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Abstract 3 

Despite the availability of numerical models, interest in analytical solutions of multi-dimensional 4 

advection-dispersion systems remains high.  Such models are commonly used for performing 5 

Tier I risk analysis and are embedded in many regulatory frameworks dealing with ground water 6 

contamination. In this work we develop a closed form solution of the 3D advection-dispersion-7 

equation (ADE) with exponential source decay, first order reaction and retardation, and  present 8 

an approach based on some ease of use diagrams to compare it with the integral open form 9 

solution and with earlier versions of the closed form solution. The comparison approach focuses 10 

on the relative differences  associated with source decay and the effect of simulation time. The 11 

analysis of concentration contours, longitudinal sections and transverse sections confirms that the 12 

closed form solutions studied can be used with acceptable approximation in the central area of a 13 

plume bound transversely within the source width, both behind and beyond the advective front 14 

and for concentration values up to two orders of magnitude less than the initial source 15 

concentration. Since the proposed closed form model can be evaluated without nested numerical 16 

computations and with simple mathematical functions, it can be very useful in risk assessment 17 

procedures.  18 

 19 

Introduction 20 

Analytical and semi-analytical solutions are efficient tools widely used for modeling fate 21 

and transport of contaminants in groundwater. These solutions are useful for testing complex 22 

numerical transport models under particular simplified subsurface and boundary conditions and 23 

for performing risk analysis of polluted sites resulting from accidental spills and waste disposal 24 
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activities. Modern numerical transport models are capable of handling multi-contaminant 25 

systems with complex reaction chains in non-homogeneous and anisotropic media, under a 26 

multitude of initial and boundary conditions. Unfortunately, complex numerical models require 27 

defining parameters which are often not well known, leading to model outputs that are highly 28 

uncertain. This uncertainty in some cases could diminish the advantages of adopting a more 29 

detailed approach. During the past decades a great number of analytical solutions of the 30 

advection-dispersion equation for both conservative and reacting solutes have been developed. 31 

These solutions have been developed  to provide physical insights into transport problems and 32 

they are also preferred by governments and some companies to perform Tier I risk assessments 33 

because of their ease of use and low costs for implementation (Ford et al, 2007).  34 

Sagar (1982), Wexler (1992), Batu (1993) proposed exact 3D analytical solutions in 35 

integral open form. Batu (1996, 2006) proposed a generalized open form 3D analytical solution 36 

containing series; Leij et al. (2000) provided a useful collection of 3D solutions by applying 37 

Green’s Function Method (GFM). Park and Zhan (2001) and Wang and Wu (2009) provided 38 

one-, two- and three dimensional analytical solutions in both closed form and integral open form  39 

in an aquifer of finite thickness by using GFM. Wang et al. (2011) proposed a stepwise 40 

superposition approach for the analytical solution in infinite and finite domains expressed as 41 

sums rather than integrals. 42 

A major limitation in all the aforementioned multi-dimensional analytical solutions in 43 

finite-infinite domains and under first or third type boundary conditions include integrals in their 44 

expression or infinite series, which need to be solved numerically. The numerical solutions can 45 

introduce approximation errors, can be computationally demanding and may explain why models 46 

using the same input parameters can generate very different results. 47 
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 48 

Domenico and Robbins (1985), Domenico (1987), Martin-Hayden and Robbins (1997) 49 

proposed some 3D approximated analytical solutions in closed form. The key advantage of the 50 

Domenico and Robbins (1985) approach and its derived extensions included in US EPA tools as 51 

BIOSCREEN (1996), BIOCHLOR (Aziz et al., 2000), currently used in risk assessment 52 

procedures, is that it provides a closed form solution that can be evaluated with much less 53 

significant numerical computations since it contains only complementary error functions. The 54 

latest version of the Domenico-Robbins-based solutions is valid for linear sorption, pollutant first 55 

order decay and a variety of plane and linear source boundary conditions. These analytical 56 

solutions, identified by the authors as based on the "extended-pulse-approximation", have 57 

received much attention in the literature, given their adoption by regulatory agencies.  58 

By recalling the principal steps followed by Domenico and Robbins (1985), it can be 59 

noticed that they propose a closed form 3D solution by multiplying the 1D solution in the flow 60 

direction with the two transverse spreading solutions, in which time t is replaced by an averaged 61 

time taken as x/v, where x is the coordinate in the flow direction and v is the average pore scale 62 

velocity. Wexler (1992) provided an exact analytical solution of the equation proposed in 63 

Domenico (1987), this solution was already contained in the work by Sagar (1982). Srnivasan et 64 

al. (2007) performed a limiting analysis of the approximated Domenico (1987) solution and 65 

proved that it relaxes to the Wexler (1992) analytical solution for axial dispersivity tending to 66 

zero. Srinivasan et al. (2007) concluded that the Domenico and Robbins (1985) approach forces 67 

a quasi-steady state condition in transverse direction at all times, and for this reason it introduces 68 

significant errors for longitudinal-dominated problems. They performed some comparison by 69 

varying dispersivities and space velocity by an order of magnitude, showing the possibility of 70 
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high errors in the centerline. Also West et al. (2007) performed comparisons with the Domenico 71 

and Robbins-modified solutions, along the centerline, by varying the source dimension and 72 

dispersion coefficients. Their results gave errors of about 40-80% at small simulation times. 73 

Guyonnet and Neville (2004) performed a comparison method using non-standard dimensionless 74 

groups and on the axial Peclet number, finding errors in the transverse direction greater than in 75 

the axial one.  76 

In this work we present a new closed form solution of the 3D problem with first order 77 

reaction and retardation but unlike past solutions allows for exponential source decay.  The 78 

model being suitable for treating continuous source dissipation with time owing to dilution by 79 

precipitation or source removal or remediation. We also suggest a novel approach to compare 80 

models using some ease of use diagrams that include all the previous analytical solutions. The 81 

comparison approach can be extended to other solutions in finite domain and different shaped 82 

sources. The particular solution here analyzed in detail refers to a plane source with first type 83 

boundary condition, semi-finite domain in x direction and infinite domain in y and z directions. 84 

Concentration at the source is defined as a decaying exponential function of time.  85 

Model derivation  86 

The governing equation for the three-dimensional advection-dispersion of a solute subject 87 

to a first order decay (also valid for a pseudo-first order reaction in homogeneous phase where 88 

the contaminant is the controlling reactant, i.e. other reactants are in excess) and linear sorption, 89 

instantaneous and reversible, can be written as:  90 
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where ),,,( tzyxc   is the solute concentration [ML-3], x is the longitudinal coordinate, y and z are 92 

the horizontal transverse and the vertical coordinates, respectively,  v is the average pore scale 93 

velocity of the fluid [LT-1], taken unidirectional along x, Dx is the longitudinal dispersion 94 

coefficient [L2T-1], Dy and Dz are the horizontal transverse and the vertical transverse dispersion 95 

coefficients [L2T-1], respectively, t is time [T], λ is the first order decay constant [T-1], and R is 96 

the retardation factor [-]. 97 

The retardation factor can be eliminated from the term on the left by replacing Dx, Dy, Dz 98 

with Dx/R, Dy/R, Dz/R; v with v/R and, λ with λ/R.  99 

Eqn. (1) can be written as a linear operator on concentration: 100 

0)t,z,y,x(C(L  (2)  101 

By applying the GFM it is possible to obtain different solutions depending on different 102 

boundary and initial conditions (Greenberg 1971, Roach 1982). It is possible to use GFM if the 103 

following conditions occur: 104 

1) homogeneous and anisotropic porous medium; 105 

2) constant velocity in x direction; 106 

3) horizontally infinite or semi-finite domains; vertically semi-finite or finite domains; 107 

4) initial condition set as 0)0,,,( zyxc  108 

5) point, linear, plane, volumetric source (regular or irregular). 109 

The source of contamination can be usually placed as:  110 

i. a source generation term r [ML-3T-1] inside the domain (GFM general approach) and in 111 

this case an infinite domain in x and y is usually considered;  112 
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ii. a boundary condition of the first type and expressed as concentration, or a boundary 113 

condition of the third type and expressed as a mixed flux/concentration in a semi-finite 114 

domain. 115 

If we consider case i), i.e. the source term inside the domain, usually we put:  116 

0),,,(  tzyc  (3) 117 

0),,,(  tzxc  (4) 118 

finite) is domain the where direction, z in   
z
c

(or        )t,,y,x(c 00 



        (5) 119 

 120 

 The specific source generation term (source strength) can be defined as: 121 





0
)(0 tfr

r          
;0 0xx  ;10 yyy  10 zzz 

 (6) 122 

where r is a function of x,y,z  and can be a linear or non-linear function of t;  [ML-3T-1] is the 123 

initial volumetric mass released by the source per unit of time, f(t) is a dimensionless known 124 

function. The specific source generation term exists only in the space occupied by the source, 125 

otherwise is zero. The specific source generation term cannot depend on C. 126 

Since eqn. (1) is linear, the superposition principle allows us to write each appropriate Green's 127 

function as  the sum of a fundamental solution and a causal solution. The fundamental (or 128 

source) solution is found by solving eqn. (1) under homogeneous boundary conditions at infinity 129 

and with an added generation term  r, discontinuous inside the domain and defined by: 130 

)tt()zz()yy()xx(rr 00000    (7) 131 

 132 

The causal (or forced) solution is given by solving eqn. (1) under inhomogeneous 133 

boundary conditions.  Subsequently, it is possible to find  the solution for distributed and/or 134 

continuous  generation terms as the superposition of the solutions obtained by describing the 135 

0r
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generation terms  as an infinite number of pulse functions. In summary, by knowing the  solution 136 

for the instantaneous point source (solved for infinite, semi-finite or finite domains), we can 137 

extend it to a more complex source knowing that: 138 

A. The 3D solution for a point instantaneous source is the product of the 3 directional 139 

solutions; 140 

B. The 3D solution for a finite instantaneous source can be obtained by integration of the 3D 141 

point source solution into the source domain; 142 

C. The 3D solution for a continuous (point or not-point) source can be obtained by 143 

integration of the 3D source solution in time. 144 

In case of finite boundaries it is possible to use the method of images (or reflection 145 

method) to find the Green's function: starting from the free space solution we can add to it some 146 

other solutions of eqn. (2) in order to get the required boundary condition. To do this, we can 147 

suppose that there is an image of the source outside of the domain, with opposite sign and 148 

exactly at the same distance away from the boundary as the source is (like a mirror). The goal is 149 

to cancel the values of the free space solution that are on the boundaries. This method is used to 150 

find solutions of the ADE for finite z domain (usually from 0 to L). 151 

The analytical solution of eqn. (1) for the instantaneous point source centered in 152 

),,( 000 zyx   at time t0 subject to (3), (4) and (5) is obtained by applying (A) to the well known 153 

1D directional solutions: 154 
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where M is the total mass inserted by the instantaneous point source per unit time ( Baetsle, 157 

1969). A class of solutions for the point source in different domains can be obtained by changing 158 

equations (3), (4), (5) with different ones. Finally, it is possible to obtain analytical solutions for 159 

complex sources in space and time by integrating the class of point solutions in space and time.  160 

If we consider case ii), i.e. the source term is a boundary condition of the first type or 161 

third type, the generation term r is zero and we have, respectively: 162 


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0 tfc
tzyc   or  

)(),0(
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x
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 (9) 163 
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 (10) 164 

0),,,(  tzxc   (11) 165 

0),,,(  tyxc       (or     0



z

c      in z direction, where the domain is finite)  (12) 166 

 167 

where c0 [ML-3] is the initial source concentration, f(t) is a dimensionless time function, g(t) is a 168 

time function and L0 [L] is the length of the finite x domain. 169 

Sagar (1982) and Wexler (1992) derived the analytical solution of the 3D ADE for a 170 

plane source described by a boundary condition of the first type at constant concentration c0, and 171 

the remaining boundary conditions expressed as concentration tending to zero at infinite domain 172 

(terms on the left of eqns. (10), (11) and (12)). 173 

The solution can be found by using traditional integration transform methods or GFM. The final 174 

analytical solution is: 175 

 176 
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  178 

where τ = t - t0;   x'= x - x0. 179 

It is important to remark that since Eqn. (13) satisfies the initial condition c(x,y,z,0)=0,  180 

the solution predicts a concentration equal to zero at x’=0 for every y and z and t = 0, as already 181 

observed by Wang et al. (2011). So the solution is valid for all x'>0.   182 

Eqn.(13) is in open form and the integral in time has to be numerically evaluated. Wang 183 

et al. (2011) introduced a stepwise superposition approach to handle eqn.(13) by discretizing the 184 

time interval in N steps and by approximating the contribute of Gy×Gz by its weighted average.  185 

Martin-Hayden and Robbins (1997) proposed an analytical solution for a plane source in 186 

closed form by adopting the approximation of Domenico (1987), this solution is referred by 187 

Srinivasan et al. (2007) as the “modified-Domenico” solution. This analytical solution takes into 188 

account the first order decay and is contained in BIOCHLOR (Aziz et al., 2000): 189 
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 191 

where xDvu 4' 2  , v/xm  and the first term of the product is the mono-dimensional 192 

solution derived by Bear (1975).  193 
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If we have a plane source generating contamination with exponential decay, being λs the 194 

decaying constant of the source, i.e.:  195 

))(exp()()( 0000   trtfrtfrr s  (15) 196 

eqn.(13) can be extended as: 197 
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 (16) 198 

that is the solution in integral open form for a plane source with exponential decay as a boundary 199 

condition of the first type. This solution is used in BIOSCREEN-AT (Karanovic et al., 2007). 200 

 201 

The proposed 3D solution for a plane source with exponential decay  202 

The closed form solution developed here is based on the "extended pulse approximation" that 203 

uses spatial extensions of  the well known instantaneous finite pulse models. This approximated 204 

solution can be easily derived by following the approach proposed in Domenico and Robbins 205 

(1985) and Martin-Hayden and Robbins (1997). Alternatively, the proposed solution can be 206 

obtained from the instantaneous pulse solution, by following the three steps defined in rules (A), 207 

(B) and (C) and by making some simplifying hypothesis. 208 

The closed form approximate solution can be written as:  209 

   )t(g )t(g )t(g
C

)t,z,y,x(c zyx8
0        (17) 210 

To construct the 3D solution of eqn.(1) subject to (9), (10), (11) and (12), where 211 

)texp()t(f s , i.e. valid for semi-finite domain in x, infinite domain in y and z, and  subject 212 



 

 12 

to a first type boundary condition described as a finite plane decaying source, we can use the 213 

following functions:  214 

i) in eqn. (17) the term gx is taken from  the solution x
c g)t,x(c 2

0  of the 1D ADE (obtained by 215 

eliminating  terms in y and z from eqn.(1))  subject to a first type boundary condition described  216 

as an exponential decaying source. This solution was given in the most general case by Van 217 

Genuchten and Alves (1982) and named C13, and it was later proposed by Williams and 218 

Tomasko (2008) for a particular case;   219 

ii) the two terms gy and gz come from the solutions y
c g)t,y(c 2

0  and z
c g)t,z(c 2

0  of  two 220 

independent 1D equations with dispersion,  no advection and no reaction, valid for infinite 221 

domain and subject to instantaneous finite linear sources, defined respectively in 21 yyy   222 

and in  21 zzz  . 223 

Since the proposed approximation combines the solution in x obtained for a continuous source 224 

with the solutions in y and z obtained for  instantaneous sources to construct the final solution, a 225 

fixed time t has to be defined to calculate at each x the contribution of the instantaneous  226 

spreading terms in y and z.  By following the Domenico and Robbins (1985) approximation, gy 227 

and gz  in eqn.(17) are computed  at the apparent residence time v/xm  and the contribute of 228 

these two spreading terms in diluting concentration during time is calculated as at steady state. 229 

The physical meaning of this choice was explained by the plug flow model approximation in 230 

Domenico (1987).  231 

The final solution is: 232 
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 (18) 234 

with sxx DDvu  442  . 235 

The alternative method to obtain eqn. (18) uses GFM and rules (A), (B) and (C) to derive the 236 

open integral form solution given by eqn. (16). Then the simplifying hypothesis consists in 237 

"reinterpreting time t as x/v for a moving coordinate system, as is common in all transverse 238 

spreading models" (Domenico and Robbins 1985). This translates in the substitution of time t in 239 

the transverse spreading terms of eqn. (16) with the apparent residence time  v/xm  . With 240 

this substitution the two last terms of eqn. (16) do not depend on time, and the integration in time 241 

of eqn.(16) reduces to the integration in time of the 1D ADE, with first order reaction and subject 242 

to an exponential source decay as a first type boundary condition, that again leads to eqn.(17). 243 

 244 

Evaluation of Model Relative Errors  245 

We want to compare eqn. (18), i.e. the approximated 3D analytical solution here 246 

proposed in closed-form for a plane source with exponential source decay, and eqn. (16), i.e. the 247 

3D analytical solution in open form under the same conditions. We suggest an approach different 248 

from those adopted by Srinivasan et al. (2007) and West et al. (2007).  249 

The main goal is to quantify relative errors in order to propose a short-cut method, based 250 

on simple diagrams, that allows the users of the closed form models to correct their results or to 251 

evaluate uncertainty of model output. Since the analytical solution here proposed in eqn. (18) and 252 

eqn. (16) are more general than the existing ones, the method is valid also for error analysis of 253 
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the analytical solutions contained in BIOSCREEN and BIOCHLOR. However, to show and 254 

compare results of the method, we use the same values adopted in Srinivasan et al. (2007), even 255 

if it could be observed that some chosen values are not consistent with some dispersivity 256 

estimates.  257 

Parameter Value 

Longitudinal dispersivity (αx) 42.58 m 

Transverse dispersivity (αy) 8.43 m 

Transverse dispersivity (αz) 0.00642 m 

velocity (v) 0.2151 m/d 

Source width in Y direction (Y) 240.0 m 

Source width in Z direction (Z) 5.0 m 

Source concentration (C0) 850 mg/l 

Simulation time (tm) 5110 d 

First order reaction constant (λ) 0.001 s-1 

Table 1. Simulation data 258 

As shown in Gelhar et al. (1992) and Zheng and Bennett (2002), high-reliability 259 

estimates of longitudinal dispersivities range from about 0.5 to 4 m and high-reliability estimates 260 

of horizontal transverse dispersivities range from about 0.02 to 0.1 m. The values of 261 

dispersivities here adopted to quantify relative errors are more than one order of magnitude 262 

greater than the expected ones for real cases. Since Srnivasan et al. (2007) proved that the 263 

approximated closed form solution of eqn. (14) relaxes to the Wexler (1992) analytical solution 264 

for axial dispersivity tending to zero, the choice of a very high value of axial dispersivity is 265 

conservative for this study, since the effects on relative errors will be increased with respect to 266 

the real ones. Furthermore, since West et al. (2007) proved that for small transverse dispersivities 267 

errors reduce in the centerline, simulations here proposed with a value of horizontal transverse 268 
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dispersivity almost two orders of magnitude greater than the expected one will produce higher 269 

relative errors in the centerline than the expected real ones.    270 

Dispersion coefficients used in this analysis are expressed by the product of dispersivities 271 

and velocity.   272 

Simulations are performed at different values of the exponential source decay constant λs; 273 

in this way also the comparison of the Domenico-modified closed-form solution given in 274 

eqn.(14) with the Wexler (1992) analytical open form solution given in eqn. (13) are included. 275 

Values of λs  and λ  are chosen in order to analyze all the known particular solutions included in 276 

eqn. (16) and eqn. (18). 277 

For certain uncommon values of λs the term under the square root defining278 

sxx DDvu  442  , also present in the well known one-dimensional solution proposed by 279 

van Genuchten and Alves (1982), can be negative. In this case eqn. (18) must be computed by 280 

using tools that treat complex exponential and complex error functions, such as Maple™ 281 

(trademark of Waterloo Maple Inc.), so that concentration is always a real number.  282 

Simulation cases here reported are shown in table 2: 283 

Parameters Case Corresponding 
simplified solutions 

λ [s-1] λs  [s-1]   

0.0 0.0 a 

u=u'=v 

conservative solute, 
no source decay. 

0.001 0.0 b 

u=u'>v 

eqns. (13) and (14). 

0.001 0.0008 c 

u>v 
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0.001 0.001 d 

u=v 

 

0.001 0.0018 e 

u<v 

 

0.001 0.0023 f 

u=0 

 

Table 2. values of the decay constants and relative cases. 284 

 285 

Concentration field  286 

Some concentration fields evaluated by eqn. (18) and eqn. (16) at changing λs are plotted 287 

in the (x,y) plane and reported in  figure 1. Since in this study we considered the analytical 3D 288 

solutions with infinite z domain, no differences between the contour shapes in y and z are to be 289 

outlined, apart the obvious influence of the different source extensions and dispersion 290 

coefficients. Hence concentration fields in (x,z) plane are essentially identical.  291 

The numerical integration of eqn. (16) was made by adaptive Gauss-Kronrod quadrature 292 

method (available in QUADPACK library, GNU Scientific Library, Matlab QUADGK, NAG 293 

Numerical Libraries and R). For each subplot of figure 1 the upper concentration contour map 294 

was developed using the approximate closed form proposed in eqn. (18) and the lower one is 295 

evaluated by the exact open integral form expressed by eqn. (16). The vertical line is the 296 

advective front, i.e. the distance x from the source where a conservative contaminant injected 297 

with a Dirac function would be found without dispersion effects at t=tm. 298 

Case a) represents model outputs in the simple situation of advection-dispersion of a 299 

conservative solute released at constant concentration by a plane source. Case b) compares 300 

models outputs for a non-conservative solute underlying a first order decay and released at 301 
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constant concentration by a plane source. Finally, cases c), d), e), f) represent concentration 302 

contours for a non-conservative solute subject to first order decay,  released by decaying plane 303 

sources with varying decay constants and effective velocities.  304 
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Figure 1. Concentration maps. Approximated closed form (top) versus integral open form 305 

(bottom). Case a) conservative solute, no source decay. Case b) reacting solute, no source decay. 306 

Cases c) to f) reacting solute, source decay.  307 

 308 

It can be observed that concentration distributions evaluated by eqn. (18), are more 309 

delayed with respect to the advective front than distributions obtained by eqn. (16). The graphs 310 

show that the delay increases with λs. By observing cases e) and f) at simulation time tm=5110 311 

[s], when the source is already consumed, the centre of the plume, i.e. the point at maximum 312 

concentration, evaluated with the closed form solution,  lags behind with respect to the 313 

concentration profiles computed by eqn. (16). 314 
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The initial value of concentration is set at C0=850mg/l; case a) is the one with the higher 315 

concentration in the domain since a conservative contaminant is considered. By comparing the 316 

well known case a) and case b) at equal distance from the source, graphs confirm the effect of 317 

first order decay in reducing contaminant concentration in the domain. The effect of the first 318 

order reaction in mean contracting the shape of the iso-concentration curves can be also noticed. 319 

This effect can be directly correlated to the value of the effective velocity u' appearing in eqn. 320 

(14), where u' is higher than v. 321 

By looking at cases c) and d) it’s interesting to observe how the shape of concentration 322 

contours in the domain stretches again  under the reduction of the effective velocity u appearing 323 

in eqn. (18). This decrease is due to the term containing the zero order source decay, that has 324 

opposite sign with respect to the first order reaction term, both contained in the expression of the 325 

effective velocity appearing in eqn. (18). Consequently, for case d), in which λ=λs , giving u=v, 326 

the shape of the iso-concentration distributions are  identical to case a). 327 

Finally, in cases e) and f) for which u is less than v, the shape of concentration contours 328 

changes again allowing to observe the effect of source diminishment. 329 

 330 

Relative differences 331 

Relative differences between the closed form solution and the integral one, expressed as: 332 

I
IC

Er


  (18) 333 

are shown in the ray-shaped diagrams of figure 2. The symbol C indicates the closed form 334 

solution with the same type of approximation adopted by Martin-Hayden and Robbins (1997), 335 

also called Domenico modified; and the symbol I the integral open form solution. Diagrams in 336 
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figure 2 are plotted at fixed simulation time t=5110 days and at changing λs. The vertical line in 337 

the figure is the advective front, as previously defined. The reported cases are the same as 338 

illustrated in figure 1. 339 

 340 

Figure 2. Diagrams of relative errors at fixed simulation time. Case a) conservative solute, no 341 

source decay. Case b) reacting solute, no source decay. Cases c) to f) reacting solute, source 342 

decay.  343 
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 344 

Three error zones can be distinguished in figure 2. The first one lies along  the centerline 345 

and extends in the y direction for a width slightly greater than the source width Y. The other two 346 

zones are separated by the vertical line describing the advective front and posed at x= v*tm. This 347 

vertical line is an asymptote  for the relative errors contours at y tending to ±infinity. The 348 

existence of this asymptote is due to the fact that both the solutions satisfy the boundary 349 

condition at y tending to infinity. In the zone on the left of the asymptote, the closed form 350 

approximated solution underestimates the concentration,  however in the zone on the right of the 351 

asymptote the approximated solution overestimates the concentration. It is very important to 352 

notice that in these two zones concentration values are more than three orders of magnitude 353 

lower than the source concentration. 354 

Along the centerline in figure 2, the relative error is always negative for cases a) to d), 355 

where the effective velocity u is greater (or equal) than the pore space velocity v.  For these four 356 

cases the approximate closed form solution underestimates concentrations on the centerline and 357 

also in the domain space of width Y along the centerline. However, the maximum 358 

underestimation is only 10% for concentration values up to two orders of magnitude lower than 359 

the source concentration value. Cases e) and f), when u is less than the pore space velocity v, 360 

show a particular behaviour behind the advective front: the relative error is positive and the 361 

approximated closed form solution can overestimate concentration values.  Looking at the lateral 362 

zone behind the advective front and on the left of the asymptote, negative relative errors have to 363 

be weighted in comparison to concentration values. For all the six cases a) to f) the 364 

underestimation of the transverse dispersion effects on concentration produced by eqn. (18) gives 365 
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relative errors, which, when greater than 20%, are related to values of concentration less than 366 

two orders of magnitude of the initial concentration of the source. 367 

Finally, as regards the lateral zone beyond the advective front and on the right of the 368 

asymptote where the closed form solution overestimates concentration levels, very high relative 369 

errors are related to concentration values that are more than four orders of magnitude less than 370 

the initial concentration, hence these errors are insignificant. As regards cases c) tof) subject  to 371 

the decaying source, it has to be noted that concentration values are not very high also on the 372 

centerline, so the relative errors observed in the two zones are related to concentration values that 373 

are very small. As an example, in case f) the centre of the plume, i.e. the point at maximum 374 

concentration, has a concentration value of about 0.45mg/l. 375 

It is interesting to outline that ray diagrams of case a) and case d) are identical, so the 376 

effective velocity u can be used as a parameter influencing relative error diagrams. 377 

With reference to table 1, a complete analysis of relative errors should take into 378 

consideration six chemical-physical parameters, i.e. the three dispersivities, space velocity and 379 

the two decay constants;  three parameters  derived from initial and boundary conditions, i.e. 380 

source widths Y and Z and initial concentration C0; simulation time tm.  381 

Since simulation time tm is not correlated with dimensionless numbers but it is very 382 

important for the validity of the Domenico and Robbins approximation, we report here its effects 383 

at different λs values. 384 

 385 
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Time dependence 386 

Some simulations have been carried out in order to observe how the diagrams vary at 387 

changing tm. In figure 3 and figure 4 ray-diagram modifications at tm/2 and 2tm are shown.   388 

 389 
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Figure 3. Diagrams of relative errors at half simulation time (left) and double simulation time 390 

(right). Case a) conservative solute, no source decay. Case b) reacting solute, no source decay. 391 

Case c) reacting solute, source decay.  392 

 393 

 394 
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Figure 4. Diagrams of relative errors at half simulation time (left) and double simulation time 395 

(right). Cases d) to f) reacting solute, source decay.  396 

 397 

In the zone of width Y along the centerline, at half simulation time t= tm/2, small relative 398 

errors behind the advective front can be observed. On the contrary, negative relative errors are 399 

observed far from the centerline and on the left hand side of the asymptote are present. 400 

Overestimation errors are observed far from the centerline and on the right hand side of the 401 

asymptote. If the amplitude of relative errors is again evaluated with reference to the ratio 402 

between the actual concentration and the initial one, it is easy to observe that the supposed higher 403 

relative errors, for example in figure 3 case c) at x=600, y=-2Y where Er=5, are related to lower 404 

concentration values as c=2*10-4 mg/l).  405 

Ray diagrams of case a), i.e. conservative solute, and case d) in which u=v, are identical. 406 

For double simulation time, it’s important to notice how the approximate solution overestimates 407 

concentration in the zone along the centerline and behind the advective front and underestimates 408 

beyond the advective front in cases e) and f), i.e. when u is less than v and the plume detaches 409 

from the boundary. Again cases a) and d) have the same relative error. 410 

 411 

Centerline profiles near source  412 

In order to better analyze the results of the proposed solution for small simulation times 413 

and near the source of contamination, some concentration profiles in the centerline are presented 414 

in figure 5 for cases of table 2 at changing simulation times. 415 
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Concentration profiles at different values of λs are plotted as a continuous line for the 416 

exact integral solution and as a dotted line for the approximated closed form solution. 417 

 418 

Figure 5. Concentration profiles in the centerline at changing simulation time. Approximated 419 

closed form (dotted) versus integral form (continuous). Case a) conservative solute, no source 420 

decay. Case b) reacting solute, no source decay. Cases c) to f) reacting solute, source decay. 421 
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 422 

Transverse profiles 423 

Transverse profiles were analyzed with respect to the advective front, i.e. the distance x 424 

from the source where a conservative contaminant injected with a Dirac function would be found 425 

without dispersion effects at t=tm. In figure 6 three transverse sections at x=x/2, x=x=v*tm and 426 

x=2x are plotted, where concentration profiles at different values of λs are represented as a 427 

continuous line for the exact integral solution and as a dotted line for the approximate closed 428 

form solution. 429 
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 430 

Figure 6. Concentration profiles in three transverse sections at x=x/2 (top), x=x=v*tm (center) 431 

and x=2x  (bottom) for the approximated closed form (dotted) and the integral form 432 

(continuous). Case a) conservative solute, no source decay. Case b) reacting solute, no source 433 

decay. Cases c) to f) reacting solute, source decay. 434 
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 435 

Cases a) and b) are plotted on the left hand side of figure 6 and cases c) to f) on the right 436 

hand side. Cases c) to f) are plotted in different graphs since concentration values are much 437 

smaller than in cases a) and b), due to source consumption in time. 438 

In the region of space far from the centerline the closed form solution overestimates 439 

concentration values. This effect increases with values of λs but at lower concentration values. 440 

By observing figure 6 for all cases a) to f) the value of y where the two solutions 441 

converge can be determined. It lies in the intervals (-2Y, -Y/2)  and (Y/2, 2Y).  442 

 443 

Conclusions  444 

A three-dimensional approximate closed form solution with source decay has been 445 

presented and compared with the exact solution contained in BIOCHLOR-AT. Relative error 446 

diagrams are presented that define areas in the flow field where use of the closed form solution 447 

results in minimum error. The study focused on the errors associated with source decay and the 448 

effect of simulation time. The concentration profiles given in the form of contours, longitudinal 449 

sections and transverse sections, confirm that the closed form solution can be used with 450 

acceptable errors in the entire central area of a width at least equal to the source width, both 451 

behind and beyond the advective front and with underestimation maximum errors of 20-25% for 452 

concentration values up to two orders of magnitude less than the initial source concentration.  In 453 

the case of source decay, at high simulation times an overestimation error sometimes appears 454 

near the source of up to 50% but in these cases concentration values are about three orders of 455 

magnitude lower than the initial source concentration. It is finally confirmed that the closed and 456 
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the open form models give different results far from the centerline beyond the advective front, 457 

but this situation corresponds again to negligible values of concentration.  458 
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