
1. The Dataset (20 points)
Our dataset is a table of songs, each with a name, an artist, and a genre. For each song, we also know how frequently certain words occur in that
song. More precisely, we have a list of approximately 5000 words. For each of these words, for each song, each item in the table describes the
proportion of the song's lyrics that are the particular word.

For example, the lyrics of "In Your Eyes" is 168 words long. The word "like" appears twice: of the words in the song. Similarly, the

word "love" appears 10 times: of the words.

Our dataset doesn't contain all information about a song. For example, it doesn't include the total number of words in each song, or information
about the order of words in the song, let alone the melody, instruments, or rhythm. Nonetheless, you may find that word counts alone are sufficient
to build an accurate genre classifier.

Run the cell below to read the lyrics table. It may take up to a minute to load.

Title Artist Genre i the you to and a me ... writer motivo bake insist wel santo p

0
Slicker

Than
Your

Average

Craig
David Hip-hop 0.049536 0.017028 0.035604 0.020124 0.007740 0.006192 0.058824 ... 0.0 0.0 0.0 0.0 0 0.0 0

1 Right
There

MF
Grimm Hip-hop 0.037825 0.054374 0.023641 0.049645 0.009456 0.016548 0.018913 ... 0.0 0.0 0.0 0.0 0 0.0 0

2 Talkin'
All That Cashis Hip-hop 0.056738 0.049645 0.051418 0.010638 0.026596 0.033688 0.007092 ... 0.0 0.0 0.0 0.0 0 0.0 0

≈ 0.01192
168

≈ 0.059510
168

In [2]: import pandas as pd

In [6]: df = pd.read_csv("lyrics_clean.csv")

df.head()

Out[6]:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Question 1.1: Print the number of rows and columns in the dataset

There are 1721 rows in the dataframe and 4979 columns in the dataframe

Question 1.2: Find the proportion of the word like in the song In Your Eyes

The proportion of the word like in the song In your Eyes is 0.01190476

Question 1.3: Set expected_row_sum to the number that you expect will result from summing all proportions in each row, excluding the first

Title Artist Genre i the you to and a me ... writer motivo bake insist wel santo p

3

It Only
Hurts

Me
When I

Cry

Raul
Malo Country 0.096491 0.074561 0.030702 0.017544 0.026316 0.017544 0.021930 ... 0.0 0.0 0.0 0.0 0 0.0 0

4
Is It Too

Late
Now

Lester
Flatt &

Earl
Scruggs

Country 0.043902 0.000000 0.073171 0.019512 0.000000 0.014634 0.034146 ... 0.0 0.0 0.0 0.0 0 0.0 0

5 rows × 4979 columns

In [7]: print("There are", df.shape[0],"rows in the dataframe and", df.shape[1], "columns in the dataframe")

In [8]: slist = df['Title'].tolist()

index = 0

sindex = 0

for i in slist:

 if(i == "In Your Eyes"):

 sindex = index

 index += 1

Likelist = df['like'].tolist()

index = 0

Like = 0

for i in Likelist:

 if(index == sindex):

 Like = i

 index += 1

print("The proportion of the word like in the song In your Eyes is", Like)

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

three columns.

Verify your answer by doing sum along the columns for each row

0 1.0

1 1.0

2 1.0

3 1.0

4 1.0

 ...

1716 1.0

1717 1.0

1718 1.0

1719 1.0

1720 1.0

Length: 1721, dtype: float64

Word Stemming
The columns other than Title, Artist, and Genre in the lyrics table are all words that appear in some of the songs in our dataset. Some of those
names have been stemmed, or abbreviated heuristically, in an attempt to make different inflected forms of the same base word into the same
string. For example, the column "manag" is the sum of proportions of the words "manage", "manager", "managed", and "managerial" (and perhaps
others) in each song.

Stemming makes it a little tricky to search for the words you want to use, so we have provided another dataframe that will let you see examples of
unstemmed versions of each stemmed word. Run the code below to load it.

Question 1.4: Read the vocabulary from the given file mxm_reverse_mapping_safe.csv and store it into a variale vocab_mapping

Stem Word

In [9]: # Set row_sum to a number that's the (approximate) sum of each row of word proportions.

expected_row_sum = 1

In [10]: newdf = df.loc[:, 'i'::1]

newdf.sum(axis=1)

Out[10]:

In [11]: vocab_mapping = pd.read_csv("mxm_reverse_mapping_safe.csv")

vocab_mapping

Out[11]:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://en.wikipedia.org/wiki/Inflection
https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Stem Word

0 día día

1 pido pido

2 hatr hatred

3 pide pide

4 yellow yellow

...

4971 yell yell

4972 at at

4973 confess confess

4974 sincer sincere

4975 richard richard

4976 rows × 2 columns

Question 1.5: Compare if the number of stemmed words in the vocabulary is the same with one in the song lyrics dataset.

True

Question 1.6: Assign unchanged to the percentage of words in vocab_table that are the same as their stemmed form.

72.16639871382637

Question 1.7: Assign stemmed_message to the stemmed version of the word "message".

In [12]: df.loc[:, 'i':].shape[1] == vocab_mapping.shape[0]

Out[12]:

In [15]: import numpy as np

row_count = vocab_mapping.shape[0]

unchanged = (np.count_nonzero(vocab_mapping['Stem'] == vocab_mapping['Word']) / row_count) * 100

unchanged

Out[15]:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Stem Word

4151 messag message

'messag'

Question 1.8: Assign unstemmed_singl to the word in vocab_table that has "singl" as its stemmed form. (Note that multiple English
words may stem to "singl", but only one example appears in vocab_table .)

Stem Word

4254 singl single

'single'

Question 1.9: What word in vocab_table was shortened the most by this stemming process? Assign most_shortened to the word. hint:
function len(str) will return the length of the input string str . You will do a loop over rows of the vocabulary to compute the length of each word.

In [17]: # Set stemmed_message to the stemmed version of "message" (which

should be a string).

stemmed_message = vocab_mapping[vocab_mapping["Word"]=='message']

stemmed_message

Out[17]:

In [18]: stemmed_message.loc[4151, "Stem"]

Out[18]:

In [20]: # Set unstemmed_singl to the unstemmed version of "single" (which

should be a string).

unstemmed_singl = vocab_mapping[vocab_mapping["Stem"]=='singl']

unstemmed_singl

Out[20]:

In [21]: unstemmed_singl.loc[4254, "Word"]

Out[21]:

In [22]: length_of_stems = []

length_of_words = []

for index, row in vocab_mapping.iterrows():

 st_length = len(row['Stem'])

 length_of_stems.append(st_length)

 w_length = len(row['Word'])

 length_of_words.append(w_length)

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Stem Word Stem length Word length

0 día día 3 3

1 pido pido 4 4

2 hatr hatred 4 6

3 pide pide 4 4

4 yellow yellow 6 6

...

4971 yell yell 4 4

4972 at at 2 2

4973 confess confess 7 7

4974 sincer sincere 6 7

4975 richard richard 7 7

4976 rows × 4 columns

Stem Word Stem length Word length Difference

0 día día 3 3 0

1 pido pido 4 4 0

2 hatr hatred 4 6 2

3 pide pide 4 4 0

4 yellow yellow 6 6 0

...

vocab_mapping["Stem length"] = length_of_stems

vocab_mapping["Word length"] = length_of_words

vocab_mapping

Out[22]:

In [23]: vocab_mapping["Difference"] = (vocab_mapping["Word length"] - vocab_mapping["Stem length"]).abs()

vocab_mapping

Out[23]:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Stem Word Stem length Word length Difference

4971 yell yell 4 4 0

4972 at at 2 2 0

4973 confess confess 7 7 0

4974 sincer sincere 6 7 1

4975 richard richard 7 7 0

4976 rows × 5 columns

Stem Word Stem length Word length Difference

983 intern international 6 13 7

Splitting the dataset
We're going to use our lyrics dataset for three purposes. First, we want to train various song genre classifiers. Second, we want to validate
which classifier is most effective. Finally, we want to test the performance of our final classifier. Hence, we need three different datasets: training,
validation, and test.

The purpose of a classifier is to generalize to unseen data that is similar to the training data. Therefore, we must ensure that there are no songs
that appear in two different sets. We do so by splitting the dataset randomly. The dataset has already been permuted randomly, so it's easy to split.
We just take the top for training, the next part for validation, and the last for test.

Question 1.10: Split the data with the ratio 80% for training and 20% for testing.

In [24]: vocab_mapping[vocab_mapping["Difference"] == vocab_mapping["Difference"].max()]

Out[24]:

In [25]: training_proportion = 0.8

num_songs = df.shape[0]

num_train = int(num_songs * training_proportion)

num_test = num_songs - num_train

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Num song: 1721

Num train: 1376

Num test: 345

Training: 1376 ; Test: 345

Question 1.11: Draw a horizontal bar chart with three bars that shows the proportion of Country songs in each of the training and testing datasets.

print("Num song:", num_songs)

print("Num train:", num_train)

print("Num test:", num_test)

In [26]: train_lyrics = df[:num_train]

test_lyrics = df[num_train:]

print("Training: ", train_lyrics.shape[0], "; Test: ", test_lyrics.shape[0])

In [27]: training_country_song_count = train_lyrics[train_lyrics["Genre"] == "Country"].shape[0]

training_country_song_proportion = training_country_song_count / train_lyrics.shape[0]

test_country_song_count = test_lyrics[test_lyrics["Genre"] == "Country"].shape[0]

test_country_song_proportion = test_country_song_count / test_lyrics.shape[0]

import matplotlib.pyplot as plt

datasets = ['Training', 'Test']

country_song_proportions = [training_country_song_proportion, test_country_song_proportion]

plt.barh(datasets, country_song_proportions)

plt.xlabel("Dataset")

plt.ylabel("Country song proportions")

plt.title("Country song proportion comparison")

plt.show()

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

2. K-Nearest Neighbors (20 points)
K-Nearest Neighbors (k-NN) is a classification algorithm. Given some features of an unseen example, it decides whether that example belongs to
one or the other of two categories based on its similarity to previously seen examples.

A feature we have about each song is the proportion of times a particular word appears in the lyrics, and the categories are two music genres: hip-
hop and country. The algorithm requires many previously seen examples for which both the features and categories are known: that's the
train_lyrics table.

We're going to visualize the algorithm, instead of just describing it. To get started, let's pick colors for the genres.

In [28]: # Just run this cell to define genre_color.

def genre_color(genre):

 """Assign a color to each genre."""

 if genre == 'Country':

 return 'gold'

 elif genre == 'Hip-hop':

 return 'blue'

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

'gold'

'blue'

Classifying a song
In k-NN, we classify a song by finding the k songs in the training set that are most similar according to the features we choose. We call those
songs with similar features the "neighbors". The k-NN algorithm assigns the song to the most common category among its k neighbors.

Let's limit ourselves to just 2 features for now, so we can plot each song. The features we will use are the proportions of the words "like" and "love"
in the lyrics. Taking the song "In Your Eyes" (in the test set), 0.0119 of its words are "like" and 0.0595 are "love". This song appears in the test set,
so let's imagine that we don't yet know its genre.

First, we need to make our notion of similarity more precise. We will say that the dissimilarity, or distance between two songs is the straight-line
distance between them when we plot their features in a scatter diagram. This distance is called the Euclidean ("yoo-KLID-ee-un") distance.

For example, in the song Insane in the Brain (in the training set), 0.0203 of all the words in the song are "like" and 0 are "love". Its distance from In

Your Eyes on this 2-word feature set is . (If we included more or different features, the
distance could be different.)

A third song, Sangria Wine (in the training set), is 0.0044 "like" and 0.0925 "love".

Question 2.1: Define a function that creates a plot to display a test song and some training songs in a two-dimensional space defined by two
features. Utilize the function to visualize the songs In Your Eyes, Sangria Wine, and Insane in the Brain.

hint: the function has four arguments and it does not return anything but it plots the songs in 2D space:

test_song: has string datatype, is the name of a song

 else:

 return 'green'

In [29]: genre_color('Country')

Out[29]:

In [30]: genre_color('Hip-hop')

Out[30]:

√(0.0119 − 0.0203)2 + (0.0595 − 0)2 ≈ 0.06

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

training_songs: has list datatype, is a list of songs
x_feature: has string datatype, is the name of a feature.
y_feature: has string datatype, is the name of another feature.

In [31]: import matplotlib.pyplot as plt

def plot_with_two_features(test_song, training_songs, x_feature, y_feature):

 """Plot a test song and training songs using two features."""

 like_prob = df.loc[df["Title"] == test_song, "like"].values[0]

 love_prob = df.loc[df["Title"] == test_song, "love"].values[0]

 genre = df.loc[df["Title"] == test_song, "Genre"].values[0]

 shown_color = genre_color(genre)

 plt.scatter(x=like_prob, y=love_prob, color=shown_color, s=200, alpha=0.4)

 for song in training_songs:

 like_prob = df.loc[df["Title"] == song, "like"].values[0]

 love_prob = df.loc[df["Title"] == song, "love"].values[0]

 genre = df.loc[df["Title"] == song, "Genre"].values[0]

 shown_color = genre_color(genre)

 plt.scatter(x=like_prob, y=love_prob, color=shown_color, s=200)

In [37]: # visualize the distances of the songs In Your Eyes, Sangria Wine, and Insane in the Brain.

training = ["Sangria Wine", "Insane In The Brain"]

test_song = "In Your Eyes"

plot_with_two_features(test_song, training, "like", "love")

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Question 2.2: Utilize the plot_with_two_features function and plot the positions of the three songs Sangria Wine, Lookin' for Love, Insane
In The Brain together with the song In Your Eyes. Which one is closer to In Your Eyes and what is its genre?

Question 2.3. Complete the function distance_two_features that computes the Euclidean distance between any two songs, using two
features. Utilize the function distance_two_features to show that Lookin' for Love is closer to In Your Eyes than Insane In The Brain.

In [38]: training = ["Sangria Wine", "Lookin' for Love", "Insane In The Brain"]

plot_with_two_features("In Your Eyes", training, "like", "love")

In [39]: import math as m

def distance_two_features(title0, title1, x_feature, y_feature):

 """Compute the distance between two songs, represented as rows."""

 x1_prob = df.loc[df["Title"] == title0, x_feature].values[0]

 y1_prob = df.loc[df["Title"] == title0, y_feature].values[0]

 x2_prob = df.loc[df["Title"] == title1, x_feature].values[0]

 y2_prob = df.loc[df["Title"] == title1, y_feature].values[0]

 distance = m.sqrt((x1_prob-x2_prob)**2 + (y1_prob-y2_prob)**2)

 return distance

for song in ["Lookin' for Love", "Insane In The Brain"]:

 song_distance = distance_two_features(song, "In Your Eyes", "like", "love")

 print(song, 'distance:\t', song_distance)

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

The nearest neighbor to a song is the example in the training set that has the smallest distance from that song.

Question 2.4. What are the names and genres of the 7 closest songs to "In Your Eyes" in train_lyrics , by Euclidean distance for the 2
features "like" and "love"? To answer this question, make a dataframe named close_songs containing those 7 songs with columns "Title",
"Artist", "Genre", "like", and "love" from the lyrics dataframe, as well as a column called distance that contains the distance from "In Your
Eyes" sorted in ascending order.

Title Artist Genre like love Distance

828 If This Isn't Love Jennifer Hudson Hip-hop 0.008869 0.053215 0.007001

1108 Big Red Rocket Of Love Reverend Horton Heat Hip-hop 0.000000 0.057692 0.012045

1106 In the Middle of a Heartache Wanda Jackson Country 0.000000 0.063953 0.012702

160 The Hardest Part Allison Moorer Country 0.000000 0.064286 0.012822

1063 One Time Justin Bieber Hip-hop 0.000000 0.053030 0.013561

627 This Tornado Loves You Neko Case Country 0.000000 0.052846 0.013650

1201 Mama Knew Love Anthony Hamilton Hip-hop 0.020619 0.048969 0.013687

Question 2.5 . Find the most common value in the column Genre of the dataframe close_songs . In case of a tie, it can return any of the
most common values.

Lookin' for Love distance: 0.017854025951587398

Insane In The Brain distance: 0.060108782340654685

In [40]: like_love = train_lyrics[["Title", "Artist", "Genre", "like", "love"]]

close_songs = like_love.copy()

distances = []

for index, row in close_songs.iterrows():

 distance_to_in_your_eyes = distance_two_features(row['Title'], "In Your Eyes", "like", 'love')

 distances.append(distance_to_in_your_eyes)

break

close_songs["Distance"] = distances

close_songs = close_songs.nsmallest(7, 'Distance')

close_songs

Out[40]:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

'Hip-hop'

Congratulations are in order -- you've classified your first song!

3. Features (20 points)
Now, we're going to extend our classifier to consider more than two features at a time.

Euclidean distance still makes sense with more than two features. For n different features, we compute the difference between corresponding
feature values for two songs, square each of the n differences, sum up the resulting numbers, and take the square root of the sum.

Question 3.1

Write a function to compute the Euclidean distance between two arrays of features of arbitrary (but equal) length. Use it to compute the distance
between the first song in the training set and the first song in the test set, using all of the features. (Remember that the title, artist, and genre of the
songs are not features.)

Hint: The function has two arguments which are two arrays representing the two lists of features:

array([0.0495356, 0.01702786, 0.03560372, ..., 0.0, 0.0, 0], dtype=object)

In [41]: close_songs['Genre'].mode().values[0]

Out[41]:

In [42]: import numpy as np

def distance(features1, features2):

 """The Euclidean distance between two arrays of feature values."""

 abs_diff = np.abs(features1 - features2)

 squared = np.square(abs_diff)

 sum_squared = np.sum(squared)

 return np.sqrt(sum_squared)

In [43]: first_song_features = train_lyrics.loc[0, 'i':].values

first_song_features

Out[43]:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

array([0.17529879999999998, 0.003984064, 0.0438247, ..., 0.0, 0.0, 0],

 dtype=object)

0.20977496424035585

Creating your own feature set
Unfortunately, using all of the features has some downsides. One clear downside is computational -- computing Euclidean distances just takes a
long time when we have lots of features. You might have noticed that in the last question!

So we're going to select just 20. We'd like to choose features that are very discriminative. That is, features which lead us to correctly classify as
much of the test set as possible. This process of choosing features that will make a classifier work well is sometimes called feature selection, or
more broadly feature engineering.

Question 3.2

Look through the list of features (the labels of the lyrics table after the first three). Choose 20 common words that you think might let you
distinguish between country and hip-hop songs. Make sure to choose words that are frequent enough that every song contains at least one of
them. Don't just choose the 20 most frequent, though... you can do much better.

The first time you answer this question, spend some time looking through the features, but not more than 15 minutes.

Question 3.3

In two sentences or less, describe how you selected your features.

I selected these features based on their usage in country and hip hop to where they are used in both but there are
distinguishable between the two different genres.

In [44]: second_song_features = test_lyrics.loc[num_train, 'i':].values

second_song_features

Out[44]:

In [45]: distance_first_to_first = distance(first_song_features, second_song_features)

distance_first_to_first

Out[45]:

In []: words = ['i', 'the', 'you', 'to', 'and', 'a', 'me', 'it', 'not', 'in', 'my',

 'is', 'of', 'your', 'that', 'do', 'on', 'are', 'we', 'am']

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Question 3.4

Use the distance function developed above to compute the distance from the first song in the test set to all the songs in the training set, using
your set of 20 features. Make a new dataframe called genre_and_distances with one row for each song in the training set and two
columns:

The "Genre" of the training song
The "Distance" from the first song in the test set

Ensure that genre_and_distances is sorted in increasing order by distance to the first test song.

array(['i', 'the', 'you', 'to', 'and', 'a', 'me', 'it', 'not', 'in', 'my',

 'is', 'of', 'your', 'that', 'do', 'on', 'are', 'we', 'am'],

 dtype=object)

i 0.175299

the 0.00398406

you 0.0438247

to 0.00796813

and 0.0119522

a 0.00398406

me 0.0358566

it 0.0358566

not 0.0119522

in 0.00398406

my 0.00796813

is 0.00398406

of 0.00796813

your 0

that 0

do 0

on 0.00398406

are 0

we 0

In [46]: feature_labels = test_lyrics.columns[3:23].values

feature_labels

Out[46]:

In [48]: test_song_features = test_lyrics.loc[num_train, feature_labels]

test_song_features

Out[48]:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Genre Distance

1294 Hip-hop 0.068603

820 Country 0.070478

1102 Country 0.071549

639 Country 0.074927

37 Hip-hop 0.078204

...

1299 Country 0.247216

73 Hip-hop 0.254622

1097 Country 0.257257

696 Country 0.272240

64 Hip-hop 0.281842

1376 rows × 2 columns

Question 3.5

am 0.00398406

Name: 1376, dtype: object

In [49]: test_song_features = test_lyrics.loc[num_train, feature_labels]

genre_and_distances = train_lyrics[["Genre"]].copy()

distances_to_test_song = []

for index, row in train_lyrics.iterrows():

 features = row.loc[feature_labels]

 the_distance = distance(test_song_features, features)

 distances_to_test_song.append(the_distance)

genre_and_distances["Distance"] = distances_to_test_song

genre_and_distances = genre_and_distances.sort_values(['Distance'], ascending=True)

genre_and_distances

Out[49]:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Now compute the 5-nearest neighbors classification of the first song in the test set. That is, decide on its genre by finding the most common genre
among its 5 nearest neighbors, according to the distances you've calculated. Then check whether your classifier chose the right genre.
(Depending on the features you chose, your classifier might not get this song right, and that's okay.)

Genre Distance

1294 Hip-hop 0.068603

820 Country 0.070478

1102 Country 0.071549

639 Country 0.074927

37 Hip-hop 0.078204

'Country'

A classifier function
Now it's time to write a single function that encapsulates this whole process of classification.

Question 3.6. Write a function called classify . It should take the following arguments:

An array of features for a song to classify ,
A dataframe has similar structure of the original dataset,
k , the number of neighbors to use in classification.

It should return the class your classifier picks for the given row of features (e.g., 'Country' or 'Hip-hop'). Test if the function works by
classifying the first song in the test set using k=5.

In [50]: genre_and_distances = genre_and_distances.nsmallest(5, "Distance")

genre_and_distances

Out[50]:

In [51]: genre_and_distances['Genre'].mode().values[0]

Out[51]:

In [77]: def classify(test_features, train_dataframe, k):

 """Return the most common class among k nearest neigbors to test_row."""

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

i 0.175299

the 0.00398406

you 0.0438247

to 0.00796813

and 0.0119522

a 0.00398406

me 0.0358566

it 0.0358566

not 0.0119522

in 0.00398406

my 0.00796813

is 0.00398406

of 0.00796813

your 0

that 0

do 0

on 0.00398406

are 0

we 0

am 0.00398406

Name: 1376, dtype: object

'Country'

 feature_labels = train_dataframe.columns[3:23].values

 genre_and_distances = train_dataframe[["Genre"]].copy()

 distances_to_test_song = []

 for index, row in train_dataframe.iterrows():

 features = row.loc[feature_labels]

 the_distance = distance(test_features, features)

 distances_to_test_song.append(the_distance)

 genre_and_distances["Distance"] = distances_to_test_song

 genre_and_distances = genre_and_distances.nsmallest(k, "Distance")

 return genre_and_distances['Genre'].mode().values[0]

In [53]: feature_labels = test_lyrics.columns[3:23].values

test_song_features = test_lyrics.loc[num_train, feature_labels]

test_song_features

Out[53]:

In [54]: classify(test_song_features, train_lyrics, k=5)

Out[54]:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Question 3.7. Assign grandpa_genre to the genre predicted by your classifier for the song "Grandpa Got Runned Over By A John Deere",
using 9 neigbors.

i 0.0157068

the 0.0157068

you 0.0104712

to 0.0052356

and 0.0366492

a 0.026178

me 0.0104712

it 0.0157068

not 0.0052356

in 0.0104712

my 0.0052356

is 0.0052356

of 0.0104712

your 0

that 0.0104712

do 0

on 0.0209424

are 0.0052356

we 0.026178

Title Artist Genre i the you to and a me ... writer motivo bake insist wel santo

1412

Grandpa
Got

Runned
Over By
A John
Deere

Cledus
T.

Judd
Country 0.015707 0.015707 0.010471 0.005236 0.036649 0.026178 0.010471 ... 0.0 0.0 0.0 0.0 0 0.0

1 rows × 4979 columns

In [59]: feature_labels = test_lyrics.columns[3:23].values

test_song = df.loc[df["Title"] == "Grandpa Got Runned Over By A John Deere"]

test_song

Out[59]:

In [63]: test_song_features = test_song.loc[1412, feature_labels]

test_song_features

Out[63]:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

am 0

Name: 1412, dtype: object

'Hip-hop'

Evaluating your classifier
Now that it's easy to use the classifier, let's see how accurate it is on the whole test set. But we will reduce the test set to 20 songs only to save
computing power.

Question 3.8. Generate a new test set of 20 songs from your current test set

Title Artist Genre i the you to and a me ... writer motivo bake insist wel

1519 Up Up &
Away Kid Cudi Hip-hop 0.044061 0.040230 0.001916 0.007663 0.044061 0.015326 0.017241 ... 0.0 0.0 0.0 0.0 0

1379 Dear Life Anthony
Hamilton Hip-hop 0.054795 0.018265 0.059361 0.004566 0.004566 0.022831 0.018265 ... 0.0 0.0 0.0 0.0 0

1455 Back To The
Wall

Steve
Earle Country 0.064846 0.047782 0.017065 0.040956 0.023891 0.013652 0.010239 ... 0.0 0.0 0.0 0.0 0

1441 Do You Feel
Me

Anthony
Hamilton Hip-hop 0.058824 0.006920 0.114187 0.017301 0.020761 0.000000 0.079585 ... 0.0 0.0 0.0 0.0 0

1653
Shuttin'
Detroit
Down

John Rich Country 0.011494 0.061303 0.015326 0.019157 0.045977 0.007663 0.019157 ... 0.0 0.0 0.0 0.0 0

1589 Old Blue
Mountain John Rich Country 0.049505 0.024752 0.000000 0.039604 0.054455 0.000000 0.004950 ... 0.0 0.0 0.0 0.0 0

1426
Grandma
Got Run

Over By A
Reindeer

Cledus T.
Judd Country 0.013123 0.031496 0.020997 0.007874 0.057743 0.028871 0.015748 ... 0.0 0.0 0.0 0.0 0

In [64]: classify(test_song_features, train_lyrics, k=9)

Out[64]:

In [65]: test_lyrics = test_lyrics.sample(20)

test_lyrics

Out[65]:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Title Artist Genre i the you to and a me ... writer motivo bake insist wel

1654

Me And
Those

Dreamin'
Eyes Of

Mine

D'Angelo Hip-hop 0.040609 0.022843 0.053299 0.007614 0.015228 0.005076 0.038071 ... 0.0 0.0 0.0 0.0 0

1591 Old Time
Sake

Kathleen
Edwards Country 0.037975 0.031646 0.082278 0.012658 0.018987 0.006329 0.018987 ... 0.0 0.0 0.0 0.0 0

1474 DDT Jurassic 5 Hip-hop 0.036364 0.036364 0.036364 0.036364 0.054545 0.027273 0.009091 ... 0.0 0.0 0.0 0.0 0

1675
My Little Girl

in
Tennessee

Lester
Flatt &

Earl
Scruggs

Country 0.053719 0.028926 0.008264 0.016529 0.004132 0.004132 0.033058 ... 0.0 0.0 0.0 0.0 0

1466 Whatta You
Know

Cypress
Hill Hip-hop 0.049080 0.092025 0.113497 0.012270 0.036810 0.015337 0.006135 ... 0.0 0.0 0.0 0.0 0

1657 Creepy
Crawl Necro Hip-hop 0.000000 0.034483 0.045977 0.022989 0.107280 0.022989 0.015326 ... 0.0 0.0 0.0 0.0 0

1595 It Doesn't
Matter

Alison
Krauss &

Union
Station

Country 0.085938 0.015625 0.054688 0.023438 0.000000 0.015625 0.000000 ... 0.0 0.0 0.0 0.0 0

1427 Chambre
De Gosses Passi Hip-hop 0.000000 0.000000 0.000000 0.000000 0.000000 0.002331 0.000000 ... 0.0 0.0 0.0 0.0 0

1503
Tequila

(Tequila
Sunrise)

Cypress
Hill Hip-hop 0.000000 0.000000 0.000000 0.000000 0.000000 0.048276 0.034483 ... 0.0 0.0 0.0 0.0 0

1533 Drop In A
Bucket

Mary
Gauthier Country 0.076923 0.030100 0.070234 0.016722 0.023411 0.056856 0.010033 ... 0.0 0.0 0.0 0.0 0

1707 Buckingham
Palace Canibus Hip-hop 0.045959 0.049128 0.025357 0.025357 0.020602 0.026941 0.011093 ... 0.0 0.0 0.0 0.0 0

1684 These Days Kasey
Chambers Country 0.026316 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.0 0.0 0.0 0.0 0

1431 Crows Allison
Moorer Country 0.057143 0.068571 0.000000 0.034286 0.017143 0.022857 0.028571 ... 0.0 0.0 0.0 0.0 0

20 rows × 4979 columns

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Question 3.9. Classify every song in the newly generated test set, then compute the proportion of correct classifications. (It may take some
minutes to complete the classification of these 20 songs)

In [78]: numCorrect = 0

numSongs = 20

test_song_features = test_lyrics.loc[1519, feature_labels]

print("The classification of",test_lyrics.loc[1519, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1519, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1379, feature_labels]

print("The classification of",test_lyrics.loc[1379, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1379, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1455, feature_labels]

print("The classification of",test_lyrics.loc[1455, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1455, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1441, feature_labels]

print("The classification of",test_lyrics.loc[1441, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1441, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1653, feature_labels]

print("The classification of",test_lyrics.loc[1653, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1653, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1589, feature_labels]

print("The classification of",test_lyrics.loc[1589, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1589, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1426, feature_labels]

print("The classification of",test_lyrics.loc[1426, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1426, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1654, feature_labels]

print("The classification of",test_lyrics.loc[1654, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1654, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1591, feature_labels]

print("The classification of",test_lyrics.loc[1591, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1591, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1474, feature_labels]

print("The classification of",test_lyrics.loc[1474, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1474, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1675, feature_labels]

print("The classification of",test_lyrics.loc[1675, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1675, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1466, feature_labels]

print("The classification of",test_lyrics.loc[1466, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1466, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1657, feature_labels]

print("The classification of",test_lyrics.loc[1657, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1657, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1595, feature_labels]

print("The classification of",test_lyrics.loc[1595, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1595, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1427, feature_labels]

print("The classification of",test_lyrics.loc[1427, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1427, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1503, feature_labels]

print("The classification of",test_lyrics.loc[1503, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1503, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1533, feature_labels]

print("The classification of",test_lyrics.loc[1533, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1533, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1707, feature_labels]

print("The classification of",test_lyrics.loc[1707, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1707, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1684, feature_labels]

print("The classification of",test_lyrics.loc[1684, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1684, "Genre"]):

 numCorrect += 1

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

The classification of Up Up & Away is Country

The classification of Dear Life is Hip-hop

The classification of Back To The Wall is Hip-hop

The classification of Do You Feel Me is Hip-hop

The classification of Shuttin' Detroit Down is Country

The classification of Old Blue Mountain is Country

The classification of Grandma Got Run Over By A Reindeer is Hip-hop

The classification of Me And Those Dreamin' Eyes Of Mine is Country

The classification of Old Time Sake is Hip-hop

The classification of DDT is Hip-hop

The classification of My Little Girl in Tennessee is Country

The classification of Whatta You Know is Hip-hop

The classification of Creepy Crawl is Country

The classification of It Doesn't Matter is Country

The classification of Chambre De Gosses is Hip-hop

The classification of Tequila (Tequila Sunrise) is Hip-hop

The classification of Drop In A Bucket is Hip-hop

The classification of Buckingham Palace is Hip-hop

The classification of These Days is Hip-hop

The classification of Crows is Hip-hop

The proportion of correct classifications is 0.55

At this point, you've gone through one cycle of classifier design. Let's summarize the steps:

1. From available data, select test and training sets.
2. Choose an algorithm you're going to use for classification.
3. Identify some features.
4. Define a classifier function using your features and the training set.
5. Evaluate its performance (the proportion of correct classifications) on the test set.

4. Feature design (15 points)
One way to interpret the accuracy of a classifier is to compare it to another classifier.

test_song_features = test_lyrics.loc[1431, feature_labels]

print("The classification of",test_lyrics.loc[1431, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1431, "Genre"]):

 numCorrect += 1

print("The proportion of correct classifications is",(numCorrect/numSongs))

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Question 4.1. Below we've provided 10 features selected by the staff ["come", "do", "have", "heart", "make", "never", "now",
"wanna", "with", "yo"] . Build a 5-nearest-neighbor classifier using these features and compute its accuracy on the test set.

In [79]: def classify(test_features, train_dataframe, k):

 """Return the most common class among k nearest neigbors to test_row."""

 feature_labels = ["come", "do", "have", "heart", "make", "never", "now", "wanna", "with", "yo"]

 genre_and_distances = train_dataframe[["Genre"]].copy()

 distances_to_test_song = []

 for index, row in train_dataframe.iterrows():

 features = row.loc[feature_labels]

 the_distance = distance(test_features, features)

 distances_to_test_song.append(the_distance)

 genre_and_distances["Distance"] = distances_to_test_song

 genre_and_distances = genre_and_distances.nsmallest(k, "Distance")

 return genre_and_distances['Genre'].mode().values[0]

In [80]: numCorrect = 0

numSongs = 20

test_song_features = test_lyrics.loc[1519, feature_labels]

print("The classification of",test_lyrics.loc[1519, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1519, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1379, feature_labels]

print("The classification of",test_lyrics.loc[1379, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1379, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1455, feature_labels]

print("The classification of",test_lyrics.loc[1455, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1455, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1441, feature_labels]

print("The classification of",test_lyrics.loc[1441, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1441, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1653, feature_labels]

print("The classification of",test_lyrics.loc[1653, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1653, "Genre"]):

 numCorrect += 1

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

test_song_features = test_lyrics.loc[1589, feature_labels]

print("The classification of",test_lyrics.loc[1589, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1589, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1426, feature_labels]

print("The classification of",test_lyrics.loc[1426, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1426, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1654, feature_labels]

print("The classification of",test_lyrics.loc[1654, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1654, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1591, feature_labels]

print("The classification of",test_lyrics.loc[1591, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1591, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1474, feature_labels]

print("The classification of",test_lyrics.loc[1474, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1474, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1675, feature_labels]

print("The classification of",test_lyrics.loc[1675, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1675, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1466, feature_labels]

print("The classification of",test_lyrics.loc[1466, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1466, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1657, feature_labels]

print("The classification of",test_lyrics.loc[1657, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1657, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1595, feature_labels]

print("The classification of",test_lyrics.loc[1595, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1595, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1427, feature_labels]

print("The classification of",test_lyrics.loc[1427, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1427, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1503, feature_labels]

print("The classification of",test_lyrics.loc[1503, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

The classification of Up Up & Away is Country

The classification of Dear Life is Country

The classification of Back To The Wall is Hip-hop

The classification of Do You Feel Me is Country

The classification of Shuttin' Detroit Down is Country

The classification of Old Blue Mountain is Country

The classification of Grandma Got Run Over By A Reindeer is Country

The classification of Me And Those Dreamin' Eyes Of Mine is Hip-hop

The classification of Old Time Sake is Country

The classification of DDT is Country

The classification of My Little Girl in Tennessee is Country

The classification of Whatta You Know is Country

The classification of Creepy Crawl is Country

The classification of It Doesn't Matter is Country

The classification of Chambre De Gosses is Country

The classification of Tequila (Tequila Sunrise) is Country

The classification of Drop In A Bucket is Country

The classification of Buckingham Palace is Country

The classification of These Days is Country

The classification of Crows is Hip-hop

The proportion of correct classifications is 0.45

Question 4.2. Are the features you chose better or worse than the staff features at classifying the test set? Why do you think this is so?

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1503, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1533, feature_labels]

print("The classification of",test_lyrics.loc[1533, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1533, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1707, feature_labels]

print("The classification of",test_lyrics.loc[1707, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1707, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1684, feature_labels]

print("The classification of",test_lyrics.loc[1684, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1684, "Genre"]):

 numCorrect += 1

test_song_features = test_lyrics.loc[1431, feature_labels]

print("The classification of",test_lyrics.loc[1431, "Title"],"is",classify(test_song_features, train_lyrics, k=5))

if((classify(test_song_features, train_lyrics, k=5)) == test_lyrics.loc[1431, "Genre"]):

 numCorrect += 1

print("The proportion of correct classifications is",(numCorrect/numSongs))

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

The features I chose were better because they had a higher proportion of correct classification.
Question 4.3. Is there anything random about a classifier's accuracy measured in this way? Is it possible that the difference in classifier
performance is due to chance? If so, describe (in 2-3 sentences) how you would investigate that.

I do not think that there is any randomness in these classifiers since all it does is test whether the words are in the songs
and based on that it determines whether the song is hip-hop or country.

5. Computational thinking (15 points)
The following questions are answered via a video of no more than 5 minutes. Everybody must speak. You will provide the link to that
video in the answer box.

Question 5.1: Specifically refer to some lines of code, or the thought processes that you made in all the above solutions to elaborate
computational concepts which are used in solving the project.

Question 5.2: How did you work as a team to complete the project?

Question 5.3 (Optional - no credit): Draw a picture (or better yet, a data visualization) of life before, during, and/or after taking Computational
Thinking with Data Science course.

In []:

In []:

In []:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

