CE 5364 Groundwater Transport Phenomena Exercise Set 1

Exercises

1. A sand column has the following characteristics¹:

$$K = 10^{-4} \frac{cm}{s}; \quad A = 75cm^2; \quad \frac{dh}{dl} = 0.01; \quad n = 0.20$$
 (1)

Determine:

- (a) Sketch the system.
- (b) The specific discharge.
- (c) The pore velocity.
- (d) The volumetric flow rate through the column.

ES1

¹Problem 2-3, pg. 578 in Bedient, et. al.

Sketch the system.

Figure 1: Sketch of Sand Column

Specific discharge

```
[61]: K = 1.0e-04
A = 75
dhdl= 0.01
n = 0.20

[62]: q=K*dhdl
print("specific discharge = ",round(q,6)," cm/sec")
specific discharge = 1e-06 cm/sec
```

Figure 2: Specific discharge calculations

ES1 Page 2 of 7

Pore velocity

```
[63]: u=q/n
print("pore velocity = ",round(u,6)," cm/sec")

pore velocity = 5e-06 cm/sec
```

Figure 3: Specific discharge calculations

Volumetric flow rate through the column

```
[60]: Q=q*A
print("Volumetric discharge = ",round(Q,6)," ml/sec")
Volumetric discharge = 7.5e-05 ml/sec
```

Figure 4: Volumetric discharge calculations

ES1 Page 3 of 7

2. Three geologic formations overlie one another with the characteristics listed below.²

$$b_{1} = 50 \ ft \qquad K_{1} = 0.0002 \frac{ft}{s}$$

$$b_{2} = 20 \ ft \qquad K_{2} = 0.000005 \frac{ft}{s}$$

$$b_{3} = 210 \ ft \qquad K_{3} = 0.001 \frac{ft}{s}$$
(2)

A constant velocity vertical flow field exists across the three formations. The hydraulic head at the top of the formations (top of formation 1) is 33 feet. The hydraulic head at the bottom of the formations (bottom of formation 3) is 21 feet.

Determine:

- (a) Sketch the system.
- (b) The hydraulic head at the internal boundary between formation 1 and 2.
- (c) The hydraulic head at the internal boundary between formation 2 and 3.
- (d) Approximate time for a tracer to flow (vertically) through the three layers if the porosities n_1 , n_2 , and n_3 are 0.30,0.42, and 0.35, respectively

ES1

²Problem 2-12, pg. 579 in Bedient, et. al.

Sketch the system.

Figure 5: Sketch of Layered System

ES1 Page 5 of 7

The hydraulic head at the internal boundary between formation 1 and 2.

```
[50]: # Find total discharge per unit area through entire formation
     htop=33
     hbot=21
     k1=0.0002
     k2=0.000005
     k3=0.001
     11=50
     12=20
     13=210
     n1=0.30
     n2=0.42
     n3=0.35
     Kbar=(11+12+13)/((11/k1) + (12/k2) + (13/k3))
     print("vertical composite Kv: ",round(Kbar,6)," ft/sec")
     dH=htop - hbot
     dl = 11+12+13
     qt=Kbar*dH/dl
     print("vertical hydraulic gradient :",round(dH/dl,6)," ft/ft")
     print("vertical specific discharge q: ",round(qt,6)," ft/sec")
     vertical composite Kv: 6.3e-05 ft/sec
     vertical hydraulic gradient : 0.042857 ft/ft
     vertical specific discharge q: 3e-06 ft/sec
[51]: # find head loss in layer 1
     dh1 = 11*qt/k1
     h12 = htop - dh1
     print("head at layer 1-2 interface :",round(h12,2)," ft ")
     head at layer 1-2 interface : 32.33 ft
```

Figure 6: Head at layer 1-2 interface

ES1 Page 6 of 7

The hydraulic head at the internal boundary between formation 2 and 3.

```
head at layer 1-2 interface : 32.33 ft

[52]: # find head loss in layer 2
dh2 = 12*qt/k2
h23 = htop - dh1 -dh2
print("head at layer 2-3 interface :",round(h23,2)," ft ")
head at layer 2-3 interface : 21.57 ft
```

Figure 7: Head at layer 2-3 interface

ES1 Page 7 of 7

Approximate time for a tracer to flow (vertically) through the three layers if the porosities n_1 , n_2 , and n_3 are 0.30,0.42, and 0.35, respectively

```
head at layer 2-3 interface : 21.57 ft
[53]: # time in layer 1
      time1 = 11*n1/qt
      print("tracer time in layer 1 :",round(time1,6)," sec")
      tracer time in layer 1 : 5575000.0 sec
[54]: # time in layer 2
      time2 = 12*n2/qt
      print("tracer time in layer 2 :",round(time2,6)," sec")
      tracer time in layer 2 : 3122000.0 sec
[55]: # time in layer 3
      time3 = 13*n3/qt
      print("tracer time in layer 3 :",round(time3,6)," sec")
      tracer time in layer 3 : 27317500.0 sec
[56]: totaltime=time1+time2+time3
      totaltime=totaltime/86400
      print("Tracer travel time :",round(totaltime,3)," days ")
      Tracer travel time: 416.834 days
```

Figure 8: Travel times in layered system

ES1 Page 8 of 7