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10.1

CHAPTER 10

NUMERICAL MODELING OF
CONTAMINANT TRANSPORT

INTRODUCTION

A ground water model is a tool designed to represent a simplified version of a real field site.
It is an attempt to take our understanding of the physical, chemical, and biological processes
and translate them into mathematical terms. The resulting model is only as good as the con-
ceptual understanding of the processes. The goal of modeling is to predict the value of an
unknown variable such as head in an aquifer system or the concentration distribution of a
given chemical in the aquifer in time and space. Models can be used as:

1. Predictive Tools. These are site specific applications of models with the ob-

jective of determining future conditions or the impact of a proposed action on
existing conditions in the subsurface.
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2. Interpretive or Research Tools. These models are usually used for studying
system dynamics and understanding processes. .

3. Generic or Screening Tools. These models generally incorporate uncertainty
in aquifer parameters and are vsed in a regulatory mode for the purpose of de-
veloping management standards and guidelines.

In developing a ground water flow or solute transport model, t:he first stfap is to de.
velop a conceptnal model consisting of a description of the‘ physical, chemical and bio-
logical processes which are thought to be governing the behavior of the §ystem being ana-
lyzed (Istok, 1989). The next step is to translate the conf:epmal.modcl 1¥1to mathematical
terms or a mathematical model, that is, a set of partial differential equa.uons anfl an asso-
ciated set of auxiliary boundary conditions. Finally, solutions .Of the equations subject to the
auxiliary conditions can be obtained using analytical or numerical meﬂ_lods. '

If analytical methods are used, the solution is called an analytical model.'Analyu-
cal solutions are usually possible only for simple geometries, hon?ogeneous aquer:s, and
simple boundary conditions. If numerical methods are used, the solution to the. collection of
partial differential equations and auxiliary conditions is refermd to as a numerical model.
A computer program that implements the numerical mode:l is referred fo as a computer
code or computer model. Computer models are essent}al for analyzing sul'Jsurfac‘e t.]c‘)w
and contamination problems because they are designed to 'mcorporate .the spatial variability
within the aquifer, as well as spatial and temporal trends in hydrologic parameters that an

jcal model cannot incorporate.
analynl\(l:latich discussion has brggn presented over the past decade regardil‘lg the usefulm-:.?s and
drawbacks of modeling. The main complaint of models is that they require great quantities of
data and are therefore too expensive to assemble and run. Furthermore, quels can never.be
proven to be correct. On the other hand, some argue that models are essential f9r performing
complex analyses and for making informed decisions. Mode!s allow more effective use of the
available data: the implications of proposed courses of action at the field scale can be ana-

uated with them. )
et ;n:tlf:lgumems are well justified. The prospective modeler, ho?vever, needs to keep in
mind that a good modeling methodology will increase confidence in modehn'g {esults. .In
addition, establishing the purpose of the modeling effort at the'outset and es.tabhsh%ng rea'llrf-
tic expectations will provide for a much more effective utilization of modeling. Prior to 1m1-
tiating the modeling process, the following questions need to be addressed:

1. What is the problem that is being solved or answered through modeling?

2. Is modeling the most appropriate method for establishing the answer to the
problem at hand?

3. What level of sophistication in modeling would be required to answer the
question?

4. What level of confidence can be associated with the available field data and the
anticipated results from the modeling effort?
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The responses to these questions will allow the prospective modeler to determine the
magnitude of the modeling effort, that is, whether the model is one-, two-, or three-
dimensional, analytical or numerical, and whether a steady-state or transient analysis is nec-
essary. Answering question #4 allows the modeler to anticipate the benefits to be gained
from the modeling effort and to weigh those benefits against the costs that would be incurred
for the modeling study. Finally, keep in mind that modeling is only one component in a
hydrogeologic assessment and not an end in itself. The proposed modeling effort should be
integrated within the framework for action at a given field site.

The field of ground water flow and transport modeling has grown tremendously over
the past fifteen years. This is mostly due to the need for quantitative estimates of flow and
mass transport in the subsurface. Many articles and books have been written about the sci-
ence of modeling in ground water. The reader is referred to Mercer and Faust (1986), Wang
and Anderson (1982), Huyakorn and Pinder (1983), Hunt (1983), Javandel et al. (1984), Bear
and Verruijt (1987), Istok (1989), National Research Council (1990), and Anderson and
Woessner (1992) as a starting point. Anderson and Woessner (1992) propose a modeling
protocol that can be summarized as follows:

Establish the purpose of the model.
Develop a conceptual model of the system.

Select the governing equation and a computer code. Both the govemning
equation and code should be verified. Verification of the governing equation
demonstrates that it describes the physical, chemical, and biological proc-
esses occurring. Code verification can be accomplished by comparing the
model results to an analytical solution of a known problem.

W~

4. Design the model. This step includes selection of a grid design, time pa-
rameters, initial and boundary conditions, and developing estimates of model
parameters.

5. Calibrate the designed model. Calibration refers to the process of determin-
ing a set of model input parameters that approximates field measured heads,
flows and/or concentrations. The purpose of calibration is to establish that
the model can reproduce field-measured values of the unknown variable. It is
noted that calibration is quite subjective and in many cases does not yield a
unique set of parameters that reproduce field conditions. This topic will be
discussed in more detail in Section 10.9.

6. Determine the effects of uncertainty on model results. This is sometimes re-
ferred to as a sensitivity analysis. The model parameters are varied individu-

ally within a range of possible values, and the effect on model results is
evaluated.

7. Verify designed and calibrated model. This step involves testing the model’s
ability to reproduce another set of field measurements using the model pa-
rameters that were developed in the calibration process.
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8. Predict results based on calibrated model.
9. Determine the effects of uncertainty on model predictions.
10. Present modeling design and results.

11. Post audit and redesign model as necessary. As more data is collected beyond
model development, it is possible to compare the model predictions against
the new field data. This may lead to further modifications and refinements of
the site model.

Steps 1 through 4 of Anderson and Woessner’s protocol are discussed in this section.
The remaining steps are discussed in Section 10.9 within the context of applying models to
field sites.

10.1.1 Purpose of Model

It is essential to identify clearly the purpose of the modeling effort at the outset in order to
maximize the benefits from the analysis. Stating the purpose of modeling also helps focus
the study, determine expectations, and limit the unnecessary expenditure of resources. Typi-
cal objectives for modeling studies include:

Testing a hypothesis, or improving knowledge of a given aquifer system
Understanding physical, chemical or biological processes
Designing remediation systems

Predicting future conditions or the impact of a proposed stress on a ground
water system

WP

5. Resource management
10.1.2 Conceptual Models

A key step in the modeling process is to formulate a conceptual model of the system being
modeled. A conceptual model is a pictorial representation of the ground water flow and trans-
port system, frequently in the form of a block diagram or a cross section (Anderson and
Woessner, 1992). The nature of the conceptual model will determine the dimensions of the
numerical model and the design of the grid.

The purpose of building a conceptual model is to simplify the ficld problem and make
it more amenable to modeling. For example, consider the geologic framework shown in
Figure 10.1. A complete reconstruction of this system in a ground water flow model is not
feasible; however, a conceptual model of the system can be constructed by identifying the
pertinent hydrologic features of the geologic framework as shown in Figure 10.1.

Formulating a conceptual model for flow and/or transport includes one or more of the
following steps depending on the nature of the problem being simulated:
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1. Define hydrogeologic features of interest, (e.g., the aquifers to be modeled).
The conceptual model may combine several geologic formations into a sin-
gle unit or may subdivide a single formation into aquifers and confining
units.

2. Define the flow system and sources and sinks of water in the system.
Sources or inflows may include recharge from infiltration, recharge from
surface water bodies, or artificial recharge of ground water. Sinks or out-
flows may include springflow, baseflow to streams, evapotranspiration, and
pumping. Defining the flow system involves determining the direction of
ground water flow and the hydrologic interaction between the different mod-
eled units.

3. Define the transport system and sources and sinks of chemicals in the sys-
tem. The conceptual model has to include a representation of the time-
variant chemical source concentration, mass or volume of spill, and the
chemical and biological processes affecting those chemicals.

Recent advances in software development have resulted in the ability to build a concep-
tual model and manage site data within a model pre- and post-processor or a Geographical
Information System (GIS), which can interact with the pre-processor. This type of software
is discussed in Section 10.8.

10.1.3 Equations of Flow and Transport

As mentioned earlier, one of the steps in the modeling protocol is to determine the govern-
ing equation to be solved. This is extremely important, especially when the modeler is ap-
plying a model that has been acquired from a commercial source. A review of three of the
classes of models based on the processes being modeled and the associated governing equa-
tions is presented next. The reader is referred to Chapters 9 and 11 for the immisci-
ble/multiphase flow and transport equations.

Saturated Ground Water Flow in Three Dimensions:

0 oh d oh 0 oh oh .
Ll )y 2k, 2|+ Lk L) 52
a-r( g a-r)+ ay( ! ayJ+ dz (K“ az) 5 o W ao.n

where /i is head, K, K,, K,, denote hydraulic conductivity in the x-, y-, and z- directions,
respectively, S, is specific storage, ¢ is time, and W' is a general source/sink term.
Unsaturated Ground Water Flow Equation in Three Dimensions:
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where yis pressure head; K (), K(y), K(y), are the components of the unsaturated hydrau-
lic conductivity in the x-, y-, and z- directions, respectively; C(y) is the specific moisture
£5 capacity, and Q is a source or sink of volumetric fluid flow per unit volume.
% E Solute Transport in the Saturated Zone in Three Dimensions
= £ ..
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Egg E 5 < E§ﬁ§ 5 gL % where C is the concentration of the chemical; V is the seepage velocity; D,, D,, and D, are
g§§_§ 2 2} 34 &;5';' = S 2 A the dispersion coefficients in the ., y, and z directions, respectively; ¢ is time; and R, is the
g g Egg 1 Ed3» -z 2 % rate of addition or removal of solute due to chemical and biological reactions.
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%%Eg% - - %L;: 2 g 3 10.1.4 Discretization
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&5 3-‘-’5 _____ MR il dalhi % “' - ok g g In numerical models, the physical layout of the area in question is replaced with a discretized
..... -- ettt 2o model domain referred to as a grid and consisting of cells, blocks, or elements depending on
c !: & % whether finite difference or finite element methods are used. Some of the key issues in set-
- 3 g’, - = ? % ting up numerical models have to do with the design of the grid system: How large of a grid
3 z" ‘;{:% 5 : a to use? How many cells or elements within the grid would be necessary? What impact, if
g 52 1ls -~ T E el any, does grid discretization have, on model results?
« § E: g ; ¢ Generally, the grid should be drawn on an overlay of a map of the area to be modeled.
] ‘ o 1 52 3 It is preferable to align the horizontal plane of the grid such that the x and y axes are collin-
- 5 N e o .g_ s ear with K and K, respectively. The vertical axis of the model, when present, should be
IS A PY L, 7 D x S @ ] = aligned with K, (Anderson and Woessner, 1992). Selecting the size of the cells/elements to
z I | -ﬂr TN & ; = § = be used is a critical step in grid design that depends on many factors such as: spatial variabil-
s 8 H IR ar|® § o8 ity in model parameters, physical boundaries of system, type of model being used (finite
‘E'E' I Wil ﬁ | 3 R § _g> B difference or finite element), computer model limitations, data handling limitations, runtime,
o5 k% 5l 5. @ i 3 E and associated computer costs. Spatial discretization may affect model results. While detailed
E o] LS E § & A7 0re = ?2’ ‘S discussion of this issue is beyond the scope of this chapter, the prospective modeler is en-
35 kU :g E Il' §g E £ L srve 7 g § couraged to evaluate discretization effects on model results.
2a HILE | & ﬁ - ﬁ 5 7 Discretization decisions also need to be made for the time parameter. The majority of
34 i u§ b o e e numerical models calculate resuits at time ¢ by subdividing the total time into time steps,
€ tHiHR 5 22 E i & £ aq r" At. Generally, smaller time steps are preferable, but the computational time and cost in-
zg <£ s o 'g Z S SE3 f volved in the modeling process increases as the time step is decreased. Time steps may be
E & iﬂg ﬂg 3 §§ BT - i influenced by the requirements of the model. Some models suffer from numerical insta-
EZ (H]E g 5% o =) g bilities, which cause unrealistic oscillating solutions if a sufficiently small time step is
& M 3 - % @ not used. It is a good modeling practice to test the sensitivity of the model results to the size
« ) : oo e 8’2 of the time step. Many transport models calculate the maximum time step size based on
I $ 8 8 8 § R § § 0352 i model conditions, such as grid size and flow velocity. This enables the transport model to
4 3 ot [ Toor ! af “‘:’ 3% eliminate some numerical instability; however, flow models cannot use this method, and
) must be carefully checked by the user.
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10.1.5 Dimensionality

Another issue closely linked to discretization is that of the dimensionality of the problem: is
a 1-D model sufficient to achieve the purposes of modeling or is it necessary to develop a 2-
D or 3-D model? Would an analytical solution provide the required answer or is it necessary
to utilize a numerical model? Is a steady-state assumption adequate or does the problem ne-
cessitate a transient analysis?

A good rule of thumb to use when deciding the dimensionality of the model is to avoid
complexity if at all possible. For example, air pollution modeling might require a three-
dimensional analysis of pollutant dispersion and diffusion. Ground water contamination at a
field site where the data has been collected using conventional monitoring wells, however,
can be simulated only as a 2-D problem because there is not a 3-D definition of the plume of
contamination.

10.1.6 Boundary and Initial Conditions

The governing equation alone is not sufficient to describe a specific physical system. This is
because a general solution of an n" order differential equation will involve n independent
arbitrary constants or functions. In order to define uniquely a given physical problem, the
values of the constants or forms of the functions must be specified. Initial and boundary con-
ditions can be used to provide this required additional information. Generally, boundary con-
ditions specify the value of the dependent variable, or the value of the first derivative of the
dependent variable, along the boundaries of the system being modeled.

Correct selection of boundary conditions is a critical step in model design. In steady-
state simulations, for example, the boundaries largely determine the flow pattern. Boundary
conditions affect transient solutions when the effects of the transient stress reach the bound-
ary. In this case, the boundaries must be selected such that the simulated effect is realistic.

Boundary conditions are typically derived from physical and/or hydraulic boundaries of
ground water flow systems, for example, the presence of an impermeable body of rock or a
river in connection with the ground water aquifer. Hydrogeologic boundaries are represented
by three types of mathematical formulations: specified head, specified flux, and head depend-
ent flux boundaries.

Specified head. (Dirichlet conditions). A specified head boundary is simulated by
setting the head at the relevant locations equal to known values:

H(x,y,z)=H, (10.4)

where H(x, y, z) is the head at a point with coordinates (x, y, z) and M, is a specified head
value. It is important to recognize that a specified head boundary represents an inexhaustible
supply of water.

Specified flux boundaries. (Neumann conditions). Specified flux boundaries are
defined by giving the derivative of the head across the boundary:

.
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q.= aa—i[ = Constant (10.5)

This type of boundary is used to describe fluxes to surface water bodies, springflow and seep-
age to and from bedrock underlying the system. A special type of specified flux boundaries is
a no-flow boundary which is set by specifying flux to be zero. A no-flow boundary may
represent impermeable bedrock, an impermeable fault zone, a ground water divide or a
streamline.

Head-dependent flux boundaries. (Cauchy or mixed conditions). For this type of
boundary, the flux across the boundary is calculated given a boundary head value:

M wH=c (10.6)
dx

where g and C are constants. Leakage to or from a river, for instance, can be simulated using
this type of boundary condition.

In some instances, it may not be possible to use physical boundaries and regional
ground water divides. Other hydraulic boundaries can be defined from information on the con-
figuration of the flow system. However, care must be taken when establishing such bounda-
ries to ensure that the model boundaries will not cause the solution to differ significantly
from the response that would occur in the field. For example, hydraulic boundaries may be
defined from a water table map of the area to be modeled. The model grid is superimposed on
the water table contour map, and specified head boundary conditions can be interpolated. It is
important to verify, however, that these boundary conditions will not be impacted by
stresses imposed on the model, such as pumping from a location near the boundary.

The above mentioned boundary conditions used to represent flow may also be used as
sources of chemicals into a ground water aquifer. For example, a specified head boundary
may be used to represent a contaminant source releasing chemicals into the aquifer at a speci-
fied concentration. Similarly, a flux boundary can be used to simulate the flux of contami-
nants across the boundary. More typically, however, injection wells are used to represent
sources of contamination as discussed in the following paragraphs.

10.1.7 Sources and Sinks

Water as well as chemicals may enter the grid in one of two ways — through the boundaries,
as determined by the boundary conditions, or through sources and sinks within the interior of
the grid. Even though the same model options may be used to represent boundary sources
and sinks as to represent internal sources and sinks, the reader should remember that internal
sources and sinks are not boundary conditions. For example, specified head cells are used to
represent specified head boundary conditions, but specified head nodes may be placed within
the grid to represent lakes and rivers or some other type of source.
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An injection or pumping well is a point source or sink and is represented in a ground
water model by specifying an injection or pumping rate at a designated node or cell. In a 2-D
model, an assumption of a fully penetrating well over the aquifer thickness is made. The
prospective modeler is cautioned when modeling wells with models that allow only a uni-
form grid (i.e., all cells have the same size), and when the cell size in the model greatly ex-
ceeds the actual diameter of the well. The head calculated by the model is not an accurate
approximation of the head measured in the well, but rather the head value predicted by the
model is closer to an average of the heads measured as one moves outward from the well
toward the edge of the cell.

10.1.8 Source and Types of Errors: Accuracy of Numerical
Models

One of the key components in computer modeling of ground water flow and contaminant
transport that is often neglected is an assessment of the error introduced due to the selected
modeling methodology. There are two types of error resulting from a modeling study that
need to be clearly distinguished:

1. Computational errors. These errors occur because of the numerical approxi-
mation procedures that are used to solve the governing equations. Computa-
tional errors are usually estimated by applying the continuity equation or the
principle of conservation of mass (input — output = accumulation).

2. Calibration errors. These errors occur due to model assumptions and limita-
tions in parameter estimation. Calibration errors can be quantified by compar-
ing the model’s predicted values to observed values of the unknown variable
(see Section 10.9).

10.1.9 Limitations of Models

Mathematical models have several limitations, which can be conceptual or application-
related. Conceptual limitations are those that relate to representation of the actual process or
system with a mathematical model. For example, analytical models are limited by the sim-
plifying assumptions that are required to develop the solution. The analytical models that are
available are limited to certain idealized conditions and may not be applicable to a field prob-
lem with complex boundary conditions. Another limitation of analytical models is that spa-
tial or temporal variation of system properties such as permeability and dispersivity cannot
be handled.

Application-related limitations have to do with the solution procedure that is utilized
in the model development or with the amount of effort required to implement the solution.
For example, the approximation of a differential equation by a numerical solution introduces
two types of computational errors: numerical and residual. The numerical errors are due to

10.2
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the solution method used in solving the differential equations. The residual errors are a result
of approximating the differential equation with a series of mathematical expressions.

Numerical models are also limited by their compiexity so that the user needs a certain
level of knowledge to be able to apply those models. Achievement of the required familiarity
level is time consuming and could be prohibitive when funding is limited or when dealing
with a time constraint. Preparation of input data for numerical models often takes a long
time, even with the recently developed pre-processors discussed in Section 10.8. A relatively
fast computer is necessary when using a numerical model, especially for large, complex
problems.

NUMERICAL METHODS

Numerical or computerized solutions of the flow and/or transport equation in two dimensions
arc the most plentiful and commonly used techniques. These solutions are generally more
flexible than analytical solutions because the user can approximate complex geometries and
combinations of recharge and withdrawal wells by judicious arrangement of grid cells. The
general method of solution is to break up the flow field into small cells, approximate the
governing partial differential equations by differences between the values of parameters over
the network of time ¢, then predict new values for time ¢ + At. This continues forward in
time in small increments At

The most common mathematical formulations for approximating the partial differen-
tial equations of flow and solute transport include:

o Finite difference methods
o Finite element methods

e Method of characteristics

e Collocation methods

e Boundary element methods

Before defining these methods, it is necessary to define the different types of Partial
Differential Equations (PDEs). All PDEs of the form L(x) = f can be classified as elliptic,
parabolic, or hyperbolic. The PDE can be written as:

agz_u_+2b_82u +cﬁ— X u%ﬂ 10.
ox? oxdy  oy: e "ox ' dy aon

where a, b, and c are functions of x and y only and the equation is classified as linear if F is
linear. The PDE is referred to as:
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o Hyperbolic, if b*—ac>0
e Parabolic, if b2-ac=0
o Elliptic, if b%-ac<0

The finite difference method is the most popular method for simulating problems of
ground water flow and transport. Finite difference methods are conceptually straightforward
and easily understood. Moreover, much research has been done on developing a variety of
algorithms for solving finite difference equations. The earlier finite-difference methods oper-
ate by dividing space into rectilinear cells along the coordinate axes. Homogeneous values
within each cell are represented by values at a single node. Partial differentials can then be
approximated by differences and the resulting set of equations solved by iteration (Mercer and
Faust, 1986; Carnahan et al., 1969; Prickett, 1975). Approximating the differentials by a
difference requires neglecting remaining terms, which results in truncation error.

Finite-difference models have been developed for a variety of field situations including
saturated and unsaturated flow, and for transient and constant pollutant sources. The primary
disadvantage of these methods is that the truncation error in approximating the partial differ-
ential equations be significant (Anderson, 1979). More details about the finite difference
method are included in Section 10.3, and the reader is referred to Peaceman and Rachford
(1955), Forsythe and Wasow (1960), Aziz and Settari (1979), Crichlow (1977), Peaceman
(1977), Remson et al. (1965), Freeze and Witherspoon (1966), Bittinger et al. (1967), Pinder
and Bredehoeft (1968), Cooley (1971), Freeze (1971), Brutsaert (1973), Green et al. (1970),
Peaceman and Rachford (1962), Shamir and Harleman (1967), Oster et al. (1970), Taaji et al.
(1967), and Zheng and Bennett, (1995) for additional information.

The finite element method also operates by breaking the flow field into elements, but
in this case the elements may vary in size and shape. In the case of a triangular element, the
geometry would be described by the three corner nodes where heads and concentrations are
computed. The head or concentration within an element can vary in proportion to the dis-
tance to these nodes. Sometimes complex interpolating schemes are used to predict parameter
values accurately within an element and thereby reduce the truncation errors common in fi-
nite difference procedures. Some numerical dispersion may still occur but is usually much
less significant. The use of variable size and shape elements also allows greater flexibility in
the analysis of moving boundary problems, such as those related to a moving water tabie or
when contaminant and flow transport must be analyzed as a coupled problem.

A disadvantage of the finite element method is the need for formal mathematical train-
ing to understand the procedures properly. Finite element methods generally have higher
computing costs (Pinder and Gray, 1977; Pinder, 1973; Wang and Anderson, 1982). More
details on the finite element method are presented in Section 10.4, and the reader is addition-
ally referred to Bathe and Wilson (1976), Chung (1979), Clough (1960), Cook (1974), Fin-
layson (1972), Huebner (1975), Hinton and Owen (1979), Norrie and De Vries (1978),
Segerlind (1976), Zienkiewicz (1977), Gallagher (1975), and Zheng and Benmnett (1995).

The method of characteristics (MOC) is a variant of the finite difference method and is
particularly suitable for solving hyperbolic equations. The method of characteristics was de-
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veloped to simulate advection-dominated transport by Garder et al. (1964). In ground water
hydrology, Pinder and Cooper (1970) and Reddell and Sunada (1970) used the method to
solve the density-dependent transport equations. Later, MOC was used widely to simulate the
movement of contaminants in the subsurface (Bredehoeft and Pinder, 1973). The method of
characteristics is most useful where solute transport is dominated by advective transport. The
most common procedure is to track idealized particles through the flow field. In step one, a
particle and an associated mass of contaminant are translated a certain distance according to
the flow velocity. The second step adds the effects of longitudinal and transverse dispersion.
This procedure is computationally efficient and minimizes numerical dispersion problems
(Konikow and Bredehoeft, 1978). The method of characteristics is discussed in more detail in
Section 10.5.

The collocation method provides the advantage of the finite element method with addi-
tional attractive features. Collocation methods do not require integration procedures in the
formulation of the approximating equations. Moreover, the resulting matrix equation exhib-
its a coefficient structure that may be amenable to efficient solution using modern methods
in matrix algebra (Huyakorn and Pinder, 1983). The collocation method will not be discussed
in detail in this book; however, the reader is referred to Finlayson (1972), Chang and Fin-
layson (1977), Houstis et al. (1979), Douglas and Dupont (1974), Sincovec (1977), Allen
and Pinder (1983), Bangia et al. (1978), Pinder et al. (1978), Frind and Pinder (1979),
Lapidus and Pinder (1982), and Celia and Pinder (1980).

The boundary element method, a variant of the finite element method, is especially
useful in the solution of elliptic equations for which Green’s functions exist. The boundary
element method reduces a 2-D or 3-D problem to one defined in one or two dimensions, re-
spectively. The boundary element method is a relative newcomer in applied numerical analy-
sis and not very popular yet in subsurface hydrology. The boundary element method will not
be discussed in this book, but the interested reader is referred to Jawson and Ponter (1963),
Liggett (1977), Brebbia and Walker (1980), Lapidus and Pinder (1982), Liggett and Liu
(1983), Benarjee et al. (1981), Rizzo and Shippy (1970), Dubois and Buysee (1980), Jawson
and Symm (1977), Lennon et al. (1979), and Liggett and Liu (1979).

10.2.1 Fundamental Concepts

The following summary is not intended to be a thorough discussion of numerical methods. It
is included to familiarize the reader with some of the more common terminology used in
numerical modeling. For detailed discussions on numerical methods, the reader is referred to
Kelly (1967), Carnahan et al. (1969), Celia and Gray (1992), and Mathews (1992).

Iteration means that a process is repeated until an answer is achieved. Iterative tech-
niques can be used to find roots of equations, solutions of linear and nonlinear systems of
equations and solutions of differential equations. Iteration methods require that an initial
guess be made and that a rule or function for computing successive terms exists.

Convergence is characterized by the question, “Does the numerical solution ap-
proach the true solution as a chosen numerical procedure is applied?” The convergence prob-
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lem may arise from using an iterative technique or a numerical technique that involves trun-

cation of an infinite series.

A stable numerical procedure is one where as the solution marches forward in time,
the errors are not amplified such that the solution becomes invalid.

Curve fitting techniques attempt to fit a given set of data with a mathematical
expression or function. For example, one of the most common curve fitting methods is a
least squares fit, where the function f{x) is approximated using:

f(x)= Y g (x) = y(x) (10.8)
k=0

where ¢(x),..., ¢,(x) are n+1 appropriately chosen functions. The exact values of f{x) are
known over a certain domain, which consists of a discrete set of points xo, Xy, ..., X, Or of a
continuous interval (a, b). The least squares approximation is defined to be that for which the
a,’s are determined so that the sum of w(x)r’(x) the domain is as small as possible, where
w(x) is a nonnegative weighting function and r(x) = fx) — y(x).

Newton-Raphson Iteration involves finding a root of f{x) = 0 given one initial
approximation p,and using the iteration

Hpier)

o= Py = Bt) forg=1, 2, (10.9)
Y f(pe)

Secant Method is applied to finding a root of fx) = 0 given two initial approxima-
tions p, and p, and using the iteration

f(Pk )[Pk - pk—l]

fork=1,2,.. (10.10)
f(Pk) = f(pk—l)

Pi+1 = P —

Gaussian Elimination and Back-Substitation refers to the simplest method
of solving a set of equations of the form:

ay Xy +QppXg + Apziy +ecc+a,%, = b
Gy Xy + Xy +ApX3 +-+ Ay X, = by
31 X) + gy Xy + Ag3Xz +-+ Gz X, = by
i Xy + Xy + Qi3 X3+ + Ay Xy = bn

(10.11)

Gaussian elimination consists of dividing the first equation by a,, and using the result
to eliminate x, from all succeeding equations. Next, the modified second equation is used to
eliminate x, from the succeeding equations, and so on. After this elimination has been ef-
fected n times, the resultant set of equations is solved by backward substitution.

e

E A=
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10.2.2 The Numerical Solution of Partlal Differential Equations

The purpose of this example is to present an introductory account of the numerical methods
by which approximate solutions to partial differential equations can be obtained. The funda-
mental idea on which the numerical solution of partial differential equations is based is this:
each of the partial derivatives that appears in the equation is replaced by a finite-difference
approximation. When these differences are evaluated at each of the mesh points, the result is
a set of simultaneous equations that can be solved either directly or by various iterative pro-
cedures.

Specifically, in a plane grid, if the coordinates of the mesh points (named neutrally for
the moment) are p, = p + ik and q,=q,+ Jjk, then from the usual difference quotient ap-
proximation to the first derivative, we have

due - uPM 4, uPl g Uier,) ~ g
3, = = (10.12)
dp o, h /]
Similarly
ou| M~y
o k (10.13)
Pi g

Furthermore, for the case of a second derivative, we obtain

o%u _ Moy =2y g g, My =20y
7 = 3 = 3 (10.14)
op o, h h
Similarly
o%u g 2ty
7 [ — (10.15)
Piqy

Elliptic Equations (Laplace’s Equation In Two Dimensions). Using Eqgs.
(10.14) and (10.15) to approximate each of the partial derivatives in the 2-D form of
Laplace’s equation, namely

% 9% _

a_7+?—0 (10.16)

We obtain, as a difference equation approximating the actual equation
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Uiy~ 2+ . Uy jey — 2u 5+ 15 =0 (10.17)
n® k2

or, making the natural and convenient assumption that 4 =k and solving for

Z Miany T Uy Uy (10.18)
2 .

u; j

This asserts that the value of « at any mesh point is equal to the average of the values of u at
the four adjacent mesh points.

If Eq. (10.18) is evaluated at each of the mesh points, which are not boundary points,
where the value of the solution « is initially given, the result is a system of simultaneous
linear equations in the unknown functional values ;. The number of equations is, of
course, just equal to the number of mesh points at which the value of is to be calculated;
and (at least for rectangular regions) it can be shown that this system of equations always has
a unique nontrivial solution.

Example 10.1 STEADY STATE HEAD IN A SQUARE REGION

To illustrate the formulation and solution of such a system, let us attempt to ap-
proximate the steady-state head distribution u(x,y) in the square region shown in Fig-
ure 10.2, using the grid obtained by dividing each edge into four equal parts. The un-
knowns in this problem are the heads at the nine points of the grid which are not
boundary points.

Solution. At the outset, we note that from symmetry u,, = it,,, #;; = U, and u,, =
iy, SO that our problem actually involves only six equations in the six unknowns u,,,
Iy Uy Uy, Uy, and 1. Applying Eq. (10.18) at each of the six mesh points P,,, P,
P, P, P,., P., and taking into account the symmetries we have just noted and the
known values of u on the boundary, we have at P,

gy — gy - yg — gy ~ Uy =0

or noting that by hypothesis u, = it,,=0

4y -1ty -y =0 (10.19)

Similarly, at P, P,,, P,,, Pn, P,, we have, respectively
41y —ty ~lpy -3 =0 (10.20)
4y ~ iy - Uy =3/16 (10.21)

el

10.2 NUMERICAL METHODS : 351
4y =21y —lpy =0 (10.22)

dityy - tyy - 2015 — 13 =0 (10.23)

iy - -2 =1/4 (10.24)

Using Egs. (10.19), (10.20), and (10.21) to eliminate u,,, ., and u, from Egs.
(10.22), (10.23), and (10.24), we obtain the system

150y, -8uyy +13 =0
3
—8uyy + 1605 - 8uy3 = ——
11 12 ~ Slh3 16
1513 -8uyy + 1y =1

Yielding u,, = 0.0154, u,= 0.0396, u, = 0.0872.

14
ufx, 1) = x(1-x)
3 1 3

c 16 4 16 B

Pya Foa Pas
0 0

P, P, P

ufoy)=0 o 2 i 2 0 u(Ly=0
0 Py Fay Pay 0
Poo 0 0 0 A x
u(x,0)=0

Flgur.e 10.2 A typical lattice used in the approximate solution of Laplace's
equation in the unit square. Source: Wylie and Barrett, 1982.
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. : 3 1 3
There is another way in which the finite-difference approximation to the Laplacian can 16 vy 16
be used to determine the value of the solution at the points of the grid. It is a simple o
iterative method, which proceeds as follows. We first recall that the finite-difference i
approximation to the Laplacian {Eq. (10.18)] expresses the value of the solution at any
mesh point as the average of the values at the four adjacent points. Thus, after an ini- 0 0.1000—— 0.1200——0.1500 0 (0.0919),  (0.1280), {(0.0839), |
tial estimate for the value of the solution at each mesh point has been made, they can J e D e B (0.0872); (0.1203), (0.0871)
be corrected and improved by systematically moving through the grid and replacing |} .
each value according to Eq. (10.18). In doing this, each value, as soon as it is cor- o P et P =/ (0.0474).  (0.0678),  (0.0485)
rected, should be used in all subsequent calculations. 0 —'II 0.0600 — 0.0700—— 0.0800. 0 (0_0396)‘5— (0_0556)‘5— (0.008 7);_
£ \
As an illustration of this method, let us reconsider the problem we have just worked. 3 i e (0.0206), (0.0286), (0.0195)
Beginning with the estimates shown in Figure 10.3a, we have for the first refinement T 0 0.0300—0.0350—— 0.0300——— 0 — (0015 4)‘5— (0_0217)‘5—— (0.01 53)‘5—
of u,, the value
s = 0.1875+0.0000 +0.1200 + 0.0600 _ 0.0919 s
4 4 0 0 0

Continuing through the grid as indicated using the corrected values as soon as they be- 3 (a) (b)

come available (but taking no advantage of the symmetry of the problem), we obtain Figure 10.3 Data from an iterative solution of Laplace's equation. Source:
the values shown in Figure 10.3b. Values bearing the subscript 1 were obtained by a i Wylie and Barrett, 1982.

single iteration; values bearing the subscript 5 were obtained after five iterations. 3

z c(0.0)=g (1), cll,t)=gy(1) (10.28)
Parabolic Equations (The One-Dimensional Heat Equation). For the 1-D where g, and g, are usually, though not necessarily, constant, furnish the values of c,,,
transport equation, ¥ Cuas Coz - a0 €y, Cpy €, ... No flow boundary conditions can, of course, be handled
2 30 : as outlined above in the discussion of Laplace’s equation.
Te_p2 % (10.25)
ox or :
) ) o . Lo § The determination of the solution over the rest of the grid proceeds in a straightforward
the region of the x—¢ pla?e_ovcr wluc;l;li sc_w(llu;f;wn is sought is always mﬁmti,o bz';wuse way, using the extrapolation pattern provided by Eq. (10.26). First, the values of c,,,
of the infinite increase of time. As a finite-difference approximation to Eq. (10.25) we Cats +es Cpyy are calculated from the known values of Cy, Cio0 Cagy -.-» Cne Then using
have, using Egs. (10.13) and (10.14), g these new values and the boundary values c,, and c,, the solution is “marched” forward
. 2 by calculating the values of ¢ at the grid points in the third row, and so on for the re-
',_2(‘-':'+1' =26+ )= —k—(Ci' J41=6ip) (10.26) ] mainder of the grid.
l 3
or, setting i = k/a*h* and solving for ¢, ,,
oot = M+ (L= 2y iy (1027 ' 10.3 FINITE DIFFERENCE METHODS
Clearly, it would be convenient to choose & and &k so that the value of m is 1/2. The y o
values of ¢ on the boundary are of course provided by the data of the problem, Thus the In general, a finite difference model is developed by superimposing a system of nodal points
given initial condition c(x,0) provides the values of cgg, Cjgy Ca0y ---. Similarly, end 3 over the problem domain. In the finite difference method, nodes may be located inside cells
conditions of the form : (block-centered, Figure 10.4) or at the intersection of grid lines (mesh centered, Figure 10.5).

Aquifer properties and head values are assumed to be constant within each cell in a block-
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ATy

Figure 10.4 Block-centered grid system.

Figure 10.5 Point or mesh-centered grid system.

centered finite difference model. An equation is written in terms of each nodal point in finite
difference models because the area surrounding a node is not directly involved in the devel-
opment of the finite difference equations (Wang and Anderson, 1982).

The principles behind finite difference approximations will be illustrated using
Laplace’s equation in two dimensions:

2 2
%YL;-% -gy—’;: 0 (10.29)

Consider a finite set of points on a regularly spaced grid (Figure 10.6). In the finite dif-
ference approximation, derivatives are replaced by differences taken between nodal points. A
central approximation to 9%4/0x" at (xg, o) is obtained by approximating the first derivative
at (xp + Ax/2,y,)and at (x — AX/2,y¢)and then obtaining the second derivative by taking a

difference between the first derivatives at those points
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1) —_— {51)
T + A \ g 4
| (i.j-1)
i | ay
| 6|
\J 1. ] i+
] (Lj#1)
(1.4) 5.4
Ax

Figure 10.6 Finite-difference grid system.

2 i, i~ Iy, j_ hy, i hi—l.j
a_’zl o A Ax (10.30)
ox Ax

which simpilifies to

ﬂ b =2k R

Y v (1031)

Similarly,

ﬂ _ Wy =20 + By
P y (1032)

By adding }he t?xpressions in Eqgs. (10.31) and (10.32), and assuming that Ax = Ay, we ob-
tain the finite difference approximation to Laplace’s equation: )

My g+ Mg+ B+ b g —4h ;=0 (10.33)
The generalized form of Eq. (10.33) is the most widely used equation in finite differ-

ence solutions of steady-state problems. There will be one equation of the form of Eq.
(10.33) for each interior point (i,j) of the problem.
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10.3.1 Explicit Finite Difference Approximation

For transient conditions, the head in an aquifer is a function of time; therefore, 'm. add?tion to
the spatial finite difference approximation for head, a finite dlfference approxnmanc’)llilfc.,r
ohlor is also needed. An explicit finite difference approximation is one where ;" is
calculated using only values of /& known at time . Explicit formulatioys. are easily sol.Ved,
because there is only one unknown variable in each equation. An explicit, forward differ-
ence approximation is given by

oh lﬁl__ﬂ (10.34)

at At

where n and n+1 represent two consecutive time levels. Similarly, an explicit, backward
difference approximation is given by

oh _ i"nl_"_"i (10.35)
ot At

Finally, an explicit, central difference approximation in time is given by

on =k (10.36)
ot 2At

The central difference approximation was found to be unconditiona}ly unstable' by
Remson et al. (1971) and therefore should be avoided. For the case of transient flow, given

by

*h 9’k _ Soh
Sx—z-i' 57:‘ ';’é‘t‘ (10.37)

an explicit approximation yields a stable solution if the value of fhe ratio (_TAt){[S(Ax)‘] is
kept sufficiently small. In the 1-D case where flow occurs only in the x du'ec':tlon, tht? P
rameter (TA)/{S(Ax)*] must be < 0.5 (Remson et al., 1971) to ensure numerical stability.
For the 2-D case where Ax = Ay = a, (TA?)/ [S(Ax)?] must be < 0.25 (Rushton and Redshaw,

1979).
10.3.2 Implicit Finite Difference Approximation
An implicit finite difference formulation is one where the heads / at time n+1 are evaluated

using other values of head at time n+1. The solution to an implif:it finite difference ap-
proximation involves a matrix of equations that must be solved simultaneously, becausc
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there are several unknown variables in each equation. Implicit formulations will often use a
weighted average of the approximations at n and n+ 1. The weighting parameter is represented
by @, and it lies between O and 1. If the time step n+1 is weighted by & and time step n is
weighted by (1 — @), then:

Ph WY -2m hfyy =20 + by

an i1J
T ey T

(10.38)

A similar expression is written for 9*h/dy®. The parameter & is selected by the modeler.
For &= 1, the space derivatives are approximated at n+1, and the finite difference scheme is

said to be fully implicit. If a value of 0.5 is selected for c, then the scheme is referred to as
the Crank-Nicolson method.

10.3.3 Alternating Direction Implicit (ADI)

The derivation and solution of the finite-difference equation and the use of the iterative ADI
have been discussed extensively by Pinder and Bredehoeft (1968), Prickett and Lonnquist
(1971), and Trescott et al. (1976). In general, the basis of the ADI method is to obtain a
solution to the flow equation by alternately writing the finite-difference equation, first im-
plicitly along columns and explicitly along rows, and then vice versa. In order to reduce the
errors that may result from the ADI method, an iterative procedure is added so that within a
single time step, the solution would converge within a specified error tolerance. The ADI
method will be illustrated by approximating the 2-D transient equation for a confined aquifer:

S, s 3 -
ax? 3y? Tor (10.39)

where S is the storage coefficient and T is the transmissivity. Assuming Ax = Ay =a, the
fully implicit finite difference approximation is:

Sa B =it
BiZey + HZey + BT+ B2 = T = = =l (10.40)

In the first step of ADI, Eq. (10.40) is rewritten such that heads along columns are on one
side of the equation and heads along rows are on the other side (also referred to as rewriting
the equation, first implicitly along columns and explicitly along rows) resuits in:

Sa® Sa?
Iz;'ff_ll + (—4 - E}h’njl + h,{'}:‘l = _Ehi'.'j —hy — (1041)
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Eq. (10.41) will yield a tridiagonal coefficient matrix (one that has nonzero entries
only along the three center diagonals) along any column (see Example 10.2). The second
step of ADI involves rewriting Eq. (10.40) implicitly along rows and explicitly along col-
umns:

Sa?

2
h,-"_*if Ths (—4 - %)hi’: _,“ + h,-":lf = ' i b 1 Iy j-1 (10.42)

TAt

The explicit approximation along columns uncouples one row from another. There-
fore, Fq. (10.42) will also generate a set of matrix equations—one for each interior
row—with tridiagonal coefficient matrices. Alternating the explicit approximation between
columns and rows is an attempt to compensate for errors generated in either direction.

10.3.4 Iterative Methods

A set of simultaneous finite difference equations could be solved directly; however, in prob-
lems having a large number of nodes, simultaneous solutions are impractical. Instead, itera-
tive procedures can be used where an initial guess of the solution is made. Further improve-
ments on the initial guess are then calculated. There are three commonly used iterative tech-
niques: the Jacobi iteration, Gauss-Seidel iteration, and Successive Over Re-
laxation (SOR). Of the three, Jacobi iteration is the least efficient and Successive over
relaxation is the most efficient.
Jacobi iteration. If Eq. (10.33) were solved for /;;, then:

b= Biog g+ By + 1y + B
) = 2

(10.43)

The value of h;, at any point is the average value of head computed from its four near-
est neighbors.

The Jacobi iteration associates an iteration index (m) with the finite difference
equation for head:

+h"

Bl + by R+ A (10.44)

i,j—1
4

m+l __
hi.j -

For m = 1, an initial guess of 112'_2, h_{z, I 3, and Iy 5 is made. Eq. (10.44) is used to

calcuiate head values for m =2, 3,..., n. Iteration continues until the solution converges to
the preset error tolerance level, that is, the difference between the answers form =n and m =
n+1 is less than the convergence criterion.

Gauss-Seidel iteration. The Gauss-Seidel iteration formula is:
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m+l m+l m+l +1
BT+ W0+ R +
4

B = (10.45)

Successive Over Relaxation (SOR). The SOR iteration is tied to the residual
(c) or change between two successive Gauss-Seidel iterations:

c=h" - B (10.46)

The Gauss-Seidel iteration eliminates or relaxes the residual (c) by replacing Iz,’_’} with
h,f"‘]“after each calculation. In the SOR method, on the other hand, the residual is multiplied
by a relaxation factor @, where @ > 1. The value of A" 'is given by:

.
1
Iz,ff'j" = /l;'"j + ac (1047)
A value of w between 1 and 2 has been recommended (Wang and Anderson, 1982).
Example 10.2. TRIDIAGONAL MATRICES
Counsider the 1-D transient flow equation:
Ph_ s
T (1048

The implicit or backward finite difference approximation, where the space derivative is
evaluated at the (n+1) time level, is

_ S HM-n

1
A =20+

o Y (10.49)

Assume that we have a problem domain with six nodes where the first and last nodes
are boundary nodes of known head. We wish to write the set of algebraic equations that

would be generated by applying Eq. (10.49) to these nodes, and we wish to write it in
matrix form.

Soluﬁ9n. First, we rearrange Eq. (10.49) and put unknowns, that is, heads at the
(n+1) time level, on the left-hand side and put knowns on the right-hand side.

2 2
s (—2-—5(“) Jh,."“+ prst =SB

TAt i+l = TAt i (10-50)




360

Exampie 10.3.

NUMERICAL MODELING OF CONTAMINANT TRANSPORT

If the head values /, and /s, which are known from the boundary conditions, are trans-
ferred to the right-hand side, then the matrix form of the set of algebraic equations for

the six-node problem is

_ N 1 pnt 1]
P ) 0 0 2
TAt
2 n+1
1 -2 M 1 0 h3
TAt L =
1 _2_S(A-")2 l"+1
0 —_TAt 1y
2
S(Ax)
0 0 1 2-——— n+1
L Tar 1 ks
2 )
S(Ax) n
i Seid Wt -
Ths 2=k
_S(axy? o
TAr 3
< 2 >
_ S(Ax) x.
TAL 4
2
S(AX) In —h
"7 5% |

The coefficient matrix has nonzero entries only along the three center diagonals. This
type of matrix is known as a tridiagonal matrix, which is easily solved.

FINITE DIFFERENCE APPROXIMATION TO THE
DIFFUSION EQUATION

A finite difference approximation to the equation that describes steady-state diffusion of
a dissolved substance into a quiescent fluid body in which a first-order reaction occurs
has been derived by Celia and Gray (1992) as follows:

d*u

D—d?-—Ku=0 0<x<lcm

(10.51)

w0) = 0 u(l) = C;

where 2(x) [M/L?) is the concentration of the dissolved substance, D [LYT] is the dif-
fusion coefficient, K [1/T] is the reaction rate, and C, [L¥T] is a specified concentra-
tion at the right boundary. The coefficients D, K, and C, are constants that, for this

Fou b > e
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calculation, will be assigned the following values: D = 0.01 cm?s, K=0.1 sec’, and C,
= 1.0 glem’.

The first step in deriving an approximate solution to Eq. (10.51) is the discretization
step. First, three nodes are chosen, one at each boundary point and a third at v = 0.5.
Thus three discrete values, (U,, U,, U;), will be computed to approximate the true so-
lution values ((0), #(0.5), u(1)) = (i,, ita, it5). Because three unknowns are to be de-
termined, three algebraic equations are needed. Two equations come directly from the
boundary conditions, namely

U=0 (10.52)

U=C, (10.53)

The finite difference approximation to the exact solution is thus required to exactly sat-
isfy the first-type boundary (or Dirichlet) conditions. For all other nodes (in this case,
only node 2), finite difference equations are written. Because the governing equation
must hold at all points in the region 0 < x < 1, it must be the case that the equation
holds at x = x, = 0.5. Thus

d*u

D'F - I(HL2 =0

Xa

Taylor series expansion for the second derivative leads to the equality

D[ESMH.E.]—K,;, =0

a7 (10.54)

where T.E. is the truncation error, T.E., #|,_is represented without error as u,, and the

constant spacing is denoted by Ax, with Ax = 0.5. Eq. (10.54) involves exact nodal
values #; (j = 1,2,3). To write the appropriate finite difference approximation, the trun-
cation error terms are neglected, resulting in the finite difference equation

U, -2U, + Uy

Ao KUy =0

(10.55)
(Note that for this problem U, = #, and U, = u, while U, = #,.) Eq. (10.55) is the al-
gebmic equation used to solve for the nodal (finite difference) approximations
U, (j = 1,2,3). Combination of Egs. (10.52), (10.53) and (10.55) leads to
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1 0 °© 1] [o
D _x-22  _2\lul=lo (10.56)
(Ax) (A-‘) (Ax) Us o
0 1

The solution of this set of equations is U, =0, U, = C,D/[2D + K(z.lx)z]‘, U, =C,. Us-
ing values of D=0.01, K =01, C, = 1, and Ax = 0.5, the solution is U,= 0.222.
This compares to the exact solution #(0.5) = 0.171.

1f four nodes are chosen instead such that Ax = 1/3, then the boundary conditions pro-
duce
U,=0 (10.57)
Uu,=1 (10.58)

and the two interior finite difference equations must be written, one corresponding to
each interior node. The finite difference approximations analogous to Eq. (10.55) are

U=204ls gy, =0 (10.59)
(Av)
U, -203+U, KUy = 0 (10.60)

(Ar)?

Given Ax = 1/3, and the previous values of D, K, and C,, the approximation step pro-
duces the following set of linear algebraic equations:

1 0 0 0 Uyl o
009 -028 009 O Uy |_|0 (10.61)
0 009 -028 009 [Us| |O
0 0 0 1 Us] !

The solution step then produces the approximate solution U = (0, 0.094, 0.291, 1);
this compares to the analytical solution (0, 0.083, 0.320, 1).

Example 10.4. NUMERICAL SOLUTION FOR DRAWDOWN TO A
WELL, TRANSIENT CONDITIONS
i i i down toa well in a
A FORTRAN program for solving the governing equat}on fo§' draw ‘
confined aquifer under transient conditions (Eq. 10.62) is available (Bedient and Huber,
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1992). Assume T = 500 ft¥d and initial head = 20 ft. First, Eq. (10.62) can be written
in finite difference form as

?h  3’h__Rxy)

Fr » T (10.62)
as b} b, a’RY;
1, n+1 +1 . - (8 i, i,
o - )+ (=i - ) = T (10.63)
where
ot = honj 4+ R ey + 0"+ B
) 4
The iterative form of Eq. (10.63) is
— 2 - azR.”
[ ]+ = S I:;'j+(1—a)[lz,"j—lz{'j+ 2 }
’ ATAt ™ ’ : 4T
o (10.64)
i aZS
+a
4TAt

Assume that flow to the well in the aquifer described is transient. The well is pumping
at a rate of 2500 ft*/d. If the storativity of the aquifer is 0.005, the drawdown near the
well after one week can be determined. A starting time period of 0.05 days, a factor of
1.4 1o increase the time increment (12 time iterations will equal about 7 days), the
Crank-Nicolson scheme with &= 0.5, a tolerance of 0.001, and no more than 200 it-
erations in the drawdown computation will be used for each time step. The computed
drawdowns from the model are shown in Table 10.1. The solution can be compared

TABLE 10.1 Computed drawdown for Example 10.4

The Drawdown Array at Time = 6.96 is:

088 0.88 087 085 0.82 0.80 078 076 075 074
0.90 0.89 0.88 0.86 0.83 081 078 076 0.75 0.75
093 093 091 083 0.86 083 0.80 078 0.76 076
1.00 0.98 087 093 0.90 0.86 0.82 0.80 0.78 0.78
110 1.09 1.05 1.00 095 080 0.86 083 0.81 0.80
124 122 116 1.09 1.02 095 090 086 083 082
1.45 1.40 1.30 119 1.09 1.00 083 0.89 0.86 085
176 1.65 147 1.30 116 1.05 097 091 0.88 087
232 1.98 1.65 1.40 122 1.09 099 093 0.89 0.88

3.56 232 176 1.45 125 110 1.00 094 0.90 0.89
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TABLE 10.2 Comparison of Drawdown at 100 m from a Well using Numerical
Solutions with Selected a and Theis Analytical Solutions

Drawdown in Fest for

Time (days) At a=0 a=05 a=1 Theis
005 0.05 000 0.19(4) 0.33(4) 001
012 0.07 068 1.03 (4) 1.28(5) 056
024 on 266 2.98 (5) 3.20(5) 300
041 017 857 6.41(5) 6.37(6) 690
066 025 1235 11.40 (6) 10.85(8) 11.82
104 038 1885 1754 (7) 16.43(10) 17.56
1.61 057 2590 24.26(9) 22.76(12) 2379
246 085 3260 31.21 (11) 29.52(16) 30.30
374 1.28 4229 38.25 (14) 36.48(21) 37.06

The numbers n parenthaais indicate the number of Herations used.

against the analytical Theis method at various points in time. It can be shown that the
selection of Ax, Ay, At, and eewill strongly influence the accuracy of the numerical
results.

For the explicit case, if At is too large, the scheme becomes unstable and yields use-
less answers. Boundary conditions and choice of error tolerance in the iterative method
also contribute to numerical errors. Results in Table 10.2 show the comparison of a
numerical example with Q = 1000 m*day, T = 4.50 m¥day, S = 0.0005, for various
values of Ar and . Values of Ax = Ay = 100 m were chosen. Theis results are also
shown.

10.4 FINITE ELEMENT METHODS

One of the difficult problems in flow through porous media involves sharp fronts. A sharp
front refers to a large change in a dependent variable over a small distance. Sharp front prob-
lems are encountered in both miscible (advective-dispersive flow) and immiscible (multifluid
and multiphase flow) problems. The most common complaint about low order, finite-
difference methods applied to sharp front problems is that the computed front is “smeared
out.” The process by which the front becomes smeared is referred to as numerical disper-
sion.

In general, for linear problems, the finite element method can track sharp fronts more
accurately, which reduces considerably the numerical diffusion problem. The finite element

10.5
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method, however, has several numerical problems, which include: numerical oscillation,
instability, and large computation time requirements as will be seen later.

The finite element analysis of a physical problem can be described as follows (Huya-
korn and Pinder, 1983):

1. The physical system is subdivided into a series of finite elements that are
connected at a number of nodal points. Each element is identified by its
element number and the lines connecting the nodal points situated on the
boundaries of the element.

2. A matrix expression, known as the element matrix, is developed to relate
the nodal variables of each element. The element matrix may be obtained via
a mathematical formulation that makes use of either a variational or
weighted residual method.

3. The element matrices are combined or assembled to form a set of algebraic
equations that describe the entire system. The coefficient matrix of this final
set of equations is called the global matrix.

Boundary conditions are incorporated into the global matrix equation.

5. The resulting set of simultaneous equations is solved using a variety of
techniques such as the Gauss elimination.

Finite element methods will not be covered in this text.

METHOD OF CHARACTERISTICS (MOC)

The method of characteristics was developed by Garder et al. in 1964 mainly to overcome the
numerical dispersion problem resulting from solving the advection-dispersion equation with
conventional finite-difference techniques. The MOC has been widely used for simulating the
transport of miscible compounds in ground water (Reddell and Sunada, 1970; Bredehoeft and
Pinder, 1973; Konikow and Bredehoeft, 1974 and 1978).

The method of characteristics will be illustrated using the 1-D form of the transport
equation for a conservative tracer:

9’c _9C aC
D=y ===
¥ ox? ox o

(10.65)
where C is the tracer concentration, V is the velocity, D, is the coefficient of hydrodynamic
dispersion, and ¢ is the time.

Equation (10.65) becomes hyperbolic as the dispersion term becomes small with re-
spect to the advection term. The simplified set of equations in terms of an arbitrary curve
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i i i i 0.65) is the MOC. Therefore, Eq. (10.65)
ter is associated with the hyperbolic Eq. (l‘ ] ( ! :
E:;a:).:s?mpliﬁed into the following system of Ordinary Differential Equations (ODEs):

i;i =V (10.66)
1

ac _p ¥¢ (10.67)
dt *ox?

are called the characteristic curves of
d by Garder et al. (1964) involves
tionary grid is obtained by subdi-

The solutions of the simplified set of equations
the differential equation. The numerical procedure propose
both a stationary grid and a set of moving points. The stal
viding tbe axis into intervals such that:

x;=ilx for i=0,1,.,m—1 (10.68)

A set of moving points or representative fluid particles with densx‘ty of P pon:\t;snpiexrl
arid interval is introduced into the numerical solution. The rate of ch@ge in (l:oncen 0!
tcile around water is observed in the aquifer when moving with thgitl']lu:d ,‘:ﬁz ;ni o cifference

B i i int i ified by its coordinate -diff

The location of each moving point 1S SpeC f iy
i i i istri t the grid system. lhe
i iti nts are uniformly distributed throughou c :
grid. Initially, the moving pot form ribu L e B ith the
initi i i t is the initial concentratio
initial concentration assigned to each poin : ( ssoc i
ini i .me interval, the moving points in the Sy

interval containing the point. At each time in  the ] : st
relocated in the ﬂgw field in proportion to the flow velocity at their respective location:

Xpn+l = Xpon + ALY (10.69)

. . -

y . are the locations of particle p at ume n+1 and n, respectively. Affer moving

et g e co i i determine in which interval the

each point, the coordinates for the points are exammsd to e
point lies. Each interval is assigned a concentration C;, equal to the concentratio

. . . d
ints that lie in the interval, after baving been Flove . ) .
. Next, the change in concentration due to dispersion is calculated for each interval:

AC -+ =At, -+ D AX2C‘ 0.70
in 12 n+112~x in (l )
Each moving point iS then assigned a new Coﬂcenmﬁoﬂ:

Cp.n-H = Cp.n + ACi.n+\l2 (10.71)

e

St
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All points falling within an interval at a given time undergo the same change in con-
centration due to dispersion. Finally, the concentrations at the stationary grid points are
computed for the new time step:

Cinnt =Ciat ACinsz (10.72)

This completes the step from ¢, to ¢,,,, and the procedure is repeated for each subse-
quent time step.

Khaleel and Reddell (1986) provided listings of MOC programs for solving 1-D and 2-
D tracer flow problems. They tested MOC for four cases: (1) longitudinal dispersion in 1-D
flow; (2) longitudinal dispersion in 2-D flow; (3) longitudinal and lateral dispersion in 1-D
flow; and (4) longitudinal and lateral dispersion in 2-D flow. For example, results from the
1-D MOC solution were compared to the analytical solution for the same problem provided
by Ogata and Banks (1961) (see Chapter 6). Khaleel and Reddell’'s (1986) results showed
good agreement between the analytical solution and the MOC numerical solution.

Similar results were obtained for the three other test cases. The reader is referred to the
paper for more details on the test cases. It should be mentioned, however, that Khaleel and
Reddell found it necessary to use a coordinate transformation to simulate 2-D flow fields
more accurately. The coordinate axes were rotated so that an angle of 45° existed between the
velocity vector and the transformed coordinate axes.

NUMERICAL FLOW MODELS

Computer models to simulate saturated ground water flow are typically 2-D or 3-D. Two-
dimensional models may be used to simulate fiow in the x-y plane or flow in a vertical cross
section of the subsurface, and may simulate unsaturated or saturated water flow. Table 10.3
is a list of some of the available flow and contaminant transport models. Models that have
seen extensive use include MOC and BIOPLUME II for 2-D contaminant transport with bio-
degradation (see Chapter 8). MT3D and RT3D are 3-D contaminant transport models that
allow the user to incorporate reaction schemes. RT3D has been used to simulate chlorinated
solvent reactions (Example 10.5). A detailed presentation of the MODFLOW model, one of
the most widely used ground water flow models, serves to illustrate the main concepts in-
volved in flow modeling.
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Figure 10.7 Schematic of an aquifer system in MODFLOW.
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to wells, areal recharge, evapotranspiration, flow to drains, and flow through riverbeds, can
also be simulated.

For unconfined and mixed confined/unconfined aquifers, the elevations of the top and
bottom of the aquifer are input and used in the model to calculate the saturated thickness
based on the location of the water table within the aquifer. For confined aquifers, thickness is
incorporated in the transmissivity distribution specified for the layers (Figure 10.7). Low-
conductivity units or clay units are typically not included in the vertical discretization of the
system, but rather are included through the use of a conductance term between the upper and
lower units separated by the clay. Boundary conditions handled by the model include constant
head, no flow and flux boundaries, and general head boundaries (in which a constant head is
applied some distance from the edge of the model). Simulation time is divided into stress
periods, which are in turn divided into time steps. A stress period is a time during which
aquifer stresses (such as pumping and recharge rates) do not change. For transient simula-
tions, the time steps may form a geometric series in which the parameters of the series, the
number of time steps, and the multiplier are specified.

The primary output from the model is the head distribution. In addition, a volumetric
water budget is provided as a check on the numerical accuracy of the simulation. The model
was designed to provide a cell-by-cell flow distribution if required by the user. MODFLOW
can also output a “head and flow file” which can be used by several transport models as de-
scribed in the next section. An example is presented in section 10.8.

CONTAMINANT TRANSPORT MODELS

Many numerical transport models have been developed over the past 30 years. These models
utilize a variety of numerical techniques and solve various forms of the
governing transport equation, each subject to a certain set of boundary conditions. In
addition, these models may simulate transport in one, two, or three dimensions; in the satu-
rated or unsaturated zone; and miscible or immiscible transport. Table 10.3 provides a listing
of some of these models. One should consult the International Ground Water Modeling Cen-
ter (http://www.mines.edu/research/igwmc/) for other listings of available models. Additional
information about modeling, and a listing of publicly available groundwater
models is available at the US EPA’s Center for Subsurface Modeling Support
(http://www.epa.gov/ada/csmos.html), and the USGS’s groundwater software information
center at http://water.usgs.gov/software.

Reviewing each one of the contaminant transport models listed in Table 10.3 is be-
yond the scope of this chapter. One class of transport models, however, that is currently
evolving and needs to be briefly mentioned is that of 3-D models which use the flow resuits
of MODFLOW. These models use the same grid definitions defined for a MODFLOW run,

and perform contaminant transport calculations with assigned sources, sinks, etc. They in-
clude:
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e MODPATH (Pollock, 1988 and 1989)
e PATH3D (Zheng, 1989)

e MT3D (Zheng, 1990; Zheng, 1992)

o SEAM3D (Widdowson et al., 1997)

e RT3D (Clement, 1998),

e MT3DMS (Zheng and Wang, 1998)

In particular, SEAM3D, MT3DMS, and RT3D are all based on the MT3D engine, and
offer similar multi-species contaminant transport support. The remainder of the section will

focus on reviewing the MOC model, the MT3D model and MT3Ds successors in an effort to -

demonstrate the utility of ground water contaminant transport models.

10.7.1 USGS Two-Dimensional Solute Transport Model
- MoOC

The method of characteristics (MOC) is used in the USGS model to solve the solute trans-
port equation (Figure 10.8). In order to apply the model to a field site, it is necessary to su-
perimpose a block-centered finite-difference grid over the site by specifying the number of
cells in the x and y directions (note that the y-axis should be oriented along the main direc-
tion of flow at the site). The values of the various parameters in the model can be uniform
over the whole domain, or varying over each cell in the domain (see Section 10.5).
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Figure 10.8 Particle tracking in USGS two-dimensional Model.
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The finite-difference flow equation is solved numerically in MOC using an iterative al-
ternating-direction implicit (ADI) procedure. The aquifer specific parameters in MOC include
porosity, longitudinal and transverse dispersivity, thickness of the aquifer, transmissivity,
and recharge. There are several model parameters that relate to the numerical methods used in
MOC.

Two control parameters are used for the transport equation. The first parameter is used
to limit the maximum distance within a cell that a particie can move during a time step. The
time step is determined internally in the model and is controlled by four stability criteria that
are discussed later in this section. The second parameter is the number of particles in a cell
(up to 16). A related parameter is utilized to specify the maximum number of particles in the
whole grid. The length of time for which modeling is required is specified in MOC using
three parameters: the number of pumping periods in the simulation time, the actual time in
years for each pumping period, and the number of time steps in a pumping period.

Source parameters include injection wells, constant concentration cells, and recharge
cells. Injection wells and recharge cells basically define a source that leaks into an aquifer,
that is, a source that has a flow rate and a concentration associated with it (Q = Qyand C =
Cy). A constant concentration cell (C = C, boundary condition) simulates a source that adds
contaminant mass at natural gradients into the aquifer. The MOC model allows the specifica-
tion of up to five observation wells or monitoring wells at a given site. The history of
chemical concentrations in those wells is included in the output from the model.

Boundary conditions in MOC are specified by the user. Types of boundary conditions
that can be used include constant head cells or constant flux cells. A constant flux boundary
can be used to represent aquifer underflow, well withdrawals, or well injection. A constant
head boundary can represent parts of the aquifer where the head will not change in time. Con-
stant head boundaries are simulated by using a high leakage term (1.0 s™'). The resulting rate
of leakage into or out of the constant head cell would equal the flux required to maintain the
head in the aquifer at the specified altitude. If a constant flux or constant head boundary repre-
sents a source, then the chemical concentration must be specified.

The numerical procedure in MOC requires that a no-flow boundary surrounds the mod-
eled site. No-flow boundaries simply preclude the flow of water or contaminants across the
boundaries of the cell. Initial conditions in the aquifer also have to be specified: the initial
water table, and the initial contaminant concentrations.

The output from the MOC model consists generally of a head map and a chemical con-
centration map for each node in the grid. Immediately following the head and concentration
maps is a listing of the hydraulic and transport errors. If observation wells had been speci-
fied, a concentration history for those wells would be included in the output. Detailed exam-
ples using BIOPLUME 11 and III, which are based on the MOC code, modified for biodegra-
dation, are presented in Chapters 8 and 13.
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Model
10.7.2 MT3D: A Modular Three-DImensIonal Transport

el that complements the MODFLOW flow simulation
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RT3D’s preprogrammed reaction packages include: Instantaneous aerobic decay of
BTEX; Instantaneous degradation of BTEX using multiple electron acceptors; Kineticaily
limited hydrocarbon biodegradation using multiple electron acceptors; Rate-limited sorption
reactions; Double Monod method; Sequential decay reactions

(PCE > TCE -> DCE -> VC -> Ethene)

and an Aerobic/anaerobic model for PCE/TCE degradation.

RT3D is used in the modeling example which follows (Example 10.5) to simulate
the sequential biotransformation of PCE at a typical dry cleaner site.

10.7.4 MT3DMS: Multiple-Species Version Of MT3D

MT3DMS includes several enhancements over MT3D, besides multiple species capabilities
(Zheng & Wang, 1998). A new advection solver method, called the total variation diminish-
ing scheme (TVD) is included, which allows the user to select from three different solution
methods, depending on the requirements of the system being modeled. Other new features are
a new implicit generalized conjugate gradient solution method, nonequilibrium sorption, and
the multiple-species structure that will accommodate add-on reaction packages, such as those

in RT3D or SEAM3D. MT3DMS does not contain any reaction packages in its basic distri-
bution.

10.7.5 SEAM3D: Sequential Electron Acceptor Model for 3D

SEAM3D, developed with funding from the U.S. military, is designed to simulate subsur-
face transport of multiple solutes under the same aquifer conditions as MODFLOW and
MT3D (Widdowson et al., 1997). It includes the following extensions: multiple electron
acceptors are simulated (O,, NO;~, Mn(IV), Fe(Ill), SO,*, and CO,), with biodegradation
occurring in sequence, according to laboratory observations; biodegradation is accomplished
following Monod kinetics; immobile nonaqueous phase liquid (NAPL) mass can be placed in

any cell, and it will dissolve according to equilibrium assumptions. SEAM3D is based on
the MT3D transport engine.

10.8 MODELING WITH GRAPHICAL PRE-PROCESSORS

One of the greatest advances in ground water modeling (and surface water modeling) in the
last decade is the advent of the graphical pre- and post-processor. Several systems have been
developed recently that allow the user to create a conceptual model of subsurface conditions
which can then be used to export aquifer parameters into ground water flow and contaminant
transport models, such as MODFLOW and MT3D. These systems aid the modeler by assist-
ing in data management. They include the Groundwater Modeling System (GMS) created by
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the Engineering Computer Graphics Laboratory at Brigham \foungMcI)J];n;If(r)s&y
(http://www.ecgl.byu.edu) for the Department of Defense (DoD), and Visual > ili
created by Waterloo Hydrogeologic Software (http://www.flowp'th.com). The authors w
focus on GMS as an example of this type of software due ﬁﬂ utility and general accepiance.
functionality of the different packages is very similar.
e g?II‘lti:aCl?MS packag?is divided into several modules, including the Map modult;, for cre-
ating conceptual models, and for working with observed data; the 3-D grid module, for wl?rk.
ing with MODFLOW, MT3D, and several other modcl§ based on MODFLOW, as well as
other 3-D grid data sets; the 3-D scatter module for working with 3-D scatter dz'xta set‘s, such
as concentrations and conductivities; the 2-D grid and scatter mOfiules 1"0r working vf/nh 2D
scatter data and gridded data sets; the borehole module f9r working with borehole informa-
tion, including cone penetrometer data; the triangular‘ mtercqmected network mOdalLl;' for
working with surfaces; the solid module for working with s'trangraphy; and the 2-D . 3-D
mesh modules for working with finite element meshes (which can be used to run finite ele-
s, such as FEMWATER). )
et lﬁlogfclier to create a MODFLOW/MT3D model of a field site: the u;:r will n:;l ::1 ;:;-
ceptual model of the site. Often, this will involve importing a base map -
:ZCZ:ZDC:D file. The base map can be “registered” to the coordinate system dcsued by ie
user by locating three known points on the map. After. the base map has been 1mported,‘ e
user can import or hand-place other relevant information, suf:h as bo_reholes. well IOCatl‘Ons
and observed concentrations, and SOUrce zones. Much of this 1f1format10n can be enlerefi fx%to
the conceptual model before a model grid has been created. This allows for grmFer flexibility
in deciding what the optimal model grid will be, before th'e process of assigning va}ues utlo
specific grid cells begins, and allows the user to change grid definitions without losing the
i ion entered into the grid. )
mfomét;:;l :lso offers sever;l interpolation/extrapolation optipns for spatially va?'lable: data.
For example, one might have hydraulic conductivity observatloys at several l‘ocauons in the
model area (from slug tests or pump tests). Using the interpqlauon_ methods (inverse distance
weighted, nearest neighbor, kriging, etc.), the software wﬂl.esnmate the values for each
point on the model grid. Data calculators are available to mamp\}late Z-i)tcand 3-D data sets,
i d mathematical functions, as well as minimum, maximunm, €tc.
i Sgﬁg:f the model is built, the user can run MODFLOW, MT3D, R’F3D, and other. mod-
els directly from GMS, and read the output into GMS f9r post—anz}lysns. Post-apalysis can
consist of drawing 2-D layer contours, taking cross sections, drawn;g 3-D contours, com;
parisons with observed data, and several other options. Onf: of the major advant?ges of .usn':;‘
an integrated pre- and post-processor is the ease of calibration of a model. The mtegra‘non o
observed data into the modeling system allows the user to compare model outputs with ol
served data in several ways, either through plotting contours of medelcd .and obsirved data, 0{
by plotting x-y scatter plots of modeled versus observed values, in which a 45 anglfa rep;;r
sents a direct match, or by plotting a time series of observed and modeled concentrations
a single observation point (Holder et al., 1998).
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Example 10.5 MODELING A DRY CLEANER SITE WITH GMS

GMS was used to create MODFLOW and RT3D models of a dry cleaner site in Hous-
ton, Texas, in which PCE contamination has impacted a local neighborhood. Con-
tamination related to dry cleaning facilities has become an issue in the 1990s analo-
gous to LPST releases in the 1980s. Dry cleaners are generally small and located near
residential neighborhoods, making chemical discharges a serious health concern since
the solvent used to dry clean, perchloroethylene (PCE) is a suspected carcinogen with a
drinking water maximum contaminant level of 5 pg/L. Dry cleaners use 56% of the
perchloroethylene in the United States (Izzo, 1992)

Aside from obvious contamination sources typicaily associated with any chemical op-
eration, such as tank storage areas, process equipment, and loading docks, dry cleaners
have additional sources that may contaminate the subsurface. Inadequate PCE recovery
equipment may lead to PCE entering the sanitary sewer lines. PCE may then be re-
leased to the subsurface from flaws and joints in the piping, or by degrading certain
types of polymer piping, such as ABS or PVC (Ranney and Parker, 1995). Many dry
cleaners also have below ground lint traps, usually constructed from concrete. PCE
may migrate through cracks in the concrete as well. Contamination from these sources
may not be easily detectable and may constitute the bulk of the chemical release from
the dry cleaner (See Figure 4.10).

PCE in the organic phase is a dense nonaqueous phase liquid (DNAPL), as described in
Chapter 11, and will pass through the soil matrix, leaving small droplets of residual
NAPL behind. As ground water sweeps through the aquifer, the PCE will slowly dis-
solve into the fresh ground water, with a solubility of about 150 mg/L. The residual
PCE is a continuing source of contamination to the aquifer that may affect ground wa-
ter quality long after the dry cleaner closes. The pools are difficult to find so it is gen-
erally accepted as a rule of thumb that if ground water concentrations greater than 1%
of the aqueous solubility are detected, it is a strong possibility that a nonagueous phase
exists (Pankow and Cherry, 1996 and Chapter 11).

Two dry cleaner facilities were located in the contaminated area at the Houston site
(Figure 10.9). The first operated from the mid-1970s until 1996, while the second
opened in 1993 and is still in operation. Beneath the surficial clay in Houston, the af-
fected aquifer is silty/sandy with a hydraulic conductivity of 5 x 10 cm/s. The aquifer
is unconfined with the water table at about 20 ft below ground surface (BGS), and a
clay layer approximately 30 - 35 ft BGS. The gradient of the ground water is approxi-
mately 0.005, in a generally southward direction. A stream north/northeast of the fa-
cilities provides shallow ground water recharge in the region.
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Figure 10.9 Ground water contours at two dry cleaner sites in Houston. The dry
cleaners are the dark gray buildings.

Samples taken from the site show the primary concentration of the plume to be located

in the area between the two cleaners. Contamination has moved off-site and migrated at

least 2000 ft downgradient, and the plume is approximat'ely. 500 ft w1c§e. ’I"he pmsence
of TCE, the primary product of a PCE dechlorination, md.lwtes t;;at in situ blOtl:;SI;
formation is occurring at this site. The site does not show direct evidence of a DNq .
since the maximum concentrations are less than the‘l.S mg/L ‘rule of thumb (1 oo ;
150 mg/L). However, the PCE concentrations are still much higher than the 5 pgl
fimit needed to comply with drinking water standards.
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Figure 10.10 PCE concentrations modeled at the two dry cleaner sites.

The shallow aquifer characteristics were entered into the “map” module of GMS, along
with two wells, representing sources of contamination at each site. Using resources
such as site maps and USGS Digital Raster Graphics (DRGs) to locate relevant fea-
tures, such as the stream, model boundaries were chosen, a grid was created, and the
aquifer information from the map module was transferred to the MODFLOW and
RT3D models. After the MODFLOW and RT3D models were created, they were
checked with a built-in model checker, which looks for common modeling errors (e.g.,
zeros in the hydraulic conductivity field, etc.), and several model runs were performed.
First, MODFLOW was run to get the head and flow values, which were checked
against observed data. At this time, modifications needed to calibrate the flow modei-
ing are done (see Section 10.9), then RT3D is run, using the heads and flows calcu-
lated in MODFL.OW. Figure 10.10 shows the resulting PCE concentrations for 1998.
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Figure 10.11 TCE concentrations at the dry cleaner sites, along with a calibra-
tion plot showing a comparison of computed v. measured data.

ible. A
Several methods of comparison between modc:ld and ob:ege(; l\lrlz;l:;ez ;1: ;:sshlblg o
i i ense of the , maxim
visual comparison of contours can give a general s : e e
i d data (Figure 10.11) provides
cations, etc. An x-y plot of modeled vs. observe: ! ure o rom
i i ly useful in determining goodness of fit.
ent comparison, which can be extreme S P -
45° line, the dry cleaner model fits observ'
the general closeness of the data to t?ne line, th e e e caceatmations
data reasonably well. Due to the wide variation in meas 2 s
i ivities, it i lot these variables on a logari
and hydraulic conductivities, it is often usefu} to P t } o
scale.y as shown in Figure 10.11. The logarithmic s<‘:ale emphas.mes the dl'ﬁere:oF
tween measurements that span several orders of magnitude. In this case, \‘ls$gﬁnohnw‘ﬁ5h_
scale would make concentrations of 0.001 mg/L and 0.1 mg/L almost indisting

able.
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The modeling of this site was made simpler and more effective using the pre- and post-
processor GMS; which represents a significant improvement in time and effort over
earlier methods in the 1980s. The calibration tools and the integrated visualization
methods were used to help assure the model’s accuracy. The prospective modeler must
remember, however, that the accuracy and usefulness of a model are dependent on the

available input data, and on the proper application of the modeling techniques described
in Section 10.9.

10.9 APPLYING NUMERICAL MODELS TO FIELD SITES

Good field data are essential when using a model for simulating existing flow and/or con-
taminant conditions at a site or when using a model for predictive purposes. However, an
attempt to model a system with insufficient data may be useful because it may serve as a
method for identifying those areas where detailed field information needs to be collected. As
mentioned earlier, a good modeling methodology will increase confidence in modeling re-
sults. In this section, emphasis is placed on outlining the procedure of designing and apply-
ing a selected ground water model to a field site. This step corresponds to item #4 in the

modeling protocol established by Anderson and Woessner (1992), which was discussed in
Section 10.1.

10.9.1 Model Set-Up

Once a conceptual model has been developed for the site and a computer model selected, it
becomes necessary to interpret the conceptual model, and translate it into an input file that
can then be used by the model. The interpretation process begins by analyzing the hydro-
geologic and water quality data collected at the site, with the objective of predicting trends in
the data and estimating the parameters required to run the model.

Data collection and analysis. Most site characterization efforts include identifica-
tion of the subsurface geology, history of contamination, and water quality at the site. The
stratigraphy is determined using soil borings, well logs, and geophysical tools. The subsur-
face geologic data usually has to be interpreted into values of the hydraulic conductivity
and/or transmissivity, thickness of unit, and porosity, which can then be used as input to the
model. The elevation of the water table and/or the potentiometric surface measured at discrete
monitoring wells can be interpreted by constructing water level contours to determine the
general direction of ground water flow.

Water quality data collected at specified time intervals from monitoring wells are gen-
erally analyzed to determine the trends in the spatial and temporal distributions of chemicals
at the site. In many cases, the collected water quality data for a specific chemical are con-
toured to determine the extent of the plume of contamination.
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For transport models, additional parameters that describe the physical, chemical, and
biological properties of the chemicals of concem are necessary. A history of the chemical
release (when it happened, how much was released) is an input requirement when one is at-
tempting to simulate an existing contaminant plume. Defining whether a chemical is subject
to biotic (or biological) and/or abiotic (chemical) reactions is essential for developing more
representative models.

Parameter estimation. Obtaining the information necessary for modeling is not an
easy task. Some data may be obtained from existing reports and studies, but more often it is
necessary to rely on field characterization efforts. Transmissivity and the storage coefficient
are typically obtained from pumping test results. Altemnatively, the hydraulic conductivity is
obtained from slug tests. For unconsolidated sands, the hydraulic conductivity may be ob-
tained from laboratory grain size analyses or from permeability tests using permeameters.

Caution must be exercised when interpreting field measurements of hydraulic conduc-
tivity for use as input in ground water models. For instance, transmissivity values from
pump tests are volume averaged; thus, the measured transmissivity is representative of the
average properties of the aquifer zone influenced by the pump test. Hydraulic conductivity
values, on the other hand, determined from slug tests are point values and only representative
of the local zone where the slug test was conducted. Also, bydraulic conductivity values ob-
tained from permeameter tests typically are several orders of magnitude smaller than values
measured in situ.

Hydrologic stresses include pumping, recharge, and evapotranspiration. Of the three,
pumping rates are the easiest to estimate. Recharge is one of the most difficult parameters to
estimate. Recharge refers to the volume of infiltrated water that crosses the water table and
becomes part of the ground water flow system (Anderson and Woessner, 1992). Discharge,
on the other band, refers to ground water that moves upward across the water table and dis-
charges directly to the surface or the unsaturated zone. It is common for modelers to simulate
recharge as a spatially umiform rate across the water table equal to some percentage of average

annual precipitation. It is important to note, however, that this approach is very simplistic
and does not take into account the spatial and temporal variations in recharge rates.
Evapotranspiration may be determined from field measurements using lysimeters and/or stud-
ies of the vegetation.

10.9.2 Calibration

Calibrating a model is the process of demonstrating that the model is capable of producing
field-measured values of the unknown model variable. For the case of ground water flow, for
example, calibration is accomplished by finding a set of parameters, boundary and injtial
conditions, and stresses that produce simulated values of beads and/or fluxes that match
measured values within a specified range of error.

Finding this set of parameter values has been compared by Anderson and Woessner
(1992) to solving what is Kknown as the inverse problem. In the ground water flow in-
verse problem, for instance, the objective is to determine values of the parameters from in-

E
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formation about heads. The inverse i
. . problem contrasts with the forward i i
the specified mode! parameters are used to calculate heads. problem. fn which
There are two ways to achieve model calibration: (1) manual trial-and-error selection of
Ea:ameters: and 2) au}omated parameter estimation. In tral-and-error calibration, parameter
a olclie? are initially assggned to the grid. The initial parameter values are adjusted u; sequential
model runs to rl}atch sxml{lated data to the calibration targets. Trial-and-error calibration may
51;0&1;(:& non-unique folunons because different combinations of parameters can yield essen
e same results, Also the trial-and-error process i i jecti is i i
by toe mosclors exporiae, p s is quite subjective and is influenced
o hAutomatt?d inverse modeling may not be subjective and is not influenced by the mod-
e t:; lf)weyer, it suffers' from peing complicated and computer intensive. Automated inverse
g:r uf xlx:g is 'fllso associated with instability problems and non-uniqueness in some cases
Wi the mdu'ect' approach, an inverse code automatically checks the head solution and ad-
justs parameters in a systematic way so as to minimize an objective function which com
pares the model calculated values of head to the measured values. )
’ Tpe results of thc. ca!ibratiou should be evaluated relative to the measured values both
qulz; l;tat{vely and quzfnn'tauvely. To date, there is no standard protocol for evaluating model
cs:ia[n u{atn(c)lns. 3 qualitative evaluation of the calibration involves comparing trends‘= in the
ated results to those observed from the measured data. For ex vi
. ample, a visual i-
:gl(]i :tould.be rrliade be;ween contour maps of measured and simulated hzads or conceflct,ll':gca)l
ermine the similarities and differences between them. How
‘ ‘ . ever, contour maps of field
data themselves may mc}ude some error introduced by contouring and therefore shozld not ebe
used as the only evaluation measure of calibration.
A quantitative evaluation of the calibration involves listing the measured and simulated

values and determining some avi ic di
g erage of the algebraic differences betwee
n them. -
ods are commonly used to express this difference: Tvo mett

n
Mean Error = = PREMEE DN

i=1

(10.94)

]

Root Mean Squared Error = 12(::,,, -x)? (10.95)
nig )

where x,, and x; are the measured and simulated values, respectively.

10.9.3 Sensitivity Analysis

’i‘fhe %l(liq:l»ose of a sensitivity analysis is to quantify the effects of uncertainty in the estimates
model parameters on model results. During a sensitivity analysis, calibrated values for
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hydraulic conductivity, recharge, boundary conditions, etc., are systemz‘xtically changed withiy
a pre-established range of applicable values. The magnitude of char}ge in heads and{or concen.
trations from the calibrated solution is a measure of the sensitivity of the solution to that
particular parameter. The results of the sensitivity analysis are expressed as the effects of the
parameter change on the average measurer of error (rgean €ITOF OF TOOt Mmean Square error) ang
on the spatial distribution of heads and/or concentrations.

10.9.4 Model Verification

Because of uncertainties in parameter estimates for a given site, the calibrated model parame-
ters may not accurately represent the system under a different set of boundary conditions or
hydrologic stresses. In a typical verification exercise, values of Pammeters and hydrqlogic
stresses determined during calibration are used to simulate a transient response for which a
set of field data exists (Anderson and Woessner, 1992). Examples of transient data sets in-
clude pumping test data and changes in water levels in response to pumping. In the absence
of a transient data set, however, the model can be tested using a second set of steady-state
e Unfortunately, sometimes it is not possible to verify a model because onl‘y one data
set exists and it is usually used in the calibration process. A calibrated but unven.ﬁed model
can still be used to make predictions as long as sensitivity analyses of both the calibrated and
predictive model are performed and evaluated.

10.9.5 Prediction

Prediction is one of the more common motivations for modeling. In a predicti'vc simulation,
the parameters determined during calibration are used to predict fu{tlre conc‘iin'ons or the re-
sponse of the system to future events. The length of time for' which prediction may l‘)e‘re-
quired is an important consideration in model selection and design. For example', penm‘ttmg
for deep well injection of hazardous wastes requires contaminant trar{sport mode}mg horizon-
tally and vertically for 10,000 years. This implies that if a numerical model is used, care
should be taken to ensure a large enough grid to allow for 10,000 years of transport

The prediction process should be associated with a sensitivity analy§is similar tc? that
completed after calibration. Even though the calibrated model has been verified and subjected
to a sensitivity analysis, the model may not give accurate results when stressed in some new
way.

SUMMARY

Numerical models of groundwater flow and contaminant transport are designed to allow @ :

modeler to simulate the groundwater conditions in an aquifer based on measurable aquifer and

contaminant characteristics. The model is a mathematical representation of real-world physt- -

b=t oe
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cal, chemical, and/or biological processes, and can be used to predict future contamination, to
interpret system dynamics, or to screen field sites for possible contamination problems. The
mathematical representation is implemented using approximation techniques known as Fi-
nite Element, Finite Difference, or Method of Characteristics. An important part of modeling
a site is the development of a conceptual model, which represents the parameters and proc-
esses that are important at the site. This conceptual model can be designed on paper or with
the aid of new modeling software. The numerical model is assembled by interpreting infor-
mation from the conceptual model.
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