

ENGR 1330: Computational Thinking with Data Science

Lesson 6: NumPy In Python

Dinesh S. Devarajan
Whitacre College of Engineering
Texas Tech University

Topic Outline

- NumPy library
 - ✓ Data representation: Arrays vectors and matrices

✓ Data operations: Mathematical operations, indexing, selection, and copying

Objectives

 To be able to represent data in different forms via the NumPy library

To be able to access data within a NumPy array

 To be able to perform basic mathematical functions on the NumPy arrays

Computational Thinking Concepts

NumPy arrays: Vectors and matrices

Data representation

Data interpretation, manipulation, and analysis of NumPy arrays

Decomposition

Algorithm design

Library Setup

• Built-in with CoCalc

 You do not have to do any extra steps to install the library in Python

NumPy in Python

NumPy

NumPy: Numerical Python

Foundational library for scientific computing

 All data science libraries rely on NumPy as one of their building blocks

Features of NumPy

Features:

 Provides a fast and efficient multi-dimensional array object called 'ndarray' (n-dimensional array) – NumPy arrays

✓ Functions for performing computations with arrays and mathematical operations between arrays

✓ Linear algebra operations and random number generation

Multi-dimensional Array

• 1D array

• 2D array

NumPy Arrays

- NumPy arrays can be 1-dimensional (1D) or 2dimensional (2D)
- Creating a 1D array: Vector | array([1, 2, 3, 4, 5, 6, 7, 9])

```
In [1]: import numpy as np→ Importing NumPy library
```

Function to create a NumPy

NumPy Arrays

• Creating a 2D array: Matrix

```
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
```

```
In [5]: list2 = [[1,2,3],[4,5,6],[7,8,9]]
np.array(list2)
```

Function to create a NumPy array

What will be the shape of the above 2D NumPy array?

NumPy Arrays

- Other functions to create NumPy arrays easily
 - ✓ arange(): Returns evenly spaced array elements
 - ✓ linspace(): Returns evenly spaced array elements
 - ✓ zeros(): Returns an array of zeros
 - ✓ ones(): Returns an array of ones
 - ✓ eye(): Returns an identity matrix
 - √ random.randint(): Returns random integers

Arrays: Basic Operations

- Functions to do basic operations on NumPy arrays
 - ✓ min(): Returns minimum value in an array
 - ✓ max(): Returns maximum value in an array
 - ✓ argmin(): Returns minimum value position in an array
 - ✓ argmax(): Returns maximum value position in an array
 - ✓ reshape(): Reshaping an array to a specific shape
 - ✓ sort(): Sorting an array in ascending order
 - ✓ sum(): Summing the array elements (Demo)

Arrays: Mathematical Operations

- Functions to do mathematical operations on NumPy arrays
 - ✓ sqrt(): Returns square root of array elements
 - ✓ exp(): Returns exponential of array elements
 - √ sin(): Returns trigonometric sine of array elements
 - ✓ cos(): Returns trigonometric cosine of array elements
 - √ log(): Returns natural logarithm of array elements
 - ✓ log10(): Returns base 10 logarithm of array elements

Arrays: Indexing, Selection, & Copying

Indexing: An important step in manipulating and analyzing arrays

 Conditional selection: Selecting array elements based on specific conditions typed using conditional operators

 Copying: Always use the copy() function to copy arrays and to preserve the original array

Discussion Exercise

• How would you index and slice the elements within the red-dashed box above from the matrix named 'mat1'?

Summary

Concepts of representing data in the form of NumPy arrays are covered

 Concepts of interpreting, manipulating, and analyzing data within NumPy arrays are covered