CHAPTER 2

An Overview of
Optimization Methods

After the completion of this chapter, the student should be able to:

1. Solve optimization problems limited to one or two control variables by graphical

means.

2. Recognize that linear mathematical models have the special property that the
optimum solution will always occur at an extreme point.

3.

Utilize the methods of calculus to find the critical-point solution of nonlinear
optimization problems consisting of one control variable and classify the critical
point as a minimum, maximum, or point of inflection.

The essential concepts for finding the optimum solution of resource allocation
models can be illustrated with graphical means and models limited to (wo control
variables, called bivariate models. That is. the control v
only. When models consist of more than two control
cannot be used and mathematical methods will be
be limited to models with linear objective
extremely important cls
point of view.

Next, the graphical method will be used to solve bivariate nonlinear problems.
Finally. culcu]u§ will be used L0 solve univariate mathematical models, models with
one control variable. The section on calculus is intended to be a review
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21 GRAPHICAL SOLUTION TO LINEAR MODELS

A bivariate linear mathematical model may be written as

Uy Xy + (szxz{:, =% Z}b

m

The number of constraint equations m will depend upon the problem statement.
The graphical procedure consists of the following steps.

1. Establish the feasible region from the set of constraint equations.

2. Assume a solution of z° and establish the slope of the line ¢,x, + ¢, x, = z°

3. Determine the optimum solution =* by establishing a line that is parallel to z*
and lies on the boundary of the feasible region.

Consider the mathematical model of Section 1.1. for maximizing total revenue for
the building shown in Figure 1.2. The first step is to establish the feasible region.
Let us establish the feasible region by investigating each constraint equation
scparately, and then we shall combine these results to construct the feasible region
for the entire constraint set of equations.

The constraints x, = 0 and x, = 0 restrict the feasible region to be all points in
the positive quadrant or quadrant 1. In Figure 2.1a, we see that x; > 0 restricts the
solution to be in quadrants I and IV. Similarly, in Figure 2.1b, we sce that x, = 0
restricts the solution to be in quadrants I and II. The intersection of both constraints,
X, = 0and x, = 0, will always limit the solution to lic within the positive quadrant,
quadrant I, as shown in Figure 2.1¢.

The constraints x, + x, = 5000, x; < 5000, and x, < 3000 are shown in Figures
2.2a, 2.2b, and 2.2¢, respectively. The arrows show the half-plane where the feasible
region must lie. The intersection of these planes results in the feasible region as shown
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Figure 2.1 Nonnegative constraints x, =z 0and x, = 0. ‘
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Figure 2.2 Establishing a feasible region.

by the shaded portion of the graph in Figure 2.24. All
boundary of the feasible region are called feqsibje solutions. All points that lie outside
the [easible region are called infeasible solutions. Points x' = (x}, x3) and x? =
(x{, x3) arc examples of feasible and infeasible solutions, respectively.

| The second step requires th 7

: . at an objective function be d
value of z%. Since the objective function is g linear function W
contour line or locus of points satisf

5 ylng SOX| + 60.\'1 =z
z” to be equal to $150,000. Thus, 50x, + 60x, —
determine the points (x4, 0) and (0, X,). These
respectively. Thus,

points that lie within or on the

rawn for an assumed
¢ can casily establish a
% Let us arbitrarily choose
= $150,000. For convenience, we
Points lic on the Xy and x, axes,
30x; + 60-0 = 150,000 or

.
—
) |

3000 or (3000, 0)
and

e 30-0 + 60x, = 150,000 Or X, = 2500 or (0, 2500)
'Ne 2" line must pass through points 3 ¢

hne :.0 = $150,000 and do ] 000, O)dnd(- =
solutions. None of these poi <R i Figure 2
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Figure 2.3 Searching for an optimum solution.

Utilizing the third step, the optimum solution may be found by drawing a contour
line parallel to z” that lies at an extreme point of the feasible region. The direction for
increasing the values of z is shown in Fig. 2.3. Any new contour line of z must intersect
the feasible solution to be a candidate for an optimum solution. For linear models,
an extreme point is defined to be the intersection of two or more constraint equations.
An extreme point will lie on the boundary of the feasible region; therefore. it is a
feasible solution and a candidate for the optimum solution. The contour line marked
z* is parallel to z” and it passes through the extreme point x*, the location of the
optimum solution for this maximization problem as shown in Figure 2.4. The point
x* is unique because z is a maximum and satisfies the conditions established in the
constraint set of the problem. Thus, the optimum solution to this problem is

x* = 5000 ft* and x% = 3000 ft? |

with optimum or maximum total revenue equal to z* = $50-5000 + $60- 3000 =
$430,000.

This is a straightforward approach to solving linear mathematical models, In
step 3, we are able to establish the optimum point =* because the slope of the objective
| function is always parallel to the contour line z° regardless of the assumed value of z°,
This is a property of linear functions. This approach can be used for any lincar mathe-
matical model restricted to two control variables with a minimum or maximum
objective function.
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Figure 2.4 The optimum solution.

Active and Inactive Constraints

When identifying whether or not a solution is located on the boundary or atan cxlrcr;c
point of the feasible region, the terms active and inactive constraints are used. DY
definition, an active constraint will occur on the boundary line or at an extreme point

of the feasible region. The constraint equation where g(x) is either a linear or non-
linear function of x,

g(x) < b
is said o be active constraint when the v:

«

tlues of x satisfy the strict equality as:
g(x) = b

On the other hand, when the solution X

iIs such that the inequality is satisfied,
g(x) < b

the constrainy ¢

quation is said 1o be an ; :
1 3 n 1\
and Inactive ca nactipe

~ y . : e
: : constrg 2.4 the aclv
nstraints are indicaed traint. In Figure




Graphical Solution to Linear Models 29

eXAMPLE 2.1 Minimum-Weight Truss

n Example 1.1, the following mathematical mode] was derived.
Minimize = = 6124, 4424,

A4, 2417

A, > 6.67

A4, > 833

A; = 6.25

l A, 2167

' where {’l and_Az represent the cross-sectional arcas of the compression and tension members
respectively. Find the optimum member sizes using a graphical method of solution.

Solution

The first step is to establish the feasible region. Each equation has been plotted in Figure 2.5. Arrows
have been placed upon each constraint equation to show the location of the feasible region for each
one. The intersection of these constraints specify the feasible region. The feasible region is shown as
the shaded region. It is bounded by the equations A, = 16.7and A, = 6.25 as shown in Figure 2.6.
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Figure 2.6

The next step is to determine the slope of the objective equation for an arbitrary value of =", Let
=% = 5000. We shall find the intercepts of 6124, + 4424, = 5000 on the A, and A, axes.

6124, + 442-0 = 5000; A, = 8.16 or (8.16, 0)
612:0 + 4424, = 5000; A, = 1131 0r (0, 11.31)
The line for z* = 5000 is shown in Figure 2.6.
Since all the points of =" lie in the infeasible region. no solution exists along the 2” line. By in-

creasing z, we can find the extreme point where z is a minimum. The arrow on =° = 5000 show the

direction in which the optimum solution lies. The optimum solution z* = 13.000 is shown in the
figure. Note that lines z* and =" are parallel.

The optimum solution is
A} = 16.7 in.?, A2 = 6.25in.?
Thus, all compression members, AC, BC, and CD, have cross sectional areas of 16.7 in.® and all

tension members, AB and BD, have cross sectional areas of 6.25 in.%. The total weight of the mini-
mum truss 1s z* = 162-16.7 + 442-6.25 or

z* = 13,000 Ib
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- my purchase material 1o supply a
110 the project site is $5.00/yd” from pit 1 and

0 : :
ghc material at pit 2 consists of 60 percent sand.

() Formulatea minimum-cost model.

(b) Determine the optimum solution by the graphical method.
(c) Determine the active and inactive constraint

(d) Determine the proportions of sand., gravel,

Solution

equations for the optimum solution.
and silt in the optimum solution.

(a) Formulation Since the gravel from pit 1 does not contain the minimum amount of sand to
meet project requirements, the contractor may not utilize the cheaper material exclusively. He
must mix the material from pits 1 and 2 to produce the required proportions.

We define the control variables to be

x; = amount of material taken from pit 1 (in cubic yards)
X = amount of material taken from pit 2 (in cubic yards)
The cost function is
minimize ¢ = $5.00x, + $7.00x,
Let x; + x, equal the total amount of standard gravel mix delivered to the project site. The
contractor must deliver at least 10,000 yd*, thus the delivery constraint is
X, + x; 2 10,000

The mixture must contain at least 50 percent sand. The contractor may obtain the desired
amount of sand by combining the materials from each pit.

0.3x, + 0.6x, = 0.5(x; + x;)

e 2 snectivelv »
The products 0.3x, and 0.6x, are the amounts of sand taken from pits | :mfi 2, respectively. Tho.r
term 0.5(x, + x,) is the amount of sand in the mix. Similarily, the constraint on the amount o
gravel to be delivered is

0.7x, + 0.3x, < 0.6(x, + x;)
Finally, the constraint equation for silt 1s
Ol X5 < 008(\| -+ .\':)

The minimum cost model may be written as

Minimize ¢ = Sx; + 7x; 'I
X, + x, = 10,000 (delivery)
0.3x, + 0.6x; = 0.5(x; + X3) (sand)
0.7x, + 03x; < 0.6(x, + X,) (gravel)
0.1x, < 0.08(x; + X3) (silt)
Xyi=U
x, =20

e e
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or in standard form:

Minimize ¢ = Sx, + 7x,

x, + x, = 10,000 (delivery)
—2x, 4+ x,20 (sand)
-x; +3x, 20 (gravel)

4x, — x, 20 (silt)
x =20
x;, =20

The second cost model will be utilized for plotting. The first cost model will be used to answer part
d and for checking the results.

(b) Graphical Solution

Step 1. Establish the feasible region. Since x, > Oand x; = 0, the feasible region is restricted to be
In a positive quadrant. Since only two points are needed to determine a line, each constraint
equation is assumed to be a strict equality, and then the boundary of the constraint equation is
found. For instance, for the equation:

Xy, + x, = 10,000

when x, = 0, x, must be equal to 10,000 or Xy = 10,000 and when x, = 0, x, must be equal to
10,000 or x; = 10,000. Thus, the points (0, 10,000) and (10,000, 0) are sufficient to determine the
boundary of the constraint, x, + X; 2 10,000. Next. the bo
inequality constraints of sand, gravel, and silt is determined
direction of the feasible region.

Since the gravel constraint =X, + 3x; = 0 lies outside the feasible region, it will not be con-
sidered in the search for the optimum solution.

Steps 2 and 3. Estimate an optimum solution, and test the condition ofoptimality. The minimum
cost was assumed o be equal to $80,000 or ¢” = $80.000 Figure 2.7b shows this estimate to be 100
high. This estimate does not satislfy the condition of optimality.

The optimum-cost line will be parallel and less than the mllml'c\lim;nc of ¢” = S80.000. Further-

more, for linear mathematical models, we should search lor the optimum solution at an extreme
point. For this problem, the optimum point is equal to

undary of the feasible region for the
- In Figure 2.7a the arrows show the

X7 = 33000 x* = 6700 fi?

with minimum cost ¢* = $63.400.

: Ngt.c that the optimum-cost line is parallel to the initially estimated cost line, and it satisfies the
\ conditions of optimality. In

addition, the optimum solution oceurs at an extreme point.

(c)‘ _ Acn;'e] anfl Inactive Constraings Since the optimum solution passes through the inter-
scu:)nlo the lines marked delivery and sand. the €quations x, — 2x, = Qand x, + x, = 10,000
are both active constraints o

H Ol active constraints. The rt..m.umng cquations are Inactive constraints. These are the lines

labeled silt and gravel. Sinc : :
: avel. Since the constraint : : : ' '
: ¢quation for gravel lies outside the feasible re it
o s , ~ \ ¢ feasible region,
will always be an inactive constraint. -
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Figure 2.7 (s) Feasible region. (b) Optimum solution.
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(d) The Optimum Mix The amount of sand, gravel, and silt that is the optimum mix is most
conveniently determined from the first cost model. The amount of sand s

0.3x? + 0.6x? = 0.3-3300 + 0.6 6700 = 5010 yd’
The minimum amount required is 0.5(x? + x?) = 5000, where x§ + x? s the total amoum

delivered.
The amount of gravel 1s

0.7x? + 0.3x2 = 0.7- 3300 + 0.3-6700 = 4320 yd’

This is less than 0.6(x} + x2%) = 6000, the maximum amount of gravel permitted in the mix.
The amount of silt 1s

0.1x% = 0.1(6700) = 670

This is less than 0.08(xT + x%) = 800, the maximum amount of silt permitted in the mix.
The constraint conditions are satisfied. The minimum cost (o deliver the mix is $63.400.

PROBLEMS

Problem 1

The constraint set 1s

.\'|+\‘253

(1)
1£x;€2 (2)
xy 20 (3)

(a) Clearly show the [easible region on a graph for the constraint set.
(b) Label all extreme points.

(¢) Ifthe less than or equal to constraint of Eq. (1) is changed to a strict equality, show the feasible
region and label the extreme points.

Problem 2

Consider the following constraint sets:

P
!

9
-

L)

2, + x; <9
—~3x; + 2x, <3
x, is unrestricted in sign

x, =20

(a) Clearly show the feasible region on a graph for the following constraint set.
(b) Label all extreme points.

(c)

If x; = 0is imposed, show the feasible region and label the extreme points.
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Problem 3

By graphical means, determine the location of the optimum solution.

Maximize - = 3x, + 2x,

2x, + 4x, < 21

-~

)
-
-

(a) Clearly show the feasible region.
(b) Determine the magnitude and location of the optimum point.
(c) Label the active and inactive constraints.

Problem 4
By the graphical approach, determine the optimum solution to
Maximize z = S5x, — 2x,
\l — :\- — ‘]

-3x; + 2x; =3
x, IS unrestricted in sign
Xy 2 )

(a) Clearly show the leasible region.
(b) Determine the magnitude and location of the optimum point.
(¢c) Label the active and nactive constraints.

Problem 5
Minimize z = 3x, + x,

2\| —4\3 = D

x, =0,

(a) Clearly show the feasible region

(b) By graphical means determine the optimum solution.

(¢) If the nonnegative restriction on X, (Le, x; = 0) were removed
optimal value of =,

determine the eflect on the

_“
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blem 6 _
Pro Maximize z = 2X; (1)
X; S X;
- (2)
-“l - 2\: S -
(3)

x, is unrestricted n sign

\:’\.“

(a) Clearly show the feasibility region. : .
(b) Determine the magnitude of the optimum point.
abel the active and inactive constraints.
(¢) Label the active and inactive cons : ‘ B B |
(d) How is the optimum point affected if constraint (2) is removed, Why'

: : , 'ms 1. 2. 3.; sspectively. The
Problems 7, 8,9, and 10 were formulated in Section 1.1 as problems 1, 2, 3, and 4, respectively ¢
question here deals with the solution of the problems.

Problem 7

A contractor has two sand and gravel pits where he may purchase material. The unit cost mclmim;.:
delivery from pits | and 2 is $5 and $7 per cubic yard, respectively. The contractor requires 100 yd
of mix, The mix must contain a minimum of 30 percent sand. Pit | contains 25 percent sand. and pil
2 contains S0 percent sand.,

The object is to minimize the cost of material.
(@) Draw the feasible region.
(b) Determine the optimum solution by the graphical approach.
(c) Label the active and Inactive constraints.

Problem 8

An aggregate mix of sand and gravel must contain no less than 20 percent nor more than 30 percent

gravel. The in situ soil contains 40 percent gravel and 60 percent sand. Pure sand may be purchased

and shipped 1o site at 35.00/yd™. A total mix of 1000 yd* :

material, ‘
The goal is to minimize COst subject to the mix constraints,

(@)  Draw the feasible region on the graph.

(b) Determine the opuimum solution

(c) Label the active and Inaclive constraints.

Is needed. There is no charge to use in situ

Problem 9
There are two suppliers of pipe:

\“
e ———
e ——

UNIT COsT SUPPLY
S_OURCE (S/LINEAR FOOT) (LINEAR FOOT)

e —
e

1 -—— —
2 Z:gg 100 ft maximum
s Unlimited

—_———

T ————

& 2 T

T -

> e

0[
re
un

dui

ana



Graphical Solution to Linear Models 37

Nine hundred feet of pipe is required. The goal is to minimize the total cost of pipe.

(a) Find the optimum solution.
| (b) Formulate a mathematical model with the supply of pipe from source No. 2 limited to 700
linear feet.
| (c) Does a solution to part b exist? Use the graph to prove your answer.
!
Problem 10
A company requires at least 4.0 Mgal/day more water than it is currently using. A water-supply
facility can supply up to 10 Mgal/day of extra supply. A local stream can supply an additional
‘ 2 Mgal/day. The concentration of pollution must be less than 100 mg/| BOD, the biological

oxygen demand. The water from the water-supply facility and from the stream has a BOD
concentration of 50 mg/l and 200 mg/1, respectively. The cost of water from the water supply is
$100/Mgal and from the local stream is $50/Mgal. The goal is to minimize cost of supplying

extra water that meets water quality standards.
! By graphical means, show the feasible region, and determine the location of the optimum
'| solution.
Problem 11

A treatment plant has a capacity of 8 Mgal/day and an operating efficiency of 80 percent. The
operating efficiency is defined as the amount of BOD,, the S5-day biological oxygen demand,

removed by the treatment plant facility. For example, if 200 mg/l of BOD enters the plant, the
amount of BOD leaving it 1s

’ 20001 — 0.8) = 40 mg/l of BOD,

Owing to regional population growth, the rate of flow of wastewater has increased to 20 Mgal,
day. The BOD, of the wastewater is 200 mg/l. Since the plant can only treat Mgal/day, 12 Mgal
day 1s being diverted from the plant and is entering the river without treatment (Figure 2.8a).

20 Magal/day

20 Magal/day

‘ 8 Maal/day

(treated) 12 Mgal/day {untreatrd)

Figure 2.8
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(a) Determme the BOD, of the combined flow of treated and untreated water entcring the niver
a

(BOD, in mg /1) -
(b) The cost of building a new
C= 288 x 10°0 (@ =1fow)

¢ a mathematical model to treal 20 Mgal day of

wastewater which has 200 mg/1 of BOD,. The combined flow of treated water cmcr'mgf n:
river from the old and new plants must not exceed 25 mg 1 of BODy. The efficiency of t
existing plant is 80 percent, and of the new plant is 90 percent.

(¢) Determine the minimum-cost solution by graphical means.

Define all control variables and formulat

Problem 12 pacon
A 30-mile stretch of roadway (Figure 2.9a) is considered to have a poor lc\"cl of service. Twenty -h‘f
million dollars (S25M) has been allocated for the project. The cost to improve the roadway is
$1M/mile: therefore, the entire roadway cannot be improved. '

The existing and proposed upgraded roadways are assumed to have a speed - density relation-
ship as shown in Figure 2.9b. |
(a) Derive speed-density functions for the existing and upgraded roads. The speed « is assumed

to be a linear function of density k.

k = density (vehicles/mile)
u = speed (miles/hr)

(b) Derive a flow-density function for the existing and upgraded roads, ¢ = ku, and draw the
function for the existing and upgraded roadways, where flow is defined as g = flow (vehicles,
hr).

(¢) What are the maximum capacities of the existing and upgraded roads? Call them g,

(d) Determine the density at capacity k., for the existing and upgraded roads,

(¢) The flow on the existing roadway is 800 vehicles/hr between point A and intersection C,
and 1200 vehicles/hr between C and B. Show that the vehicular speeds for uncongested flow,
§ S ey, are as follows:

Existing road
Segment A-C  w, - = 31.5 miles/hr
Segment B-C e = 20 miles/hr

Upgraded road
Segment A-C pae = 524 miles/hr
Segment B-C Uye = 47.4 miles/hr

(I Determine the total travel time speed between A and B for existing road or u, = 31.5 miles;
hr and uge = 20 miles/hr.
(g) Formulate a mathematical model to minimize total travel time between A and B. Assume 4

budgetary constraint of $25M. Clearly define control variables for mileage of roadway to be
constructed.

(h) Solve for the optimum solution in part g by graphical means.
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Intersecting road
Roadway
q = 800 vehicles/hr / q = 1200 vehicles/hr :
10 miles 20 miles rr/
(a)
u
£
8
E
®
a
(%3]
0 30 60 90 120
Density (vehicles/mile)
(h)
Figure 2.9

2.2 GRAPHICAL SOLUTION TO NONLINEAR MODELS

We shall extend our method for finding the optimum solution to nonlinear design

problems limited to two control variables. For optimization problems of the general
form, the mathematical model form is

2= f(x,x3)

glxy, X)) =, <, > )bi =122 m

The graphical Procedure consists of the following steps.

1. Establish the fe
2. Esum

asible re

gion from the set of constraint equations.
alc an optimum s

olution, z = z° and draw the function, z° = fe %)




