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Probability Estimation Modeling 
 
Probability estimation modeling refers to the use of probability distributions to model or explain 
behavior in observed data.  Once a distribution is selected, then the concept of risk (probability) can be 
explored for events (rainfalls, discharges, concentrations, etc.) of varying magnitudes.  Generally two 
important “extremes” are important in engineering; relatively uncommon events (floods, plant 
explosions, etc.) and very common events (routine discharges, etc.).   The concepts of analysis are the 
same, but the distribution models are very different.  In fact, there is very little literature on the 
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examination of very common events, yet this area is crucial in environmental engineering, and to a 
lesser extent in typical civil engineering applications. 
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Frequency Analysis 
 
Frequency analysis typically attempts to relate the behavior of some variable over some recurring time 
intervals. The time interval is assumed to be large enough so that the concept of “frequency” makes 
sense. If the time intervals are short, we are often dealing with a time-series that is handled using 
different tools.  Underlying the idea of “long enough” is the concept of independence, that is the values 
of the variable are statistically independent, otherwise the variables are said to be serial (or auto-) 
correlated.   

a). Concept of T-year event. 
Extreme values (annual maximum or annual minimum) on some periodic time basis (usually one year) 
vary in magnitude (value) in an apparently random fashion. The T-year event concept is a way of 
expressing the probability of observing an event of some specified magnitude or smaller (larger) in one 
sampling  period (one year). 
 
The formal definition is: The T-year event is an event of magnitude (value) over a long time-averaging 
period, whose average arrival time between events of such magnitude is T-years. 
 
This definition is not very useful because it is often misinterpreted as an event of such magnitude 
occurring ON THE AVERAGE every T years. The operational definition (one that makes more sense) 
is that a T-year event is an event magnitude whose probability of occurrence in a single sampling 
interval is 1/T (FEMA sometimes calls this the (1/T) chance event, and this is the correct way to state 
the probability).  
 
The concept can be extended to other sampling intervals, but almost never is in the regulatory world. 
The concept assumes that the extreme values observed in sequential events are independent (serial 
correlation is nearly zero). Obviously if the sampling interval is short (daily) we expect strong serial 
correlation and the T-day event is an absurd statement. 
 
Typically we also assume that the process is stationary over the number of sampling intervals of record. 
This assumption is usually not realistic in a philosophical sense (it implies nothing changes with time), 
but in practice it is not bad because hydrologic processes are natural integrators and tend to smooth out 
minor changes. Over time, or where dramatic changes occur, we do expect changes in the statistics, and 
these can be detected by various hypothesis tests on censored data.  Also, most textbooks, 
underemphasize the causal relationship between rainfall and runoff. A lot of the frequency methods are 
developed to explain behavior of extreme flows and implicitly assume that the extreme flow is caused 
by the extreme precipitation event.   There is often little evidence of such cause because precipitation is 
a distributed (spatially and temporally) variable as compared to discharge at a single location on a 
watershed. 
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b). Notation: 
 
P[ x > X ] = y 
 
Most probability notations are similar to the above statement. We read them as “The probability that the 
random variable x will assume a value greater than X is equal to y” 
 
The part of the expression “ x > X ” is the “event” so when you read probability texts they talk about 
universes and events but use above notation. It looks confusing at first, but with some familiarity you 
get used to the notation. 

c). Risk/Loss 
 
The probability in a single sampling interval is useful in its own sense, but we are often interested in the 
probability of occurrence (failure?) over many sampling periods.  
 
If the individual sampling interval events are IID (independent, identically distributed) then we satisfy 
the requirements of a Bernoulli process. 

d). Bernoulli process. 
 
As a simple example, assume the probability that we will observe a cumulative daily rainfall depth 
equal to or greater than that of TS Allison is 0.10 (Ten percent).  
 
What is the chance we would observe one or more TS Allison’s in a three-year sequence?  
 
For a small problem we can enumerate all possible outcomes.  
 
There are eight configurations we need to consider: 
 

 Year1 Year2 Year3 Probability 
1 No TSA No TSA No TSA (.9)(.9)(.9)=0.729 
2 No TSA No TSA TSA (.9)(.9)(.1)=0.081 
3 No TSA TSA No TSA (.9)(.1)(.9)=0.081 
4 TSA No TSA No TSA (.1)(.9)(.9)=0.081 
5 No TSA TSA TSA (.9)(.1)(.1)=0.009 
6 TSA TSA No TSA (.1)(.1)(.9)=0.009 
7 TSA No TSA TSA (.1)(.9)(.1)=0.009 
8 TSA TSA TSA (.1)(.1)(.1)=0.001 

 
So if we are concerned with one storm in the next three years the probability of that outcome is 0.243 
(outcomes 2,3,4; probabilities of mutually exclusive events add). 
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The probability of three “good” years is 0.729. The probability of the “good” outcomes decreases as the 
sampling intervals are increased. So over the next 10 years, the chance of NO STORM is (.9)10 = 0.348. 
Over the next 20 years, the chance of NO STORM is (.9)20 = 0.121. Over the next 50 years, the chance 
of NO STORM is (.9)50 = 0.005 (almost assured of a storm in the next 50 years). To pick the chances of 
k storms in n sampling intervals we use the binomial distribution. 
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This distribution enumerates all outcomes assuming unordered sampling without replacement.  
 
There are several other common kinds of counting:  
 

1. ordered with replacement (order matters), samples are replaced 
2. unordered with replacement 
3. ordered without replacement 

 
Once we have probabilities we can evaluate risk.  
 
Insurance companies use these principles to determine your premiums.  
 
In the case of insurance one can usually estimate the dollar value of a payout – say one million dollars. 
Then the actuary calculates the probability of actually having to make the payout in any single year, say 
10%. The product of the payout and the probability is called the expected loss. The insurance company 
would then charge at least enough in premiums to cover their expected loss.  
 
They then determine how many identical, independent risks they have to cover to make profit (this is 
the basic concept behind the flood insurance program, if enough people are in the risk base, the 
probability of all of them having a simultaneous loss is very small, so the losses can be covered plus 
some profit).  
 
If we use the above table (let the Years now represent different customers), the probability of having to 
make one or more payouts is 0.271. 
 

 Customer 
1 

Customer 
2 

Customer 
3 

Probability E(loss) 

1 No Loss No Loss No Loss 0.729 0 
2 No Loss No Loss Loss 0.081 $81,000 
3 No Loss Loss No Loss 0.081 $81,000 
4 Loss No Loss No Loss 0.081 $81,000 
5 No Loss Loss Loss 0.009 $9,000 
6 Loss Loss No Loss 0.009 $9,000 
7 Loss No Loss Loss 0.009 $9,000 
8 Loss Loss Loss 0.001 $1,000 
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So the insurance company’s expected loss is $271,000. If they charge each customer $100,000 for a 
$1million dollar policy, they have a 70% chance of collecting $29,000 for doing absolutely nothing. 
Now there is a chance they will have to make three payouts, but it is small – and because insurance 
companies never lose, they would either charge enough premiums to assure they don’t lose, increase the 
customer base, and/or misstate that actual risk. The first two are accepted business approaches; the last 
approach would be considered unethical and probably is illegal. 
 
In engineering we use these same concepts to evaluate engineering risk. Often the risk determines the 
size of the engineered solution, which in turn determines cost.  
 
If the engineered solution is an important component of infrastructure (an airport, hospital, highway, 
fuel depot, refinery, etc.) then society either directly or indirectly incurs a large cost to ensure service.  
Alternatively if the risk involves some kind of failure (plant explosion, chemical release, etc.) then the 
owner/operator either buys insurance to cover the financial portion of the loss and/or invest in safety 
procedures and structural controls to change the probability of the failure – in both instances, the 
business practice is called “risk management” and it is an essential part of modern engineering practice 
and should not be left solely in the hands of the MBAs and actuaries. 
 
My personal favorite in risk management is the operation of an aircraft carrier during flight operations.   
The chance for any single failure turning either a single aircraft or the entire ship into a smoking hole in 
the water is huge; the Navy over years of operations has learned to do these operations in really 
crummy weather relatively safely (safe enough for a sitting President to “land” an aircraft on the 
carrier) through the use of technology, and redundant use of human resources. Essentially the system 
works because of a huge investment in safety protocols to change the “collective probability” of failure 
to a very small value.  While carrier operations are a good example, the Navy doesn’t have to make a 
profit, and can invest in the human resources needed to make the system work. 
 

2. Typical Types of Data Needs/Determinations 
 
Most textbooks discuss the kinds of questions that may be asked with frequency analysis methods, 
generally many kinds of questions can be posed in terms of probability that often are not.    Additionally 
most texts focus frequency analysis strictly on discharges, but the approach is generic and can be used 
for many different kinds of variables.  The construction of depth-duration-frequency curves is in-fact 
simply a frequency analysis in two-dimensions (depth-duration).   
 
Data availability may include: 
 

1. long record of the variable of interest at location of interest 
2. long record of the variable of interest near the location of interest. 
3. short record of the variable of interest at location of interest; short records are fine, but 

extrapolation to rare events will be suspect. 
4. short record of the variable of interest near location of interest. 
5. no records near location of interest. 
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Situations 1-4 can be directly analyzed; situation 5 will require use of regional methods. 
 
Usually frequency analysis is used to produce estimates of  
 
T-year discharges for regulatory or actual flood plain delineation. 
 
T-year; 7-day discharges for water supply, waste load, and pollution severity determination.  (Other 
averaging intervals are also used) 
 
T-year depth-duration-frequency or intensity-duration-frequency for design storms (storms to be put 
into a rainfall-runoff model to estimate storm caused peak discharges, etc.). 

3. Probability Distributions 
 
Most presentations define various analytical probability distributions, usually in the density functional 
form.  Oddly enough the distributions are more useful in cumulative form, but are often not presented in 
cumulative form. 

a. Normal distribution 
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EXCEL has these two functions built-in. 
 
The normal distribution is commonly used in hydrology for variables that can take any real values 
(negative and positive). 

b. Gamma distribution 
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The CDF is usually called the incomplete Gamma distribution and is evaluated numerically. The special 
case of n=1 is called the Exponential distribution. Γ(n) satisfies the special recursion relationship 
Γ(t+1)=tΓ(t). Gamma distribution is lower bounded by zero. EXCEL has Gamma functions and 
distributions built-in. 
 
Curvilinear unit hydrographs are structurally (the arithmetic is the same) and gamma-family 
distributions. 
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c. Lognormal 
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Log-normal is undefined at zero. 

d. Extreme value (Gumbel) 
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This distribution is used as a limiting distribution in extreme-value statistics.  This distribution is used 
for modeling very rare events. 

e. LaPlace distribution  
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Also called the double exponential distribution. 

f. Weibull distribution  
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For b=1 this distribution is an exponential distribution. 
 

g. Other distributions. 
 
Logistic, Pareto, Pearsonian etc. 
 

h. Discussion. 
 
The more common distributions in hydrology are the normal, lognormal, and the generalized Gamma 
family (Wiebull, Gumbel, etc.).  
 
The one Pearsonian distribution in common use is the Log-Pearson Type III. Much of frequency 
analysis is aimed as using small samples of observations to infer an underlying distribution and make 
decisions from this distribution.  
 
If the sample is IID and ranked, then the empirical sample CDF will represent relative frequencies that 
are assumed to be associated with the actual probabilities of the governing distribution. 
 



Theodore G Cleveland Page 9 3/2/2006 

CIVE 6361 Engineering Hydrology 

Z:\webdocs\teaching\CIVE_6361\CIVE_6361_Week_06\Presentation\cive6361_week_007_A.doc 

The classical approach to “fit” to observations is based on relationships of sample means, variances and 
skew to population means, variances, and skews for different distributions for extrapolation of behavior.   
 
An alternative approach is to simply fit the distribution to the data then extrapolate. 
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4. Procedures 
 

Plotting positions 
 
This is the name given to the way data are sorted and relative frequency is assigned for each data 
element.  The formulas for plotting positions vary depending on the underlying type of probability they 
are supposed to explain, and for large numbers of data, they asymptotically approach each other. 
 
The steps to follow regardless of plotting formula are: 
 

1. rank data from small to large magnitude. (This ordering is non-exceedence; reverse order 
is exceedence) 

2. compute the plotting position (really just a relative frequency of occurance) by selected 
formula.  p is the “position” or relative frequency. 

3. plot the observation on probability paper (some graphics packages have probability 
scales; Excel does not, DPlot Jr. an add-in has probability scales). 

 
The plot does not necessarily have to be on probability scales, I find that I can the magnitude versus 
probability on a log-log or log-linear scale and get the same kind of information I need. 
 
Some plotting (frequency) formulas in common use: 
 
All use:  p = relative frequency (probability); 

 n=number of observations;   
m=rank order (1 = small, 2= larger, 3= larger …) 
 

Weibull  
 

1+
=

n
mp  

 

California 
 

n
mp =  

 

Hazen 
 



Theodore G Cleveland Page 11 3/2/2006 

CIVE 6361 Engineering Hydrology 

Z:\webdocs\teaching\CIVE_6361\CIVE_6361_Week_06\Presentation\cive6361_week_007_A.doc 

n
mp
2

12 −
=  

 

National Environment Research Council (UK) 
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Example of plotting position 
 
As an example consider the data for Bear Grass Creek in somewhere.  
 

 
Figure 1 
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As arranged above the data are in serial order, each entry represents the peak flow for the year, but we 
have no way of knowing or expecting these peak to occur exactly 1 year apart.  We do see that with the 
exception of three years most of the peaks are somewhere between 1000 and 2000 cfs. 
 
If we believe that serial correlations are minimal then we can assume the data are independent and treat 
this as a random variable.  
 
To analyze by some distribution the conventional approach is to reorder the data in a  rank order and 
use the rank to assign a relative frequency (incremental probability).  The next figure is a decreasing 
rank order thus the plot is an exceedance probability plot.  
 

 
Figure 2 

 
Notice the different plotting positions produce about the same plot except at the extremes.  The way one 
can interpret the plot is the following probability statement. 
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The probability of observing a discharge equal to or greater than 5200 cfs is small (about 3% by 
Weibull position), while the probability of observing a discharge equal to or greater than 707 cfs is 
large (about 97% by Weibull position).   
 
Typically we tend to like things to accumulate in increasing order so the next plot is probably the most 
conventional approach.  In this plot the sense of the inequality is reversed.   
 

 
Figure 3 

 
Thus the plot suggests that the probability of observing a discharge equal to or smaller than 5200 cfs is 
large (about 97%, Weibull formula), while the probability of observing a discharge equal to or smaller 
than 707 cfs is small (about 3%, Weibull formula).   
 
The curve of cumulative frequency (plotting position) versus magnitude is called the empirical 
cumulative distribution function. 
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Typically the next step in analysis is to determine an appropriate distribution model that explains the 
empirical cumulative distribution function, and use this distribution to make probability statements 
using methods in statistics.  Once the empirical relationship is replaced with an “equivalent” 
distribution then one can extrapolate to very common or very rare events (large and small probabilities).  
For example the 0.002 probability event for Bear Grass creek is not on the chart; so we cannot 
realistically “guess” the magnitude, but if a distribution model is selected that passes through the data 
then we could from that model guess the magnitude of the 0.002 chance event (either in exceedence or 
non-exceedence, whichever we are interested in).  Before doing this with the Bear Creek data, we 
cumulative distributions. 
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5. Cumulative Distribution Functions (CDFs). 
 
Some of the pdf’s can be directly integrated, usually using integration by parts. The resulting integrals, 
if they correspond to known functions are evaluated by table look-up or numerical approximation. 
 

CDF for Normal Distribution – Analytical Result 
 
Suppose you wanted to know the cumulative distribution function for the normal distribution.   
 
Simply apply the CDF equation and you can plot CDF versus magnitudes (values) of the random 
variable of interest.   
 
For instance the CDF for a normally distributed variable with mean = 50 and standard deviation = 15 is 
plotted in the next figure. 
 
 

 
Figure 4 

 
The “equations” in EXCEL are  
=NORMDIST(B7,0,1,FALSE)  (This function produces the PDF value for entries in column B) 
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=NORMDIST(B7,0,1,TRUE) (This function accumulates the PDF and produces the CDF value for 
entries in column B).   
 
Alternatively one could simply apply the equations for the normal distribution function and you would 
obtain the same results.  
 
Reference:  NormProb.xls 

CDF for Gamma Distribution – Analytical Result 
 

 
Figure 5 

Similar for the Gamma distribution.  For the special case of N=1, the distribution is called the 
exponential distribution and the pdf and cdf are compliments of each other (i.e. they sum to one). 
 
Reference: GammaProb.xls 
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CDF for Gumbel Distribution – Analytical Result 
 

 
 
This worksheet is direct computation of the density and cumulative equations. 
 
Reference: GumbellProb.xls 

b. Numerical integration to construct CDFs 
 
Numerical integration is very effective for constructing CDFs. Simpson’s type rules with uniform 
panels is usually adequate, but the analyst needs to remember to use a lot of panels.  
 
The pdf’s evaluate quickly, so there is little need to worry about computation speed. 
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CDF for Log-Normal Distribution – Numerical Result 
 

 
 
In this example the cumulative density is from: 
 
CDF(x) = 0.5*(PDF(x+Dx)+PDF(x))*Dx 
 
(Trapezoidal rule – need to use a lot of panels). 
 
Reference: LnNormProb.xls 
 

c. Probability plotting without probability paper 
 
Historically, one would use probability paper to analyze data to extract the distribution parameters. 
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Today, one will most likely use a computer program to do the work and use the computer to plot the 
data.   
 
If the graphics program has probability plotting built-in, by all means use it, otherwise logarithmic 
plotting often is helpful.  Several programs have probability scales built-in (to my knowledge EXCEL 
does not!).   
 
D-PlotJr. (free download), and D-PLot ($48) have Excel add-ins that allow plotting on probability 
scales.  D-Plot is an excellent piece of software and well worth the $48.   
 
If you have a FORTRAN compiler, and know how to use dynamic link libraries, then the free download 
is a viable option (you have to write code to generate plots, but you get complete control).   
 
GRAPHER (Golden Software also has probability scales and is relatively cheap). 
 
Example:   
 
Estimate the 20-year peak flow based on an extreme value Type-1 distribution for the annual peak flow 
data below: 
 
20,45,13,80,12,30,18,22,17,32,22 
 
First the relevant equations: 
 
EV-1 (Gumbel)  

)))(exp(exp()(
β

α−−
−=

xxcdf   

Next, 
 
Rank the data into exceedence or non-exceedence structure. 
 
Choose a plotting formula, I used Weibull in the example. 
 
Then by trial-and-error or using some systematic method “fit” the Gumbell CDF to the plotting position 
values using the ranked magnitudes as the “x” values in the distribution.  You will be changing the 
parameters to accomplish this. 
 
Once you have distribution parameters, reading from the plots to find the 20-year value.  While reading 
from the plots is reasonably straight forward, the value of the exercise is to use the distributions just 
fitted to interpolate/extrapolate for us.  Simply evaluate the distribution to find the magnitude that 
produces the desired probability value.  This example is the “essence” of probability estimation 
modeling – it is no more complicated than this example, although for unusual data and distributions the 
effort can be overwhelming. 
 
Result is in figure below.  
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Reference: GumbellExample.xls 
 
 
Finally interpret the 20-year value correctly as the magnitude of the 20-year discharge is 50 flow units.  
That is we expect the discharge to be 50 units or more with probability 0.05. 
 
The classical approach based on sample moments for this distribution is 
 

σβ
π

µα 45.0;6
==  

 
Which produces the following results for alpha, beta, and Q20 as 
 
22, 8.8, and 49.7 (essentially the same result). 
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Now lets repeat the analysis for the Bear Grass Creek Flows and find the 5% chance event.  Set up the 
data set in same fashion.  Rank and choose plotting formula.  Then “fit” the distribution. 
 
Finally use the fitted distribution to find Q with CDF=0.05.  In the case of the Bear Creek data, the 
value is 2800 cfs.  That is a discharge of 2800 cfs or larger will be observed on average with probability 
0.05 (or 5%); 95% of the time the discharges will be smaller than this value. 
 

 
 
Reference: BearGrassGumbell.xls 
 
In this example using this distribution the 5% chance event is about 2805 cfs. 
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