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This paper aims to explore the scope of applying the concept of fractal geometry in the field of architecture and
construction. There are mainly two different types of fractals – self-similar fractal and random fractal. In this
paper, both types of fractals are used to design a nature-inspired architectural structure with the strategy of
exploring the potency of fractal geometry as a geometric framework that can offer new structural forms. Based
on themathematical formulations of self-similar fractal shape and random fractal shape, tree-inspired branching
supports and natural terrain inspired unsmooth crinkled roof are modeled using the algorithms of Iterated Func-
tion System and Midpoint Displacement (Diamond Square Algorithm) method respectively. Fractal dimensions
are calculated to assess the visual complexity of the roof surface and branching supports. Finite element analysis
is performed to assess the structural strength of the model with respect to changing of fractal dimensions.
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1. Introduction

1.1. Background and problem statement

Architects, designers and engineers sometimes take inspiration from
nature's forms to develop their designs and use different geometric
systems as frameworks to replicate the complex or abstract forms of
nature. Many of nature's forms are highly complex and not easy to
model using Euclidean, linear or other regular geometric systems.
Fractal geometry is one of the youngest geometric concepts that can
easily and quickly model the complex forms of many natural objects
and phenomena by using some simple algorithms. Hence, fractal geom-
etry is one of the most suitable choices for designing nature-inspired
forms in architecture. Fractal geometry was first systematically devel-
oped and categorized as a newgeometric concept by BenoitMandelbrot
in the 1970s. It is commonly characterized by the properties of
self-similar repetitions and unending irregularity, and mathematically
defined by the shapes which are mainly fractional dimensional and
whose Hausdorff dimensions exceed their topological dimensions [31].
il.com (I.M. Rian),
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Soon after its early development in the beginning of 1980s, the
notion of fractal geometry has been applied in exploring and modeling
nonlinear and complex shapes in a list of different disciplines - ranging
from science [41,48,53] to engineering [11,27,28] and medicine [29] to
arts [55]. Its application also encompasses the field of architecture, but
mainly limited to the visual analysis of building forms [8,39,42] and
cities [5]. However, in the field of construction, so far, the application
of fractal geometry as a framework is rarer as compared to the other
fields, especially by means of its application in designing structural
shapes. [1,2]) are probably one of the initial researchers, who proposed
new structural forms using the mathematical principle of fractal geom-
etry. Later, some other researchers applied fractal geometry for design-
ing new configurations of planar trusses [43,44] and analyzed their
mechanical behavior [14,43,44]. In the field of physics and material sci-
ence, some investigators [17,57,58] used the property of fractal's self-
similar repetition to design ultra-light hierarchical lattice trusses with
high strength. In addition, some researchers [45,49,54] proposed new
free-forms and complex shapes for shell structures using the principle
of fractal geometry.

However, most of the previous proposals for developing fractal-
based structures do not interpret the impact of fractal dimension
on the structural behavior. As far as it is known, except for the efforts
taken by Asayama and Mae [1,2] and Rian and Sassone [43,44], there
are a very few systematic investigations and interpretations of the
fractal dimension of the fractal-based structural shapes correspond-
ing to their mechanical behavior. In addition, so far, all of these
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applications are based on the fractal's main property of self-
similarity and these types of fractals are known as self-similar
fractals. But, fractal geometry has another, yet important property,
which is frequently abundant in nature. It is its continuous irregular-
ity and randomness which gives an abstract impression of the whole
into parts. These types of fractals are known as random fractals or
statistically self-similar fractals. Natural terrains, real tree branches
and crinkled paper are some common examples of random fractals.
So far, it is extremely rare to find any published papers that deal
with the concept of random fractals for modeling structural forms
and analyzing their structural behavior with respect to the factor of
fractal dimension as a measure and parameter of irregularity or
randomness.

Accordingly, this paper aims to apply both the notions of self-
similar and random fractals as a conceptual framework to design a
canopy structure, as a case and a benchmark, in order to demonstrate
the structural behavior of fractal forms in contrast to the regular
forms. Here, the canopy structure has been inspired by the self-
similar and random forms of nature that are fractal-like. In particular,
the self-similar branching pattern of trees and the irregular random
surface of a natural land terrain or a crinkled paper are considered
only as the geometric references. The reason for selecting these two
natural examples is explained in details in the design concept section
(Section 3.1).

In the recent years, the mathematical concept of fractal geometry
has been deliberately and systematically applied in designing computa-
tional models of tree-like structures by several researchers based on
self-similar bifurcation [9] and reciprocal scheme [47]. Nonetheless, in
this context, Van Tonder [52] argued that the computational model of
a tree-like figure generated by using self-similar bifurcation is too
simplified; while, in contrast, a simple hand-made classic illustration
of a tree or various degrees of randomization on a computational tree-
model display high degree of complexity and looks natural. Structurally,
a natural tree tackles complicated scheme of different loads, while the
man-made tree-like structure, which is a simplified form of a real tree,
is preferred to tackle simple load systems such as a roof load. Hence,
we have intentionally avoided mimicking the true natural form of
a tree; instead, we opted for its simplistic form and decided to find
the possible structural advantage of such a simple configuration of a
branching structure.

Fractal as a geometric framework has also been used in designing
some canopies in architecture. Sakai et al. [59] has applied the Sierpinski
gasket, a canonical example of fractals, as a geometric framework to de-
sign a perforated roof surface for a canopy structure inspired by the tree
foliage that filters sunlight and allows air circulation, thus giving a
pleasant shadow as compared to a hard shadow cast by solid shed.
Cox and D'Antonio [10] applied fractal concept for designing an
unsmooth canopy surface for acoustic reasons. They believe that the
fractal surface as a canopy can diffuse sound. However, both of these
applications are limited to dealingwith the energy and acoustic aspects
and do not deal with the structural side of fractal applications in canopy
design.

In our study, unlike branching columns, we intend to make the can-
opy roof truly complex by adding some factor of randomness to express
the true nature. In the case of such approaches in dealingwith the com-
plex forms in design, Terzidis [60] concerns that the non-strategic use of
fractals and other complex geometries as a mathematical tool for com-
putational designmay sometimesmislead our design intuition. Besides,
according to Zappulla [56], fractals including other mathematical con-
cepts do not teach us how to design, but they can certainly help us to
improve thewaywe design. In this paper, nevertheless, we have strate-
gically applied the concept of fractals as a geometric tool for the early
design process. Here, its role is not to lead the conceptual design pro-
gression, but to act as an aid to improve the design process and lead
the geometricmodelingprocess only, dealingmainlywith the structural
aspects.
1.2. Paper outline

The first part of this paper is the introduction part which has
discussed the motivation of this study and stated the principal research
problem.

The second part is the theoretical framework and mathematical
formulations which will briefly explain the mathematics of fractal
geometry, the concept of self-similar fractals and random fractals, the
Iterated Function System and the Midpoint Displacement Method as
the methods for constructing fractals, and the calculations of fractal
dimensions of the resulted fractal shapes.

The third partwill dealwith the geometricmodeling of the proposed
structure startingwith the design concept. As stated before, the geomet-
ric model of a branching support will be constructed using the mathe-
matical formulation of self-similar fractals and the process of Iterated
Function System (IFS), whichwas systematically developed by Barnsley
[3] using contraction mapping method. IFS is one of the most common
and easiest processes for modeling fractal shapes, and hence, we see
several architectural examples where IFS has been used as a main
generative tool and as an analytical tool. Among them, Bovill [8] was
one of the initial researchers who methodically discussed the potential
relationship between fractal geometry and architectural design, and
emphasized the role of IFS in analyzing and modeling architectural
forms. James Harris [19] explored the possible fusion of fractal geometry
and architectural form with a new direction with the advent of com-
puters. He found architectural possibilities in the work of Michael
Barnsley's Iterated Function Systemandbelieved that the fractals gener-
ated with this method had a direct correlation with a diverse array of
structures found in nature. Van Loocke [50,51] applied IFS to produce
polygon-based and origami-based fractals that are useful as a geometric
framework for designing architectural forms. However, all of their ap-
proaches to using IFS cover the discussion about the application of IFS
in developing or analyzing architectural designs and decorations, but
not the structural forms from a mechanical point of view. Ostwald
[40], Joye [26] and Van Loocke (2009) critically reviewed some of
these attempts and argued that the IFS application for analyzing or de-
signing architectural forms in terms of connecting fractals with
architecture are sometimes inappropriate, superficial, trivial and
non-mathematical. For example, Bovill [8], Eaton [13] and Sala [46]
quantitatively demonstrated that the floor plan of Palmer House de-
signed by F. L. Wright displays fractal characters, but in fact, Joye [26]
and Eaton [13] later clarified that it has no connection with true fractal
geometry, even it does not show any fractal-like feature.

It is important to make clear that the IFS does not necessarily
produce fractals all the time, but also generates shapes that are non-
fractal yet complex and self-similar. As an another example, the façade
of Federation Square Building in Melbourne was claimed as an example
of fractal geometry developed by using IFS [61]. However, in fact, this fa-
çade pattern is not a mathematical fractal, but a so-called trivial fractal
[25,40,43]. In our study, our approach of using IFS for producing a
branching pattern is mathematical and the end product is a mathemat-
ical fractal within the finitely iterated state. Here, IFS has been used as a
geometric tool for a parametric design process. In the field of structural
design, Asayama and Mae [2], Rian and Sassone [43], Rian et al. [45],
Vyzantiadou et al. [54] and Stotz et al. [49] have used IFS for modeling
new structural forms and explore the mechanical characteristics of
IFS-generated fractal-based structures as a venture. Their approaches
focused on using IFS as a geometrical tool for developing efficient
forms of structures. However, in our present study, we have explored
the role and impact of IFS not only for modeling a structural form
but also for manipulating its geometric form as well as its structural
behavior as a scheme for finding optimized structure.

Apart from IFS, the Midpoint Displacement Method will be
applied for generating the geometric model of a crinkled surface
for the canopy roof design using the mathematical formulation of
random fractals and inspired by the randomly irregular surface of a
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natural terrain. Later, both of these branching support and roof
models will be combined to construct the final model of the canopy
structure. The final geometric model will be transformed into a para-
metric model to understand the changing structural behavior with
the varying geometric variables.

Therefore, the fourth part will perform structural analysis on the
varied forms of the structure, and find the best forms. The final part
will discuss the results of the finite element analysis and conclude the
study with the possibility of further applications, feasibility, limitations
and research scopes of fractal geometry in the field of architecture and
construction.

2. A brief mathematical background of fractal geometry

Anon-strict definition of a fractal is a shape or an image that contains
the exact or approximate copies of itself at an infinitely different range of
scales; whichmeans, it is self-similar at everymagnifying level. However,
its mathematical definition is more precise. According to Robert L.
Devany's [12] mathematical definition, a fractal is a subset of Rn (an
n-dimensional metric space) which is perfectly or approximately
self-similar and whose Hausdorff dimension exceeds its topological di-
mension. In simpler description, fractal shapes are fractional dimensional
and fall in between two successive integer dimensional objects,
i.e., 0 b D b 1, or 1 b D b 2, or 2 b D b 3, where D is a fractal dimension.
There are mainly two different types of fractals, one is perfectly
self-similar fractal, and another is the random fractal or statistically
self-similar fractal.

2.1. Self-similar fractals

A self-similar fractal is a set which is a union of self-similar sets that
lie in the Metric space, more precisely, in the Hausdorff Metric space.
Based on the contraction mapping theory introduced by M. F. Barnsley
[3], a fractal set is an attractor when it is the resulting figure at the
limit state obtained froma set of affine transformations ‘fi’, i= 1 to k, ap-
plied infinite times. An example,with just one transformation ‘f’, (k=3)
is shown in ‘Fig. 1’. A fractal is a unique non-empty compact set. The
resulting figure can be obtained by the union of all self-similar subsets.
Fig. 1. Fractal as a union of perfectly self-sim
When a fractal is an attractor ‘Δ’ which is a union set of all the
identical infinite subsets that are the scaled copies of the initial set,
then it can be represented as,

Δ ∪
∞

n¼0
Δn ð1Þ

i.e.,

Δ ¼ Δ1∪Δ2∪Δ3∪::: :::∪Δn∪Δ0 ð2Þ

where,

Δn ¼ f 1 Δn−1ð Þ∪ f 2 Δn−1ð Þ∪::: :: f m Δn−1ð Þ∪Δ0

where, n is the number iterations and k is the number of self-similar
copies produced at each iteration. When Δ1, Δ2, ….., Δn,… are contrac-
tion sets of Δ0, that are scaled by using the contractivity factor λi and
transformed by using an affine transformation function fi, such that,

Δ0 ⊂Δ1 ⊂Δ2 ⊂…⊂Δn−1 ⊂Δn ⊂… ð4Þ

then, they form a perfect self-similar fractal set.

2.1.1. Iterated function system (IFS)
Fractals are formed by the repetition of the original shape after the

geometric transformations in the first step, and then repeating this pro-
cess iteratively in the next steps for infinite times. This process produces
a fractal figure, which, in many cases, is unpredictable. However, in
1981, based on the Hutchinson's operator [23], Barnsley developed a
system, known as the Iterated Function System (IFS) that can predict
the end result of a fractal formation in a deterministic way [3]. In the
Barnsley's concept of IFS, it is mainly noticed that the final outcome of
the fractal figure is not defined by the initial shape. Instead, it is defined
by affine transformations that can be regarded as the true ‘initial condi-
tion’. In ‘Fig. 6’, it is shown that a triangle and a hut shape separately
converge into a Sierpinski triangle after a few iterations after keeping
the affine transformation rules same for both the initial shapes.

Barnsley's IFS is a simple but powerful function system that pro-
duces fractal figures in a deterministic way. It is shown in the ‘Fig. 2’
ilar subsets after affine transformation.



Fig. 2. A convergent sequence of the Sierpinski triangle by using contraction mapping and IFS. Top: The Initial shape is a triangle; Bottom – Initial shape is a hut.
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that themain key operator of the IFS is a set of affine transformations that
lead thefinal outcome towards an attractor ‘A’. The IFSworks recursively
using the Hutchinson operator as shown in the ‘Fig. 3’ to construct a
self-similar fractal.

The figure resulted at the finite number of iterations (n) is,

An ¼ ∪
m

i¼1
f i An−1ð Þ ð5Þ

Therefore, from the properties of IFS, we notice the importance of
affine transformations ‘fi’ which is, in fact, the main key determinant for
the attractor ‘A’. The two-dimensional affine transformation in the
Euclidean XY plane is represented as,

f ¼ λ μ½ � r½ � xf g þ δf g ¼ λ μ1 0
0 μ2

� �
cosθ − sinθ
sinθ cosθ

� �
x
y

� �
þ δx

δy

� �
ð7Þ

where μ1 =−1 and μ2 = 1 are the reflections along Y-axis, μ1= 1 and
μ2 =−1 are the reflections along X-axis, θ is the angle of rotation, and
δx and δy are the displacements along X-axis and Y-axis respectively.

2.1.2. Hausdorff dimension
Hausdorff dimension is a mathematical measure that is mostly

accepted for evaluating the fractal dimension of self-similar fractals.
Based on the Barnsley's contraction mapping theory (1988), the
Hausdorff dimension of a fractal is linked to the contractivity factors by
the following relation:

Xk
i¼1

λD
i ¼ 1 ð9Þ

where λi is a contractivity factor of transformation fi and k is the number
of transformations.

For example, the fractal tree, shown in ‘Fig. 2’, produces three
self-similar copies of itself at each iteration. The contractivity factors of
the left branch, right branch and the central branch are 0.6, 0.6 and 0.4
Fig. 3.A schematic diagram that shows how IFS recursively calls output as input iteratively
using the function of Hutchinson operator.
respectively. Its Hausdorff dimension D can be calculated by following
way by using ‘Eq. (9)’,
i.e.,

0:6ð ÞD þ 0:4ð ÞD þ 0:6ð ÞD ¼ 1

Using Newton's method, we get,

D≈ 1:86

2.2. Random fractals

In nature, there are plenty of objects that have impressions of
self-similarity, but they are not strictly self-similar, although they may
exhibit fractal behavior. This type of fractal is known as statistically
self-similar fractal or random fractal, displaying high visual complexity.
Random fractal repeats a pattern stochastically, yet a part of it some-
times gives a near impression of thewhole. Coastlines, mountain terrain
and trees are such examples. A part of tree branches give an impression
of the whole tree, although they are not exactly similar in reality. Be-
cause of its random characteristics, this type of fractals can be generated
by using stochastic rule, such as Gaussian Midpoint Displacement
Method.

2.2.1. Gaussian midpoint displacement method
In the GaussianMidpoint Displacement Method, at the first step, the

midpoint of a straight line is vertically displaced by a random value
taken from a Gaussian distribution (Fig. 4b). This random displacement
(σ0) is a scaled value (λ) of the base length (L0), i.e., σ 0 = λL0. The
scaling factor (λ) which is related to the Hurst exponent (H) that varies
in between 0 to 1 in the case of the one-dimensional fractal curve. The
relation between the scaling factor (λ) and the Hurst exponent is as
follows:

λ ¼ 2−H ð10Þ

The elevated midpoint is then connected with the endpoints,
producing two new lines. In the second step, the midpoints of both
the new lines are again displaced by a random value which is the scaled
values of the length of these two lines. In The next steps, this process is
continued for each new line ad infinitum.

FromEq. (10)we can see thatwhen the value of Hurst exponent gets
higher, the scaling factor λ gets smaller, i.e., the fluctuations of the values
ofmidpoint displacements get smaller and the fractal curve becomes less
noisy. And, whenH becomes 0.5, the distribution generated becomes the
same as Brown noise because of its relation to the Brownian motion [8].



Fig. 4. (a) Unpredictable random fractal curve using the Gaussian Midpoint Displacement method. (b) A Gaussian distribution centered at zero; (c) Fractal noise generated using the
different values of fractal dimensions as a parametric input. [8].

47I.M. Rian, S. Asayama / Automation in Construction 66 (2016) 43–58
2.2.2. Roughness and fractal dimension
The primary feature of a random fractal is its roughness or noise, and

this characteristic is measured by fractal dimension. Higher the rough-
ness or noise of a shape, the higher is its fractal dimension. In the case
of random fractal curves constructed by using Gaussian Midpoint Dis-
placement method, we noticed that the factor of the Hurst exponent H
results in roughness or noise of the curve which is a property that can
be measured by fractal dimension. Hence, there is a relation between
theHurst exponentH and the fractal dimensionD of the resultant fractal
curve [4], which is,

For the one−dimensional fractal curve; D ¼ 2–H ;0 bH b 1 ð11Þ

Therefore; the scaling factor; λ ¼ 2D−2 ð12Þ

It means, in the case of random fractal curves produced by Gaussian
Midpoint Displacement Method, we can control its noise using the
Eq. (12) and by deciding the value of fractal dimension D as an input
value before the curve construction. ‘Fig. 4c’ shows that how the fractal
dimension controls the noise of the fractal curve, keeping the deviation
(σ) as unchanged (−1 ≤ σ ≤ 1). This method is commonly used to gen-
erate a silhouette of a distant mountain range. In the three-dimensional
space, this method can produce a noisy fractal surface or the topology
of a natural terrain as a two-dimensional counterpart of the one-
dimensional random fractal curve.

3. Geometric modeling

3.1. Design concept

There is a long chronological history about the structures of
branching columns that support flat roofs inspired by the structural
appearance of natural trees [43,44]. Branching structures exhibit a
close relationship between the force flows and their shapes. It is a func-
tional combination of the roof construction and supporting structures.
The advantage of the tree-like branching system is to have short dis-
tances from the loading points to the supports. Branching structures
are usually referred to as tree-like supports. However, their action can-
not be comparedwith that of a natural tree.While the branches of a tree
are under bending stress, bending forces are systematically avoided in
technically constructed tree-like structures [38]. The inner structure of
the tree-like columns represents a type of framework that is unique in
the construction industry. It is not a truss with a triangular structure
which would brace the structure, yet it allows articulation of joints be-
tween the truss elements and prevents bending even under alternating
loads. In the tree-like column, therefore, the individual elements must
be rigidly connected at the joints. A tree-like column is particularly
well suited for only the main load scheme for which it is optimized.
All other loading conditions will cause bending stresses within the
structure.

In our design, the branching structures will be designed to support a
wide-span roof so that we can obtain a large-span indoor space. Com-
monly, most of the existing canopy structures with branching supports
have flat roofs. From an architectural point of view, the flat is commonly
an impressionof aman-madeobject,while the branching structure is an
abstract impression of nature. Keeping the natural image as the visual
demand of our design concept, we aim to design the roof which will
not be flat, but irregular so that it can give an impression of nature.
Falk et al. [62] proposed a non-flat roof for such tree-column supported
canopy structure after hanging model experiments (Fig. 5a). Their roof
is a folded plate origami roof supported by optimally designed
branching columns (Fig. 5b). However, the folded roof in their proposal
does not resemble with any natural object - their design intuitionmight
not be mimicking nature. There are few built examples of canopy struc-
tures, such as at ION Orchard in Singapore designed by Benoy in 2009
(Fig. 5c) and atWestendGate in Frankfurt designed byHeinrichRohlfing
GmbH and Sternwede-Niedermehnen in 2010 (Fig. 5d), where both the
columns and roof forms give natural impressions. However, in these
built examples, the mathematical concept of fractal geometry has not
been employed as a design tool. In our proposal, we aim to apply the
principle of random fractals for designing a canopy structure whose
roof will be randomly folded.

3.2. Branching column: A self-similar fractal

3.2.1. Computational Modeling: IFS Method
The branching structure is designed to act as a structural support.

There are different methods to simulate branching figures. Here, the
Barnsley's Iterated Function System, which is based on the contraction
mapping method, has been used to generate a parametric model of a
branching structure. It starts with a trunk represented as a vertical line
‘T0’ which is replicated into four copies that are ‘B1’, ‘B2’, ‘B3’ and ‘B4’
after its affine transformations f1, f2, f3 and f4 respectively. According to
Barnsley's method, a fractal branching is an attractor ‘T’ which can be
mathematically expressed as,

T ¼ ∪
∞

n¼0
Tn ð13Þ

i.e.,

T ¼ T1 ∪ T2 ∪ T3 ∪……∪ Tn ∪ T0



Fig. 5. (a) Thread hanging model for designing an optimized canopy structure [16], (b) Canopy structure with folded plates origami roof [16], (c) Canopy structure at ION Orchard in
Singapore designed by Benoy in 2009, (D) Canopy structure at WestendGate in Frankfurt designed by Heinrich Rohlfing GmbH and Sternwede-Niedermehnen in 2010.
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where,

T1 ¼ B1 ∪ B2 ∪ B3 ∪ B4 ∪ T0
¼ f 1 T0ð Þ∪ f 2 T0ð Þ∪ f 3 T0ð Þ∪ f 4 T0ð Þ∪ T0 ð14Þ

And

Tn ¼ f 1 Tn−1ð Þ ∪ f 2 Tn−1ð Þ∪ f 3 Tn−1ð Þ∪ f 4 Tn−1ð Þ∪ T0

where, n is the number iterations.When T1, T2,….., Tn,… are contraction
sets of T0, that are scaled by contractivity factor λi and transformed by
affine transformation function fi, such that,

T0 ⊂ T1 ⊂ T2 ⊂…⊂ Tn−1 ⊂ Tn ⊂… ð15Þ

then, they form a perfect self-similar fractal set.
In the case of constructing the fractal branching, following function

of IFS is applied that consists of four different three-dimensional affine
transformations (f1, f2, f3 and f4) of T0 shown in ‘Fig. 6’.

f i ¼ λi

cosα −sinα 0
sinα cosα 0
0 0 1

2
4

3
5 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

2
4

3
5 x

y
z

8<
:

9=
;þ

δx
δy
δz

2
4

3
5; i

¼ 1 to 4: ð16Þ

In the above IFS function, there are several variables which control
the whole appearance of the branching structure. In the ‘Fig. 6’, the
trunk height is set 6 m and its IFS variables are set as follows,

However, the values of variables shown in ‘Table 1’ are not fixed.
They are changeable which transform the geometric model of the
branching structure as a parametric model.
iteration 0 iteration 1 iteration 2

Fig. 6. A convergent sequence of fractal bran
3.2.2. Hausdorff dimension calculation
According to Barnsley's method, the Hausdorff dimension D of the

fractal branching is depending on the contractivity factors based on
the following relation,

X4
i¼1

λD
i ¼ 1 ð17Þ

where, λi is a contractivity factor of transformation fi of the branch Bi.
For proposed branching structure,

λ1ð ÞD þ λ2ð ÞD þ λ3ð ÞD þ λ4ð ÞD ¼ 1

In the ‘Fig. 8’,

λ1 ¼ λ2 ¼ λ3 ¼ λ4 ¼ 0:6

Using Newton's method, we get,

D≈ 2:714

3.3. Crinkled roof surface: A random fractal

In the proposed canopy structure, the roof form is made crinkled
inspired by the morphology of natural terrain, which is an example of
nature's random fractals, sometimes known as the ‘fractal landscape’.
The selection of crinkled surface over the flat surface for designing the
roof, as mentioned before, is because of the apparent higher stiffness
of the crinkled surface than that of a flat surface since folds in the
crinkled surface act as self-stiffeners. Crumpling of a piece of paper is a
relevant and ubiquitous example of a stress-induced morphological
transformation in thin sheets [6]. As shown in ‘Fig. 7’, if a flat piece of
thin paper is placed at the top center of a bottle, then the two sides of
the sheet will bend down. But, if that paper after being crumpled and
iteration 3 iteration 5

ching tree in three-dimensional space.



Table 1
Design Variables.

IFS functions Contractivity Rotation Displacement

XY plane XZ plane XY plane XZ plane

f λ α β δx (m) δy (m)

f1 0.6 −45o 45o 0 6
f2 0.6 −135o 45o 0 6
f3 0.6 45o 45o 0 6
f3 0.6 135o 45o 0 6
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unfolded is placed at the same position on the bottle, then the crinkled
version does not noticeably bend down. It, rather, stays almost
non-deformed, because ridges of crinkles, i.e., its random folds after
crumpling act as stiffeners. Furthermore, the crinkled paper sheet can
carry the load to some extentwith a negligible deformation. Each crum-
pling produces a unique pattern of random folds or crinkles. Therefore,
countless crinkle patterns can be obtained by the countless crumpling of
a thin piece of paper.

Physically it is easy to crumple a sheet of paper infinite times and
then obtain infinitely different random patterns of the crinkled surface.
But, geometrically, it is difficult to simulate crinkled surface especially
by using Euclidean or other regular geometric system and without any
algorithmic process. Several methods have been developed that are
able to simulate the realistic models of the crinkled surface which are
mainly based on the random fold lines due to crumpling [6,7,37]. It is
noticeable at a quick glance that the surface of the crinkled sheet after
crumpling resembles with the surface of the fractal-like natural terrain,
although the pattern of random fold lines in both the examples is slight-
ly different to each other.While the geometric shape of crumpled paper
is mainly related to the fold lines, the geometric shape of natural land
terrain is mainly associated with the height maps. However, in the
end, both the morphologies are similar to each other from a particular
scale of view. Nakamura and Asayama [36] applied an Algorithm of
Land Erosion to model a non-smooth random form of a space structure
to replicate the nature's land terrain topology and assess themechanical
behavior of such nature-inspired unconventional structure. However,
in this study, we will use the Diamond Square Algorithm, a three-
dimensional counterpart of the GaussianMidpoint DisplacementMeth-
od, which is mainly popular in simulating the natural terrain, for gener-
ating an irregular fractal surface.

3.3.1. Computational Modeling: Diamond Square Algorithm Method
The Diamond Square (DS) Algorithm is a stochastic algorithm that

results in a random surface with fractal behavior. The DS algorithm,
which is the three-dimensional counterpart of Gaussian Midpoint Dis-
placement Method discussed in the Section 2.2.2, is popularly useful
for simulating realistic natural terrains. The concept of DS Algorithm,
first introduced by Fournier et al. [18] and later simplified by Martz
Fig. 7. Left - A piece of flat paper on a bottle; Right –
[32], has been adopted here for modeling a crinkled surface in the
following way.

(i) Initial step:

In the initial step, a large empty two-dimensional square grid is
constructed whose array size is equal to 2n + 1, where n is the number
of iteration. The four corners of the square grid are assigned with some
randomheight values as the first seed for the operation. In the ‘Fig. 8’, as
a demonstration, we have assumed 5 × 5 square grids where the
corners are ‘A’, ‘B′, ‘C′ and ‘D’ and their height values are A, B, C, and D
respectively marked as red dots.

(ii) Diamond step:

In the ‘diamond step’, the center point (‘E’) of the squarewhich is ob-
tained by intersecting the two diagonals (‘AC’ and ‘BD’), is vertically
displaced by a value which is the average value of the heights of four
corners added with a random value that ranges from –Δ to Δ. Thus,
the displacement of ‘E’ is,

E ¼ Aþ Bþ C þ D
4

þ rand Δð Þ

This displacement of the center point ‘E’ transforms the flat square
into a pyramid. At this stage, E is a new value, i.e., a new seed, and
that is why it is shown in red dot while the corner heights are shown
in blue dots as the previous values in the ‘Fig. 8’.

(iii) Square step:

In this step, when the grid has multiple squares, then the height of
the center of each diamond is assigned by a value which is the average
height of its corners with the addition of a random perturbation in a
much similar way as in ‘diamond step’. In this step, one thing is impor-
tant to notice that the diamonds, which are at the edges of the square
grid, have three corners while the diamonds inside the array have four
corners. The calculated height values of the peaks, i.e., center points of
the edged diamonds are (Fig. 8c).

F ¼ Aþ Bþ E þ E
4

þ rand Δð Þ G ¼ Bþ C þ E þ E
4

þ rand Δð Þ

H ¼ C þ Dþ E þ E
4

þ rand Δð Þ I ¼ Dþ Aþ E þ E
4

þ rand Δð Þ

The calculated height values of the peaks, i.e., center points of the
internal diamonds are (Fig. 8d),

N ¼ E þ J þ F þ K
4

þ rand Δð Þ O ¼ E þ K þ Gþ L
4

þ rand Δð Þ
A piece of crinkled paper on the top of a bottle.



Initialize corners                  Diamond    Square          Diamonds       Squares

(a)                               (b)                         (c)                            (d)                               (e)

Fig. 8. The method DS Algorithm that produces fractal terrain. Red dots are the new vertices while the blue dots represent previous vertices. Top and middle - Plan views; Bottom –
Isometric views.
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P ¼ E þ Lþ H þM
4

þ rand Δð Þ Q ¼ E þM þ I þ J
4

þ rand Δð Þ

(iv) Recursive step:

In the ‘recursive step’, the ‘diamond step’ is repeated to each square
thatwas created in the ‘square step’, then the ‘square step’ is repeated to
each diamond that was created in the ‘diamond step’, and continue this
process recursively until the grid becomes sufficiently dense and gives
an impression of a crinkled surface.

‘Fig. 9’ shows the transformation of a flat surface into a natural
terrain-like or a randomly folded crinkled-like surface after increasing
the number of iterations using the process of DS Algorithm.

3.3.2. Fractal dimension of the crinkled surface
In the DSAlgorithm, the range of randomperturbation is a key factor

that controls the noise of the surface generated. This range is based on
the value of roughness coefficient which is referred to the Hurst expo-
nent H. If the Hurst exponent H is 1.0, then the random perturbation is
multiplied by a value that ranges from −1.0 and 1.0. At each new
Fig. 9. Natural terrain-like crinkled surface gener
iteration, the value of H is reduced by a scaling factor λ in such a way
that,

λ ¼ 2−H

Therefore, if the height scale or z-deviation is δ, then the random
value of the displacement in the first iteration is,

Δ1 ¼ λ:δ ¼ 2 −Hð Þ:δ

i.e., at nth iteration,

Δn ¼ λn:δ ¼ 2 −nHð Þ:δ ð18Þ

According to Barnsley et al. [4], there is a relation between the Hurst
exponent H and the fractal dimension D of the resulting surface
produced by the Gaussian random midpoint displacement process,
which is,

D ¼ 3−H ð19Þ
ation from a flat surface using DS Algorithm.



Fractal dimension, D = 2.0 Fractal dimension, D = 2.3

Fractal dimension, D = 2.6 Fractal dimension, D = 2.9

Fig. 10. Noises of a surface resulted after different fractal dimensions.
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i.e.,

λ ¼ 2D−3 ð20Þ

From the above equation, if H gets larger, the scaling factor λ gets
smaller and so the fractal dimension D.

Hence, the DS Algorithm can be easily scripted by any programming
language based on the above process and formulations for modeling a
wrinkled surface for a free-form roof design. In this algorithm, the first
input as a variable is the iteration number n, which gives the size of
the square grid, i.e., the size of the proposed roof surface. The second
input is the roughness coefficient or the Hurst exponent which decides
the range of the random number, i.e., the range of the maximum and
minimum heights of vertices of the proposed roof surface. The last
input is the fractal dimension D, which decides the roughness or noise
of the surface model. ‘Fig. 10’ shows an example of the crinkled surface
whose noises appear as a result of the changing of fractal dimension
value, a geometric variable input. It illustrates that the higher the fractal
dimension of a surface, the higher is the noise and crinkliness of the
surface.

3.4. Final form of the canopy structure

One important objective of this study is to describe and provide one
level of structural testing and define a benchmark for a non-flat crinkled
roof whose design is inspired by the topological appearance of a natural
(random) terrain and motivated by the self-stiffening property of crin-
kled paper sheet. The design of crinkled roof surface is modeled by di-
rectly adopting the crinkled surface generated in the previous section
using the DS Algorithm. To support the crinkled roof efficiently, some
key points on its surface are required as joints where the column tops
will be connected. If we insert a set of vertical columns connecting
Fig. 11. (a) Independent branching structure (b) Wrinkled roof, which is placed at the centre o
some branches above the surface and some are under the surface, (c) the upper branches are t
those key points, then these columns will occupy a large indoor space
inside. Therefore, to minimize the number of supporting members by
keeping the key supporting points under the roof surface same, we
will use branching columns. Branching support is useful for its minimal
path principle in which the distributed loads are transferred through
the branches and transferred towards their trunk. The tree supports
are modeled here by adopting the three-dimensional branching trees
modeled in the previous section using the process of IFS. In this canopy
design, the crinkled surface has been placed at such a height that all the
end branches either penetrate through the surface or intersect the
surface or, at least, touch the surface. After such strategic intersection,
all the branches that overlap the surface are trimmed and split. Thus,
the roof surface divides the branches into two groups – one group is
above the surface and another group is under the surface (Fig. 11b).
We consider the second group, which is under the surface, as the struc-
tural supports, whereas the first group, which is above the surface is
discarded (Fig. 11c). In this situation, now all the end points of the
end branches are connected to the surface at the intersection points.
This has been done parametrically which means, whenever the roof
surface randomly changes its topology, automatically we will get the
second group of branches as the resultant structural supports.

In fact, the whole model is made as a parametric, keeping the
architectural and structural aspects in mind. For example, in the case
of branching supports, the vertical angles influence the structure by
expanding its topmost area; while the iteration number influences the
number of roof-branch joints at the roof surface, thus controlling the
load distribution of roof. Similarly, the contractivity factor (λ) and
horizontal angle also influence the aesthetic appearance as well as the
structural behavior of the branching structure. On the other hand,
the crinkled roof also influences the structure by changing its values of
the fractal dimension and z-limit factor (δ). As a result, the final model
has several variables in total which could produce infinite design
f the overall branching configuration at a certain height, overlaps the branches separating
rimmed out from the intersection points in between the surface and branches.



Table 2
Design Variables.

Branching Structure

Design Variables Parameters

Initial height, h0 5.5 m (fixed)
Contractivity factor or scale, s 0.6 (fixed)
Vertical angle, θV 35o to 50o (variable)
Horizontal angle, θH 45o (fixed)
Iteration number, n 4 (fixed)

Crinkled Roof Surface

Variables Parameters

Size, s 17 m (fixed)
Z-Limit, δ 1.0 to 2.0 (variable)
Fractal dimension, D 2.0 to 3.0 (variable)
Iteration number, n 4 (fixed)

52 I.M. Rian, S. Asayama / Automation in Construction 66 (2016) 43–58
variations of the main model. To find a practical and efficient form, the
values of some variables have been fixed and the parameters of the
remaining variables have been defined in such a way that they can
generate feasible design possibilities, but not beyond the impractical
models. The variables and their values and parameters are shown in
‘Table 2’.

Based on the above unrestricted variables, different design
variations of a single unit (main canopy structure is composed of four
units with four branching supports) of the main canopy structure are
shown in ‘Fig. 12’. ‘Fig. 12, Top’ shows different design possibilities due
to the variations of branching supports influenced by the changing of
vertical angles and contractivity factors, keeping the parameters of roof
surface constant. ‘Fig. 12, Bottom’ shows the different design variations
of roof surface influenced by the changing of deviation (δ) and the frac-
tal dimension (D), while the parameters of branching supports are
constant.

However, to design an initialmodel of themain canopy structure,we
have defined the values of different variables mentioned in ‘Table 3’,
which results in an architectural outcome shown in ‘Fig. 13’.
Fig. 12. Design variations of the pavilion unit; Top – The design variations of branching supp
variations of roof surface from flat to random and noisy with the changing of z-limits and fract
4. Structural analysis

The geometric complexity of roof surface is achieved by the heights
of its mesh vertices that are present in an array of a square grid pattern.
Hence, the height of each vertex plays a pivotal role to offer such
complexity of surface. In the case of structural optimization of shell
structures or similar smooth or flat roof canopy structures, the height
of each vertex is kept variable, and optimization process controls each
height as a variable to obtain the optimal shape with regard to some
defined fitness functions and structural conditions. Computational
morphogenesis on a NURBS based (or non-NURBS based) grid surface
generally results in a smooth surface as an optimized form of the roof.
Usually, smooth surface offers better distribution of forces-flows, and
that is why computational morphogenesis indicates the smooth surface
as a preferable choice. However, since, in our example, the architectural
design goal is to obtain a natural terrain like irregular roof form and the
structural goal is to study the mechanical behavior of fractal-based
random surfaces, we will maintain the unsmooth fractal character of
the roof surface during the form-finding process. For this, unlike other
commonexamples,we donot take all the heights of the points as the in-
dividual variables; instead, we keep only two variables that are devia-
tion or Z-limit factor δ and the fractal dimension factor D. These two
factors will maintain the fractal characters of the roof surface, and to
stick with this idea, we have restricted the parameter in between 1.0
and 2.0 for z-limit factor and 2.0 and 3.0 for fractal dimension factor.
The Z-limit value ranging from 0.0 to 0.5 usually produces nearly flat
and approximately smooth surfaces.

For the structural analysis of the fractal-based canopy structure, its
geometric model has been transformed into a finite element model by
assuming the following consideration:

▪ All the duplicate lines of branching supports are removed. Each line
is considered as a beam element.

▪ All beam elements are hollow steel tube. The diameters of all trunks
are 20 cm, all first tier branches are 15 cm and the remaining
branches are 8 cm. The thickness of all the tubes is 5 mm.
orts with the changing of vertical angles and contractivity values; Bottom – The design
al dimensions.



Table 3
Design Variables.

Branching Structure

Design Variables Parameters

Initial height, h0 5.5 m
Contractivity factor or scale, s 0.6
Vertical angle, θV 45o

Horizontal angle, θH 45o

Iteration number, n 4

Crinkled Roof Surface

Variables Parameters

Size, s 17 m
Z-Limit, δ 1.5
Fractal dimension, D 2.5
Iteration number, n 4
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▪ All the duplicate connecting points, i.e., overlapped structural nodes
are removed. Each connecting node is considered as a structural
welded joint.

▪ The bottom of the trunk is vertically and horizontally restrained.
▪ The roof surface is a triangularmesh and all the duplicatemesh units
are discarded. Each mesh unit is a shell element.

▪ Shell elements are made of cross laminated timber (Young's modulus
800 KN/cm2, shearmodulus 400 KN/cm2, yield stress 0.7 KN/cm2) and
their thickness is 5 cm.

▪ The shell and the branching tubes are connected by screws via steel
plates at the intersection joints.

For investigating the influence of fractal dimension of the roof's sur-
face on its structural strength, we set up a ‘parametric toolbox’ which
can instantly give structural feedbacks after finite element analysis
with the change in design variables such as fractal dimension. The strat-
egy is to find the appropriate form that provides maximum strength. In
this ‘parametric toolbox’, there is a ‘generative tool’which automatically
generates the geometric model of the main structure connected with
some design variables that control the shape of the model. In the
‘parametric toolbox’, there is another tool, named as ‘FEM solver tool’
that will perform the finite element analysis of the parametric model
of the structure. These two tools are connected in such a way that
they can interact with each other promptly. For this strategy, we have
used the Grasshopper, a parametric software that is embedded in
Rhinoceros 3D which is a NURBS-based modeling and visualizing
Fig. 13. A wireframe geometric model of
software. In the Grasshopper, as the ‘generative tool’, we have used
GhPython component which is used for scripting codes of different
algorithms. We have two such components, one is for generating the
model of branching structure where we have written an IFS code
while the another is for generating the model of crinkled roof surface
where we have written DS Algorithm. Then, in the Grasshopper
platform, we have used karamba as the ‘FEM solver tool’. Karamba has
preprocessing tools that transform the geometric models into finite
element models. The analysis and post-processing tools of the karamba
analyze the structure and offer a set of results that include the displace-
ments, stresses, axial forces, and so on. The advantage of the karamba is
its instant feedback with the changing variables of the parametric
model.

5. Results and discussion: fractal dimension vs stiffness

Before the structural analysis of the main canopy structure, a finite
element linear static analysis was performed on a smaller prototype of
the main roof that is centrally supported by a space truss. This trial is a
mock-up of a piece of paperwhich is centrally placed on the top of a bot-
tle shown in ‘Fig. 9a’. As we see in the ‘Fig. 9’, the flat paper sheet is not
stiff enough by its own weight and its two sides bend down; but, after
crumpling the paper, its crinkled shape becomes stiffer and do not
bent down as before, but acts as a cantilever, as the crinkled paper is
self-stiffened by its random folds. Therefore, through the finite element
analysis, we expect to see similar mechanical behavior in prototype flat
roof and then its crinkled version. In order to confirm this prediction,we
modeled three different roof surfaces; one is flat having z-limits, δ = 0
and fractal dimension, D = 2.0, second is crinkled having deviation,
δ=1.0 and fractal dimension, D=2.5, and the third is further crinkled
surface having deviation, δ=1.5 and fractal dimension,D=2.9. The re-
sults obtained after performing FEM analysis on thesemodels using the
‘parametric toolbox’ are shown in ‘Table 4’. In the ‘Table 4’, it is noticed
that when the roof is flat then its deformation is large, and it bends
down at its edges quite similar to the flat paper sheet. The maximum
displacement is 264mm. Soon after the shape of the flat roof is crinkled
with fractal dimension 2.5, it does not bend down; instead, it stays al-
most in the same position. The maximum displacement, in this case,
falls down to 38 mm from the previous 264 mm of a flat roof. But,
when the crinkled surface is further folded with the fractal dimension
of 2.9, then no significant change is seen. In this condition, the maxi-
mum displacement is 32 mm. The similar behavior we also notice
when a paper sheet is further crumpled, then the stiffness gets a little
higher, although the difference is not much as compared to the less
the fractal-based canopy structure.



Table 4
Deformations of a roof due to self-weight when its flat surface is transformed into crinkled surface.
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crumpled paper. The only major difference occurs between flat paper
and crinkled paper. These results confirm our hypothesis that the crin-
kled surface acts as a self-stiffened structure which can be practically
useful for designing large-span canopy roof.

Another test has been performed to further explore the impact of
crinkling on a shell structure. A barrel vault, an example of a smooth
shell structure, has been geometrically exploited and transformed into
a crinkled vault using fractal dimension as a geometric variable.
‘Table 5’ shows the geometric models of a barrel vault and its crinkled
form (fractal dimension 2.5), and also displays their deformations
under gravity andmesh loads after the finite element analysis. Themax-
imum displacement is noticed in the crinkled shell (57 mm) which is
much higher than that of the barrel vault. But this maximum displace-
ment of crinkled shell takes place only in few parts of both the ends.
But, rest of the structure has no significant deformation, and as a
whole, its deformation is much less than that of the smooth barrel
vault. In the case of a barrel vault, the maximum deformation (10 mm
– 12 mm) occurs along the large area of longitudinal strips at the both
sides, and as whole, it deforms more than the crinkled vault. Therefore,
it can be stated that the crinkling of a smooth surface may it be flat or a
shell structure, is likely to display better structural performance, espe-
cially in terms of self-stiffness and less overall deformation. This struc-
tural testing of the shell structure will not be directly useful in our
canopy design, instead, it has only been tested to see the mechanical
behavior crinkled surface even in different modes of structures.

Based on the FEA results of single unit demonstration shown in
‘Table 4’, it can be predicted that the roof of our main canopy structure
will act the similar way as the crinkled paper and the roof of prototype
unit structure. For this purpose, at present, we only consider the gravity
load andmesh load of the roof and check its maximum displacement as
a measure of stiffness, as we know that the stiffness is directly propor-
tional to the acting forces and inversely proportional to the displace-
ments. Our curiosity is to see whether the maximum displacement of
the roof gets smaller when the fractal dimension as a measure of the
crinkliness of the roof surface are increased; although, the displacement
is also affected by the vertical angle of the branching supports. At this
moment, we have fixed the branching vertical angle as 45o, horizontal
angle as 45o, trunk height as 5.5m, contactivity factor as 0.6 and iteration
number as 5. For the roof model, we have fixed the size as 17 m and
z-limit as 1.5. So, the only variable is the fractal dimension that ranges
between 2.0 to 3.0. The ‘parametric toolbox’ has analyzed the structure
for different fractal dimensions which are shown in the ‘Table 4’ in
which red circles indicate the positions of maximum displacements.

From the ‘Table 6’ it can be seen that when the fractal dimension of
the roof surface gets larger, the displacement under gravity and mesh
loads gets smaller. When the roof is flat, i.e., fractal dimension is 2.0,



Table 5
The deformation of the smooth barrel vault and its crinkled version under the gravity and mesh loads (1 KN/m2) with the changing of fractal dimensions, while z-limit is constant (1.0).
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which is an integer value, the displacement is relatively very high. As
soon as the surface starts getting crinkled (D N 0 and δ N 1), the maxi-
mum displacement sharply falls. Although, as seen in the Table, the
value of maximum displacement is getting smaller with the increase
in fractal dimension, it may not always be true. Because of the factor
of randomness, the repeated input of same fractal dimension results in
the different topology of the roof surface by maintaining the degree of
roughness, hence delivering varying stiffness. For understanding the
influence of fractal dimension on the structural strength of crinkled
roof, we repeated the same value of fractal dimension two times, and
get two different maximum displacement behaviors as shown in ‘Fig.
14’ are obtained.

In the ‘Fig. 14’, it is observed that in each case, the maximum
displacement sharply falls as soon as fractal dimension becomes more
than 2.0 to 2.1, and from 2.1 to 2.9, its displacement is significantly
different to each other as compared to the maximum displacement of
flat surface (D = 2.0), fluctuating in between 70 mm to 150 mm.
These fluctuations are completely different from each other in both
the trials. It represents that as soon as the roof is crinkled from its flat
surface, it becomes self-stiffened due to its random folds. However, fur-
ther folding makes the surface more crinkled but does not necessarily
increase its stiffness, because stiffness is further dependent on the
surface topology.

Besides, increasing the fractal dimension increases the roughness of
the surface, hence increases the weight of the roof. ‘Fig. 15’ shows the
relationship between the fractal dimension and the weight of the roof.
This relation is helpful tofindanoptimized shape of the roofwith regard
to its minimum weight but maximum stiffness. As we see from the
‘Fig. 14’, the roof surface having D = 2.1 is stiff enough as compared to
the flat roof, while ‘Fig. 15’ shows that the roof surface with D = 2.1 is
the lightest roof structure among the other roofs having D N 2.1. On
the contrary, the roof form should be such that it can express the
appearance natural terrain, neither nearly flat nor too rough. In this
condition, we can select the shape which has a fractal dimension in
between 2.3 to 2.5. In this range, the roofs are lighter and stiffer enough
while maintaining the natural expression by its appearance.

6. Conclusion

This paper has attempted to apply the concept of fractal geometry
from its theory level of mathematics to applied fields of architecture
and construction. While the fractal geometry's main property of self-
similarity has been recently and quite extensively studied in the appli-
cation and analysis of architectural designs and structures, it's another
important property of randomness has not been specifically studied so
far to find the scope and potency of its application in the samefields. Ac-
cordingly, this paper has mainly focused on finding an opportunity to
use the concept of random fractals in designing a wide-span crinkled
canopy structure inspired by the random form of a natural land terrain.
We have started our studywith the transformation of themathematical
formulations of self-similar and random fractals into an algorithm that
has aided to develop a computational model followed by its parametric
digital model for designing a crinkled canopy structure. Finite element
analysis has been performed on this model to assess its structural be-
havior, thus explored the relation between the factor of irregularity,
i.e., the fractal dimension and the structural strength. Besides, it has
also analyzed the relation between the fractal dimension of the roof
form and its weight. Finite element analysis has been used here as a
first-hand assessment of structural testing which is helpful in the early
stage of conceptual design development. A brief structural analysis in
this study has confirmed the structural feasibility and the enough
strength of such an irregular canopy structure. Finite element analysis
has shown that, as compared to a flat roof, a crinkled roof exhibits a
unique self-stiffened quality which encouraged us to develop this



Table 6
The displacements of the roof under the gravity and mesh loads (1 KN/m2) with the changing of fractal dimensions, while z-limit is constant (1.5).
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crinkled canopy structure. However, apart from the finite element anal-
ysis, some other rigorous alternative analysis methods can also be used
for evaluating the structural performance of such an unconventional
form in details as a part of an extension of this research.
Due to the effect of randomness and changing fractal dimension, an
infinite number of unpredictable form variations of the canopy roof
can be obtained. Therefore, it is not easy to find the most suitable one
in terms of high strength and less weight out of these uncountable
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Fig. 14. Fractal dimension Vs. maximum displacement graphs for two different trials.
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variations. For this reason, as a further research, a computational
optimization process based on automatic search algorithms (such as
Genetic Algorithm) can be applied to find the optimal form of such a
structure.

This type of canopy structure can be used as a pavilion or a shed
shelter for multifunctional events. In rain-less hot areas, this type of
irregular canopy can be advantageous because the wrinkles of the roof
will cast self-shadows on the top surface, thus, they may reduce the
roof temperature as compared to a flat canopy roof. Nevertheless, in
fact, there are some practical disadvantages and challenges associated
with such a system. For example:

▪ The practical construction of such a crinkled canopy is a crucial chal-
lenge. Assembling of different flat panels could be one possible way
to fabricate such a discontinuous roof form. But this type of assembly
is a complex process because all the panels are completely dissimilar
to each other, and therefore, connecting them at their edges by
maintaining the random z-coordinates and the jointing angles is a
tiringly difficult task. The robotic fabricationmay reduce this difficul-
ty if it is constructed in a smaller scale.

▪ The structural stability against heavy winds or earthquake could be
an issue of serious concern. In this study, our structural analysis
has considered only the gravitational and mesh loads but not other
environmental and imposed loads.

▪ Another practically important problem of such an irregular canopy
surface is its depressed crinkles which will collect water or snow in
rains or in snowfall, and as a result, the canopy roof will become
heavier and its roofing material can be damaged by collected water
or snow if that remains for long hours.

▪ The difficulty of cleaning and regular maintenance of this type of
crinkled canopies may also be a significant practical problem.
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Fig. 15. Fractal dimension vs. roof weight graphs.
The practical issues addressed above have not been attempted to be
solved in this study. Tackling these real-world challenges can be a
subject of further study for improving the design of such a complex
structure, and thus, can ensure a new opportunity to develop structur-
ally feasible and practically constructible structures that are crinkled
and randomly fractal.
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