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A B S T R A C T

In this paper, we formulate the generation of support structures for additive manufacturing as a topology op-
timization problem. Compared with usual geometric considerations based support structure design, this for-
mulation affords mechanistic meaning to the computed support structures. Moreover, our study reveals that the
topology optimization formulation generally leads to self-supporting designs without extraneous self-supporting
constraints. We show the generality of the procedure by computing supports for a variety of parts in both two
and three dimensions, including a complex model of the mascot of the University of Wisconsin-Madison. The
resulting support structures have been 3D printed, demonstrating that the computed designs can successfully be
used as supports.

1. Introduction

In recent years, additive manufacturing has become increasingly
important in several fields. A distinctive feature that made additive
manufacturing popular is its ability to produce complex parts easily and
with no part-specific fixturing or tooling. For this reason, additive
manufacturing is attractive, for instance, for producing parts obtained
from topology optimization, which are frequently of complex shape and
with internal voids.

On the other hand, some drawbacks of additive manufacturing exist
as well. Indeed, the very idea at the basis of additive manufacturing
consists in building a part layer by layer. This makes so that long
downward-facing surfaces need to be supported by some other structure
which will then have to be removed after the printing. These “support
structures” are thus made of sacrificial material which is basically
wasted (recycling is limited to a few times before needing re-poly-
merization) and their removal adds a post-processing step.

This problem can be handled in different ways, depending on
whether we can modify the part to print or not. In the first case, we can
try to modify parts by removing all overhangs which are not self-sup-
porting. This is, for instance, the trend that has been recently followed
by the topology optimization community. Thus, several manufactur-
ability constraints and filters have been introduced in topology opti-
mization frameworks to compute optimal designs which are free of non
self-supporting surfaces. Since the first work in this direction [1],
strategies to achieve manufacturability in a topology optimization
context have greatly evolved, allowing, for instance, to compute the

optimal design for arbitrary choices of the critical overhang angle. For
instance, [2] introduced an overhang constraint acting on the direc-
tional gradient of density along the build direction, allowing an arbi-
trary choice of both build direction and critical overhang angle. In [3],
instead, the constraint is based on the volume of the support structures,
while other approaches rely on filter-based overhang restrictions [4,5].
Overhang control has then also been analyzed in the framework of
shape optimization by [6]. Finally, it is worth citing also the first real
implementations of a overhang control procedure [7,8] as well as no-
table recent contributions like [9] and [10].

However, sometimes we may need to print a part with some given
specifics. In this case, we cannot modify the part to print. In this second
case, we are bound to use support structures. The drawbacks associated
with the use of supports are then handled by using as little support
material as possible and by making their subsequent removal easier. In
this regard, first it is important to choose a suitable orientation of part
building, so to reduce as much as possible the area of the surfaces
needing a support. This can be done, for instance, by the algorithm
presented in [11]. Then, several strategies can be used to reduce the
amount of material employed in building the supports. In this regard, it
is worth citing [12], where supports are made of cellular structures, and
[13], where supports are generated geometrically and are constituted
by tree-like structures which touch the surfaces to support in points
chosen by sampling. Finally, the interface between the support and the
part to print can be modified so to ease the removal of the support itself.
In this regard, tips can be added at the ends of the supports, as done, for
instance, also in [13].
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However, the procedures currently used to generate supports are
usually geometry based [14], do not have mechanistic meaning and are
likely not optimal in any sense. There are only a few exceptions in the
recent literature. For instance, in [15] supports are involved in a to-
pology optimization framework together with the part to build, but the
aim is not to optimize supports, but to find trade-off solutions ac-
counting of both performance of the part and costs of support structure.
Similar considerations can be made on [16], which includes also or-
ientation. In [17], the authors instead consider a multi-objective opti-
mization for support structures, introducing a repulsion index which is
used to ease the removal of the computed supports. However, the ap-
proach is analyzed only in 2D examples, the results appear to have not
self-supporting parts and the actual printability of the computed
structures is not verified.

We, on the other hand, present a simpler procedure which does not
rely on multi-objective optimization. Indeed, since easy removal acts
only at the interfaces between the support and the part to print, we can
simply modify these interfaces adding tips at the ends of the supports,
as mentioned above. We nonetheless formulate the generation of self-
supporting support structures as a topology optimization problem,
giving mechanistic meaning to the computed supports and exploiting
all the advantages associated with the use of topology optimization. We
analyze the computed supports in both 2D and 3D examples and we
actually 3D-print several computed structures, thus demonstrating their
printability. Moreover, we notice that the optimized supports usually
present the remarkable characteristic of being directly self-supporting,
without needing any extraneous overhang control. In rare cases where
this is not true, we can instead use the overhang constraints previously
outlined to ensure that the optimized supports are self-supporting, thus
bridging, in a way, the two approaches for handling overhangs that we
outlined above.

Thus, we compute supports that

• have direct mechanistic meaning. In particular, they are character-
ized by maximum stiffness for a given volume fraction;

• theoretically use less material than support structures generated by
the geometric approaches for achieving the same stiffness. In actual
computations, we may fall in a local minimum, but the optimization
procedure generally ensures better results than geometric-based
methods;

• are usually directly self-supporting, without extraneous self-sup-
porting constraints. In case the supports present critical overhangs,
manufacturability can nonetheless be ensured by overhang control
strategies recently introduced in topology optimization;

• have features compatible with the 3D printer's resolution by the use
of length-scale control.

We remark that, throughout the paper, topology optimization is
employed to optimize the support structure for a given design of the
end part. In the following, by “design” we then refer to the scaffold
structures generated by the topology optimization problem.

In Section 2 we outline formulate the topology optimization pro-
blem. In particular, first we outline the reasons how we choose loading,
boundary conditions and cost functional. All these choices are per-
formed by trying to reproduce the exact loading and boundary condi-
tions which occur while printing a part with some overhangs, while the
cost functional is chosen by considering what the main purpose of a
support structure is. Then, we present more rigorously the mathema-
tical formulation of the topology optimization problem, consisting in a
volume-constrained compliance minimization problem (or, analo-
gously, in a compliance-constrained volume minimization problem). An
interesting analogy with the topology optimization of bridges and of
roof supports can also be performed. The formulation of the problem is
indeed really similar (as it can be expected also from the similarity of
the roles performed by a roof support and by a support structure) with,
however, an important difference in the location of zero-displacement

boundary conditions which greatly affects the self-support nature of the
optimized designs.

We then introduce several test problems in both 2D and 3D domains
to demonstrate that this topology optimization problem can be suc-
cessfully used to compute supports in a variety of situations. We do this
in Section 3, which also contains some details on the implementation of
the optimization problems.

Section 4 is then devoted to a thorough analysis of a test problem in
a 2D rectangular domain. Experimental results are here presented to-
gether with mechanical considerations, including, for instance, an
analogy with transmissible loads. A remarkable feature of the computed
designs are their tree-like structural shapes which partially resemble
bridges, roof supports and the supports for additive manufacturing in
[13]. Interestingly, tree-like designs similar to the ones arising from our
optimization can be also commonly found in architecture in several
structures not coming from a topology optimization procedure, such as
Gothic ribbed vaults in the Medieval period or, more recently, branched
pillars like those of the Sagrada Familia in Barcelona or of many other
structures (e.g. see [18]). In this context, it is also worth to mention the
work on the structural meaning of tree-like structures by the architect
Frei Otto [18,19]. We also analyze self-support (discussing also when it
may not hold and the remedies), the influence of the maximum volume
fraction and of the aspect ratio of the domain, the effect of vertical zero-
displacement boundary conditions and cases with non-uniform loads.
Some remarks on length-scale control are given as well, noticing how
we can use minimum length-scale control to match the fineness of the
feature of the optimized design with the resolution of 3D printers.

In Section 5 we instead consider more complex examples, starting
from 2D curved domains. We then compute the optimized supports for
popular structures, such as the MBB beam and the cantilever beam.
Finally, we pass to analogous 3D examples, where particular attention
is devoted to extending this approach to the optimization of practical
3D support structures where large-scale computing is used. This allows
to compute supports characterized by fine features. We also 3D print
the computed results to demonstrate that the designs are self-sup-
porting and that they can indeed acts as support structures. We then
also compare the amount of material used for building the supports
with our strategy and with existing software.

In Section 6 we then optimize the support for a complex model of
the mascot of the University of Wisconsin-Madison. We use this as a
test-problem to show the ability of our procedure to compute support
structures for complex geometries. Here large scale optimization is
particularly relevant: some of the presented results have been obtained
performing the optimization with more than 1 billion variables.

Lastly, Section 7 concludes this work.

2. The topology optimization problem

To formulate the generation of support structures as a topology
optimization problem we must define:

• the design domain where the topology optimization is conducted;

• loading and boundary conditions;

• a cost functional.

In this section, we show how domain and loading/boundary con-
ditions can be deduced by the analysis of the structure that we want to
print. The cost functional, instead, must be a measure that tells us in
which sense the computed structure is “optimal”. Thus, it must have a
physical meaning which is consistent with the purpose of our optimi-
zation. After identifying all these components, we finally present a more
rigorous formulation of the topology optimization problem of our in-
terest.
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2.1. Outline of loading and boundary conditions

We now define loading and boundary conditions of the topology
optimization problem of our interest referring to a simplified setting,
which can then be easily generalized. Consider Fig. 1, which represents
a simple overhanging part that we may want to print. Suppose that the
orientation is provided and that the part must be printed along a given
build direction.

The supports will evidently be built in the zone underlying the part
to support. Thus, this “support zone” gives us directly the design do-
main.

Limiting ourselves to a purely mechanical optimization, the only
load which the support must withstand is given by the weight of the
part which must be supported. This is represented by a distributed load
on the top of the design domain.

Lastly, supposing, for simplicity, that the support structures can be
built only from the base where the part is being built, the boundary
conditions are given by a zero-displacement condition on the entire
bottom part of the domain.

The resulting design domain, together with loading and boundary
conditions, is represented on the right of Fig. 1.

As mentioned earlier, this simplified setting can be easily general-
ized. For instance, support structures may be built not only from the
printing plate, but also from non-overhanging regions which have al-
ready been printed. This could help to further reduce the amount of
material employed in the supports and it is also what happens, for in-
stance, every time the supports are located inside a hole of the part to
print. These cases can be easily reproduced simply by introducing a
zero-displacement boundary condition along all those boundaries
where the supports can be generated.

For instance, in the example in Fig. 1, supports may be generated
from the entire left side of the domain as well, attached to the vertical
boundary of the part in green. All this area is indeed printed before the
zone which needs the supports. If we want to allow this situation, we
can then add a zero-displacement boundary condition along the entire
left boundary.

2.2. Formulation of the problem

To choose suitable cost and constraints, we must consider that
limiting the amount of used material is of the utmost importance in the
design of support structures. Indeed, the supports are removed after
printing is complete and the material we employ in their construction
is, thus, ultimately wasted. Volume fraction must then be involved in
the formulation of the problem, as the cost functional or as a constraint.

Furthermore, we also need a mechanistic meaning consistent with
the purpose of sustaining the weight of overhanging regions. In parti-
cular, it is certainly desirable that the support structure is sufficiently
stiff to support the overhang without excessive deformations.

Taking into account these considerations, we can formulate two
optimization problems, depending on whether a maximum volume
fraction or a maximum compliance is given:

• if a maximum volume fraction is given, it is suitable to choose a
volume-constrained compliance minimization problem;

• conversely, if we are given a minimum required stiffness, we can
directly minimize the amount of wasted material by a compliance-
constrained volume minimization problem.

More formally, let Ω be the domain identified by the support zone
(e.g. the area bounded in blue in Fig. 1) and let Γ be its boundary.
Furthermore, let ΓD be the part of the boundary where the supports can
be built and let ΓN be the rest of the boundary. Given a prescribed
maximum volume fraction V or a prescribed maximum compliance C ,
we can consider the following optimization problems:

Volume constrained compliance minimization

∫

∫
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Compliance constrained volume minimization
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where γ is the density, V denotes the volume, u is the displacement
vector and E(γ) is the Young's modulus expressed by the SIMP method
[20,21]

= + −E γ E E E γ( ) ( ) ,p
min max min

where in this paper, we set p=3, Emax= 1 and Emin= 10−9.
Finally,

= ∇ + ∇ =σ u u u s uμ λI E γ( ) 2 Tr( ) ( ) ( ) (3)

where I is the identity matrix, ∇u represents the symmetric gradient
and μ, λ are the first and the second Lamé's parameters, respectively.
These parameters are dependent on the Poisson's ratio ν and on the
Young modulus E(γ), which is collected for clearness.

In both optimization problems, the state equation is provided with
the boundary conditions

=
=

u 0
s u n uE γ

on Γ
( ) ( )· on Γ ,

D

N N (4)

representing the loads and the zero-displacement conditions introduced
at the beginning of this section.

In the following, the cost is chosen to be the compliance and we thus
consider the problem (1). Indeed, volume-constrained compliance
minimization problems are vastly studied and comparisons with other
results in the literature are straightforward. Nonetheless, this does not
affect the generality of our analysis. Indeed, under mild hypotheses, we
can pass from the solution of a compliance minimization problem to
that of a volume minimization problem simply by a scaling [22,p. 88].
Thus, the presented results are equally applicable to a compliance-
constrained volume minimization problem as well.

Therefore, topology optimization of support structures can be for-
mulated by a well-known topology optimization problem, which is
nonetheless rich in mechanical meaning.

It is also worth noticing the similarity of this problem with com-
pliance minimization for bridges and of roof supports. As a con-
sequence, the support structures computed with our approach all pre-
sent tree-like structures resembling the famous roof supports computed
by topology optimization for the Qatar Convention Center [23], the
structures arising in topology optimized bridges (see, for instance, the
bridge problem analyzed in [24]) and other roof supports (e.g. see also
[25,26]). An important difference is however given by the position of
zero-displacement boundary conditions, which in bridges and roof

Fig. 1. Given a part to be printed (in green), a support structure
will be built in the “support zone” between the downward-facing
surfaces and the printing plate. This is also the domain where the
optimization will take place. The printing plate gives zero-dis-
placement boundary conditions along all the bottom of the do-
main, while the surface to support gives a distributed load along

the top.
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support typically involve only a few points of the boundary. On the
other hand, we here have zero-displacement boundary conditions on
large parts of the boundary. This means that in our case the pillars of
the “bridges” which support the overhangs can be placed everywhere
on the printing plate. This freedom in choosing the position of the
pillars, in turn, fosters an analogy with transmissible loads, which helps
explain why the computed supports are generally self-supporting, as
analyzed in the following.

In this context, it is also worth highlighting that we here limited
ourselves to the mechanical aspect of the problem: i.e. supporting the
weight of the build part. Indeed, it is indispensable that a support
structure successfully bears the overhanging layers of material before
their solidification. Nonetheless, non-mechanical factors, such as con-
sidering thermally conductive pathways to conduct heat in e.g. laser-
based processes, and for limiting deformations due to the build-up of
residual stress in the printed part, are also important in the design of
support structures. These additional factors will be studied in future
work.

2.3. Sensitivity analysis

For completeness, we now report also the sensitivity analysis of the
compliance minimization problem formulated above. In this regard, let
us introduce the spaces of trial and test functions, which, in a two-
dimensional case, are defined by

V = ∈ =u u uHTrial space: { [ (Ω)] : on Γ }D
1 2

0 (5)

V = ∈ =∼ u u 0HTest space: { [ (Ω)] : on Γ }.͠ ͠ D
1 2 (6)

We then multiply the state equation by V∈ ∼u͠ and integrate ap-
plying the given boundary conditions. In this way, we get the weak
form of the problem:

= ∇u s uJ E γ, ( ) ( ) Ω (7a)

V∇ = + ∀ ∈ ∼u s u u f u u uE γ, ( ) ( ) , ,͠ ͠ ͠ ͠NΩ Ω ΓN (7b)

≤γ V V, 1 / .Ω (7c)

Here 〈·, ·〉Ω and ·,· ΓN denote the l2-inner product on the domain and on
the Neumann boundary, respectively.

We can now define the optimality conditions of the problem. The
Lagrangian function L for the problem of minimizing the compliance
(7a) under the PDE constraint (7b) can be written as

L = ∇ + ∇ − −u s u v s u v f u vE γ E γ, ( ) ( ) , ( ) ( ) , , ,NΩ Ω Ω ΓN (8)

where V∈ ∼v is the Lagrange multiplier for the elastic equilibrium
equation (7b).

Imposing the first order optimality conditions, we then get the ad-
joint equation

L
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where Lu u; ͠ denotes the directional derivative of L with respect to u
along u͠ . Solving the adjoint equation for V∈ ∼v , we thus find the
adjoint variable.

It is then easy to compute the directional derivative of the
Lagrangian and of the integral constraints with respect to the design
variable γ along the test function γ͠t . Indeed, calling E′(γ)= p
(Emax− Emin)γp−1, we find

L = ∇ ′ + ∇ ′u s u v s uE γ γ E γ, ( ) ( ) , ( ) ( ) Cost sensitivity͠γ γ t; Ω Ω͠t

(10a)
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γ

V
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͠

γ γ
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Ω
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2.4. Formulation with PUP constraint

As already stated, in the problems of our interest usually we do not
need any extraneous overhang constraint to compute self-supporting
structures. Thus, the optimization problems introduced in the previous
subsections are sufficient to compute self-supporting support structures.

If this is not true, we can rely on one of the overhang constraints or
filters existing in the literature. In these cases, in this paper we use the
PUP constraint. Therefore, we here summarily describe the optimiza-
tion problem with this additional constraint. For details, the reader is
referred to [2].

The PUP formulation requires density filtering, here performed with
an Helmholtz PDE filter [27,28], and Heaviside filtering [29]. We de-
note the filtered density field by γ͠ . The PUP constraint is then defined
as

∫ ⎜ ⎟
⎛
⎝

∇
∇

− ⎞
⎠

∇ ≤b bH
γ
γ

α γ P· cos · dΩ
͠
͠

͠ αΩ 2 (11)

where b is the build direction, α is the critical overhang angle,

−∇
∇( )bH α· cosγ

γ
͠
͠ 2

is a shifted Heaviside projection of the undercut

perimeter and Pα is the maximum allowed projected perimeter.
Finally, the PUP formulation also includes a grayness constraint

∫ − ≤
V

γ γ1 4 (1 )dΩ ϵ͠ ͠
Ω (12)

where ϵ is the threshold to intermediate densities. This constraint is
needed to mitigate intermediate densities associated with the large
filter radius which is often required to avoid oscillations.

3. Implementation of the topology optimization problem

In the previous sections, we showed how topology optimization of
support structures can be formulated as a compliance minimization
problem. In order to demonstrate that the computed optimized designs
can indeed be used as supports, we now need to implement the to-
pology optimization problem. In this context, we here present a variety
of overhang situations, which we use to show the generality of our
approach. Lastly, we also present some details on the implementation of
the problems themselves.

3.1. Description of the test problems

We show the applicability of our approach to computing the support
structures for several different overhangs. In this regard, both 2D and
3D examples are considered.

Some relevant 2D problems are represented in Fig. 2. In particular,
Fig. 2a represents a simple 2D test problem in a rectangular domain.
Conceptually, it represents the situation already introduced in Fig. 1
and we use it in the next section to validate the procedure. Then, we
pass to more complex geometries. So, Fig. 2b represents a problem with
a curved overhanging boundary, where the arc is assumed to be self-
supporting up to an height of 0.3 times its radius (the boundary is in-
deed almost vertical in that zone). Finally, Fig. 2c represents a problem
corresponding to computing supports of a triangular hole such as the
one which arises in the MBB beam.

We perform 3D topology optimization of support structures as well.
Analogously to the 2D cases, we again consider various situations. In
particular, first we analyze optimized supports for a dome and for a 3D
MBB-beam. Then, we compute the support structures for a complex 3D
model of “Bucky Badger”, the mascot of the University of Wisconsin-
Madison. This complex part is represented in Fig. 3. This example in
meant to demonstrate the generality of our approach and its applic-
ability to printing complex real-world structures. Regarding orienta-
tion, the model is meant to be printed on its back, as in Fig. 3b. The
surface which needs to be supported is thus characterized by curved
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and tilted regions one next to the other. In order to simplify the defi-
nition of these forms, with no lack of generality we approximated the
back of Bucky by elementary functions, such as the surfaces of cylin-
ders, planes and spheres, as in Fig. 3c. Then, we defined the loads on
these surfaces and run the optimization.

Loads are uniform and set equal to one. Operatively, we integrate a
unitary, downward-facing load over the loaded boundaries represented
in Fig. 2. The Young's modulus of the material is set to 1 (and it is set to
10−9 in the void) and the Poisson's ratio is set to 0.3 for all problems. In
this context, it is nonetheless also worth remarking that the absolute
values of load and Youngs modulus are not important for generating the
support designs.

3.2. Details of the implementation

The 2-dimensional problems have been solved in the FEniCS fra-
mework [30,31] using the Method of Moving Asymptotes (MMA) as
optimizer [32] with standard parameters. The discretization has been
performed by T3 elements. In 2D problems without extraneous over-
hang constraints, we also controlled the minimum length-scale by a
robust filter (see [33]; for selection of filter size, the reader may instead
refer to [34]). This can be interesting since we can use length-scale
control to match the fineness of the features of the optimized support
with the resolution of any 3D printer. In the following, rf denotes the
filter radius characterized in terms of the number of elements involved
in the filtering, while r denotes the actual radius of the filter. The plot of
the results is provided directly by FEniCS and reported with no mod-
ification.

Fig. 2. Loading, boundary conditions and design domains of some 2D topology optimization examples.

Fig. 3. Model of the mascot of the University of Wisconsin-Madison viewed from the side where supports will be built (b) and approximation by smooth forms (c) to
simplify the implementation in TopOpt.
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Three-dimensional problems have been solved using the TopOpt
code in [35], which is an efficient, parallel C++ code for solving to-
pology optimization problems. These properties are particularly at-
tractive for dealing with the higher complexity of 3D problems. We
adapted the code to the domains and to the boundary/loading condi-
tions of the problems of our interest. We ran the optimization proce-
dures on the cluster of computers of the UW-Madison Center For High
Throughput Computing (CHTC). In this case, the discretization was
performed by hexagonal elements. The results of the optimization were
stored in.vtu files. The figures here reported and the.stl files used for
printing the results have been obtained by elaborating the.vtu files in
Paraview. The resulting topologies have been extracted using the “Iso
Volume” filter, filtering to solid all densities larger than 0.2 or 0.5,
depending on the problem.

4. Validation of the procedure: self-support and mechanical
considerations for a simple 2D example

In this section, we analyze the simple 2D problem represented in
Fig. 2a. For a first validation of the procedure, we consider a 3× 1
rectangular domain and analyze how the optimized structures evolve as
the maximum volume fraction is changed. In particular, as the max-
imum volume fraction is reduced, tree-like structures appear. After
commenting on these structures and introducing some mechanical
considerations, we consider what happens as we change the aspect ratio
of the domain. In this context, we observe that we again obtain tree-like
structures (which are characteristic also of all the other design domains,
as we will see in the following) and analyze the problem of self-support.
This is particularly important, since, as mentioned earlier, the opti-
mized support structures can be practically used only if, in turn, they do
not need other supports. We observe that, generally, self-support is
ensured directly by the nature of the problem. We substantiate this by
mechanical considerations and by an analogy with transmissible loads.
In case non self-supporting parts are present, we can instead exploit
existing tools for overhang constrained topology optimization. Indeed,
we can simply forbid critical overhangs by using some manufactur-
ability constraint, as we show later in this section. Finally, we also
consider more general settings of loading and boundary conditions, as
well as the effect of length-scale control.

4.1. Effect of the volume fraction

In topology optimization of supports, the ultimate purpose is to
compute the structure that optimally transfers the load from an over-
hanging region to the printing plate (or to some other part that has
already been printed). Let us consider a simplified 2D case where
supports can be built only starting from the printing plate and loads are
uniform. Then (considering, for simplicity and with no loss of gen-
erality, a domain oriented along the build direction) we always have a
distributed load which must be transferred from some upper boundary
to the bottom boundary of the domain itself, where the printing plate is
located. Thus, the ideal load transfer occurs along a straight line con-
necting the top region where the load is applied to the bottom of the
domain. If the load is applied to the entire top boundary, the optimal
support would then be a single straight pillar covering the entire do-
main.

Of course, the result of the optimization cannot be a completely full
structure when we impose a volume constraint as well. In this case,
some holes must appear. Let us then consider a 2D problem in a 3× 1
rectangular domain, like the one in Fig. 2a and see what happens as the
maximum volume fraction Vf is changed. The results, obtained dis-
cretizing the domain by 76,800 T3 elements, are reported in Fig. 4.
Starting with Vf=90%, we obtain the design in Fig. 4a, which is almost
completely full, as expected. As the volume constraint gets tighter,
more holes appear. In particular, at Vf=60% (Fig. 4c) the design is
characterized by three arcs separated by straight pillars. This design

does not change dramatically when the maximum volume fraction is
further reduced: of course, the arcs get wider, but we always get exactly
three arcs for all Vf≤ 60%. Then, in Fig. 4d start appearing some
branches, which become evident in Fig. 4e, corresponding to Vf=30%.
We therefore obtain tree-like support structures.

Here, trunks and branches play two different roles. Indeed, branches
connect zones at the top of the domain to other branches and, ulti-
mately, to a trunk, to which they transfer the load coming from a re-
latively small part of the boundary. Trunks are instead pillars with a
prevalently structural function, supporting the load coming from sev-
eral branches and transferring it directly to the printing plate.

Intuitively, we can already expect that the number of trunks cannot
get too small also when the maximum volume fraction gets really low.
Indeed,

• we always need some trunk to support the load coming from the
branches;

• structures with too few trunks would likely require more material.
Indeed, branches would need be really long to connect all the parts
of the top boundary to the nearest trunk;

• long branches would also transfer the load less efficiently. Indeed, if
the nearest straight trunk is far, they would be tilted more hor-
izontally than vertically.

This gives a first, intuitive explanation of why the computed
structures are generally self-supporting. Indeed, branches efficiently
transfer load only if they are not too tilted with respect to the build
direction. In particular, if they are tilted by an angle larger than 45°
with respect to the build direction, they are more horizontal than ver-
tical, while load must be transferred vertically, from top to bottom of
the domain. Therefore, since trunks can grow everywhere on the
bottom boundary, it is reasonable to think that the optimization will
place them so that branches are prevalently vertical. This is a major
difference with respect to usual topology optimization of bridges and
roof supports and highlights the importance of the chosen boundary
conditions.

Regarding self-support, we notice that horizontal regions can appear
at the top of the arches, but they are nonetheless short and can be
considered self-supporting, as demonstrated by 3D-printed examples
presented in the following sections. This appears even more so rea-
sonable considering that we do not need high surface quality in sup-
ports and that additive manufacturing is typically employed for printing
parts which are not excessively large. Nonetheless, if we had a large
domain and if we needed to reduce these horizontal parts, we could
always do so by increasing the volume fraction.

4.2. Effect of aspect ratio

The previous considerations apply also when the aspect ratio of the
domain is changed. Indeed, repeating the reasoning of the previous sub-
section, we can intuitively expect that the optimal structures will al-
ways have “enough” trunks (whose number depends on the aspect ratio
of the domain) and relatively short, mostly vertical branches. This is
confirmed by the results in Fig. 5, where the maximum volume fraction
is fixed at 30% and the aspect ratio of the design domain is changed. In
the following, we denote the horizontal space variable by x. The dis-
cretization has been performed using about the same number of T3
elements as in the 3× 1 domain (76, 800). Small variations in the
number of elements were however unavoidable as the aspect ratio was
changed.

Again, in all cases we obtain tree-like structures and they appear to
be self-supporting. As the aspect ratio is changed, the number of arcs
and pillars changes, but the general design remains the same. This
substantiates the claim that the optimized structures are generally self-
supporting and the number of arcs which appear in the various cases
confirms the considerations made in the previous subsection.
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Moreover, we can also perform an analogy with transmissible loads.
In problems with transmissible loads, the aim is to optimize with re-
spect to the position of the load as well. Indeed, in these problems, the
precise location of the load is variable: only the magnitude of the load
and the line along which it acts are given. Thus, it is as if were com-
puting an optimal structure while letting the optimization find the best
position of the load along its line of action. This case has been ex-
tensively studied, in rectangular domains, in [36]. In particular, the
authors found that the optimal solution for minimum compliance of a
central point-load is a “triangle” whose sides form a 45° angle with the
direction along which the load is applied. In case of distributed load,
more similar to the cases of our interest, the optimization leads to an
analogous parabolic arch structure.

In the problems of our concern, the load is fixed, but we have zero-
displacement boundary conditions all over the bottom boundary of the
domain. This means that the supports can be built so that the load is in
an optimal position. Indeed, the number of trunks and the distance
between them determines how trunks and branches are tilted with re-
spect to the load. Thus, by analogy with the problem of transmissible
loads and with results in [36], we expect that the optimal structure is
given by arcs with a 45° inclination. This is indeed what happens. So,

the optimal support in a 1×1 domain is the single arc of Fig. 5c, which
is, moreover, similar to the result for transmissible loads in [36]. If the
domain is 2× 1, we instead have 2 arcs as in Fig. 5b, and so on for a
3×1 domain (Fig. 5a) and for wider aspect ratios. If the domain is
instead shorter along x, it is not possible to place the trunks optimally
with respect to the load. So, we have a single arc with an inclination
smaller than 45 degrees, as in Fig. 5d.

The results in Fig. 5 also give some important information on the
scalability of the problem. Indeed, for long, 2D rectangular domains, we
may think to simply reproduce the optimal design for the 1×1 domain
in Fig. 5c as many times as needed instead of actually running the
optimization process.

4.3. A non self-supporting transition case

In rare cases, however, we might still have some non self-supporting
overhangs. For 2D rectangular domains, this happens in “transition
cases” between long aspect ratio (like the ones in Figs. 5a–c) and short
aspect ratio (like Figure 5d). In these cases, x is not too small and some
overhanging part can appear between the two pillars of the only arc
which is present.

Fig. 4. Optimized topology as the maximum volume fraction Vf is changed.

Fig. 5. Optimized support structures in rectangular domain of different aspect ratios. All optimized designs exhibit tree-like, self-supporting structures. The optimized
supports in long domains can be regarded as a succession of arcs like the one in Fig. 1c.
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These overhangs can however be easily removed by an overhang
constraint [2]. For instance, in Fig. 6 we report the optimal supports
computed in a 0.5×1 rectangular domain with and without an over-
hang constraint. The maximum volume fraction is again Vf=30% and
the discretization is performed by 51, 200 T3 elements. In the overhang
constrained case, we used the PUP overhang constraint [2] with over-
hang angle = °α 75 , allowed projected overhang perimeter =P 0.55α ,
intermediate density constraint threshold =ϵ 0.15, maximum β of
Heaviside in continuation methods βmax= 16 and filter radius rf=10.
For consistency, all parameters not involving the PUP constraint have
been kept equal in the unconstrained case.

Interestingly, the cost is smaller for the structure computed using
the overhang angle constraint. Indeed, the unconstrained design pre-
sents a cost of 8.12, while the cost of the overhang constrained design is
7.40. On one hand, why this happens is not immediately clear, since
adding a constraint reduces the space of admissible solutions and the
cost should thus be higher. On the other, the design in Fig. 6b more
closely resembles the arcs noted for the other aspect ratios and is per-
fectly consistent with the remarks made throughout this section. Thus,
forbidding the non self-supporting design of Fig. 6a can actually lead to
a smaller compliance.

4.4. Zero-displacement boundary conditions on the sides of the design
domain

We generally obtain self-supporting structures also when supports
are built on parts other than the base plate. As mentioned earlier, this
corresponds to adding zero-displacement boundary conditions on some
vertical boundary as well. Self-support can be justified as done above
for supports built only on the printing plate. Indeed, branches tilted
more than 45° would arguably worsen the load transfer.

Figs. 7 and 8 show that this in indeed what happens. Fig. 7 re-
presents the optimized designs for different boundary conditions in a
1× 1 domain and Fig. 8 represents the optimized designs in a 3× 1
domain when supports can be built on both vertical boundaries. In both
cases, Vf=20% and the discretization is performed by T3 elements.

In Fig. 7 we observe how the optimized design changes as zero-
displacement boundary conditions are placed only at the bottom of the
domain or on one or on both sides of the domain as well. All these
situations are represented in Fig. 7a–c respectively.

All solutions appear self-supporting: zones with angles flatter than
45° are indeed always short. Moreover, it is interesting to notice how
the final value of the compliance gets smaller as the zero-displacement
boundary conditions involve more boundaries. This was to be expected
by the very fact that the design changes: the final design of Fig. 7a is
indeed admissible also when we add vertical boundary conditions.
Therefore, if it were optimal also when zero-displacement boundary
conditions are placed on the sides of the domain as well, we would get

the same result also in Fig. 7b and c.
We also observe that vertical boundary conditions act as additional

trunks placed along the sides of the domain. This is ultimately the
reason why the cost is reduced: indeed, vertical boundary conditions
behave as additional trunks which do not use any material and are
characterized by zero displacement. So, branches can connect directly
to the sides of the domain. In the extreme case of Fig. 7c, we no longer
have any trunk: since the domain is short, it is indeed enough to have a
single arc made of branches directly connected with the sides of the
domain.

In Fig. 8 the final design changes in a similar way. The fact that the
domain is longer, however, makes so that trunks appear in the middle
of the domain and the usual tree-like structure is more apparent. Only
the branches near the sides are directly linked to the vertical bound-
aries, tilted of about 45°. This is consistent with the previous analysis
and compatible with self-support. Also in this case, the cost is reduced
with respect to the case where supports can be built only on the printing
plate.

4.5. Length-scale and other considerations

A further difference between using topology optimization to pro-
duce support structures and other strategies in the literature is that here
we do not perform a sampling of the surface to be supported. Indeed,
we do not have a set of points where supports will be built, but branches
can touch the overhanging region everywhere. In particular, branches
get more numerous and thinner as we approach the top boundary of the
domain, where the load is applied. Indeed, ideally, we need one branch
for every point where the load is applied. This originates several
branches, each needing to transfer a small load (hence their thinness).

In order to avoid having features too fine to be printed, we can use
length-scale control. In this way, minimum length-scale can be chosen
so to match the resolution of the printer. For instance, for a rectangular
domain we obtain the results in Fig. 9.

When we do not use any length-scale control, as in Fig. 9a, we have
several thin branches. If these features are too small to be printed
successfully, we need to impose a minimum length-scale. Fig. 9b in-
troduces length-scale control, but the filter radius is small and fine
features persist. Starting from rf=3 (Fig. 9c), we have designs more
compatible with the resolution of a 3D printer. Considering yet larger
values of rf, features get even larger. For instance, in Fig. 9e we set
rf=7 and we only have a few, large branches which should be easily
printable with most 3D printers commonly used.

5. Results and analysis in more complex domains

In this section, we present and analyze the results of experiments in
non-rectangular domains. First, we analyze the results obtained in 2D

Fig. 6. Comparison of the computed supports in a 0.5× 1 rectangular domain with and without an overhang constraint [2].
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domains. After applying a linear extrusion to the optimized support
structures thus obtained, we then actually print them, in order to show
that the computed structures are indeed self-supporting. We then pass
to 3D optimization, in particular considering supports for the MBB
beam and for domes of various heights. Again, we print all the opti-
mized structures, so to demonstrate self-support. We also compare our
results with the support structures computed by existing software and
consider ways to ease the removal of the supports after printing.

5.1. 2D supports in various domains

Let us consider the curved domain in Fig. 2b. Choosing, for instance,
=V 0.15 and r=0.009, we get the design in Fig. 10. The load is sup-

posed uniform and the discretization has been performed by 112,510
T3 elements.

Fig. 10 shows that curved boundaries do not dramatically affect the
result of the optimization. Indeed, we obtain arcs and tree-like struc-
tures as in the cases in rectangular domains. Moreover, the design is
self-supporting, since there are no long, horizontal regions which may
collapse during the printing process.

Let us then compute supports for non self-supporting holes occur-
ring in some popular structures, such as the MBB beam (see for instance
Fig. 2c) and the cantilever beam. The results are reported in Fig. 11.
Here, the design in light gray represents the part that we want to print.
The structure in red is the computed optimized support. The parts in
blue represent zones which are included in the domain but where no
material is placed by the optimization.

The supports for MBB beam have been computed in a discretization
made of 210, 234 T3 elements, choosing a maximum volume fraction

=V 0.2 (relative to only the two triangles needing supports) and

r=0.008. Regarding the cantilever beam, the domain has been dis-
cretized by 167, 591 T3 elements with =V 0.2 and r=0.01.

The optimized supports are tree-like and self-supporting, as we
better demonstrate in the next sub-section. Moreover, as in previous
cases, the structure is made by a series of arcs. Finally, we also notice
that the pillars between two arcs are nearer and nearer as the height of
the part to support is smaller. In this regard, see, for instance, the sides
of the top triangle of the cantilever beam. This happens because the
“cost” (in terms of used material) for adding a new vertical pillar
(which optimally transfers the load from the top to the bottom of the
domain) gets smaller as the height of the pillar itself is reduced. Thus,
supports in short zones are made of several short pillars, while in high
zones we have less, taller pillars to which multiple branches are con-
nected. Also in these last areas, however, we do not have so few pillars
as to have branches tilted more than 45∘ with respect to the build di-
rection. Consistently with the analysis performed in Section 4, this can
be again explained by the fact that such a structure would be arguably
characterized by worse loading transfer.

The presence of arcs in all these examples is also one of the features
that differentiate our results from tree-like supports present in the lit-
erature. Indeed, supports in [13] are generated starting from a sampling
of the surface of the overhanging part and each branch touches exactly
one sample point. At the tip of arcs, on the other hand, the two branches
making up the arc touch the same points, which, moreover, do not
come from a sampling but from the result of an optimization, provided
with mechanistic meaning.

5.2. 2D extruded optimized designs

In order to demonstrate that the support structures computed by a

Fig. 7. Optimized supports in a 1×1 rectangular domain with 0-displacement boundary conditions on different parts of the boundary. In all cases, the optimized
designs are self-supporting.

Fig. 8. Optimized self-supporting structure in a 3× 1 rectangular domain with 0-displacement boundary conditions on the bottom and on the sides of the domain.
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topology optimization procedure are indeed self-supporting, we here
show that it is possible to actually print them without any additional
support.

First, let us consider some supports computed in the previous sub-
section, apply a linear extrusion to the computed results and try to print
them. For instance, the designs in Fig. 12 have been obtained by ap-
plying a linear extrusion to the supports represented in Fig. 9d and
those for the MBB beam in Fig. 11a.

We can then print the extruded designs. For instance, let us first
print a simple example in a rectangular domain. Applying a linear ex-
trusion to the design in Fig. 9d and 3D-printing the resulting structure
using Autodesk Ember, we obtain the structure in Fig. 13a.

The structure has been printed along a build direction going from
the bottom of the structure represented in Fig. 12a to the top. This
reproduces the direction along which the structure would be printed if
it had to support an overhanging part. The fact that we were able to
print this structure without further supports demonstrates that self-
support holds. Indeed, the overhanging parts of the structure are small
enough to be self-supporting.

We can then pass to a more complex example and consider, for
instance, the design in Fig. 12b. In this case, we print a detail of both
the computed support structure and the MBB beam. In this way, we
evaluate not only self support, but also the ability of the optimized
structure to indeed behave as a support. For clearness, the part and the
support are printed in two different colors. The results, printed in an
Ultimaker 3, are reported in Fig. 13b.

The printed part shows that the computed structures successfully
behave as supports. Indeed, they allow us to print a design that would
otherwise be impossible to print along the chosen orientation.
Simultaneously, they do not require further supports to be printed.

We highlight that the printed supports did not go through any post-
processing (other than linear extrusion) before printing. They are di-
rectly the result of the topology optimization performed with loading
and boundary conditions described in Section 2 with numerical data as
in 3.1. Therefore, this analysis confirms that in general the optimization
leads to self-supporting designs. We thus have the remarkable feature
that the results of the topology optimization can be printed directly.

Fig. 9. Comparison between no length-scale control and different choices of minimum length-scale. Length-scale control can be used to ensure that the optimized
support does not present features so small to be incompatible with the resolution of the 3D printer.

Fig. 10. Optimized support for curved domain.

Fig. 11. Optimized supports for holes and overhangs of popular structures.
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5.3. Large scale 3D optimization

It is now interesting to see whether this holds also when a 3D op-
timization is run. 3D problems have been run on a cluster of computers,
as detailed in Section 3.1. The results obtained here and in the fol-
lowing Section have been computed by recurring to large-scale com-
puting so to demonstrate that we can effectively compute high-resolu-
tion optimized supports. In practice, however, lower resolutions may be
acceptable and can lead to a significantly smaller computational effort.
Analogously, computational effort may be reduced also by stopping the
optimization procedure before its complete convergence. Depending on
the problem, on the desired resolution and on the available computa-
tional power it is, then, possible to find different trade-offs between the
support optimization effort and the material usage reduction.

Considering, for instance, the MBB beam, the results of the opti-
mization are reported in Fig. 14 and the subsequent 3D-printed struc-
ture are reported in Fig. 15. The discretization has been performed
using 33 million hexagonal elements, corresponding to more than 100
million variables. Volume fraction is Vf=10%.

The first thing we notice is that we obtain tree-like structures also
when we consider a 3-dimensional domain. In a way, the results are,
thus, similar to those obtained by performing a linear extrusion of 2D
results. Both, indeed, present structures characterized by arcs and
branches. However, in extruded 2D examples, we can have arc and
pillars only along one direction (which is, along the length), while the
linear extrusion simply replicates the 2D design along the width. In 3D
results, on the other hand, we have several pillars, all separated from
one another, on both length and width. The fineness of the features is
evident not only in the computed results of Fig. 14, but also in the 3D
printed sample in Figure 15a, which has been printed in a Form 2 V3
(FLTOTL03) 3D printer with SLA process (using tough resin with layer
thickness at 0.1mm. Slicing was performed in PreForm software).

We also see that the computed supports are, again, mostly vertical.
Critical overhangs are sufficiently short and can be printed with no
additional supports. This is demonstrated by Fig. 15b, which also shows
that the computed structure can indeed act as a support. Indeed, both
the green and the gray parts have been printed together on an Ulti-
maker 3 3D printed (using PLA plastic, AA 0.4 print core, with 0.1 mm
layer height and 20% infill. Slicing conducted in Cura software). The
fact that we were able to print the green part (which is evidently not
self-supporting) without structural failures and without supports other

than the results of our optimization testifies the applicability of the
results of our approach for computing real supports to real 3-dimen-
sional structures. In the following, we also show how the supports
computed by a topology optimization process compare to those com-
puted by existing software.

We remark that all the represented structures have been obtained
with no post-processing. The results in Fig. 14 are directly the result of
the optimization (extracted by a.vtu file using Paraview, as described in
Section 3).

We then consider the supports for a curved overhang. For example,
we can assume we need to print a dome. We consider domes of different
heights. Fig. 16 represents the results of the optimization for a “tall”
dome (whose elevation from the baseplate is equal to the diameter of
the dome itself), for a “short” one (whose elevation is now equal to 20%
of the diameter) and for a dome which touches the printing plate.

The supports for the tall dome have been obtained by discretizing
the domain by 132 million hexagonal elements (corresponding to more
than 400 million variables), volume fraction is Vf=5% and the filter
radius is r=0.02. The other domes have instead been reported for
comparison and they have been obtained with looser discretizations
(amounting to just a few million hexagonal elements).

It is interesting to notice that more pillars appear as the dome gets
shorter. This is reasonable and consistent to what previously noticed.
Indeed, the best way to transfer the load from the part to support (at the
top of the domain) to the base plate is by a straight pillar. A single, large
pillar is however incompatible with any reasonable volume constraint.
Therefore, we get also branches, which connect the points of the
overhanging part to a pillar or to another branch. Clearly, when the
structure is shorter, adding a new pillar in less “expensive” in terms of
volume fraction, while it improves the load transfer to the printing
plate. Therefore, shorter structures tend to have more pillars and, in
general, more vertical parts. Nonetheless, as explained earlier, also tall
structures require pillars ensuring the load transfer, making so that also
in these cases the computed supports are mostly vertical and, thus, self-
supporting.

Let us now 3D print the tall dome, whose optimized supports are
reported in Fig. 16a. The structure in Fig. 17 demonstrates that we are
indeed able to print the curve surface (in red) using the computed
supports (black), which are, once again, tree-like and self-supporting.
The reported design has been again printed by a Ultimaker 3 3D printer
using PLA plastic (AA 0.4 print core) with 0.1mm layer height setting

Fig. 12. Linear extrusions of the optimized supports in Figs. 9d and 11a .

Fig. 13. Linear extrusions of the optimized supports in Figs. 9d and 11a .
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Fig. 14. Optimized support structure for a 3D MBB beam.

Fig. 15. 3D-printed supports of the optimized 3D MBB beam.
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and 20% infill. The support materials and dome were printed in sepa-
rate color filament to aid with visualization of the final print.

5.4. Comparison with supports generated by existing software

After having established that the computed structures can success-
fully act as supports in a variety of situations, it is now interesting to see
how they compare to supports created by existing software. This ana-
lysis was conducted through the Cura slicer, which simulates the print
itself. Cura can then be also used to estimate print time and filament
length and to approximate the mass of filament used by each nozzle. In
this regard, Cura simulated a print in a Ultimaker 3 3D printer with dual
extruders both printing in ABS plastic using AA 0.4 standard printing
cores and with recommended settings at a fine print profile specifying a
layer thickness of 0.1 mm.

First, let us compare graphically the renders of the support struc-
tures computed by our approach with those recommended by Cura
software. For instance, Fig. 18 refers to the supports for the MBB beam.
Analogous results can be obtained by considering other situations, such
as the domes we previously analyzed.

More precisely, in Table 1 we compare numerically the amount of
material used by the two approaches. In the table, “TO” denotes our
strategy of computing the support structures by topology optimization.

This comparison shows that the structures computed by a topology
optimization procedure greatly reduce the amount of material used for
the support. This is particularly remarkable since in the optimization

we did not choose the strictest volume constraint possible: indeed, we
simply chose a priori a reasonable value for the maximum volume
fraction. It is therefore possible to further reduce the amount of used
material.

On the other hand, printing supports generated by topology opti-
mization may require more time. This is caused by the more complex
shapes involved and by the fact that the printing of several columns and
branches makes so that the flux of material is started and stopped re-
peatedly, and the filament is hence less continuous. Times are none-
theless comparable and support structures generated by topology op-
timization can be printed faster in some cases, as in that of a short
dome.

5.5. Easy removal of supports

Finally, it is interesting to give a few remarks about the possibility of
coupling our approach with techniques that make the removal of the
supports easier after printing is complete. Indeed, the removal of the
supports is crucial in order to reduce the cost of post-processing and to
enhance surface quality. Moreover, it makes the comparison in the
previous subsection more consistent, since supports generated by Cura
software include easy removal.

Easy removal is not included in the optimization procedure. Indeed,
the optimization produces a structure which, ideally, touches every
point where the load is applied. Therefore, the computed support would
be hard to remove, since it would be connected to the part to print in
large zones.

This can however be solved easily by considering some existing
techniques for achieving an easy removal of supports. Indeed, we can
compute the support structure with a topology optimization procedure
exactly as done before. Then, we simply need to modify the structure at
the interfaces between support and part to print. In this regard, we can
simply replace the continuous connections between support and part to
print by “comb-like” structures, where the part to print is connected to
the support by several “teeth” which are easy to detach.

Fig. 19 represents a render of the support computed by our ap-
proach for the MBB beam “corrected” at the interfaces so that it is easily
removable after the printing is complete. Since these changes involve
only the interfaces between part and support, the amount of used ma-
terial varies only slightly. Thus, the comparison in Table 1 holds with
no relevant modifications.

6. Application to a real structure

After analyzing several domains characterized by loading and

Fig. 16. Optimized support for domes of different heights.

Fig. 17. 3D printed optimized supports for a tall dome (printed in an Ultimaker
3).
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boundary conditions defined on different kinds of boundaries, we aim
at computing the optimized support for a more complicated, “real”
structure. In this regard, we chose to print a representation of the
mascot of the University of Wisconsin-Madison, which is called Bucky
Badger. The model.stl file is represented in Fig. 3b and approximated be
the forms in Fig. 3c.

We considered two different approaches: conducting the optimiza-
tion in the entire domain at once or dividing it in some sub-domains.
This last idea is particularly interesting for two reasons. First, running
the optimization in more separate processes allows us to use finer dis-
cretizations more easily. Indeed, if we can split the domain and run the
program separately in the various zones, we have great advantages in
the scalability of the problem. The second reason is that in a real
structure it can definitely happen that we have self-supporting zones
alternated with other zones which instead need a support. Considering

various subdomains instead of running the optimization all at once over
the entire domain can thus be easier and it can also lead to supports
which are easier to 3D print. On the other hand, the division of the
domain can be not banal and volume fraction, filter radius, etc. of the
optimization in the various subdomains must be chosen consistently.

Fig. 20 shows the results obtained conducting the optimization in
the entire domain using 82, 944, 000 hexagonal elements (250, 737,
123 DOFs) and choosing a volume fraction Vf=0.05 and filter radius
r=0.04. The computation has been performed using 300 cores (dis-
tributed in 15 nodes, each containing 20 cores and provided with
128 GB of RAM). Total computational time was 11 h and 43min.

We again notice that optimized supports are characterized by tree-
like structures. Indeed, in Fig. 20a and c we can easily observe that the
design is again made of branches connected to main pillars. Moreover,
although the overhang situation appears more critical than in previous
examples, the optimized structure appears self-supporting. We will
better demonstrate self-support in the following with an actual 3D print
of an analogous result.

We also notice that we can divide the optimized structure in regions
which are one independent from the others. This is particularly evident
in Fig. 20b. We see, for instance, that the structure supporting the head
of Bucky is not connected to any other support by structurally im-
portant elements. We can easily identify four similar “independent”
regions: head, body and arms, left leg and, finally, right leg.

Exploiting that the supports of these regions are connected to other
parts only by thin branches with no evident structural purpose, we can
run the optimization separately in these four areas. Running the opti-
mization in subdomains, we thus achieve the advantages described
earlier. Moreover, this subdivision domain is consistent with the results
obtained running the optimization all at once and arguably leads to
similar results.

The optimized structure obtained from this subdomain-based

Fig. 18. Comparison of the supports for the MBB beam: supports computed by topology optimization vs. supports generated by Cura software.

Table 1
Numerical comparison of support structures computed by topology optimiza-
tion and by Cura software.

Print time Filament
length

Mass
supports

Mass reduction (%)
with TO

MBB TO 1 d 3 h
50min

1.18m 9 g 43.8

MBB Cura 0 d 22 h
47min

2.07m 16 g

Tall dome TO 0 d 16 h
59min

3.97m 23 g 37.8

Tall dome
Cura

0 d 14 h
25min

5.71m 37 g

Short dome
TO

0 d 17 h
47min

2.75m 21 g 36.4

Short dome
Cura

0 d 18 h
29min

4.27m 33 g
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optimization is reported in Fig. 21. Table 2 reports the data regarding
the discretization, the choice of volume fraction and filter radius and
the computation for each subdomain.

The first thing we notice is that the design in Fig. 20 and that in
Fig. 21 are really similar. Not only they are both characterized by a
tree-like structure, but also the disposition of pillars and branches is
analogous. This confirms that we could indeed run the optimization
separately in the chosen subdomains.

A difference is instead that the resolution of the designs in Fig. 21 is
evidently higher. The total number of elements used in the discretiza-
tion is in fact larger, as we can see in Table 2. Indeed, the total number
of DOFs of the discretization exceeds 1.2 billion, almost five times as

many as the DOFs of the discretization used for computing the structure
in Fig. 20.

Lastly, we observe the flexibility of subdomains. Indeed, we can
locally modify volume fraction (for instance, to make some zones less
bulky or, on the contrary, to use more material only where needed) and
filter radius. For instance, Table 2 shows that in the region containing
body and arms we used a larger filter radius, so do avoid thin branches
which can easily form in this zone.

Lastly, the optimized support has been used to actually 3D print the
model of Bucky. Fig. 22a represents a render of the optimized support
applied to the model. Fig. 22a, c and d then show the 3D printed part
(in red) supported by the optimized structure (in black) from various

Fig. 19. Render of the optimized support for the MBB beam modified for easy support removal.

Fig. 20. Optimized design with the entire volume as design domain.
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viewpoints. Printing was performed in PLA plastic on Ultimaker 3
printer using an AA 0.4 core. The fact that we were able to print the
computed design without additional support structures demonstrates
that self-support of the optimized structure indeed hold. Furthermore,
Fig. 22 also demonstrates that the computed structure can act as a
support. Indeed, it has been able to successfully support the model of

Bucky that we printed along with the support itself.

7. Conclusions

We have presented a framework for generating self-supporting
support structures for additive manufacturing by a topology

Fig. 21. Optimized support with 4 different subdomains: one for the head, one for the body and the arms and two for the two legs.

Table 2
Numerical data of discretizations, optimization parameters and computational times in the subdomains.

Sub-domain Elements DOFs Vol. frac. Filter rad. Number of cores Computational time

Head 132,217,728 405,017,091 0.05 0.02 300 12 h 40m
Body and arms 130,842,624 394,948,755 0.04 0.05 300 16 h 52m
Left leg 65,421,312 198,033,795 0.05 0.02 160 14 h 28m
Right leg 67,108,864 202,903,299 0.05 0.02 160 12 h 58m
Total 395,590,528 1,200,902,940 – – – –

Fig. 22. 3D printed optimized support structures for Bucky and associated part to support.
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optimization procedure. We have formulated the problem as a com-
pliance minimization problem that exhibits analogies with compliance
minimization of bridges and of roof supports, with, however, a differ-
ence in zero-displacement boundary conditions. This difference fosters
a comparison with transmissible loads which, together with other me-
chanical considerations, helps explaining why the optimized structures
are usually self-supporting. Manufacturability constraints and length-
scale control can moreover be used as needed.

Numerical experiments demonstrate that the procedure is general
and applicable to support parts of various shapes, including those de-
scribing a complex model of the mascot of the University of Wisconsin-
Madison. Moreover, a comparison with supports generated by existing
software shows that the computed structures indeed employ less ma-
terial than other approaches currently used. Finally, we actually printed
some designs, showing that the computed structures are indeed prin-
table and can self-support.
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