[1]1:

[2]:

Lab2-Solution

August 26, 2020

Preamble script block to identify host, user, and kernel
import sys

! hostname

! whoami

print (sys.executable)

print(sys.version)

print(sys.version_info)

atomickitty.aws

compthink

/opt/conda/envs/python/bin/python

3.8.3 (default, Jul 2 2020, 16:21:59)

[GCC 7.3.0]

sys.version_info(major=3, minor=8, micro=3, releaselevel='final', serial=0)

%%html
<!--Script block to left align Markdown Tables——>
<style>
table {margin-left: O /<mportant;}
</style>

<IPython.core.display.HTML object>

1 ENGR 1330 Sec D52/D54 Laboratory 2

This laboratory is an introduction to variables, operators, expressions, basic 1/O, and string ma-
nipulation. Notice there is code cell above, from this notebook forward please include and run the
script in the cell, it will help in debugging a notebook.

1.1 Variables

Variables are names given to data that we want to store and manipulate in programs. A variable
has a name and a value. The value representation depends on what type of object the variable
represents. The utility of variables comes in when we have a structure that is universal, but values

[3]:

[4]:

of variables within the structure will change - otherwise it would be simple enough to just hardwire
the arithmetic.

Suppose we want to store the time of concentration for some hydrologic calculation. To do so, we
can name a variable TimeOfConcentration, and then assign a value to the variable, for instance:

TimeOfConcentration = 0.0

After this assignment statement the variable is created in the program and has a value of 0.0. The
use of a decimal point in the initial assignment establishes the variable as a float (a real variable is
called a floating point representation -- or just a float).

1.1.1 Naming Rules

Variable names in Python can only contain letters (a - z, A - Z), numerals (0 - 9), or underscores.
The first character cannot be a number, otherwise there is considerable freedom in naming. The
names can be reasonably long. runTime, run_Time, _run_Time2, _2runTime are all valid names,
but 2runTime is not valid, and will create an error when you try to use it.

Script to illustrate variable names

runTime = 1

_2runTime = 2 # change to 2runTime = 2 and rerun script
runTime2 = 2

print (runTime, 2runTime,runTime2)

122

There are some reserved words that cannot be used as variable names because they have preassigned
meaning in Parseltongue. These words include print, input, if, while, and for. There are several
more; the interpreter won’t allow you to use these names as variables and will issue an error message
when you attempt to run a program with such words used as variables.

1.2 Operators

The = sign used in the variable definition is called an assignment operator (or assignment sign).
The symbol means that the expression to the right of the symbol is to be evaluated and the result

placed into the variable on the left side of the symbol. The "operation” is assignment, the "=
symbol is the operator name.

Consider the script below

Assignment Operator

x =25

y = 10

print (x,y)

X=y # reverse order y=z and re-run, what happens?
print (x,y)

[5]:

5 10
10 10

So look at what happened. When we assigned values to the variables named x and y, they started
life as 5 and 10. We then wrote those values to the console, and the program returned 5 and 10.
Then we assigned y to x which took the value in y and replaced the value that was in x with this
value. We then wrote the contents again, and both variables have the value 10.

1.3 Arithmetic Operators

In addition to assignment we can also perform arithmetic operations on variables. The fundamental

arithmetic operators are:

Symbol Meaning Example

= Assignment x=3 Assigns value of 3 to x.

+ Addition x+y Adds values in x and y.

- Subtraction x-y Subtracts values in y from x.

* Multiplication x*y Multiplies values in x and y.

/ Division x/y Divides value in x by value in y.

// Floor division x//y Divide x by y, truncate result to whole number.
% Modulus x%y Returns remainder when x is divided by y.
o Exponentation xkxy Raises value in x by value in y. (e.g. z¥)
+= Additive assignment x+=2 Equivalent to x = x+2.

-= Subtractive assignment x-=2 Equivalent to x = x-2.

*= Multiplicative assignment xx=3 Equivalent to x = x*3.

/= Divide assignment x/=3 Equivalent to x = x/3.

Run the script in the next cell for some illustrative results

Uniary Arithmetic Operators
x = 10

y =5

print(x, y)
print (x+y)
print (x-y)
print (x*y)
print(x/y)
print ((x+1)//y)
print ((x+1)%y)
print (x*x*y)

10 5
15
5
50
2.0
2

[6]:

1
100000

Arithmetic assignment operators
x=1

X += 2

print (type (x) ,x)

x =1

x —= 2

print (type(x),x)

x=1

X *=3

print (type(x),x)

x = 10

x /=2

print(type(x),x) # Interesting what division does to wvariable type

<class 'int'> 3
<class 'int'> -1
<class 'int'> 3
<class 'float'> 5.0

1.4 Data Type

In the computer data are all binary digits (actually 0 and +5 volts). At a higher level of abstraction
data are typed into integers, real, or alphanumeric representation. The type affects the kind of
arithmetic operations that are allowed (as well as the kind of arithmetic - integer versus real
arithmetic; lexicographical ordering of alphanumeric , etc.) In scientific programming, a common
(and really difficult to detect) source of slight inaccuracies (that tend to snowball as the program
runs) is mixed mode arithmetic required because two numeric values are of different types (integer
and real).

Learn more from the textbook
https://www.inferentialthinking.com/chapters/04/Data_ Types.html

Here we present a quick summary

1.4.1 Integer

Integers are numbers without any fractional portion (nothing after the decimal point { which is
not used in integers). Numbers like -3, -2, -1, 0, 1, 2, 200 are integers. A number like 1.1 is not an
integer, and 1.0 is also not an integer (the presence of the decimal point makes the number a real).

To declare an integer in Python, just assign the variable name to an integer for example

MyPhoneNumber = 14158576309

[7]:

1.4.2 Real (Float)

A real or float is a number that has (or can have) a fractional portion - the number has decimal
parts. The numbers 3.14159, -0.001, 11.11, 1., are all floats. The last one is especially tricky, if
you don’t notice the decimal point you might think it is an integer but the inclusion of the decimal
point in Python tells the program that the value is to be treated as a float. To declare a float in
Python, just assign the variable name to a float for example

MyMassInKilos = 74.8427

1.4.3 String(Alphanumeric)

A string is a data type that is treated as text elements. The usual letters are strings, but numbers
can be included. The numbers in a string are simply characters and cannot be directly used in
arithmetic. There are some kinds of arithmetic that can be performed on strings but generally we
process string variables to capture the text nature of their contents. To declare a string in Python,
just assign the variable name to a string value - the trick is the value is enclosed in quotes. The
quotes are delimiters that tell the program that the characters between the quotes are characters
and are to be treated as literal representation.

For example

MyName = 'Theodore'
MyCatName = "Dusty"
DustyMassInKilos = "7.48427"

are all string variables. The last assignment is made a string on purpose. String variables can
be combined using an operation called concatenation. The symbol for concatenation is the plus
symbol +.

Strings can also be converted to all upper case using the upper () function. The syntax for the
upper () function is 'string to be upper case'.upper(). Notice the "dot” in the syntax. The
operation passes everything to the left of the dot to the function which then operates on that
content and returns the result all upper case (or an error if the input stream is not a string).

Variable Types Exzample

MyPhoneNumber = 14158576309

MyMassInKilos = 74.8427

MyName = 'Theodore'

MyCatName = "Dusty"

DustyMassInKilos = "7.48427"

print("All about me")

print("Name: ",MyName, " Mass :",MyMassInKilos,"Kg")

print('Phone : ',MyPhoneNumber)

print('My cat\'s name :', MyCatName) # the \ escape character is used to get,
—~the ' into the literal

print ("All about concatenation!")

print("A Silly String : " ,MyCatName+MyName+DustyMassInKilos)

print("A SILLY STRING : ", (MyCatName+MyName+DustyMassInKilos) .upper())

[8]:

All about me

Name: Theodore Mass : 74.8427 Kg
Phone : 14158576309

My cat's name : Dusty

All about concatenation!

A Silly String : DustyTheodore7.48427
A SILLY STRING : DUSTYTHEODORET . 48427

Strings can be formatted using the % operator or the format() function. The concepts will be
introduced later on as needed in the workbook, you can Google search for examples of how to do
such formatting.

1.4.4 Changing Types

A variable type can be changed. This activity is called type casting. Three functions allow type
casting: int (), float (), and str(). The function names indicate the result of using the function,
hence int () returns an integer, float () returns a oat, and str() returns a string.

There is also the useful function type() which returns the type of variable.

The easiest way to understand is to see an example.

Type Casting Examples

MyInteger = 234

MyFloat = 876.543

MyString = 'What is your name?'

print (MyInteger,MyFloat,MyString)

print('Integer as float',float(MyInteger))

print('Float as integer',int(MyFloat))

print ('Integer as string',str(MyInteger))

print('Integer as hexadecimal',hex(MyInteger))

print('Integer Type',type((MyInteger))) # insert the hex conversion and see,
—what happens!

234 876.543 What is your name?
Integer as float 234.0

Float as integer 876

Integer as string 234

Integer as hexadecimal Oxea
Integer Type <class 'int'>

1.5 Expressions

Expressions are the "algebraic” constructions that are evaluated and then placed into a variable.
Consider

x1=7+3%x6/2-1

The expression is evaluated from the left to right and in words is

Into the object named x1 place the result of:

integer 7 + (integer 6 divide by integer 2 = float 3 * integer 3 = float 9 - integer 1 = float

The division operation by default produces a float result unless forced otherwise. The result is the
variable x1 is a float with a value of 15.0

[9]: # Ezpressions Example
x1 =7+3%x6//2-1 # Change / into // and see what happens!
print (type(x1),x1)
Simple I/0 (Input/Output)

<class 'int'> 15

1.6 Simple string manipulation

Exercise-1: Change the cell below to a code cell and run the script print(’Sup World?’)
print(3 4+ 2) print(’3 4+ 2’) MyNumber = 342 MyName = ’Dusty’ print(MyName, MyNumber)
print("MyName’, "MyNumber’)

Answer the following questions based on the output
1. What is the difference between print(3 + 2) and print('3 + 2')7

2. What is the difference between print(MyName, MyNumber) and print('MyName',
'MyNumber ')

3. Change MyNumber = 3+2 to MyNumber = 3+2.0, and re-run the script, what happens? Why?
Write your answers below: (Change the cells to Markdown)

1. Question 1 The print statements write to the console, in this case an output cell

2. print(3 + 2) prints the result of integer addition of 3 and 2, which is the integer 5.

3. print ('3 + 2') prints the literal (string) characters ”3”, ”+”, and ”2” with a single whites-
pace between each character.

2. Question 2 The print statements write to the console, in this case an output cell

3. print(MyName, MyNumber) prints the contents of the variables MyName and MyNumber, in
this case Dusty and 5

4. print ('MyName', 'MyNumber') prints the literal strings MyName and MyNumber

3. Question 3 Changing MyNumber = 3+2 to MyNumber = 3+2.0 changes the arithemetic to float-
ing point because the 2.0 is a float. The kernel performs mixed-mode arithmetic as float by
default.

Exercise-2: Variable Types Create a simple script that illustrates the following types of vari-
ables

e integer

o floating point (real)
o string (alphanumeric)
e boolean

1. Assigning a value to a string, integer, float, and boolean variable. Use the names below

string_theory = ...
integer_type = ...
floating_point = ...
boolean_type = ...

2. Then print the type and contents of each variable.

print(type(string_theory) ,string_theory)
print(type(integer_type), integer_type))

[10]: string_theory = "What's up?"
integer_type = 2
floating_point = 2.0
boolean_type = True
print (type(string_theory) ,string_theory) # prints contents of string without,

—literal delimiter (the quotes)
print(type(integer_type) ,integer_type)
print (type(floating_point),floating_point)
print (type(boolean_type) ,boolean_type)

<class 'str'> What's up?
<class 'int'> 2

<class 'float'> 2.0
<class 'bool'> True

Exercise-3: Arithmetic and Expressions Calculate the expressions below by hand taking
care to keep track of result type (integer or float)

x1=7+3%x6/2-1

x2

2%2+2%x2-2/2

x3=(3*x9* (3+(9*%x3/(3))))
Write your results below

x1 (by hand) = 15.0 type real

x3 (by hand) = 3.0 type real

x3 (by hand) = 324.0 type real

Now write a script to evaluate and print the results, by

1. Assigning a value to a variable. Use the names above

x1=7+3*x6/2-1
X2 = ...
x3 = ...

2. Then print the type and contents of each variable.

print (type(x1),x1)
print (type (x2),x2)

[11]: |x1 =7 +3 %6 /2 -1
X2 =2%2+2*x2-2/2
x3=(3*x9x*x(3+(9x*3/(3))))

print(type(x1), x1)
print(type(x2), x2)
print (type(x3), x3)

<class 'float'> 15.0
<class 'float'> 3.0
<class 'float'> 324.0

Exercise-4: Simple Input/Output Get two floating point numbers via the input () function
and store them under the variable names float1 and float2.

floatl = input("Please enter floatl: ")
floatl = float(floatl)

Print £loatl and float2 to the output screen.

print("floatl:", floatl)

Then check whether float1 is greater than or equal to float2.

[12]: floatl

input ("Please enter floatl: ")

floatl = float(floatl)
float2 = input("Please enter float2: ")
float2 = float(float2)

print("floatl:", floatl)
print("float2:", float2)
print("Assert floatl is greater than float2 :",floatl > float2)

Please enter floatl: 4.4
Please enter float2: 5.5

floatl: 4.4
float2: 5.5
Assert floatl is greater than float2 : False

[13]:

[1:

Optional

JupyterLab | [Bb| Laborato

JupyterLab

Copy your script to an on-line Python compiler and run are the results the same? Yes

JupyterHub

P Online ' X JEH

Index of feng

print({”float1:”, floatl)

&« C @ © & hitps://www.programiz.com/pyti ==+ ¥ | Qvectormap=>| X IND B @ » =
Programiz . 9 >
reat Value Squeezable Grape \A\lqlmart - ¥
PYthon < > $1I78 ;B“gl —_— .‘,‘..-\x S
Compiler e [&]
main.py m Shell Clear
1 # Online Python compiler (interpreter) to FPlease enter float1: 4.4
run Python online. Please enter float2: 5.5
2 # Write Python 3 code in this online floatl: 4.4
editor and run it. float2: 5.5
3 Assert floatl is greater than float2 : False
4 float1 = input("Please enter floatl: ") >
5 floatl = float(float1)
6 float2 = input("Please enter float2: ")
7 float2 = float(float2)
8
]

print(“floatz:", float2)
print(“"Assert float1 is greater than
float2 :",floatl > float2)|

Exercise-5: String Element Manipulation
meaningful variable name.

some_string ='Computational Thinking'

Then

Define the string given below in quotes to a

1. Index and print all the elements from index positions 2 to 10.

begin = 777
end = 777

print(some_string[begin:end])
2. Index and print the string *Think’.

mystring = 'Computational Thinking'
begin =
print (mystring[begin:end])
begin = 14 ; end = 19

print (mystring[begin:end])

mputatio
Think

10

2 ; end = 10 # note syntaz ; allows multiple assignments on same line

	ENGR 1330 Sec D52/D54 Laboratory 2
	Variables
	Naming Rules

	Operators
	Arithmetic Operators
	Data Type
	Integer
	Real (Float)
	String(Alphanumeric)
	Changing Types

	Expressions
	Simple string manipulation

