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a b s t r a c t

Inspired by the hierarchical/fractal topological interlocking in nature, Koch fractal interlocking with
different numbers of iteration N are designed. To better understand the mechanics of fractal interlocking,
the designs are also fabricated via amulti-material 3D printer.Mechanical experiments and finite element
(FE) simulations are performed to further explore the mechanical performance of the new designs.
Analytical model is also developed to capture the deformation mechanisms of the fractal interlocking
through contact. It is found that the load-bearing capacity of Koch fractal interlocking can be effectively
increased via fractal design. However, the mechanical responses of fractal interlocks are also sensitive to
imperfections, such as the gap between the interlocked pieces and the rounded tips. When fractal com-
plexity increases, themechanical propertieswill becomemore andmore sensitive to the imperfection and
eventually, the influences from imperfection can even become dominant. By considering the influences
of imperfection, the theoretical model predicts the existence of an optimal level of fractal complexity for
maximizing mechanical performance.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In nature, during years of evolution, many biological systems
develop complicated geometrical and material heterogeneity
across several length scales to achieve light weight and high me-
chanical performance [1–6]. Generally, hierarchical heterogeneity
can be achieved via two different mechanisms: (1) variation of
nano/micro structures at different length scale, such as bones and
sea shells [7–9] and (2) self-similarity via fractal geometry, such
as gecko feet [10,11] and biological sutures [12–14]. Fractal plays
an important role in the second category to achieve heterogeneity
across several length scales. The Koch fractal interlocking explored
in this investigation falls in the second category. It is one type of
fractal-induced self-similar mechanical interlocking, which pro-
vides one option of designing hierarchical geometric heterogeneity
in any material system.

Due to self-similarity, fractals exhibit great complexity driven
by simplicity [15–18]. Therefore, fractals are ubiquitous in nature,
such as the structure of Romanesco broccoli, frost crystals oc-
curring naturally on cold glass [19]. Fractals not only can model
complex forms, but also act as a bridge between regular geome-
tries to irregular ones [3,20,21]. Fractals are also widely used in
engineering area. For example, in architecture engineering, fractals
are used to design bio-inspired constructions [22–24]; in electri-
cal engineering, they are used to produce electronic circuit with
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chaotic behavior [25]; in biomedical engineering, fractals are used
to model andmeasure tumor and irregular distribution of collagen
fibers in biological tissue [26].

Topological interlocking plays a critical role in joining simi-
lar/dissimilar materials and structures, in both adhesive science
and engineering [27–30] and plasticity and creep of ductile met-
als [30,31]. The interlocked segments are constrained in their
movement by the neighboring ones, providing stability and allow-
ing for restricted locomotion of neighboring segments [17,32,33].
Compared with bonding via adhesive materials or mechanical
fasteners, mechanical interlocking has a similar function but is
simpler and more robust in terms of manufacturing [24,17]. Re-
cently, topological interlocking has been shown to be an effective
method to create a new class of architectured materials [8,33–
35]. For example, the interlocking mechanism of dove-tail shaped
building blocks was investigated through experimental, numerical
and theoretical models [33,36–39]; and composite mechanical
models of single waved sutures [12] and hierarchical sutures were
also developed [2,12].

Examples of hierarchical/fractal interlocks in biological systems
include sutural interlock on the carapace of red-eared turtle [40],
the cranial suture of a white-tailed deer (Fig. 1a), the sutures in
fossil ammonite [2] (Fig. 1b), the linking girdle of diatom (Fig. 1c),
and the seed coat of commonmillet [41]. It is known that the hier-
archical/fractal geometry is the key to achieve optimal mechanical
properties and function of these interlocks. However, it is not well
understoodwhy the cranial suture of human being develops froma
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simple straight line to a complicated zigzag pattern during growth
from infant to adult [14,42–44], why the complexity of ammonite
suture consistently increases within several mass extinctions [18],
and whether there is a limitation of geometry complexity in these
biological systems.

To address these questions, recently, composite mechanical
models of biological sutures with different waveforms were ex-
tensively explored [2,12,41,46–51]. The triangular tooth geometry
was proved to be the optimized geometry to maximize strength
and efficiency in load transmission [12,50,51]. Also, themechanical
properties have great sensitivity to geometric hierarchy [5,9,12,14,
46,48]. For examples, it was found that by increasing the number
of hierarchy, the overall stiffness, strength and fracture toughness
of hierarchical sutures can be tuned by orders ofmagnitude [41,48,
49,51].

In this investigation, the primary goal is to design Koch fractal
interlocking and explore the influences of number of hierarchy,
material properties, and geometric imperfection on the overall
mechanical properties of the designs. Design principles of fractal
interlocking will be developed, which will provide insights to
develop optimized design for joining similar/dissimilar materials
through topological interlocking.

2. Mechanical model and results

2.1. Design of Koch fractal interlocking

Fractal, named by Mandelbrot [3], as one of the youngest non-
Euclidean geometric concepts [52] which uses simple algorithms
to design complex forms. As one of the first mathematically de-
scribed fractals, Koch curve was proposed by Helge von Koch [53]
in 1904 as an example of a non-differentiable curve. It was gen-
erated via an iterated function system (IFS) with the number of
iteration defined asN. It is initiated (at zero iteration,N = 0) froma
linewith length of a0. In the first iteration (N = 1), themiddle a0/3
segment of the line is substituted by two segments of the same size
but are rotated up for 60◦ as shown in Fig. 1d and the total length
of the curve would be 4a0/3. In the similar manner, the total arc
length of Koch fractal in each order of hierarchy N can be defined
as LN = a0 (4/3)N .

Thus, to satisfy the definition of Koch fractal, the smallest sec-
tion length aN of the Nth order Koch curve is related to a0 and N
as:

aN =
a0
3N . (1)

Then, the total arc length LN of the Nth order Koch curve is related
to a0 and N as:

LN = 4NaN = a0 (4/3)N . (2)

Eq. (2) shows that the total arc length LN experiences exponential
growth with N. Full differentiation of Eq. (2) gives:

dLN =
∂LN
∂a0

da0 +
∂LN
∂N

dN, (3)

Eqs. (1)–(3) yield:

dLN =

(
4
3

)N

da0 + ln
4
3
LNdN = LN (

da0
a0

+ ln
4
3
dN), (4)

Eq. (4) shows that the growth rate of LN is actually proportional
to the current value of LN , indicating the exponential growth of LN
with N.

In applying the Koch fractal concept in practical design, imper-
fections are introduced to disturb the ideal curve. For example, in
order to avoid potential stress concentration at the tooth tips, all
tips were rounded by radius rN (shown in Fig. 1d and e). To ensure

self-similarity, rN is a function of N through rN = caN (0 < c < 1).
Also, A small gap g between the two boundaries from the top and
bottom pieces was introduced, as shown in Fig. 1e. To define g,
first the Koch curve was rounded with radius r and then offset by
g and defined the top part of Koch layer. Therefore, the geometry
of the Koch fractal interlocking is determined by four independent
geometry parameters: a0, N, g, c in addition to friction coefficient
µ.

2.2. Mechanical experiments on 3D printed specimens

Specimens of Koch fractal interlocking of N = 2, 3 and 4 and
with g = 0.2 mm, and rN = 0.07aN were designed and 3D printed
via amulti-material 3Dprinter (Objet Connex260). Themajor parts
of the specimens were printed as VeroWhite and are shown in
Fig. 2a. In order to accurately control the gap between the top and
bottom pieces of the specimen, and facilitate the alignment of the
two pieces, a soft rubbery material (TangoBlackPlus) was initially
printed between the small gap of the specimen, so that the two
pieces are well positioned. Quasi-static mechanical experiments
were performed (with details provided inMethods section) under
uni-axial tension. For repeatability, for each N, three identical
specimens were printed and tested. The load–displacement curves
of the three designs are compared in Fig. 2b (the thickness of the
curves represents the variation from the three different tests for
each N).

Fig. 2b shows that generally, each curve has two peaks. The
first load drop after the first peak indicates the failure of the soft
adhesive layer. The effects of the layer properties on the first peak
were studied via systematic FE simulations in [54]. Then after the
layer fails, the designs gain strength via fractal-induced contact
and interlocking. After the second peak, the design starts to lose
interlocking. Also, it can be seen that whenN increases, both peaks
increase. The second peak increases more dramatically with more
improvement from N = 2 to N = 3 than from 3 to 4. Fig. 2c shows
the interlocking between teeth at different levels for different Ns.

The damage of the adhesive layer dominates the behavior of the
first peak, while the fractal interlocking is the dominant mecha-
nism for the secondpeak. To focus onunderstanding themechanics
of Koch fractal contact and interlocking, for Koch fractal interlock-
ingwithN = 2, 3 and4, 3D FEmodelswith gaps instead of adhesive
layer were developed. Elasto-plastic material model was used for
VeroWhitePlus (details are provided in the Methods section). By
using the friction coefficient µ = 0.01 in all simulations, the
FE results of the three designs captures the second peak of the
experimental curves, as shown in Fig. 3a.

The FE results of the contact areas of the three cases are also
output as functions of the overall displacement δ and are compared
in Fig. 3b. The evolution of the contact area for the Koch fractal
interlocking indicates three stages in deformation: Stage I (δ< g),
in this stage, no contact happens due to the small gap g; Stage II
(g <δ<

g
cos 60◦ = 2g), only some of the flat surfaces from the

top and bottom pieces are in contact; Stage III (δ> g
cos 60◦ = 2g),

some slant surfaces are also in contact. For the case of N = 2, only
slant surfaces are in contact, so the force is zero in both Stages
I and II, suddenly increases to a certain number when entering
into Stage III. For the cases of N = 3 and 4, the contact area
suddenly increases to a non-zero value when entering into Stage
II, but gradually increases from Stage II to Stage III. This is because
of the deformation of teeth. If the teeth are ideally rigid, a sudden
increase in contact area is also expected when entering Stage III.

The FE contours of von Mises stress for the three cases at two
different overall displacements (δ = 0.15 mm, and δ = 0.35 mm)
are shown in Fig. 3c. It is shown that the loads concentrate around
the area of contact and when N increases, the loads are more
uniformly distributed along the fractal interface.
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Fig. 1. Examples of hierarchical interlocking in nature: (a) cranial sutures in deer’s skull, (b) ammonite suture [2] (c) diatom linking girdles [45], (d) Koch fractal design for
N = 0, 1, 2 and 3, and (e) some details of the Koch fractal interlocking.

Fig. 2. (a) The joining zone of 3D-printed specimens with adhesive layer with g = 0.2 mm, rN = 0.07aN ; (b) experimental force-strain/displacement response of Koch
fractal contact model with an adhesive layer (TangoBlackPlus); and (c) the failed/deformed specimens shown in different stages of contact.

Fig. 3. (a) Comparison between FE models and experimental results. (b) contact area-displacement is shown when N = 2, 3 and 4. (c) FE contours of von Mises stress at
stages II and III for N = 2, 3 and 4.
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2.3. Mechanics for Koch fractal contact/interlocking

Based on the experimental and FE results, to further quantify
the mechanical behavior of Koch fractal interlocking. Analytical
mechanical model of the Koch fractal contact/interlocking is de-
veloped in this section.

Contact between flat and slant surfaces. The load bearing capacity
of fractal interlocking for different Ns is achieved via contact along
the boundaries of the top and bottom pieces. The representative
volume element (RVE) of each N is shown in Fig. 4a. The RVEs
for different Ns have the same width w and the same amplitude
L. Since the fractal boundary is composed of flat (in blue) and slant
(in red) segments, as shown in Fig. 4b (N = 3, as an example), the
fundamental contactmechanism is the contact between twopieces
with a flat contact surface, and a slant contact surface. Specifically,
for Koch fractal contact, the slant contact surface forms a 60 degree
angle with the horizontal direction, as shown in Fig. 4b.

The geometric model and the free body diagram for the basic
contact problem with slant surface is shown in Fig. 4b, where the
length of the model is L (it is the same as the amplitude of the
Koch fractal design, as shown in Fig. 4a), the length of the slant
surface is a and the angle between the slant surface and horizontal
direction is 60 degrees. A local coordinate n − t is defined with
t-axis along the contact surface, and n-axis normal to the contact
surface. Assume the far-field compressive force is Fs , and the
contact-induced normal force on the contact surface is Fn, and the
tangential force on the contact surface is Ft , the equilibrium of the
top piece yields:

Fs = Fn cos 60◦
+ Ft sin 60◦. (5)

By defining fs, fn and ft as forces per unit length and based on the
Coulomb’s law of friction, Eq. (5) can be rewritten as:

fs = fn (1 + µ tan 60◦) . (6)

whereµ is the static/kinetic friction coefficient. The normal deflec-
tion δn around the contact area is related to the overall displace-
ment δs at the boundary as:

δn = δs cos 60◦. (7)

Thus, by assuming linear elastic constitutive behavior, the far-field
traction–displacement relation fs −δs can be obtained via the local
normal traction–displacement relation fn − δn in the contact area
as:

fs = kn (1 + µ tan 60◦) cos 60◦δs, (8)

where kn = E t
L , in which L is the length of the model of a flat

segment, t is the out of plane thickness and E is the Young’s
modulus of the base material. This model was derived under the
assumption that there is no relative sliding between the slant
surfaces in contact, so that the overall load–displacement behavior
is the same as that of the bulk material of each piece.

By hierarchically applying this basic contact model for slant
surfaces with no relative sliding via the Koch geometry, a theoret-
ical model to predict the overall traction–displacement relation of
Koch interlocking can be derived. Assume the vertical force applied
at the boundaries of theNth order Koch fractal interlock is F (N), the
force–displacement relations of the three stages can be expressed
as:

Stage I : F (N) = 0; δ < g (9)

Stage II : F (N) = fna′
N nc[N]

f ; g < δ < 2g (10)

Stage III : (N) = fsa′
N nc[N]

s + fna′
Nn

c[N]

f ; δ > 2g (11)

where , nc[N]

f and nc[N]

s are the number of flat and slant segments in
contact, respectively. nc[N]

f and nc[N]

s will be determined hierarchi-
cally as the following. a′

N is the contact length of one segment for

Koch fractal interlocking at hierarchy N. For the ideal Koch fractal
geometry (i.e. g = rN = 0), a′

N = aN ; for cases with non-zero g
and rN , a′

N is determined by aN , g and c (details are provided in the
supporting information S2).

Determine contact area via self-reproducing mechanism. Due to
the self-similarity of Koch fractal geometry, for Koch curves with
N > 2, the geometry can be decomposed into six units with the
geometry of N = 1 rotating counter-clockwise to the horizontal
direction with six different angles (0◦, +60◦/−60◦, +120◦/−120◦

and 180◦), as shown in Fig. 5a. The six units (each color represents
one unit) are shown in Fig. 5b, named as units S0◦ , S60◦ , S±60◦ S±120◦ ,
S180◦ , respectively. Due to symmetry, S+60◦ and S−60◦ behave the
same, and S+120◦ and S−120◦ behave the same. Therefore, total four
categories of units exist (Fig. 5b).

According to this categorization, Koch fractal with order N can
be decomposed into units S0◦ , S60◦ , S120◦ , S180◦ . Thus, a vector m[N]

can be defined, representing the number of each unit in the Nth
order RVE is x, y, z and k, respectively, i.e.

m[N]
=

⎡⎢⎣x
z
y
k

⎤⎥⎦
[N]

. (12)

Fig. 5b shows that from N − 1 to N hierarchy, each S0◦ section will
generate two S0◦ sections, and two S60◦ sections, but no S120◦ and
S180◦ segments; each S60◦ sectionwill generate one S0◦ section, two
S60◦ sections, and one S120◦ section; each S120◦ sectionwill generate
one S60◦ section, two S120◦ sections, and one S180◦ section; and
each S180◦ section will generate two S120◦ sections and two S180◦

sections in [N] order hierarchy. Thus, due to self-similarity, the
iterative relation of the number of each section at two neighboring
hierarchies can be related via a reproducing matrix R as:

m[N]
= Rm[N−1], where R =

⎡⎢⎣2 1 0 0
2 2 1 0
0 1 2 2
0 0 1 2

⎤⎥⎦ . (13)

By taking the first row as an example,matrixRmeans that S0◦ units
in N hierarchy are generated from S0◦ and S60◦ in N − 1 hierarchy,
with two from S0◦ , one from S60◦ and none from S120◦ and S180◦ , as
gives the first row of R as (2, 1, 0,0).

Among all flat and slant segments, only some of them are
in contact/interlocking. We define a vector nc to represent the
number of segments in contact as:

nc[N]
=

[
nc
f

nc
s

][N]

, (14)

where, nc
f and nc

s represent the numbers of flat and slant segments
in contact, respectively.

Thus, the total number of flat and slant segments in contact can
be determined via a contact matrix C as:

n[N]
= Cm[N], where C =

[
0 0 1 2
0 1 2 2

]
. (15)

Fig. 5c clearly explains that each S0◦ unit does not generate any
segments in contact under uniaxial tension; each S60◦ unit only
generates one slant segments in contact; each S120◦ unit generates
one flat and two slant segments in contact; and each S180◦ unit
generates two flat and two slant segments in contact.

Based on Eqs. (1)–(15), the effective load–displacement behav-
ior of Koch fractal interlocking with all different parameters can be
predicted. By taking the case ofN = 3 as an example, the influences
of the small gap g and friction coefficient µ on the overall force
(F ) and displacement (δ) relation are quantified via the theoretical
model. Fig. 6a shows that for the perfect model of g = r = µ = 0,
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Fig. 4. (a) Geometry of Koch fractal interlocking with gaps for N = 2, 3 and 4; (b) categorizing slant (red) and flat (blue) segments for N = 3 case; (black and white arrows
show slant and flat segments in contact, respectively), and the free body diagram of the top piece of a pair of slant segments in contact . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. (a) The six units (four categories represented by four colors) with N = 1 geometry S0◦ , S60◦ , S120◦ , S180◦ , S−120◦ , S−60◦ , rotating counter-clockwise to the horizontal
direction as 0◦ , 60◦ , 120◦ , and 180◦ , respectively; (b) reproducing process of each category of units S0◦ , S60◦ , S120◦ , S180◦ in [N]th level from units in [N − 1]th level; and (c)
the number of segment in contact in each category of units. (nc

f and nc
s represent the numbers of flat and slant segments in contact, respectively.)

the load–displacement curves start from (0, 0) point. For the cases
of g > 0, the curves show three stages: Stage I, δ < g, the curve is
with zero stiffness; Stage II, 2g < δ < g; and (3) Stage III, δ > 2 g.
Fig. 6a also shows thatwhen g increases, not only the contact of flat
and slant segments is delayed, the slopes of the force displacement
curves at stages II and III also decrease. To calculate the effective
stiffness, the slope of force–displacement curve is converted to the
slope of stress–strain curve by using initial area (w) and initial
amplitude (L) of one Koch RVE (Fig. 4a). So that stiffness EII and
EIII of Stage II Stage III can be obtained, respectively.

To evaluate the effect of friction coefficient µ, the overall load–
displacement curves for the cases of N = 3, g = 0.1 mm and
rN = 0 with different friction coefficient µ = 0, 0.1, 0.2 and 0.3
are plotted in Fig. 6b. It can be seen that when µ increases, the
slopes at Stage II are barely influenced, while the slopes at Stage III
slightly increases. This confirms the fact that the contact between
flat surfaces is independent of friction coefficient µ. However,
the contact of slant surfaces (Stage III) depends on µ. When µ
increases, contact force also increases.

The influences of N and gap g on the effective stiffness of the
two contact stages are also studied via the analytical model. Fig. 7a
shows that when g = 0, as N increases, theoretically, the effective
slope of force–displacement always increases. In this case, there

is only one recognizable stage for contact mechanism (which is a
combination of Stages II and III together) because that both flat and
slant segments are in contact from the very beginning.

However, in reality, g cannot be zero. Fig. 7b shows that for the
cases of µ = 0.1, g = 0.1 mm, and rN = 0.15aN (i.e. c = 0.15),
when N < 5, the initial slopes of F–δ curve increases with N; when
N increases beyond 4, the slope starts decreasing and eventually
becomes zero when N increases beyond 5. This is because that
for non-zero g values, when N increases beyond a critical value,
the contact area starts to decrease and eventually goes to zero
due to loss of contact/interlocking, as illustrated in Fig. S2 of the
supporting material S2. This effect is quantified by Eqs. S2.1–S2.4.
For example, as shown in Fig. 7c, when g increases to 0.2 mm,
according to the geometry and these equations, when N increase
from 4 to 5, the contact area of the flat segments af decreases, as
leads to the decrease of the slope of the load–displacement curve.
Also, when N increase from 3 to 4 and beyond, the contact area
of the slant segments as vanishes, therefore, from stage II to stage
III, no change in slope is observed for the cases of N = 4 and
beyond. It can be concluded that the gap g plays a significant role
in determining the contact behavior of Koch fractal interlocking.

The theoretical prediction results indicate that the number of
hierarchy N and the imperfection g are both very important for
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Fig. 6. Influence of (a) gap g and (b) friction coefficient µ on the mechanical response of Stages II and III for case N = 3 (the results shown are from the analytical model).

Fig. 7. Analytical prediction of the force displacement responses of Koch fractal interlocking with different orders of hierarchyN when (a) g = 0, (b) g = 0.1mm (c) g = 0.2
mm. Each shaded area corresponds with one contact/interlocking stage.

the mechanical properties of the Koch fractal interlocking. Based
on the theoreticalmodel, the influences ofN on the overall stiffness
of EII and EIII of the fractal interlocking at Stages II and III are plotted
in Fig. 8a and c. To support themodel prediction, FE results are also
shown in Fig. 8a and c. It was found that EII and EIII are functions of
N, g, c and µ. The system of Eqs. (1)–(15) provides a scaling law to
predict the influences of these parameters on EII and EIII .

Fig. 8a shows that the influence of g on thenon-dimensionalized
effective stiffness of Stage II, EII

E for different N values, where E is
the Young’s modulus of the base material (VeroWhitePlus). The
solid black curve indicates the stiffness of the perfect systemof g =

0 and r = 0. It provides the upper limit of the effective stiffness
for Koch contact for each N. For the perfect system, EII = EIII , and
they always increase with N. However, for any g > 0, and/or c >
0, there is a critical value of Ncr for each stage, when N ≥ Ncr , the
top and bottom piece will lose contact and have a zero stiffness.
For example, for the cases shown in Fig. 8c, when g = 0.1 mm,
Ncr = 6, and when g = 0.2 mm, Ncr = 5.

Fig. 8b shows an enlarged plot of Fig. 8a, when g changes from
0.01 to 0.1 mm. The figure shows that in this range, the stiffness
changes more dramatically. It also shows that in Stage II, when
g increases from 0.01 mm to 0.1 mm, Ncr decreases from 6 to 4.
Also, in Stage II, the theoretical predictions of EII are very consistent
with FE results; while in Stage III, the FE results of EIII are lower
than the theoretical prediction. This is due to the increasing in
local deformation, such as the relative sliding between the slant
surface and the bending of the small teeth in different hierarchies,
which are not considered in the analytical model. Interestingly,
when N increases from 3 to 4, the accuracy of analytical prediction
increases. This is because that the local deformation for the case of
N = 4 is smaller than that of N = 3, as was shown in Fig. 3c.

3. Conclusion and discussion

In summary, Koch fractal contact and interlocking were de-
signed and fabricated via 3D printing. Through an integrated
theoretical-numerical-experimental approach, we conclude that
for Koch fractal interlocking, in order to reach optimal mechanical
properties under desired design objectives, the geometric param-
eters N and gap g should be wisely and judiciously chosen. In
general, for a perfect system, stiffness, strength and toughness
increases when N increases. For a certain geometric imperfection,
there is an optimal N for maximum overall stiffness.

Being consistent with the observation of fractal interlocks in
nature, we demonstrated that in general the stiffness of the inter-
locking can be effectively increased via fractal design. In general,
when the fractal complexity (it is specifically represented as num-
ber of hierarchyN in the present Koch fractal design) increases, the
stiffness of the fractal interlocking will increase significantly [2].
This is mainly attributed to the increase in contact area when
fractal complexity increases. However, the mechanical responses
of fractal interlocks are also sensitive to imperfections, such as
the gap between the interlocked pieces. When fractal complexity
increases, the mechanical properties will become more and more
sensitive to the imperfection and eventually, the negative influ-
ences from imperfection can even become dominant. Therefore, it
is expected that considering the imperfection, there is an optimal
level of fractal complexity to reach the maximummechanical per-
formance [54]. This is again in consistent with fractal interlocking
in all different biological systems.

Due to the imperfection sensitivity of fractal design, the chal-
lenges of applying fractal design in engineering system are the
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Fig. 8. (a) Influences of gap g on non-dimensionalized effective stiffness in Stage II; (b) enlarged plot of Figure (a) when g changes from 0.01 to 0.1mm; and (c) the influences
of gap g on non-dimensionalized effective stiffness in Stage III. (The solid black curves represent the ideal case of g = 0 and r = 0which is the upper limit of effective stiffness
for Koch contact for each N.)

complexity and accuracy in manufacturing. Additive manufactur-
ing provides an opportunity to overcome these challenges and
enable potential wide application of the concept of fractal design.

4. Methods

Experiments. All specimenswere fabricated via amulti-material 3D
printer (Objet Connex260). Two elastomers VeroWhitePlus (VW+,
a hard acrylic plastic) and TangoBlackPlus (TB+, soft rubbery ma-
terial) were used to fabricate the top/bottom pieces and interfacial
layer (gap), respectively.

The dimensions of the specimens of Koch fractal interlocking
are: the out of plane thickness is 4 mm, gap g = 0.2 mm, width of
fractal zone a0 = 54mm, the tooth tip radius rN = 0.07aN (i.e. c =

0.07), the width of all specimens is w = 75 mm and total height
of all specimen is H = 210 mm. Then the specimen was mounted
on the Zwick material testing machine. Quasi-static load control
experiments were performed with the uni-axial tensile loading
rate of 0.024 mm/min.

Numerical simulations. All FE models were developed in ABAQUS
/CAE V 6.13 (Simulia, USA) software. All FE simulations were per-
formed in ABAQUS/Explicit. Both 2D and 3D FEmodels of the three
specimens (N = 2, 3 and 4) were developed. For 2D models,
quadrilateral plane stress elements (CPS4R) with reduced integra-
tion points were used. For 3D models, eight-node brick elements
(C3D8R) with reduced integration point were used.

In all FE models, hard contact, with penalty algorithm was
defined. Friction coefficient of µ = 0.01 was used. The hard phase
was modeled as elasto-perfectly plastic material with Young’s
modulus E = 1700 MPa, Poisson’s ratio υ = 0.33, yielding
strength of σ = 32 MPa and density of ρ = 1.1e−3 kg/mm3.
The adhesive layer is with the Young’s modulus E = 2 MPa,
Poisson’s ratio υ = 0.4, and ultimate strength σ = 0.7 MPa.
These parameters were obtained from the mechanical experiment
of the 3D printed material (details are provided in the Supporting
information S1.). More information about the mechanical models
and model parameters of the 3D printed materials can be found
in [55–58].

Acknowledgments

Thisworkwas supported byNational Science Foundation (NSF),
USA under grant CMMI-1362893, US Air Force Office of Scientific
Research (AFOSR), USA under grant FA9550-16-1-0011. The au-
thors also acknowledge valuable comments from Professor James
Barber at the University of Michigan, Ann Arbor.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.eml.2018.09.003.

References

[1] U.G. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural
materials, Nat. Mater. 14 (1) (2015) 23.

[2] Y. Li, C. Ortiz, M.C. Boyce, Bioinspired,mechanical, deterministic fractalmodel
for hierarchical suture joints, Phys. Rev. E 85 (3) (2012) 031901.

[3] B.B. Mandelbrot, The fractal geometry of nature (Vol. 1), WH freeman, New
York, 1982.

[4] F. Barthelat, Biomimetics for next generation materials, PPhil. Trans. R. Soc. A
365 (1861) (2007) 2907–2919.

[5] F. Barthelat, H. Tang, P.D. Zavattieri, C.M. Li, H.D. Espinosa, On themechanics of
mother-of-pearl: a key feature in the material hierarchical structure, J. Mech.
Phys. Solids 55 (2) (2007) 306–337.

[6] F. Barthelat, Nacre from mollusk shells: a model for high-performance struc-
tural materials, Bioinspiration & Biomimetics 5 (3) (2010) 035001.

[7] W.B. Saunders, D.M. Work, S.V. Nikolaeva, Evolution of complexity in paleo-
zoic ammonoid sutures, Science 286 (5440) (1999) 760–763.

[8] E.G. Allen, Understanding ammonoid sutures: new insight into the dynamic
evolution of paleozoic suture morpholog, in: Cephalopods Present and Past:
New Insights and Fresh Perspectives, Springer, Dordrecht, 2007, pp. 159–180.

[9] R.A. Hewitt, G.E. Westermann, Mechanical significance of ammonoid septa
with complex sutures, Lethaia 30 (3) (1997) 205–212.

[10] J.S. Kwak, T.W. Kim, A review of adhesion and friction models for gecko feet,
Int. J. Precis. Eng. Manuf. 11 (1) (2010) 171–186.

[11] T.M. Lutz, G.E. Boyajian, Fractal geometry of ammonoid sutures, Paleobiology
21 (3) (1995) 329–342.

[12] Y. Li, C. Ortiz, M.C. Boyce, A generalized mechanical model for suture inter-
faces of arbitrary geometry, J. Mech. Phys. Solids 61 (4) (2013) 1144–1167.

[13] P.Y. Chen, A.Y.M. Lin, Y.S. Lin, Y. Seki, A.G. Stokes, J. Peyras, J. McKittrick,
Structure and mechanical properties of selected biological materials, J. Mech.
Behav. Biomed. Mater. 1 (3) (2008) 208–226.

[14] T. Miura, C.A. Perlyn, M. Kinboshi, N. Ogihara, M. Kobayashi-Miura, G.M.
Morriss-Kay, K. Shiota, Mechanism of skull suture maintenance and interdig-
itation, J. Anat. 215 (6) (2009) 642–655.

[15] J. Gibert, P. Palmqvist, Fractal analysis of the orce skull sutures, J. Human Evol.
28 (6) (1995) 561–575.

[16] M.M. Khoshhesab, Y. Li, The strength of dissimilar fractal joints, ASME/IMECE
Proceeding. (2016) Paper number 66830.

[17] I.M. Rian, S. Asayama, Computational design of a nature-inspired architectural
structure using the concepts of self-similar and random fractals, Autom.
Constr. 66 (2016) 43–58.

[18] L. Wang, J. Lau, E.L. Thomas, M.C. Boyce, Co-continuous composite materials
for stiffness, strength, and energy dissipation, Adv. Mater. 23 (13) (2011)
1524–1529.

[19] https://en.wikipedia.org/wiki/Fractal.
[20] D. Stoyan, H. Stoyan, Fractals, random shapes, and point fields: methods of

geometrical statistics (Vol. 302), John Wiley & Sons Inc, 1994.
[21] Y. Li, C. Ortiz, M.C. Boyce, Stiffness and strength of suture joints in nature,

Phys. Rev. E 84 (6) (2011) 062904.

https://doi.org/10.1016/j.eml.2018.09.003
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb1
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb1
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb1
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb2
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb2
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb2
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb3
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb3
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb3
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb4
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb4
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb4
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb5
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb5
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb5
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb5
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb5
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb6
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb6
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb6
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb7
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb7
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb7
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb8
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb8
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb8
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb8
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb8
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb9
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb9
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb9
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb10
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb10
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb10
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb11
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb11
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb11
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb12
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb12
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb12
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb13
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb13
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb13
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb13
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb13
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb14
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb14
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb14
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb14
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb14
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb15
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb15
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb15
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb16
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb16
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb16
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb17
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb17
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb17
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb17
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb17
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb18
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb18
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb18
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb18
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb18
https://en.wikipedia.org/wiki/Fractal
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb20
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb20
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb20
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb21
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb21
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb21


M.M. Khoshhesab, Y. Li / Extreme Mechanics Letters 24 (2018) 58–65 65

[22] H.W. Chung, Y.H. Huang, Fractal analysis of nuclear medicine images for
the diagnosis of pulmonary emphysema: interpretations, implications, and
limitations, Am. J. Roentgenol. 174 (4) (2000) 1055–1059.

[23] B. Spehar, C.W. Clifford, B.R. Newell, R.P. Taylor, Universal aesthetic of fractals,
Comput. Graphics 27 (5) (2003) 813–820.

[24] J.H. Brown, V.K. Gupta, B.L. Li, B.T. Milne, C. Restrepo, G.B. West, The fractal
nature of nature: power laws, ecological complexity and biodiversity, Philos.
Trans. R. Soc. B 357 (1421) (2002) 619–626.

[25] A. Jacquin, An introduction to fractals and their applications in electrical
engineering, J. Franklin Inst. B 331 (6) (1994) 659–680.

[26] J.W. Baish, R.K. Jain, Fractals and cancer, Cancer Res. 60 (14) (2000) 3683–
3688.

[27] M. Monsef Khoshhesab, Master thesis. Design, mechanical modeling and 3D
printing of Koch fractal contact and interlocking, 2017.

[28] Y. Estrin, A.V. Dyskin, E. Pasternak, H.C. Khor, A.J. Kanel-Belov, Topological
interlocking of protective tiles for the space shuttle, Philos. Mag. Lett. 83 (6)
(2003) 351–355.

[29] K.L. Mittal, The role of the interface in adhesion phenomena, Polym. Eng. Sci.
17 (7) (1977) 467–473.

[30] R. Raj, M.F. Ashby, On grain boundary sliding and diffusional creep, Metall.
Trans. 2 (4) (1971) 1113–1127.

[31] I.A. Malik, M. Mirkhalaf, F. Barthelat, Bio-inspired ‘‘jigsaw"-like interlocking
sutures:Modeling, optimization, 3D printing and testing, J. Mech. Phys. Solids
102 (2017) 224–238.

[32] M.M. Khoshhesab, Y. Li, Mechanical modeling of fractal interlocking.
ASME/IMECE Proceeding. Paper number 71845, 2017.

[33] L. Djumas, A. Molotnikov, G.P. Simon, Y. Estrin, Enhanced mechanical per-
formance of bio-inspired hybrid structures utilising topological interlocking
geometry, Sci. Rep. 6 (2016) 26706.

[34] M. Mirkhalaf, F. Barthelat, Design, 3D printing and testing of architectured
materials with bistable interlocks, Extreme Mechanics Lett. 11 (2017) 1–7.

[35] P. Fratzl, O. Kolednik, F.D. Fischer, M.N. Dean, The mechanics of tessellations–
bioinspired strategies for fracture resistance, Chem. Soc. Rev. 45 (2) (2016)
252–267.

[36] F. Barthelat, H. Tang, P.D. Zavattieri, C.M. Li, H.D. Espinosa, On themechanics of
mother-of-pearl: a key feature in the material hierarchical structure, J. Mech.
Phys. Solids 55 (2) (2007) 306–337.

[37] Y. Zhang, H. Yao, C. Ortiz, J. Xu, M. Dao, Bio-inspired interfacial strengthening
strategy through geometrically interlocking designs, J. Mech. Behav. Biomed.
Mater. 15 (2012) 70–77.

[38] C. Gao, B.P. Hasseldine, L. Li, J.C.Weaver, Y. Li, Amplifying strength, toughness,
and auxeticity via wavy sutural tessellation in plant seedcoats, Adv. Mater.
(2018) 1800579.

[39] H. Tang, F. Barthelat, H.D. Espinosa, An elasto-viscoplastic interface model for
investigating the constitutive behavior of nacre, J. Mech. Phys. Solids 55 (7)
(2007) 1410–1438.

[40] S. Krauss, E. Monsonego-Ornan, E. Zelzer, P. Fratzl, R. Shahar, Mechanical
function of a complex three-dimensional suture joining the bony elements
in the shell of the red-eared slider turtle, Adv. Mater. 21 (4) (2009) 407–412.

[41] B.P. Hasseldine, C. Gao, J.M. Collins, H.D. Jung, T.S. Jang, J. Song, Y. Li, Mechani-
cal response of commonmillet (panicummiliaceum) seeds under quasi-static
compression: experiments and modeling, J. Mech. Behav. Biomed. Mater. 73
(2017) 102–113.

[42] S.W. Herring, Mechanical influences on suture development and patency, in:
Craniofacial Sutures (Vol. 12, 41-56), Karger Publishers, 2008.

[43] C.R. Jaslow, A.A. Biewener, Strain patterns in the horncores, cranial bones and
sutures of goats (Capra hircus) during impact loading, J. Zool. 235 (2) (1995)
193–210.

[44] A. Maloul, J. Fialkov, D. Wagner, C.M. Whyne, Characterization of craniofacial
sutures using the finite element method, J. Biomech. 47 (1) (2014) 245–252.

[45] http://westerndiatoms.colorado.edus.
[46] L. Liu, Y. Li, Failure mechanism transition of 3D-printed biomimetic sutures,

Eng. Fract. Mech. 199 (2018) 372–379.
[47] E. Lin, Y. Li, J.C. Weaver, C. Ortiz, M.C. Boyce, Tunability and enhancement of

mechanical behavior with additively manufactured bio-inspired hierarchical
suture interfaces, J. Mater. Res. 29 (17) (2014) 1867–1875.

[48] E. Lin, Y. Li, C. Ortiz, M.C. Boyce, 3D printed, bio-inspired prototypes and
analytical models for structured suture interfaces with geometrically-tuned
deformation and failure behavior, J. Mech. Phys. Solids 73 (2014) 166–182.

[49] E.E.S. Lin, Bio-inspired design of geometrically-structured suture interfaces
and composites, (Doctoral dissertation), Massachusetts Institute of Technol-
ogy, 2015.

[50] F. Barthelat, Z. Yin, M.J. Buehler, Structure and mechanics of interfaces in
biological materials, Nat. Rev. Mater. 1 (4) (2016) 16007.

[51] L. Liu, Y. Jiang, M. Boyce, C. Ortiz, J. Baur, J. Song, Y. Li, The effects of mor-
phological irregularity on themechanical behavior of interdigitated biological
sutures under tension, J. Biomech. 58 (2017) 71–78.

[52] P.J. Ryan, Euclidean and Non-Euclidean Geometry: An Analytic Approach,
Cambridge university press, 1986.

[53] Paul S. Addison, Fractals and Chaos: An Illustrated Course. Institute of Physics.
ISBN 0-7503-0400-6, 1997.

[54] R.H. Dauskardt, F. Haubensak, R.O. Ritchie, On the interpretation of the fractal
character of fracture surfaces, Acta Metall. Mater. 38 (2) (1990) 143–159.

[55] Y. Jiang, Y. Li, 3D Printed Auxetic mechanical metamaterial with chiral cells
and re-entrant cores, Sci. Rep. 8 (1) (2018) 2397.

[56] Y. Jiang, Y. Li, Novel 3D-printed hybrid auxetic mechanical metamaterial with
chirality-induced sequential cell openingmechanisms, Adv. EnergyMater. 20
(2) (2018) 1700744.

[57] Y. Jiang, Y. Li, 3D printed chiral cellular solids with amplified auxetic effects
due to elevated internal rotation, Adv. Energy Mater. 19 (2) (2017) 1600609.

[58] L. Liu, Y. Li, Predicting the mixed-mode I/II spatial damage propagation along
3D-printed soft interfacial layer via a hyperelastic softening model, J. Mech.
Phys. Solids 116 (2018) 17–32.

http://refhub.elsevier.com/S2352-4316(18)30117-2/sb22
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb22
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb22
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb22
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb22
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb23
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb23
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb23
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb24
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb24
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb24
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb24
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb24
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb25
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb25
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb25
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb26
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb26
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb26
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb28
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb28
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb28
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb28
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb28
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb29
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb29
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb29
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb30
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb30
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb30
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb31
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb31
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb31
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb31
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb31
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb33
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb33
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb33
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb33
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb33
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb34
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb34
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb34
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb35
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb35
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb35
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb35
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb35
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb36
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb36
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb36
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb36
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb36
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb37
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb37
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb37
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb37
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb37
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb38
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb38
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb38
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb38
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb38
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb39
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb39
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb39
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb39
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb39
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb40
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb40
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb40
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb40
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb40
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb41
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb41
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb41
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb41
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb41
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb41
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb41
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb42
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb42
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb42
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb43
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb43
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb43
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb43
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb43
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb44
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb44
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb44
http://westerndiatoms.colorado.edus
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb46
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb46
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb46
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb47
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb47
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb47
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb47
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb47
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb48
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb48
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb48
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb48
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb48
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb49
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb49
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb49
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb49
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb49
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb50
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb50
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb50
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb51
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb51
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb51
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb51
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb51
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb52
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb52
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb52
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb54
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb54
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb54
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb55
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb55
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb55
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb56
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb56
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb56
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb56
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb56
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb57
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb57
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb57
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb58
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb58
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb58
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb58
http://refhub.elsevier.com/S2352-4316(18)30117-2/sb58

	Mechanical behavior of 3D printed biomimetic Koch fractal contact and interlocking
	Introduction
	Mechanical Model and Results
	Design of Koch fractal interlocking
	Mechanical experiments on 3D printed specimens
	Mechanics for Koch fractal contact/interlocking

	Conclusion and discussion 
	Methods
	Acknowledgments
	Appendix A Supplementary data
	References


