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For the last few sessions we have talked about simple linear regression ... 



We discussed ...
The theory and implementation of simple linear regression in Python
OLS and MLE methods for estimation of slope and intercept coefficients  
Errors (Noise, Variance, Bias) and their impacts on model's performance 
Confidence and prediction intervals
And Multiple Linear Regressions

What if we want to predict a discrete variable?

The general idea behind our efforts was to use a set of observed events (samples) to capture the relationship between one or
more predictor (AKA input, indipendent) variables and an output (AKA response, dependent) variable. The nature of the
dependent variables differentiates regression and classification problems.

Regression problems have continuous and usually unbounded outputs. An example is when 
you’re estimating the salary as a function of experience and education level. Or all the ex
amples we have covered so far! 

On the other hand, classification problems have discrete and finite outputs called classes 
or categories. For example, predicting if an employee is going to be promoted or not (true 
or false) is a classification problem. There are two main types of classification problems:

- Binary or binomial classification: 

exactly two classes to choose between (usually 0 and 1, true and false, or positive and neg
ative)

- Multiclass or multinomial classification:

three or more classes of the outputs to choose from



When Do We Need Classification?

We can apply classification in many fields of science and technology. For example, text classification algorithms are used to
separate legitimate and spam emails, as well as positive and negative comments. Other examples involve medical applications,
biological classification, credit scoring, and more.

Logistic Regression
What is logistic regression? Logistic regression is a fundamental classification technique. It belongs to the group of linear
classifiers and is somewhat similar to polynomial and linear regression. Logistic regression is fast and relatively uncomplicated,
and it’s convenient for users to interpret the results. Although it’s essentially a method for binary classification, it can also be
applied to multiclass problems.

Logistic regression is a statistical method for predicting binary classes. The outcome or target variable is dichotomous in nature.
Dichotomous means there are only two possible classes. For example, it can be used for cancer detection problems. It computes
the probability of an event occurrence. Logistic regression can be considered a special case of linear regression where the target
variable is categorical in nature. It uses a log of odds as the dependent variable. Logistic Regression predicts the probability of
occurrence of a binary event utilizing a logit function. HOW? Remember the general format of the multiple linear regression
model:

Where, y is dependent variable and x1, x2 ... and Xn are explanatory variables. This was, as you know by now, a linear function.
There is another famous function known as the Sigmoid Function, also called logistic function. Here is the equation for the
Sigmoid function:

This image shows the sigmoid function (or S-shaped curve) of some variable �:



As you see, The sigmoid function has values very close to either 0 or 1 across most of its domain. It can take any real-valued
number and map it into a value between 0 and 1. If the curve goes to positive infinity, y predicted will become 1, and if the curve
goes to negative infinity, y predicted will become 0. This fact makes it suitable for application in classification methods since we
are dealing with two discrete classes (labels, categories, ...). If the output of the sigmoid function is more than 0.5, we can
classify the outcome as 1 or YES, and if it is less than 0.5, we can classify it as 0 or NO. This cutoff value (threshold) is not
always fixed at 0.5. If we apply the Sigmoid function on linear regression:

Notice the difference between linear regression and logistic regression:

logistic regression is estimated using Maximum Likelihood Estimation (MLE) approach. Maximizing the likelihood function
determines the parameters that are most likely to produce the observed data.

Let's work on an example in Python! 

Example 1: Diagnosing Diabetes 



The "diabetes.csv" dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The
objective of the dataset is to diagnostically predict whether or not a patient has diabetes, based on certain diagnostic
measurements included in the dataset.

Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females
at least 21 years old of Pima Indian heritage.

The datasets consists of several medical predictor variables and one target variable, Outcome. Predictor variables includes
the number of pregnancies the patient has had, their BMI, insulin level, age, and so on.

Columns Info.

Pregnancies Number of times pregnant

Glucose Plasma glucose concentration a 2 hours in an oral glucose tolerance
test

BloodPressure Diastolic blood pressure (mm Hg)

SkinThickness Triceps skin fold thickness (mm)

Insulin 2-Hour serum insulin (mu U/ml)

BMI Body mass index (weight in kg/(height in m)^2)

Diabetes pedigree Diabetes pedigree function

Age Age (years)

Outcome Class variable (0 or 1) 268 of 768 are 1, the others are 0

Let's see if we can build a logistic regression model to accurately predict whether or not the patients in the dataset have
diabetes or not?

Acknowledgements: Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., & Johannes, R.S. (1988). Using the ADAP learning
algorithm to forecast the onset of diabetes mellitus. In Proceedings of the Symposium on Computer Applications and Medical Care
(pp. 261--265). IEEE Computer Society Press.

In [49]:
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import sklearn.metrics as metrics
import seaborn as sns
%matplotlib inline

In [50]:
# Import the dataset:
data = pd.read_csv("diabetes.csv")
data.rename(columns = {'Pregnancies':'pregnant', 
'Glucose':'glucose','BloodPressure':'bp','SkinThickness':'skin',



'Glucose':'glucose','BloodPressure':'bp','SkinThickness':'skin',
                       'Insulin ':'Insulin','BMI':'bmi','DiabetesPedigreeFunction':'pedigree','Age'
:'age', 
                              'Outcome':'label'}, inplace = True) 
data.head()

In [51]:
data.describe()

In [52]:
#Check some histograms
sns.distplot(data['pregnant'], kde = True, rug= True, color ='orange') 

In [53]:
sns.distplot(data['glucose'], kde = True, rug= True, color ='darkblue') 

Out[50]:

pregnant glucose bp skin Insulin bmi pedigree age label

0 6 148 72 35 0 33.6 0.627 50 1

1 1 85 66 29 0 26.6 0.351 31 0

2 8 183 64 0 0 23.3 0.672 32 1

3 1 89 66 23 94 28.1 0.167 21 0

4 0 137 40 35 168 43.1 2.288 33 1

Out[51]:

pregnant glucose bp skin Insulin bmi pedigree age label

count 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000

mean 3.845052 120.894531 69.105469 20.536458 79.799479 31.992578 0.471876 33.240885 0.348958

std 3.369578 31.972618 19.355807 15.952218 115.244002 7.884160 0.331329 11.760232 0.476951

min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.078000 21.000000 0.000000

25% 1.000000 99.000000 62.000000 0.000000 0.000000 27.300000 0.243750 24.000000 0.000000

50% 3.000000 117.000000 72.000000 23.000000 30.500000 32.000000 0.372500 29.000000 0.000000

75% 6.000000 140.250000 80.000000 32.000000 127.250000 36.600000 0.626250 41.000000 1.000000

max 17.000000 199.000000 122.000000 99.000000 846.000000 67.100000 2.420000 81.000000 1.000000

Out[52]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ff60a78a60>

Out[53]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ff608e1af0>



In [54]:
sns.distplot(data['label'], kde = False, rug= True, color ='purple', bins=2) 

In [55]:
sns.jointplot(x ='glucose', y ='label', data = data, kind ='kde')

Out[54]:
<matplotlib.axes._subplots.AxesSubplot at 0x1ff5e291a60>

Out[55]:
<seaborn.axisgrid.JointGrid at 0x1ff608f1a90>



Selecting Feature: Here, we need to divide the given columns into two types of variables dependent(or target variable) and
independent variable(or feature variables or predictors).

In [56]:
#split dataset in features and target variable
feature_cols = ['pregnant', 'glucose', 'bp', 'skin', 'Insulin', 'bmi', 'pedigree', 'age']
X = data[feature_cols] # Features
y = data.label # Target variable

Splitting Data: To understand model performance, dividing the dataset into a training set and a test set is a good strategy.
Let's split dataset by using function train_test_split(). You need to pass 3 parameters: features, target, and test_set size.
Additionally, you can use random_state to select records randomly. Here, the Dataset is broken into two parts in a ratio of
75:25. It means 75% data will be used for model training and 25% for model testing:

In [57]:
# split X and y into training and testing sets
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=0)

Model Development and Prediction: First, import the Logistic Regression module and create a Logistic Regression
classifier object using LogisticRegression() function. Then, fit your model on the train set using fit() and perform prediction
on the test set using predict().

In [58]:
# import the class
from sklearn.linear_model import LogisticRegression

# instantiate the model (using the default parameters)
#logreg = LogisticRegression()
logreg = LogisticRegression()
# fit the model with data
logreg.fit(X_train,y_train)

#
y_pred=logreg.predict(X_test)

C:\Users\caela\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:762: 
ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
  n_iter_i = _check_optimize_result(



How to assess the performance of logistic regression?

Binary classification has four possible types of results:
True negatives: correctly predicted negatives (zeros)
True positives: correctly predicted positives (ones)
False negatives: incorrectly predicted negatives (zeros)
False positives: incorrectly predicted positives (ones)

We usually evaluate the performance of a classifier by comparing the actual and predicted outputsand counting the correct
and incorrect predictions. A confusion matrix is a table that is used to evaluate the performance of a classification model.

Some indicators of binary classifiers include the following:
The most straightforward indicator of classification accuracy is the ratio of the number of correct predictions to the total
number of predictions (or observations).
The positive predictive value is the ratio of the number of true positives to the sum of the numbers of true and false positives.
The negative predictive value is the ratio of the number of true negatives to the sum of the numbers of true and false
negatives.
The sensitivity (also known as recall or true positive rate) is the ratio of the number of true positives to the number of actual
positives.
The precision score quantifies the ability of a classifier to not label a negative example as positive. The precision score can
be interpreted as the probability that a positive prediction made by the classifier is positive.
The specificity (or true negative rate) is the ratio of the number of true negatives to the number of actual negatives.

The extent of importance of recall and precision depends on the problem. Achieving a high recall is more important than
getting a high precision in cases like when we would like to detect as many heart patients as possible. For some other
models, like classifying whether a bank customer is a loan defaulter or not, it is desirable to have a high precision since the
bank wouldn’t want to lose customers who were denied a loan based on the model’s prediction that they would be defaulters.



bank wouldn’t want to lose customers who were denied a loan based on the model’s prediction that they would be defaulters.
There are also a lot of situations where both precision and recall are equally important. Then we would aim for not only a
high recall but a high precision as well. In such cases, we use something called F1-score. F1-score is the Harmonic mean of
the Precision and Recall:

This is easier to work with since now, instead of balancing precision and recall, we can just aim for a good F1-score and that
would be indicative of a good Precision and a good Recall value as well.

Model Evaluation using Confusion Matrix: A confusion matrix is a table that is used to evaluate the performance of a
classification model. You can also visualize the performance of an algorithm. The fundamental of a confusion matrix is the
number of correct and incorrect predictions are summed up class-wise.

In [59]:
# import the metrics class
from sklearn import metrics
cnf_matrix = metrics.confusion_matrix(y_pred, y_test)
cnf_matrix

Here, you can see the confusion matrix in the form of the array object. The dimension of this matrix is 2*2 because this
model is binary classification. You have two classes 0 and 1. Diagonal values represent accurate predictions, while non-
diagonal elements are inaccurate predictions. In the output, 119 and 36 are actual predictions, and 26 and 11 are incorrect
predictions.

Visualizing Confusion Matrix using Heatmap: Let's visualize the results of the model in the form of a confusion matrix using
matplotlib and seaborn.

In [60]:
class_names=[0,1] # name  of classes
fig, ax = plt.subplots()
tick_marks = np.arange(len(class_names))
plt.xticks(tick_marks, class_names)

Out[59]:
array([[115,  25],
       [ 15,  37]], dtype=int64)



plt.xticks(tick_marks, class_names)
plt.yticks(tick_marks, class_names)
# create heatmap
sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu" ,fmt='g')
ax.xaxis.set_label_position("top")
plt.tight_layout()
plt.title('Confusion matrix', y=1.1)
plt.ylabel('Predicted label')
plt.xlabel('Actual label')

Confusion Matrix Evaluation Metrics: Let's evaluate the model using model evaluation metrics such as accuracy, precision,
and recall.

In [61]:
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
print("Precision:",metrics.precision_score(y_test, y_pred))
print("Recall:",metrics.recall_score(y_test, y_pred))
print("F1-score:",metrics.f1_score(y_test, y_pred))

In [62]:
from sklearn.metrics import classification_report

print(classification_report(y_test, y_pred))

Out[60]:
Text(0.5, 257.44, 'Actual label')

Accuracy: 0.7916666666666666
Precision: 0.7115384615384616
Recall: 0.5967741935483871
F1-score: 0.6491228070175439

              precision    recall  f1-score   support

           0       0.82      0.88      0.85       130
           1       0.71      0.60      0.65        62

    accuracy                           0.79       192
   macro avg       0.77      0.74      0.75       192
weighted avg       0.79      0.79      0.79       192



This notebook was inspired by several blogposts including:

"Logistic Regression in Python" by Mirko Stojiljković available at* https://realpython.com/logistic-regression-python/ 
"Understanding Logistic Regression in Python" by Avinash Navlani available at*
https://www.datacamp.com/community/tutorials/understanding-logistic-regression-python 
"Understanding Logistic Regression with Python: Practical Guide 1" by Mayank Tripathi available at*
https://datascience.foundation/sciencewhitepaper/understanding-logistic-regression-with-python-practical-guide-1 
"Understanding Data Science Classification Metrics in Scikit-Learn in Python" by Andrew Long available at*
https://towardsdatascience.com/understanding-data-science-classification-metrics-in-scikit-learn-in-python-3bc336865019  

Here are some great reads on these topics:

"Example of Logistic Regression in Python" available at* https://datatofish.com/logistic-regression-python/ 
"Building A Logistic Regression in Python, Step by Step" by Susan Li available at* https://towardsdatascience.com/building-
a-logistic-regression-in-python-step-by-step-becd4d56c9c8 
"How To Perform Logistic Regression In Python?" by Mohammad Waseem available at*
https://www.edureka.co/blog/logistic-regression-in-python/ 
"Logistic Regression in Python Using Scikit-learn" by Dhiraj K available at* https://heartbeat.fritz.ai/logistic-regression-in-
python-using-scikit-learn-d34e882eebb1 
"ML | Logistic Regression using Python" available at* https://www.geeksforgeeks.org/ml-logistic-regression-using-python/ 

Here are some great videos on these topics:

"StatQuest: Logistic Regression" by StatQuest with Josh Starmer available at* https://www.youtube.com/watch?
v=yIYKR4sgzI8&list=PLblh5JKOoLUKxzEP5HA2d-Li7IJkHfXSe 
"Linear Regression vs Logistic Regression | Data Science Training | Edureka"  by edureka! available at*
https://www.youtube.com/watch?v=OCwZyYH14uw 
"Logistic Regression in Python | Logistic Regression Example | Machine Learning Algorithms | Edureka"  by edureka!
available at* https://www.youtube.com/watch?v=VCJdg7YBbAQ 
"How to evaluate a classifier in scikit-learn" by Data School available at* https://www.youtube.com/watch?v=85dtiMz9tSo 

Exercise 1: Wine Quality 

https://realpython.com/logistic-regression-python/
https://www.datacamp.com/community/tutorials/understanding-logistic-regression-python
https://datascience.foundation/sciencewhitepaper/understanding-logistic-regression-with-python-practical-guide-1
https://towardsdatascience.com/understanding-data-science-classification-metrics-in-scikit-learn-in-python-3bc336865019
https://datatofish.com/logistic-regression-python/
https://towardsdatascience.com/building-a-logistic-regression-in-python-step-by-step-becd4d56c9c8
https://www.edureka.co/blog/logistic-regression-in-python/
https://heartbeat.fritz.ai/logistic-regression-in-python-using-scikit-learn-d34e882eebb1
https://www.geeksforgeeks.org/ml-logistic-regression-using-python/
https://www.youtube.com/watch?v=yIYKR4sgzI8&list=PLblh5JKOoLUKxzEP5HA2d-Li7IJkHfXSe
https://www.youtube.com/watch?v=OCwZyYH14uw
https://www.youtube.com/watch?v=VCJdg7YBbAQ
https://www.youtube.com/watch?v=85dtiMz9tSo


The "winequality.csv" dataset is provided with information related to red vinho verde wine samples, from the north of
Portugal. The goal is to model wine quality based on physicochemical tests. Follow the steps and answer the question. Due
to privacy and logistic issues, only physicochemical (inputs) and sensory (the output) variables are available (e.g. there is
no data about grape types, wine brand, wine selling price, etc.).

The datasets consists of several Input variables (based on physicochemical tests).

Columns Info.

fixed acidity most acids involved with wine or fixed or nonvolatile (do not evaporate readily)

volatile acidity the amount of acetic acid in wine, which at too high of levels can lead to an unpleasant, vinegar taste

citric acid found in small quantities, citric acid can add 'freshness' and flavor to wines

residual sugar the amount of sugar remaining after fermentation stops, it's rare to find wines with less than 1 gram/liter

chlorides the amount of salt in the wine

free sulfur dioxide the free form of SO2 exists in equilibrium between molecular SO2 (as a dissolved gas) and bisulfite ion

total sulfur dioxide amount of free and bound forms of S02; in low concentrations, SO2 is mostly undetectable in wine

density the density of water is close to that of water depending on the percent alcohol and sugar content

pH describes how acidic or basic a wine is on a scale from 0 (very acidic) to 14 (very basic); most wines are between 3-
4

sulphates a wine additive which can contribute to sulfur dioxide gas (S02) levels, wich acts as an antimicrobial

alcohol the percent alcohol content of the wine

quality (score between 0 and
10) output variable (based on sensory data, score between 0 and 10)

Follow the steps and answer the following questions:

Step1: Read the "winequality.csv" file as a dataframe. Change the column names to
('acidity_f','acidity_v','ca','rsugar','chlorides','sulfurd_f','sulfurd_t','density','ph','sulphates','alcohol','qualityscore').
Explore the dataframe and in a markdown cell breifly describe the different variables in your own words. 
Step2: Use logistic regression and ('acidity_f', 'ca', 'chlorides', 'sulfurd_t', 'ph', 'alcohol') as predictors to predict the quality of wine.
Use a 70/30 split for training and testing. Then, get the confusion matrix and use classification_report to describe the
performance of your model. Also, get a heatmap and visually assess the predictions of your model. Explain the result of this
analysis in a markdown cell.
Step3: Use logistic regression and ('acidity_v', 'rsugar', 'sulfurd_f', 'density', 'sulphates') as predictors to predict the quality of
wine. Use a 70/30 split for training and testing. Then, get the confusion matrix and use classification_report to describe the
performance of your model. Also, get a heatmap and visually assess the predictions of your model. Explain the result of this
analysis in a markdown cell.
Step4: Use logistic regression and all the predictors to predict the quality of wine. Use a 70/30 split for training and testing. Then,
get the confusion matrix and use classification_report to describe the performance of your model. Also, get a heatmap and
visually assess the predictions of your model. Explain the result of this analysis in a markdown cell.



visually assess the predictions of your model. Explain the result of this analysis in a markdown cell.
Step5: Which model provides better results? what are some pros and cons associated with your winning model?

Acknowledgements: P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from
physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

In [63]:
#Step1:
data = pd.read_csv("winequality.csv")
data.rename(columns = {'fixed_acidity':'acidity_f',
                       'volatile_acidity':'acidity_v','citric_acid':'ca','residual_sugar':'rsugar',
'chlorides':'chlorides',
                       
'free_sulfur_dioxide':'sulfurd_f','total_sulfur_dioxide':'sulfurd_t','density':'density','pH':'ph'
,
                       'sulphates':'sulphates','alcohol':'alcohol','quality (score 
_0to10)':'qualityscore'}, 
            inplace = True) 
data.head()

In [64]:
data.describe()

The different variables of the wine quality is the different types of acids that are in the wine which includes the for sure amount of
acids in the wine that won't easily dissove, the amount of acetic in the wine, and the citric acid. The sugar is another one, and it
tells us the amount of sugar left in the wine after it is processed. The chlorides is one, and it tells us how much salt is in the win.
The different sulfurds are the free sulfur dioxide, which tells us how many unbonded sulfur dioxides are in the wine and the total

Out[63]:

acidity_f acidity_v ca rsugar chlorides sulfurd_f sulfurd_t density ph sulphates alcohol qualityscore

0 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 5

1 7.8 0.88 0.00 2.6 0.098 25.0 67.0 0.9968 3.20 0.68 9.8 5

2 7.8 0.76 0.04 2.3 0.092 15.0 54.0 0.9970 3.26 0.65 9.8 5

3 11.2 0.28 0.56 1.9 0.075 17.0 60.0 0.9980 3.16 0.58 9.8 6

4 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 5

Out[64]:

acidity_f acidity_v ca rsugar chlorides sulfurd_f sulfurd_t density ph sulphates

count 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000

mean 8.319637 0.527821 0.270976 2.538806 0.087467 15.874922 46.467792 0.996747 3.311113 0.658149

std 1.741096 0.179060 0.194801 1.409928 0.047065 10.460157 32.895324 0.001887 0.154386 0.169507

min 4.600000 0.120000 0.000000 0.900000 0.012000 1.000000 6.000000 0.990070 2.740000 0.330000

25% 7.100000 0.390000 0.090000 1.900000 0.070000 7.000000 22.000000 0.995600 3.210000 0.550000

50% 7.900000 0.520000 0.260000 2.200000 0.079000 14.000000 38.000000 0.996750 3.310000 0.620000

75% 9.200000 0.640000 0.420000 2.600000 0.090000 21.000000 62.000000 0.997835 3.400000 0.730000

max 15.900000 1.580000 1.000000 15.500000 0.611000 72.000000 289.000000 1.003690 4.010000 2.000000
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The different sulfurds are the free sulfur dioxide, which tells us how many unbonded sulfur dioxides are in the wine and the total
sulfur dioxide tells us how much sulfur dioxidxe is in the wine, bonded and unbonded. The density tells us how much alcohol and
sugar will be left in the wine. The ph tells us the acidity of the wine. The amount of sulphates tell us the amount of sulfur dixoide
will be in the wine. The alcohol tells us how much alcohol is in the wine. The quality score tells us how well the wine is. There is a
total of 1599 rows for each variable.

In [65]:
#Step2:
#split dataset in features and target variable
feature_cols = ['acidity_f', 'ca', 'chlorides', 'sulfurd_t', 'ph', 'alcohol']
X = data[feature_cols] # Features
y = data.qualityscore # Target variable

# split X and y into training and testing sets
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.30,random_state=0)

# import the class
from sklearn.linear_model import LogisticRegression
# instantiate the model (using the default parameters)
#logreg = LogisticRegression()
logreg = LogisticRegression(max_iter=10000)
# fit the model with data
logreg.fit(X_train,y_train)

#
y_pred=logreg.predict(X_test)

In [66]:
# import the metrics class
from sklearn import metrics
cnf_matrix = metrics.confusion_matrix(y_pred, y_test)
cnf_matrix

In [67]:
# import the metrics class
from sklearn import metrics
cnf_matrix = metrics.confusion_matrix(y_pred, y_test)
cnf_matrix

class_names=[0,1] # name  of classes
fig, ax = plt.subplots()
tick_marks = np.arange(len(class_names))
plt.xticks(tick_marks, class_names)
plt.yticks(tick_marks, class_names)
# create heatmap
sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu" ,fmt='g')
ax.xaxis.set_label_position("top")
plt.tight_layout()
plt.title('Confusion matrix', y=1.1)
plt.ylabel('Predicted label')
plt.xlabel('Actual label')

from sklearn.metrics import classification_report

print(classification_report(y_test, y_pred))

Out[66]:
array([[  0,   0,   0,   0,   0,   0],
       [  0,   0,   0,   0,   0,   0],
       [  2,   7, 156,  67,   1,   0],
       [  1,   8,  50, 121,  32,   4],
       [  0,   0,   2,  16,  12,   1],
       [  0,   0,   0,   0,   0,   0]], dtype=int64)

C:\Users\caela\anaconda3\lib\site-packages\sklearn\metrics\_classification.py:1221: 
UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with 
no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
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This confusion matrix is showing us that most of the predicted and actual for the wine quality is when the quality is 2 and the
number is 156, with different actual than predicted being 77. The next one being predicted and actual 3 and the number is 121,
with different actual than predicted being 91. And the quality of getting a 4 for both actual and predicted with a number of 12, and
the actual being something different is 18. And the weighted average for percision is 56%.

In [68]:
#Step3:
#split dataset in features and target variable
feature_cols = ['acidity_v', 'rsugar', 'sulfurd_f', 'density', 'sulphates']
X = data[feature_cols] # Features
y = data.qualityscore # Target variable

# split X and y into training and testing sets
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.30,random_state=0)

# import the class
from sklearn.linear_model import LogisticRegression
# instantiate the model (using the default parameters)
#logreg = LogisticRegression()
logreg = LogisticRegression(max_iter=10000)
# fit the model with data
logreg.fit(X_train,y_train)

#
y_pred=logreg.predict(X_test)

In [69]:
# import the metrics class
from sklearn import metrics
cnf_matrix = metrics.confusion_matrix(y_pred, y_test)
cnf_matrix

              precision    recall  f1-score   support

           3       0.00      0.00      0.00         3
           4       0.00      0.00      0.00        15
           5       0.67      0.75      0.71       208
           6       0.56      0.59      0.58       204
           7       0.39      0.27      0.32        45
           8       0.00      0.00      0.00         5

    accuracy                           0.60       480
   macro avg       0.27      0.27      0.27       480
weighted avg       0.56      0.60      0.58       480

Out[69]:
array([[  0,   0,   0,   0,   0,   0],
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In [70]:
# import the metrics class
from sklearn import metrics
cnf_matrix = metrics.confusion_matrix(y_pred, y_test)
cnf_matrix

class_names=[0,1] # name  of classes
fig, ax = plt.subplots()
tick_marks = np.arange(len(class_names))
plt.xticks(tick_marks, class_names)
plt.yticks(tick_marks, class_names)
# create heatmap
sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu" ,fmt='g')
ax.xaxis.set_label_position("top")
plt.tight_layout()
plt.title('Confusion matrix', y=1.1)
plt.ylabel('Predicted label')
plt.xlabel('Actual label')

from sklearn.metrics import classification_report

print(classification_report(y_test, y_pred))

This confusion matrix is showing us that most of the predicted and actual for the wine quality is when the quality is 2 and the
number is 144, with different actual than predicted being 120. The next one being predicted and actual 3 and the number is 109,
with different actual than predicted being 100. And the quality of getting a 4 for both actual and predicted with a number of 1, and
the actual being something different is 3. And the weighted average for percision is 47%.

array([[  0,   0,   0,   0,   0,   0],
       [  0,   0,   0,   0,   0,   0],
       [  3,  11, 144,  91,  13,   2],
       [  0,   3,  64, 109,  31,   2],
       [  0,   1,   0,   4,   1,   1],
       [  0,   0,   0,   0,   0,   0]], dtype=int64)

C:\Users\caela\anaconda3\lib\site-packages\sklearn\metrics\_classification.py:1221: 
UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with 
no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))

              precision    recall  f1-score   support

           3       0.00      0.00      0.00         3
           4       0.00      0.00      0.00        15
           5       0.55      0.69      0.61       208
           6       0.52      0.53      0.53       204
           7       0.14      0.02      0.04        45
           8       0.00      0.00      0.00         5

    accuracy                           0.53       480
   macro avg       0.20      0.21      0.20       480
weighted avg       0.47      0.53      0.49       480



the actual being something different is 3. And the weighted average for percision is 47%.

In [71]:
#Step4:
#split dataset in features and target variable
feature_cols = ['acidity_v', 'rsugar', 'sulfurd_f', 'density', 'sulphates','acidity_f', 'ca', 
                'chlorides', 'sulfurd_t', 'ph', 'alcohol']
X = data[feature_cols] # Features
y = data.qualityscore # Target variable

# split X and y into training and testing sets
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.30,random_state=0)

# import the class
from sklearn.linear_model import LogisticRegression
# instantiate the model (using the default parameters)
#logreg = LogisticRegression()
logreg = LogisticRegression(max_iter=10000)
# fit the model with data
logreg.fit(X_train,y_train)

#
y_pred=logreg.predict(X_test)

In [72]:
# import the metrics class
from sklearn import metrics
cnf_matrix = metrics.confusion_matrix(y_pred, y_test)
cnf_matrix

In [73]:
# import the metrics class
from sklearn import metrics
cnf_matrix = metrics.confusion_matrix(y_pred, y_test)
cnf_matrix

class_names=[0,1] # name  of classes
fig, ax = plt.subplots()
tick_marks = np.arange(len(class_names))
plt.xticks(tick_marks, class_names)
plt.yticks(tick_marks, class_names)
# create heatmap
sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu" ,fmt='g')
ax.xaxis.set_label_position("top")
plt.tight_layout()
plt.title('Confusion matrix', y=1.1)
plt.ylabel('Predicted label')
plt.xlabel('Actual label')

from sklearn.metrics import classification_report

print(classification_report(y_test, y_pred))

Out[72]:
array([[  0,   0,   0,   0,   0,   0],
       [  0,   0,   0,   0,   0,   0],
       [  3,  10, 160,  62,   3,   0],
       [  0,   5,  47, 126,  28,   3],
       [  0,   0,   1,  16,  14,   2],
       [  0,   0,   0,   0,   0,   0]], dtype=int64)

C:\Users\caela\anaconda3\lib\site-packages\sklearn\metrics\_classification.py:1221: 
UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with 
no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))

              precision    recall  f1-score   support

           3       0.00      0.00      0.00         3
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This confusion matrix is showing us that most of the predicted and actual for the wine quality is when the quality is 2 and the
number is 160, with different actual than predicted being 78. The next one being predicted and actual 3 and the number is 126,
with different actual than predicted being 83. And the quality of getting a 4 for both actual and predicted with a number of 14, and
the actual being something different is 19. And the weighted average for percision is 59%.

Step5:
The model that provides a better result is the model from step 4. This is because it seems to have a better fit with both the actual
and predicted being high and the error being lower than that of the true positive. Some pros of this model is that it seems to have
more true positives than the errors, but some of the cons are that the errors are a little high and for the quality of 4, it has a higher
error than the true positive.

           3       0.00      0.00      0.00         3
           4       0.00      0.00      0.00        15
           5       0.67      0.77      0.72       208
           6       0.60      0.62      0.61       204
           7       0.42      0.31      0.36        45
           8       0.00      0.00      0.00         5

    accuracy                           0.62       480
   macro avg       0.28      0.28      0.28       480
weighted avg       0.59      0.62      0.60       480
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	Laboratory 22: Classification, Logistic Regression, and Discrete GOF Metrics
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	For the last few sessions we have talked about simple linear regression ...
	We discussed ...

	Logistic Regression
	Example 1: Diagnosing Diabetes
	The "diabetes.csv" dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset.
	The datasets consists of several medical predictor variables and one target variable, Outcome. Predictor variables includes the number of pregnancies the patient has had, their BMI, insulin level, age, and so on.
	Let's see if we can build a logistic regression model to accurately predict whether or not the patients in the dataset have diabetes or not?
	Selecting Feature: Here, we need to divide the given columns into two types of variables dependent(or target variable) and independent variable(or feature variables or predictors).
	Splitting Data: To understand model performance, dividing the dataset into a training set and a test set is a good strategy. Let's split dataset by using function train_test_split(). You need to pass 3 parameters: features, target, and test_set size. Additionally, you can use random_state to select records randomly. Here, the Dataset is broken into two parts in a ratio of 75:25. It means 75% data will be used for model training and 25% for model testing:
	Model Development and Prediction: First, import the Logistic Regression module and create a Logistic Regression classifier object using LogisticRegression() function. Then, fit your model on the train set using fit() and perform prediction on the test set using predict().
	Model Evaluation using Confusion Matrix: A confusion matrix is a table that is used to evaluate the performance of a classification model. You can also visualize the performance of an algorithm. The fundamental of a confusion matrix is the number of correct and incorrect predictions are summed up class-wise.
	Here, you can see the confusion matrix in the form of the array object. The dimension of this matrix is 2*2 because this model is binary classification. You have two classes 0 and 1. Diagonal values represent accurate predictions, while non-diagonal elements are inaccurate predictions. In the output, 119 and 36 are actual predictions, and 26 and 11 are incorrect predictions.
	Visualizing Confusion Matrix using Heatmap: Let's visualize the results of the model in the form of a confusion matrix using matplotlib and seaborn.
	Confusion Matrix Evaluation Metrics: Let's evaluate the model using model evaluation metrics such as accuracy, precision, and recall.

	Exercise 1: Wine Quality
	The "winequality.csv" dataset is provided with information related to red vinho verde wine samples, from the north of Portugal. The goal is to model wine quality based on physicochemical tests. Follow the steps and answer the question. Due to privacy and logistic issues, only physicochemical (inputs) and sensory (the output) variables are available (e.g. there is no data about grape types, wine brand, wine selling price, etc.).
	The datasets consists of several Input variables (based on physicochemical tests).
	Follow the steps and answer the following questions:



	Step5:



