ES6-WS

December 8, 2024

1 CE 5364 Groundwater Transport Phenemona Fall 2023 Exercise Set 6

LAST NAME, FIRST NAME

R00000000

1.0.1 Purpose:

Apply selected risk assessment methods

1.0.2 Assessment Criteria:

Completion, results plausible, format correct, example calculations shown.

1.1 Problem 1

Improper waste disposal practices at an industrial site resulted in contamination of the soil on site by cadmium, a known carcinogen with a slope factor of 6.10 $(\frac{mg}{kgd})^{-1}$. We will consider the risk to off-site residents due to inhalation of airborne soil particles that include the cadmium. Based on monitoring data, the concentration of cadmium in the air off site is $5.4 \times 10^{-4} \frac{mg}{m^3}$.

Determine:

- 1. CInh for residents that are children 1-6 years of age and adults.
- 2. The cancer risk due to these CInh values for the children and adults.

Show all calculations and identify all parameter values used.

```
[9]: # Enter your solution below, or attach separate sheet(s) with your solution.
# Given
CA=5.4e-04 # mg/m^3
SF=6.10 #(mg/kgd)^-1
# use formula for CInh from readings

def CInh(CA,IR,RR,ABSs,ET,EF,ED,BW,AT):
        CInh = (CA*IR*RR*ABSs*ET*EF*ED)/(BW*AT*365)
        return(CInh)

# populate values Child 1-6
IR= 0.25 #m^3/hr
```

```
RR=100/100 #x/100%
ABSs=100/100 #x/100%
ET= 12 \#hr/d
EF= 365 \# d/yr
ED= 5 \#yr
BW= 16 #kg, child
AT= 70 #yr
childCInh=CInh(CA, IR, RR, ABSs, ET, EF, ED, BW, AT)
print("CInh for Child 1-6 y.o.",round(childCInh,9))
# populate values Adult 19-70y.o.
CA=5.4e-04 \# mg/m^3
IR= 0.83 \#m^3/hr
RR=100/100 #x/100%
ABSs=100/100 #x/100%
ET= 12 \#hr/d
EF= 365 \# d/yr
ED= 58 #yr
BW= 70 \#kg, adolt
AT= 70 #yr
adoltCInh=CInh(CA, IR, RR, ABSs, ET, EF, ED, BW, AT)
print("CInh for Adolt ",round(adoltCInh,9))
# use formula for CR from readings
def CR(SF,Cinh):
    CR=SF*Cinh
    return(CR)
childCR=CR(SF,childCInh)
adoltCR=CR(SF,adoltCInh)
print("CR for Child ",round(childCR,9))
print("CR for Adolt ",round(adoltCR,9))
```

```
CInh for Child 1-6 y.o. 7.232e-06
CInh for Adolt 6.3663e-05
CR for Child 4.4116e-05
CR for Adolt 0.000388342
```

1.2 Problem 2

The same site also caused off-site lead concentrations that can cause non-cancer effects on the residents. The RfD for lead is $6.90 \times 10^{-4} \left(\frac{mg}{kgd}\right)^{-1}$. We will consider dermal exposures in this problem, with a lead concentration of $260 \, \frac{mg}{kg}$ in the soil, and an absorption factor of 10 percent for the young children and 5 percent for adults.

Determine:

- 1. The NCDEX for residents that are children 1-6 years of age and adults.
- 2. The hazard quotients due to these NCDEX values for the children and adults.

Show all calculations and identify all parameter values used.

```
[24]: # Enter your solution below, or attach separate sheet(s) with your solution.
      # qiven
      RfD = 6.9e-04 \#mq/kqd
      CS = 260 \ \#mq/kq \ in \ soil
      # use formula for NCDEX from readings
      def NCDEX(CS,CF,SA,AF,ABSs,SM,EF,ED,BW,AT,AvT):
          NCDEX = (CS*CF*SA*AF*AT*ABSs*SM*EF*ED)/(BW*AvT*365)
          return(NCDEX)
      # Look up inputs
      CF = 1e-06 \#kq/mq
      SA = 6980 \# cm^2/d
      AT = 20/100 \ \#\%-child
      AF = 0.75 \#mq/cm^2
      ABSs = 10/100 \#\%-child
      SM = 0.15
      EF = 330 \# d/yr
      ED = 5 \# yr \ child
      BW = 16 \# kg \ child
      AvT = 5 #yr child
      childNCDEX= NCDEX(CS,CF,SA,AF,ABSs,SM,EF,ED,BW,AT,AvT)
      print("NCEDX child",round(childNCDEX,6))
      # repeat fro adult
      SA = 18150 \ \#cm^2/d
      AT = 10/100 \# \% - adult
      ABSs = 5/100 \text{ #%-adult}
      ED = 58 \# yr DULT
      BW = 70 \#kq \ adult
      AvT = 58 #yr adult
      adultNCDEX= NCDEX(CS,CF,SA,AF,ABSs,SM,EF,ED,BW,AT,AvT)
      print("NCEDX adolt", round(adultNCDEX,6))
      # use hazard quotiet formula
      def HQ(E,RfD):
          HQ = E/RfD
```

```
return(HQ)

childHQ = HQ(childNCDEX,RfD)
adultHQ = HQ(adultNCDEX,RfD)

print("HQ child",round(childHQ,3))
print("HQ adult",round(adultHQ,3))
```

```
NCEDX child 0.000231
NCEDX adolt 3.4e-05
HQ child 0.334
HQ adult 0.05
```

1.3 Problem 3

A contaminated groundwater that is a potential drinking water source has a manganese concentration of 0.36 $\frac{mg}{L}$. The RfD for manganese is 0.10 $\frac{mg}{kg \cdot d}$. We will consider effects on children 6-12 (drinking 1 L/d) and adults (2 L/d).

Determine: 1. The NCIng for children 6-12 and adults drinking this water. 2. The hazard quotients due to these NCIng values for the children and adults.

Show all calculations and identify all parameter values used.

```
[29]: # Enter your solution below, or attach separate sheet(s) with your solution.
      # qiven
      CW = 0.36 \#mq/L
      RfD = 0.10 \ \#mq/kqd
      IRc = 1 \#L/d
      IRa = 2 \#L/d
      # use formula for NCing from readings
      def NCing(CW,IR,FI,ABSs,EF,ED,BW,AT):
          NCing=(CW*IR*FI*ABSs*EF*ED)/(BW*AT*365)
          return(NCing)
      # populate input values
      FI = 100/100 \#x/100 \%
      ABSs = 100/100 \#x/100 \%
      EF = 365 \# d/yr
      EDc = 6 \# yr
      EDa = 58 \# yr
      BWc = 29 \#kq
      BWa = 70 \# kq
      ATc = 6 \#yr
      ATa = 58 \# yr
      childNCing=NCing(CW,IRc,FI,ABSs,EF,EDc,BWc,ATc)
      adultNCing=NCing(CW, IRa, FI, ABSs, EF, EDa, BWa, ATa)
```

```
childHQ = HQ(childNCing,RfD)
adultHQ = HQ(adultNCing,RfD)

print("NCing child",round(childNCing,6))
print("NCing adolt",round(adultNCing,6))
print("HQ child",round(childHQ,3))
print("HQ adult",round(adultHQ,3))
```

```
NCing child 0.012414
NCing adolt 0.010286
HQ child 0.124
HQ adult 0.103
```

1.4 Problem 4

An animal exposure study was performed to determine an acceptable drinking water concentration for a chemical that causes liver disease in rats and is assumed to have a nonzero threshold. The following results were obtained.

Control Group Comparison to historical records: no evidence of premature deaths Time of sacrifice: all surviving rats were sacrificed at 18 months Initial number: 100 Number of rats with liver disease: 3

Test Group Exposure conditions (lowest observed effect): 140 mg/L, 30 mL/d for a median of 12 months Time of sacrifice: all surviving rats were sacrificed at 18 months Comparison of weight and survival curves: no differences between test and control rats Median adult weight: 0.4 kg Initial number exposed: 100 Number of rats with liver disease: 12

Determine:

- 1. The LOAEL for the rats based on this study.
- 2. The RfD for humans by adjusting for uncertainty. This result is subchronic animal data with no human exposure data available.
- 3. Convert the RfD to an acceptable drinking water concentration.

```
[30]: # Enter your solution below, or attach separate sheet(s) with your solution.

#1. The LOAEL for the rats based on this study:
CW=140 # mg/l
IR=0.030 # L/d
FI=1
ABSs=1
EF=365 # d/yr
ED= 1 # yr
BW=0.4 # kg
AT= 1 # yr
NCIng_Rat=(CW*IR*FI*ABSs*EF*ED)/(BW*AT*365)
print("The LOAEL for the rats = %0.3f mg/(kgd)" %NCIng_Rat)
```

The LOAEL for the rats = 10.500 mg/(kgd)

```
[32]: #2.The RfD for humans by adjusting for uncertainty:
UF=10**(4) # UF=10H*10A*10S*10L=10^4
MF=1
RfD=NCIng_Rat/(UF*MF)
print(" RfD for humans by adjusting for uncertainty = %0.7f mg/(kgd)" %RfD)
```

RfD for humans by adjusting for uncertainty = 0.0010500 mg/(kgd)

```
[33]: #3.Converting the RfD to an acceptable drinking water concentration:

BW=70 # kg

IR=2 # L/d

DWEL=(RfD*BW)/IR

print(" RfD to an acceptable drinking water concentration = %0.7f mg/l" %DWEL)
```

RfD to an acceptable drinking water concentration = 0.0367500 mg/l

1.5 Problem 5

Visit the EPA's IRIS system website (http://www.epa.gov/iriswebp/iris/index.html)

Determine: 1. Your favorite toxic or carcinogenic substance and print (or screen capture) the Quick View page for your choice.

[]: