T

Computational Thinking with
Data Science

5. Programming Principles Functions &
Variable scope

Turgut Batuhan Baturalp, (Dr. Batu)
Whitacre College of Engineering
Texas Tech University

Topic Outline

* Functions in Python
* Creating a Function
 Calling a Function

* Variable Scopes
* Types of Scopes

* Recursive Functions

Whitacre College of Engineering - Texas Tech University

Objectives

* To understand the role, types and usage of Functions.

* To understand and implement Functions in Python
under various configurations.

* To understand the role and types of variable scopes.

* To understand and implement variable scopes in
Python under various configurations.

Whitacre College of Engineering - Texas Tech University

Functions |:> {

Variable Scopes — {

Decomposition

Algorithm design

Decomposition

Algorithm design

Recursive Functions C—)

Pattern recognition

Whitacre College of Engineering - Texas Tech University

What is a Function in Coding? ﬁ

Function: A piece of code that you can easily use
multiple times by calling it in the code. Basically, functions
are packages of codes that executes certain tasks.

[I A\

P
%GpNCTlON

o
ol .

=X S
.

V.

https://youtu.be/0eoc0ESEX9DE

Whitacre College of Engineering - Texas Tech University 5

How to use Functions? %

« A function is a block of code which only runs when it is
called.

* You can pass data, known as parameters, into a function.
» A function can return data as a result.

« They are useful for decomposition, since Functions can be
used to modularize a program.

« Things you can do using functions:
« Creating a function

 Calling a function (I bet you did this before. For example,
if you searched anything on Google, you called the

search function; or when you press the plus button on
your calculator, you are calling the sum function.)

Whitacre College of Engineering - Texas Tech University

Creating a function ﬁ

 In Python a function is defined using the def keyword:
 Example

Begin definition with def
t + function name
def my_function_namel():

<pody statements>

Arguments

<outside function statements:> Initialized corresponding to the
values that were passed when

calling the function
def my_ function _name2(argl, arg?):

<body statements=>

return <expression=

|

Return to indicate the values
to be sent back to the caller

Whitacre College of Engineering - Texas Tech University

Calling a function ﬁ

 To call a function, use the function name followed by
parenthesis:

« Example

my_function_namel()

Whitacre College of Engineering - Texas Tech University

Function - Return ﬁ

« All functions in Python have a return value, including
the functions does not have the return statement.

* Functions without the return statement will return None.
* None is a special constant.
* None is equivalent to False.

Whitacre College of Engineering - Texas Tech University

Function Examples — 1 ﬁ

* Function to calculate sum of the first n numbers?

def sum_of _n_numbers(n) :
my_sum = 0
for iin range(n+1):
my_sum = my_sum + [
return my_sum

 Calling the defined function:

my_sum = sum_of_n_numbers(10) What value will n be initialized!

print(my_sum)

print(sum_of_n_numbers(10)) What value will n be initialized?

m = 10
my_sum = sum_of_n_numbers(m)
print{my_sum)

What value will n be initialized?

Whitacre College of Engineering - Texas Tech University

i

* Function to calculate sum of the first n numbers?

def sum_of_n_numbers(n) : MO return statement
my_sum = 0
foriin range(n+1):
my_sum = my_sum + [

my_sum = sum_of_n_numbers(10) What value will be printed?

print(my_sum)

print(sum_of_n_numbers(10)) What value will be printed?

m = 10
my_sum = sum_of_n_numbers({m)
print{my_sum)

What value will be printed?

Whitacre College of Engineering - Texas Tech University

_ Function Arguments w/ Default Values %

def sum_of_n_numbers(n=3) :
my_sum = 0
foriin range(n+1):
my_sum = my_sum + |
refurn my_sum

my_sum = sum_of_n_numbers() What value will be printed?

print{my_sum)

* Does NOT allow argument with default value followed
by arguments without default values.

. bad

—
def my_function(a, n=3, b) :
<statements>

Whitacre College of Engineering - Texas Tech University

Variable Scope & Types of Scopes %

« Avariable is only available from inside the region (a
function for example) it is created. This is called scope.

« Types of Scopes:

» Local Scope: A variable created inside a function
belongs to the local scope of that function and can
only be used inside that function.

* Function Inside Function: In this case, the variable is
not available outside the function, but it is available for
any function inside the function (nested functions).

* Global Scope: A variable created in the main body of
the code is a global variable and belongs to the global
scope. Global variables are available from within any
scope, global and local.

Whitacre College of Engineering - Texas Tech University

Rules & tips about variable scopes %

* |f you operate with the same variable name inside and
outside of a function, they will be treated as two
separate variables, one available in the global scope
(outside the function) and one available in the local
scope (inside the function).

* |f you need to create a global variable, but are stuck in
the local scope, you can use the global keyword. The
global keyword makes the variable global.

Whitacre College of Engineering - Texas Tech University

Function Arguments & Variable Scope %

T e o TR

bool Boolean value Yes
int Integer Yes
float Floating-point number Yes
str Character string Yes
tuple Immutable sequence of objects Yes
list Mutable sequence of objects No
set Unordered set of distinct objects No
dict Associative mapping No

« Immutable objects: can not change after it is created. Passed to
function by value.

- Mutable objects: can change after it is created. Passed to function by
reference.

Whitacre College of Engineering - Texas Tech University

i

* Possible to have function definition inside another
function definition.

def my_function_namel():

<body statements> Global function

—r.._-.-

-|--'-|_

]] . Local function
return <expression=

my_function_name2(1, 2)
<other body statements=>
<putside function statements=>

my_function_name2(1, 2) +---------=-=----- Bad function call ?

Whitacre College of Engineering - Texas Tech University

Function in Built-in Modules "

import math Use import to use functions defined in that module.

Invoke function: Module name + dot + function name
print(math.sqgrt(100))

import math as m Use import/as to use functions defined in that module.

Invoke function: alias name + dot + function name
print(m.sqrt(100})

« How to know how to use a function?
» https://docs.python.org/2/library/math.html

Whitacre College of Engineering - Texas Tech University

Function in Built-in Modules "

from math import sqrt, sin Use from/import to use functions needed.

Invoke function: function name
print(sqrt{100))

print(sin(3.14))

« How to know how to use a function?
» https://docs.python.org/2/library/math.html

Whitacre College of Engineering - Texas Tech University

Live Demo: Variable Scopes in Function %

L x=d local
2 def a(): /
:: X = 25

print(local x in a 1s", x, "after entering a")

5 X += 1

6 print ("local x 1n a 15", x, "before exiting a")

g def b(): global
) global x

16 printi global x is", x, "on entering b")

11 ¥ *= 18

12 print(“*global x 15", x, "om exiting b")

13

14 print("global x is", x)

15 X =17

16 print ("global x is", x) What is the output?
17 af)

18 b}

13 al)

20 bi)

* Live demo 2: variable scope and pass by reference

Whitacre College of Engineering - Texas Tech University

Recursive Function ﬁ

 Recursive Function: Function that invokes itself.

def my_func(): Can | invoke the function in its body?
<statements>
TaRY 7
my_func() Does it work!

<other statements>

def my_func(): Does it work without any error!
print("hello™)

my_func()

my_func()

Whitacre College of Engineering - Texas Tech University

Recursive Function - 2 %

def my_func():

print("hello™)

my_func()

my_func()

!

Infinite recursive calls

* Need termination case: called base case
 Invocation of the function: call recursion step

Whitacre College of Engineering - Texas Tech University

Recursive Function Example %

* For a given value of n, calculate n!
e N=4
* n!=4x3x2x1

What is the base case?

n! =n*(n-1)! ; def factorial(n):
Recursive? <<base case>>
return n*factorial(n-1)

print(factorial(4))

Whitacre College of Engineering - Texas Tech University

Recursive Function Example %

(M 4*factorial(3)

: terminated
terminated

. Returned from each recursive call
Recursive calls

def factorial(n):
ifn<=1:
return 1
return n*factorial(n-1)

Live demo: recursive function

Whitacre College of Engineering - Texas Tech University

Built-in String Functions - 1 %

* There are very useful built-in functions of Python for
String applications.

* The following method generates an uppercased version
of a string.

* The following method generates an lowercased version
of a string.

Whitacre College of Engineering - Texas Tech University

Built-in String Functions - 2 %

* One of the most important method is replace, which
replaces all instances of a substring within the string. The
replace method takes two arguments, the text to be
replaced and its replacement.

"hitchhiker'.replace('hi’, 'ma‘) dj

"'matchmaker'

« String methods can also be invoked using variable
names, as long as those names are bound to strings.

"train" ﬂj

S =

t = s.replace('t’', 'ing')
u = t.replace('in', 'de")
u

'degrade’

Whitacre College of Engineering - Texas Tech University

Built-in String Functions - 3 %

* Note that the line t = s.replace('t, 'ing') doesn't change
the string s, which is still "train". The method call
s.replace('t', 'ing') just has a value, which is the string
"Iinagrain”.

. [

"train'

« The replace function is not unique to strings, can be
applicable to other types of objects.

Whitacre College of Engineering - Texas Tech University

