be used as an approximation for calculating
the uncertainty interval in the result by simply substituting
w; for v;. This yiclds

wp = - w;

| IoR |
i—i—"Tu’oi“F ..... +4 """" *w”\; [5}

This equation will be referred to as the linear equation. Ifir is
employed, the odds on the uncertainty interval in the result will
be much higher than the odds used in the variables. This is be-
cause of the fact that the errorsin each variable can have a range
of values, and it is quite unlikely that all of them will have
the most adverse values at the same time.

Theorems 2. 1f R is a linear function of # independent variables,
each of which is distributed with a standard deviation ¢, then
the standard deviation of R is given by

1/,
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We have seen, however, that the best measure of uncertainty
is neither the maximum value nor the standard deviation, but
some interval based on certain odds. For the special case in
which the variables are discributed normally the distcribution of
the result also will be normal, and the following theorem ap-
plies:

Theoreme 3. If R is a linear function of 7 independent variables,
each of which is normally distribured, then the relation between
the interval for the variables w;, and the interval for the result
g, which gives the same odds for cach of the variables and for
the result is

\R 9 d > 272 .
wp = [(th; 101> + (bLRg ug) +... + (*ZTRH u,',l> :I 07

Equation [7] might be used directly as an approximation for
calculating the uncertaincy interval in the result, Equation {7]
will be referred to as the second-power equation.

MEecuaNicaL ENGINEERING

Examples were calculated to compare the accuracy of the

linear and second-power equations for predicting the appro-
priate interval in the result in the case of different discribu-
tions, ,
Three different frequency-distribution functions were chosen,
one normal, one corresponding to one wave length of a sine
curve, and the last corresponding to an isosceles eriangle.  Since
the latter two distributions have finite litaits, and are considera-
bly less normal than the distributions usually considered in
connecrion with uncertainties, they constitute a severe test of
the generality of the second-power equation. Odds of 9 ro 1,
19 to 1, and 99 to 1, were chosen as being of interest in experi-
mental engineering work. The mathematics employed in cal-
culating the exacc distribution function of the result are out-
lined in the Appendix.

For Table 1 the result was cousidered to be proportional to
the sum of two variables. According to this table, the second-
power equation gives odds nearer to the desired odds in every
case. The second-power equation predicts rhe uncertainty in-
tervals for the result to wuthin =10 per cent of the correct
value, while the linear equation predicts uncertainty intervals
varying from the correct value by as much as 40 per cent.

The difference between intervals given by the linear and
second-power equations increases as the square root of the
number of variables if each variable has about equal effect on
the result.

For Table 2 the resulc was taken to be proportional to the
sum of an infinite number of variables. This table shows even
more clearlv the superiority of the second-power equation. The
odds given by the second-power equation for the uncertainty in-
terval in the resulr are still reasonable while the linear equation
gives infinite odds. The error in the interval introduced by use
of the second-power equation increases to no more than 15 per
cent, while the error due to use of the linear equation becomes
infinite. Since the state of knowledge of uncertainty intervals
for the variables is of the order of #+50 per cent, it seems en-
tirely reasonable to use the sccond-power equation for the cal-
culation of the uncertainty interval for the result.

The second-power equation, Equation [7], is also of impor-
tance in planning instrumentation. It applies in this sense both
to single- and multiple-sample experiments since statistics can-
not be applied to a multiple-sample experiment in advance of the
tests. It shows that uncertainties in individual variables add
into the uncertainty in the result by the square. Consequently,
the effect of large uncertainties in the variables is emphasized,
and a given reduction in a large uncertainty is far more impor-
cant than the same numerical reduction in a small uncertainty.
The second-power equation is thus a useful tool in the selection
of instrumentation for experiments,

Exampre

As an illustration of the ideas presented in the foregoing,
consider the measurement of velocity with a Pitot tube in an air
stream. If ¢ denotes the velocity, ap the pressure difterence be-
tween the Pitot tube and the atmosphere, and p, and T, the
pressure and temperature of the air, respectively, then Ber-
noulli's equation and the perfect-gas equarion of state give

L HOPRTm
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Here the result is the velocity and the variables are Ap,
s, and T,.  Even in this apparently simple measurement there
are a great many possible sources of error which give rise to the
uncertainties. Some of them are alignment of the Pitot tube in

the flow, leaks in the pressure tubing, changes in bore, or differ-
ences in surface condition of the manometer measuring the

Januvary, 1953

) Normal
i:f(z/:) = .. e nt/2
Distribution of variable. . { v
for all »
[
CFRY = T o aee
“ AV
Ij for all R
Distribution of resule. ... <
I
f
|
|
Desired odds. . ... . . ‘ 9r1 1
,,,,,,,,, : x 5:
Actual odds for interval given by ’ >
second-power equation. ... . . 91 19l
Acl;ual odds for interval given by v i
inear equation . . . . | ' ’
equation. ... 1 7&: (e
Correct interval of result for de- ¥ o e
siredodds. oo .64 I.96
Interval given by second-power N o
CQUALION. ... 1.64 1.96 3
Interval given by linear equation. .. 1 32 177 :2
: 2 3.64

TABLE 2 DISTRIBUTION OF THE RESULT: R

Normal
4
I‘ ,f(tl) = __ ;, e—v2/2
Dicen ) 7 ) { Noan
istribution of variable. .. ]
]‘ for all »
L . 'il R) = ; — R
Distribution of resule. . . ‘ = ;/77 e
........ ! 27
‘ I'forall R
Desired odds. . ... 9l1
........... : 14: :
Actual odds for interval given by - o
second-power equation. ... . ... . 91 19i1
Actual odds for interval given by 7 >
linear equation. ... | @y :
e I oy 0
Correct interval of result for de- I
sieed odds. ... 1.64 196
Intcrval. given by second-power ’ o
cquation ..., L 1.64 1.96
: : S . 2.5
Interval given by linear equartion . . . @ 3 5‘3
S E o

pressure difference, fluctuacions in atmospheric and stream pres
;l;r;’,oaﬁ? ;(; on.h In this case the Mach number must not
o zlsSumg ; or tf ¢ Rcynolds'numbcr too low. In cither case
o npion of incompressible frictionless flow inherent in
crnoulli’s equation is violated,
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o 4 p‘ per values. In Qrdcr to use Equation [7] all uncer-
Odélty intervals for the variables must be based on the same
Calils). ’lziwcnf_v to one will be used. If T, is measured by a

rated mercury-in-glass thermometer, p, with a Bourdon
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This nondimensional form is simpler in most cases
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91 19:1 99: 1 g1 1901 99:1
S . = .

50 15.701 4101 9.6:1 16,411 35°1
@y ES LS ™y wrg LS
r.64 1.96 2.58 1.64 1.96 2.58
1.62 1.88 2.26
b3 1.68 1.

Evaluating the (OR/0¢,) terms and substituting into Equa-

A APRT,
Lol (w, )?

a

1 2 e
=+ - E@B;B C wﬂ]) 3]

Equation [9] is greacly simplified ividi i
[8] to nondimensionalize prtec vpom dividiog by Equarion

e _ Mk == [ 1 Wap : 1 %, \2 1wy \ 2P
[0 0 ()T

It can
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be obtained as shown previously, or alternatively by use of
logarichmic differentiation on Equation [8], or by substituting
¢ - wp for ¢, po + w,, for p,, and so on, multiplying our and
neglecting terms in w?.

When the nufitbers are substituted into Equation [10] using
consistent units, one obrains

w,'e = 1/2[1.08 X 107* + 415 X 107 4 1.44 X 1077/
= 1.1 per cent

This calculation illustrates that if the OR/Ov terms are neg-
lected, as is sometimes done, serious errors occur.  In this case
w,/c would have been in error by a factor of 2. It also shows
that improving the measurement in the temperature would not
change w,/c appreciably, but a 50 per cent reduction in w,/c
could be obtained simply by using a manomerer instead of a
Bourdon gage to measure p,.  This illustrates the utility of
the second-power equation in determining which variables
nced most attention in improving the accuracy of an experi-
ment.

PrEseNTATION OF UNCERTAINTIES IN A REPORT

The questions, “"How should uncertainties in the variables
be estimared and described?” and “How do the uncertainties
propagate into the results?”” have now been discussed and con-
clusions reached. The answer to the final question, **What
should be presented in a report?” cannot be given definitively
since it is subject to the demands of space and time as well as
the practices of socictics and publishers. The authors feel that
presentation of uncertainty intervals for the resules as found by
Equation [7] along with the odds used should be sufficient in
most cases.  For more elaborate reports the uncertainty inter-
vals assigned to each variable also mighr be useful.

CoNcLUsION

The mechod suggested here can be summarized as follows:

1 Describe the uncertainty in cach variable as
mean = uncertainty interval (odds of bto 1). .. .. [1]
2 Compute the uncertainty interval in each result as

2 oR 2 oR :
R w;) + (gyg ws) + . <§7n wn> -

- /<9
Wr = ‘/ Dvl

3 Present at least the value of wy and the chosen odds for
cach result as an integral part of a report or paper.

X}

The value of wg, found in this way will be based on essentially
the same odds as the uncertainty intervals in the variables.
The only important restriction is that the uncertainties in cach
of the variables must be independent .

The method thus summarized provides a means for describing
and analyzing the uncertainties in single-sample experiments.
In this method the actual estimation of the uncertainey intervals
must still depend on the judgment of the experimenter. At
present chis judgment can be acquired only by laboratory ex-
perience since data on the toral uncertainty interval in most

instruments are unavailable. A great many engineering
experiments  are  part  single-sample  and  part  multiple-
sample.

In such cases the available repeated measurements should be
analyzed by statistical mechods to supplement che judgment of
the experimenter. In cither case this method should provide
a simple and uscful tool by which the experienced investi-
gator can more accurately describe and analyze experimental
uncertainty in both the laboratory and design stages of his

work. |

MECHANICAL ENGINEERING
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APPENDIX

The three different frequency-distribution functions chosen
were all assumed to have zero mean and unit standard devia-
tion. The equations for these distributions are presented in
the headings of Tables 1 and 2. Outside the regions specified,
the frequency-discribution functions are zero.

For Table 1 the result was chosen to be proportional to the
sum of two variables

R=(o+o)/N2 .. 1]

The factor 1/+/2 is introduced simply to give the result a
standard deviation of unity; it does not aflect the compatison
between the lincar and sccond-power equations. The fre-
quency-distribution function of this result can be found by
evaluating the following integral®

FRY = S TNV2R — o) fCo) V2 dor .. [12]

Calculation of the distribution funcrion of the sum of more
than two variables becomes quite tedious.  For the limiring
case of an infinite number of variables, however, the resulting
distribution is normal,”and a comparison becomes easy to make.
The result will have a unit standard deviation if onc takes R to
be

R=1lim (o 4w+ . +o)/ N . 3]

o= o

© Reference (11, pp. 40-48.
“ibid., p. 108



