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1 Introduction and Getting Started

In the 1990s Civil Engineering programs reduced programming courses in a effort
to recover hours for other topics – a logical decision at the time, but with some
consequences. The philosophy was that engineers would not need to be able to write
computer programs, but instead just use them. Microsoft Excel and Lotus 1-2-3 were
the dominant spreadsheet software programs (Borland QuatroPro was a close third),
and with macro instruction capability, much legitimate engineering computation could
be performed within these tools. In fact I developed Excel spreadsheets that could
solve multi-dimensional diffusion problems (3D groundwater flow) using fully implicit
finite difference methods. These spreadsheets were slow relative to MODFLOW, but
you could watch the solutions evolve – ultimately the process was deemed a waste,
because of the ever present “... there is no longer a need for engineers to be able
to write programs.” Later on I developed spreadsheets to perform pressurized pipe
network simulation, gradually varied flow simulation, and rudimentary water-hammer
and St-Venant equation solutions. The spreadsheets were never really practical (yes
they worked well, produced the same results as professional products, but were always
intended a pedagogical tools), but they proved an important point – if you could teach
a computer to follow an algorithm it made you a more self-help user of the professional
tools.

In 2014 several of my students expressed desire to understand programming – they
all know how to write code, but feel they don’t know how to build algorithms (and
implement them). This workbook is an attempt to remedy that student self-identified
weakness. I conducted several one-to-one classes (as special topics); they learned a
lot, I learned even more. This book is a tribute to their interests.

The workbook plan is to introduce a programming tool – I have selected R because
it has a rich development environment already available, graphics is almost trivial,
then apply that tool to selected hydraulics problems of practical value. In the end the
reader ends up with a toolkit that can either stand-alone, or more likely supplement
professional tools they will eventually use.

R is freeware, but it is built and maintained by a consortium of programmers and
statisticians. They have evolved the environment to work on most of the main archi-
tectures (MacOS, Windows, Linux); there are even parallel processor and GPU builds
available, and a company called RStudio provides the APIs to even run it server side.
Much of the underlying code is C, C++, and well proven FORTRAN routines.

1.1 About R

R is a open source envrionment that runs on Windows, Linux/UNIX, and Mac OS
X. The individual binaries are unique to each OS and architecture, but R “source” is
interchangeable among machines. With very minor differences, an R script will run
equally well on any machine.
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R is a statistical analysis tool, it is also a programming tool and language, it is also
a nearly “publication” quality graphics tool. Naturally all this capability comes at a
cost (especially since the software is distributed for “free”) — learning to do more than
simple calculations takes some time (not much), but the skill is highly perishable. You
will need to keep notes, or copies of your R scripts for future reference. Relearning
after some time away from R is pretty simple, so the modeler only has to pay the
steep learning cost once.

The remainder of this essay shows how to obtain and install R on a Windows ma-
chine. Macintosh and Linux installs are accomplished in a similar fashion. For the
truly insane, the entire envrionment can be built from source on any machine with
PERL, gcc, and gfortran compliers (default in Linux, easy to obtain for other archi-
tectures).

1.2 Getting Started

The first step required (for using R as a programming tool) is to install R on your
computer. The source of the binary builds is the same regardless of the underly-
ing operating system – the Comprehensive R Archive Network (CRAN for short).
The remainder of this chapter shows how to get the tool running on the three main
operating systems in current practice.

1.2.1 Windows Users

The purpose of this section is to demonstrate how to get R running on a Windows
computer. This document assumes the following:

1. You have internet connection.

2. You have sufficient user privileges to install software on your machine. (If you
need someone else to install, I did my install by running the installer as a local
administrator — obviously you need the password)

3. You have 60MB or so of vacant disk space on the system directory.

The step-by-step guide is presented as a series of screen captures. Obviously adjust
inputs to fit your machine. The version in these screen captures is quite dated —
use the most recent, stable version offered on CRAN (Comprehensive R Archive
Network).2

2I have updated the screen captures for Windows 10 — so these should replicate the steps.
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Figure 1. Google “R” (alternatively google CRAN).

Figure 2. Taking the “Windows Link”.
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Figure 3. Choose “Install R for the First Time” – goes to the download page. We will next select
“Download R . . . ” and it should download a windows installer. Choose “save” when prompted..

Figure 4. Download arrived. Now run the installer (you need install privileges – if its your personal
laptop, then your regular user account should work). .
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Figure 5. Installer run in progress. Accept the defaults – its just easier and works. Later you can
re-install elsewhere in your filesystem..

Figure 6. Installed “R base” packages. Notice it installs 32-bit and 64-bit versions. The next step is
to verify the install by trying to run the program..
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Figure 7. Run the program. Type plot(c(1,2,3),c(1,4,9),type="l",col="red") into the
console window. A plot should be generated as shown. If this works, then your install is good and now
we install R Studio.

Figure 8. Search for R Studio. Choose the Download link..
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Figure 9. In the download link scroll down to the repository. You want to install the FREE Desktop
version. If on a windows machine, it is the top most of the installers. Don’t accidentally download
the Zip/Tarballs – all that is source code and without the compilers you cannot make much use of it.
Building from source is a challenge. Choose the windows installer and download, select “save” when
prompted.
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Figure 10. Download arrived, run the executable (it should be a .exe file). Accept the defaults dur-
ing the install.

Figure 11. Installer in-progress. When it completes, you should now have R Studio and R installed.
We will test the R Studio install using the same simple plot call.
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Figure 12. Here we see the program is installed, now run R Studio to verify the install.

Figure 13. Type plot(c(1,2,3),c(1,4,9),type="l",col="red") into the console window. A
plot should be generated as shown.

Yipee! It is running. You can install additional packages now or later. You should
now have sufficient computation capability for the course.
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1.2.2 Macintosh OSX Users

[Replicate Windows using MacOS screen captures] The purpose of this section is
to demonstrate how to get R running on a Macintosh computer.3 This document
assumes the following:

1. You have internet connection.

2. You have sufficient user privileges to install software on your machine. (If it
is your personal machine, the install may request your password, but should
install.)

3. You have 60MB or so of vacant disk space on the system directory.

The step-by-step guide is presented as a series of screen captures. Obviously adjust
inputs to fit your machine. The version in these screen captures is quite dated —
use the most recent, stable version offered on CRAN (Comprehensive R Archive
Network).4

Figure 14. Google “R” (alternatively google CRAN).

3I assume no-one will be using a PPC-Based Mac. If so, the CRAN does have PPC builds of R,
but R Studio is not available; you would have to build from the source code.

4I have updated the screen captures for Windows 10 — so these should replicate the steps.
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Figure 15. Select MacOS operating system link.

Figure 16. Download the R Installer.
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Figure 17. Run the installer, accept the defaults.

Figure 18. Successful install.
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Figure 19. Google R Studio.

Figure 20. Select R Studio installer (for MacOS).
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Figure 21. Mount the disk image. Then drag the R Studio icon on top of the Applications link –
this action will install the program.

Figure 22. Start R Studio (in Applications directory, double click on the icon).

Page 20 of 278



CE 4333 Practical Computational Hydraulics SUMMER 2017

Figure 23. Type in some R script and viola – it produces a simple plot.

Yipee! It is running. You can install additional packages now or later. You should
now have sufficient computation capability for the course.
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1.2.3 Linux Users

The purpose of this section is to demonstrate how to get R and R Studio running
on a Linux computer. This document assumes the following:

1. You have internet connection.

2. You have sufficient user privileges to install software on your machine. Gener-
ally, if it is your own machine then you have superuser (root) privileges. If it
is some network machine maintained by someone else you probably don’t have
such priviliges. The examples here use the sudo <command> to do the installs
– on my machine the password I enter is my user password (and not the root
password). Alternativley you can switch user su to root, and run the installs as
root – this approach is considerably more dangerous in terms of wrecking your
operating system that using the sudo approach.

3. You have 60MB or so of vacant disk space on the system directory.

The step-by-step guide is presented as a series of screen captures. Obviously adjust
inputs to fit your machine. Use the most recent, stable version offered on CRAN
(Comprehensive R Archive Network).

Figure 24. Terminal Prompt in Linux.

To get started we need to install R. The easiest method is to use the package manager
– my Linux distribution is Ubuntu 16.XX. It is built from the debian distribution and
uses the apt package manager. The package manager is pretty cool because when we
request a package it finds the package and its dependencies, downloads everything
needed and then we can install. In earlier times (the 1990’s) using the Red Hat
Package Manager (rpm) one would have to find the dependencies themselves (in all

Page 22 of 278



CE 4333 Practical Computational Hydraulics SUMMER 2017

fairness rpm would identify the dependencies and suggest where to find them!). So
here we go, first open a terminal in Linux.

Next in the terminal window issue the command sudo apt install r-cran-littler.

Figure 25. Install R using the apt package manager (or rpm if using a red hat variant).

When you press return, the computer should ask for a password – use your user
password; if you have install privileges this will work. If not, you will have to switch
user to root and either add your user account to the group wheel, return to your
account – or just install as root.

Next the install will begin and may take a few minutes. Usually there is a lot of
installer messages that run across the screen (kind of like in “The Matrix”). The apt

utility is downloading files and binging them to resources on the system so that R
can run. Eventually it should get to the end of the install and may look something
like the next screen capture.

Our next task is to verify that the install was successful. Usually failure is obvious,
but not always. I find the easiest way to verify that the operating system thinks the
software is installed is issue the command to run the program with the version switch
active. In this case, issue the command r --version. This command will try to run
R, and will return the version number (or build number).

In the next screen capture when we run the command we see that the version number
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is R version 3.2.2. The version numbering system is typical for all software – it
identifies something like this is the second subversion, of the second revision, of the
third stable release.

Figure 26. Verify install of R using r --version.

The next step I recommend is to go ahead and download a development environment.
R Studio is an integrated development environment for R. We don’t “need” it, but
it enforces some discipline, gives us a place to store and modify R-scripts (little
programs), and lets us see all of our work going on in one location.

To get R Studio we have to download it from the manufacturer, the copy we will use
is free. Instead of apt this time I used Firefox to navigate to the R Studio website,
then select download.

Next select the appropriate installer for your platform. Be sure you are selecting an
installer and not the source codes for the program.5

We will download the 64-bit version (unless you have a 32-bit machine, then you need

5In theory we could build the program from source using the make utility and (hopefully) already
installed compilers – this is for people with time, training, inclination and need. We are going to
use the already built binaries!
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32-bit software). We need to select our Linux platform – mine is Unbuntu/Debian.
I also have a Red Hat/SuSe machine, so if I were using that machine, i would select
its software.

Figure 27. Browser search for R Studio; go to downloads. We are going to select the free (leftmost)
column.

Figure 28. Download the version of R Studio; in this case 64-bit for Ubuntu Linux (what I am us-
ing). My computer asks if upon download if I want to run the installer, of course select YES.
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Figure 28 is the selection page for selecting the installers. Once I select the package
the computer starts the download, and asks me if I want to run the installer, as in
Figure 29

Figure 29. Here we select install, and let the installer do its thing.

Selecting yes, the installer will attempt to install R Studio onto my computer. Once
installation is complete, the program is ready for a validation (of install) run.

Figure 30. To launch R Studio, either select in the applications folder (or type in the terminal
rstudio.
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Figure 30 is a screen capture after installation using the Unbuntu program manager
window. Both R and R Studio are available.

Either select R Studio to launch it, or type in a terminal window rstudio and the
IDE should launch. The IDE itself is a bit complicated, but actually enables us to
keep better track of our work and ultimately saves time. MatLab users should notice
that the interface looks quite similar (at least it does to me) – its also the same
concept.

Figure 31 is the result of launching the program. The left side of the IDE is an R
console – exactly what would occur if we had just started R. The right side of the
IDE is divided into an upper and lower panel. Each panel provides information about
our programming environment at any instant – and the content is selectable from the
icons at the top of each panel.

Figure 31. Upon opening you should have the following integrated development environment (IDE).
The left panel is exactly what you would obtain if you just type r in the terminal window. .

The next few figures are a step-by-step example to introduce R Studio as well as
test if it installed correctly. We could simply type in the R console within the IDE,
but instead to get into the habit of saving our work, we will open a new scripting
file.
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Figure 32 shows the process of selecting FILE/OPEN to create a new file to store our
scripts. We will type a few commands into the file and then run them.

Figure 32. Open a new file – in this case as an R-Script.

Figure 33. Type in some R instructions, select the instructions and choose RUN.
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So once the file is open the left side of the IDE divides into two panels, an upper and
lower panel. The lower panel is the console environment, and the upper panel is a
script editor.

Figure 33 shows the upper panel with the R commands shown in Listing 1

Listing 1. R code demonstrating a few commands
This fragment of code generates two vectors X and Y and then plots them.

############### Some R Commands ########################
x <- c(0,1,2,3,4,5) # create a vector of 6 elements -- integers 0 to 5.
y <- x*x # square x, put result in y.
plot(x,y,xlab=" X_Axis",ylab="Y-Axis (X-squared)",lwd=3, type="l") # make and label a plot

To actually run the code we can either highlight the portion of the script file we
wish the program to execute (that’s what done here), or we can save the file and
run the entire file. Often we will do both – highlight portions to develop a model,
then save and run the file as needed. The term “sourcing” a [file] in R is jargon for
running the commands contained within a file named [file]. The ability to save and
reuse commands is really useful and is what makes R (or any other stored program
software) really useful.

Figure 34 is the result of highlighting these three lines of code and running them
(notice the little run icon above the script editor).

Figure 34. Completed script run. Notice the plot in the lower right panel. At this point you have a
functioning programming tool..
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2 Algorithms and R for Computing

An algorithm is a recipe. A useful definition is

An algorithm is a computational method or an ensemble of rules deter-
mining the order and form of numerical operations to be applied to a
set of data a(a1, a2, . . . ) in order to find a new set of values x(x1, x2, . . . )
forming the solution of a problem.

An algorithmic procedure can be represented as

x = f(a) (1)

From a mathematical perspective the main concern is that the algorithm
is well posed:

1. A solution exists for a given a.

2. The computation must lead to a single solution for x given a.

3. The results for x must be connected to the input a through the
Lipschitz relation.

|δa| < η then |δx| < M |δa| (2)

where M is a bounded natural number, M = M(a, η)6.

Certain common problems are not well posed as stated but with reasonable
assumptions can be forced into such a state.

Thus an algorithm is a recipe to take input data and produce output responses
through some relationships. If a well posed problem then each result is related to
the inputs, and the same inputs (in an algorithm) produce the same results. By the
recipe analogy, if you follow the same recipe each time with the same raw materials
then the cake should taste the same when it is baked.

An important concept is that an algorithm operates on data (procedure-oriented); an
object-oriented view is that an algorithm performs a task (generate response) based
on states established by the data. Both points of view are valid and equivalent.

Most computational hydraulics models are built (by a quirk of history) in a procedure-
oriented perspective.

2.1 Tools

A practicing modeler needs a toolkit — these tools range from the actual compu-
tation engine (EPA-SWMM, HEC-RAS, FESWMS, HSPF, WSPRO, TR-20, etc.)

6Think of M as a mapping function.
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to analysis tools for result interpretation (R, Excel) to actual programming tools
(FORTRAN,PERL, etc.) to construct their own special purpose models or to test results
from general purpose professional models.

In this book R will be used for programming, analysis, and presentation.

2.2 Programming

Why programming?

There are three fundamental reasons for requiring a programming experience:

1. Teaching someone else a subject or procedure forces the teacher to have a rea-
sonable understanding of the subject or procedure. Teaching a computer (by
virtue of programming) forces a very deep understanding of the underlying al-
gorithm.

2. You will encounter situations that general purpose programs are not designed to
address; if you have a moderate ability to build your own tools when you need
to, then you can. In all likliehood, you will “trick” the professional program,
but you cannot invent tricks unless you know a little bit about programming.

3. Programming a computer requires an algorithmic thought process — this pro-
cess is valuable in many other areas of engineering, hence the act of program-
ming is good discipline for other problems you will encounter.

2.3 Interpolating Tabular Data – A useful algorithm

Material properties in physical systems are usually tabulated values. A frequent task
is to interpolate in a set of tabular values to approximate the value between rows (or
columns) in the table. Linear interpolation is the common technique used; and the
tables can are stores as either separate files, or, if the tables are small enough, they
can be directly imbedded into the code.

2.4 Linear Interpolation

Figure 35 is a sketch of a set of ordered pairs (x, y).

These pairs (there are two in the sketch) represent values in a table, for instance x may
represent water temperature, and y may represent vapor pressure at that particular
temperature. Two adjacent values (in the table) are depicted in the sketch, and the
pairs are ordered bases on the x-value.

Now suppose we want to estimate the value of y∗ at some intermediate value x∗ that
lies between x1 and x2. As a computational task, the problem statement is to
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Figure 35. Sketch of two adjacent values from a table, plotted in Cartesian coordinate system..

“Estimate the value of y∗ associated with the value x∗ given the ordered pairs (x1, y1)
and (x2, y2).”

Linear interpolation simply uses the concept of similar triangles to scale the x and y
distances between the ordered pairs to the intermediate location. Equation 3 is the
result of application of similar triangles to the situation described by Figure ?? and
the problem statement.

x∗ − x1

x2 − x1

=
y∗ − y1

y2 − y1

(3)

Next, apply algebra to solve Equation 3 for y∗, to obtain Equation 4
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y∗ = y1 +
(y2 − y1)(x∗ − x1)

(x2 − x1)
(4)

Now we can use 4 to estimate values between any two data pairs.

2.4.1 Interpolation of Values in Two Pairs

Figure 36 is a table of water properties from (CITE), that represents typically how
tabular data are presented. The temperature column is arranged in increasing order
and the other properties associate with temperature across a row.

Figure 36. Table of water properties in SI units (from CITE).

Now suppose we wished to estimate the density of water at 44o C. The two ordered
pairs of temperature and density that surround 44o C are (40o C, 992 kg/m3) and
(50o C, 988 kg/m3). So, to estimate the unknown density we can apply Equation 4
and obtain the following result

y∗ = 992 +
(988− 992)(44− 40)

(50− 40)
= 990.4 (5)

We might want to do this a lot, so we could write a simplistic script in R and remember
to load it into our environment when we need it

Listing 2. R code demonstrating the interpolation equation.
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# EXAMPLE # ** Interpolating Between Tabulated Pairs
interpolate2pairs <-function(xstar ,x1,y1 ,x2,y2){
# apply interpolation equation
# does not trap errors (divide by zero , etc)

ystar <- y1 + (y2-y1)*(xstar -x1)/(x2 -x1)
return(ystar)

}
# In R Console
> interpolate2pairs (44 ,40 ,992 ,50 ,988)
[1] 990.4
>

For a single interrogation of a table we can stop here, but in many instances we have
to interrogate a table a lot – we want some kind of program structure to handle the
work so all we have to do is pass the temperature value and have the program return
the density.

2.4.2 Interpolation of Values in Two Arrays

To accomplish repeated interpolation we will need to have: (1) an interpolating
method (we have the beginning of one above in Listing 2), (2) the entire table so
we don’t have to enter the pairs, and (3) a way to automatically search the table so
we don’t have to look up values and supply them to the interpolator.

The table itself in this instance is relatively small, so we can simply assign values to
some constant arrays in below in Listing 3.

Listing 3. R code assigning Liquid Properties.

# EXAMPLE # ** Assigning Constants
tempSI <-c(0.00 ,5.00 ,10.00 ,15.00 ,20.00 ,25.00 ,30.00 ,35.00 ,

40.00 ,50.00 ,60.00 ,70.00 ,80.00 ,90.00 ,100.00)
densitySI <-c(1000.00 ,1000.00 ,1000.00 ,999.00 ,998.00 ,997.00 ,996.00 ,

994.00 ,992.00 ,988.00 ,983.00 ,978.00 ,972.00 ,965.00 ,958.00)

# In R Console
> cbind(tempSI ,densitySI)

tempSI densitySI
[1,] 0 1000
[2,] 5 1000
[3,] 10 1000
[4,] 15 999
[5,] 20 998
[6,] 25 997
[7,] 30 996
[8,] 35 994
[9,] 40 992

[10,] 50 988
[11,] 60 983
[12,] 70 978
[13,] 80 972
[14,] 90 965
[15,] 100 958
>

Returning to our example, the value 44 lies between tempSI[9] and tempSI[10], so
we desire an algorithm that starts at tempSI[1] and determines if the search value
is between tempSI[1] and tempSI[2], if not, then increment the row counter and
determine if the search value is between tempSI[2] and tempSI[3], and so on.

Once we locate in the searched array where the value lies then the interpolation
uses the lower and upper elements of the range to interpolate. In the case of our
example, once we determine the 44 lies between tempSI[9] and tempSI[10], then
the interpolation equation is
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y∗ = densitySI[9] +
(densitySI[10]− densitySI[9])(44− tempSI[9])

(tempSI[10]− tempSI[9])
(6)

Listing 4 is an R script that implements the search and interpolation just described.
The script assumes that the searched array (x) is ordered and increasing – not a
trivial assumption! The script has some limited error handling to test if the search
value actually lies in the total range of the array before beginning the search. Once
these tests are passed, then the code searches in the x array for the search value
x∗ and finds the two rows that contain the value. Once the rows are located, the
interpolation equation is used.

Listing 4. R code to Search and Interpolate.

# EXAMPLE # ** Search and Interpolate
getAvalue <- function(x,xvector ,yvector){

# returns a y value for x interpolated from (xvector ,yvector)
# xvector is assumed to be in a monotonic sequence
# function performs limited error checks
# NULL return is error indicator
# T.G. Cleveland July 2007
#
xvlength <- length(xvector)
yvlength <- length(yvector)
# check that vector lengths same
if(xvlength != yvlength){

message (" vectors xvector and yvector different lengths -- exiting function ")
return ()

}
# check that x in range xvector
if(x < min(xvector)){

message (" x too small -- exiting function ")
return ()

}
if(x > max(xvector)){

message (" x too big -- exiting function ")
return ()

}
#
for (i in 1:( xvlength -1)){

if( (x >= xvector[i]) & (x < xvector[i+1]) ){
result = yvector[i]+( yvector[i+1]- yvector[i])*(x - xvector[i])/
(xvector[i+1]- xvector[i])
return(result)

}
# next row

}
# check if at endpoint
if( (x >= xvector[xvlength -1]) & (x <= xvector[xvlength ]) ){

result = yvector[i]+( yvector[i+1]- yvector[i])*(x - xvector[i])/
(xvector[i+1]- xvector[i])
return(result)

}
# should never get to next line
message (" something is really wrong -- check the vectors !")
return ()

}
# In R Console:

> getAvalue (44,tempSI ,densitySI)
[1] 990.4
>

Now we can load and run the getAvalue script and supply the two vectors plus the
search value as shown in Listing 4

This look-up process is readily transferred to other cases, we do have to decide if the
data will be coded as constants (as was done here) or read from a file – if the database
is large the file read option is best. In terms of building a generic look-up tool several
things actually happen in a particular order.
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1. The function call loads in the table (of reading from a file, we would have to
forward declare the vectors).

2. The function searches the first vector for the bounding location of the search
variable.

3. Once the boundaries are located, the interpolation is performed – notice how
the last boundary pair is handled.

Now we can combine the data assignment, the search and interpolate into a single
function so when we want to evaluate in the future we only need the single func-
tion.

Listing 5 is an example of everything combined. Here I have embedded the getAvalue
script into the function so the whole function itself is portbable (we don’t have keep
track of getAvalue). This embedding can be replaced with a load from a library (but
then we must keep track of the path).

The library way is preferable; if getAvalue needs changing, we will have to change
every instance of it in the code, if we miss one the code may still run and it could be
years before we discover the error because a single instance of code fragment within a
larger code was missed – its far better to only change a single instance of the function
when maintenance is necessary.

Listing 5. R code to Return Water Density for Given Temperature.

# Script to return water density in SI units as a function of temperature
getDensitySI <-function(t){
# load the getAvalue () function ###################################################

getAvalue <- function(x,xvector ,yvector){
# returns a y value for x interpolated from (xvector ,yvector)
# NULL return is error indicator
#
xvlength <- length(xvector)
yvlength <- length(yvector)
# check that vector lengths same
if(xvlength != yvlength){

message (" vectors xvector and yvector different lengths -- exiting function ")
return ()

}
# check that x in range xvector
if(x < min(xvector)){

message (" x too small -- exiting function ")
return ()

}
if(x > max(xvector)){

message (" x too big -- exiting function ")
return ()

}
#
for (i in 1:( xvlength -1)){

if( (x >= xvector[i]) & (x < xvector[i+1]) ){
result = yvector[i]+( yvector[i+1]- yvector[i])*(x - xvector[i])/

(xvector[i+1]- xvector[i])
return(result)

}
# next row

}
# check if at endpoint
if( (x >= xvector[xvlength -1]) & (x <= xvector[xvlength ]) ){

result = yvector[i]+( yvector[i+1]- yvector[i])*(x - xvector[i])/
(xvector[i+1]- xvector[i])

return(result)
}
# should never get to next line
message (" something is really wrong -- check the vectors !")
return ()

}
#########################################################################################
# load the data vectors , tempSI and densitySI
tempSI <-c(0.00 ,5.00 ,10.00 ,15.00 ,20.00 ,25.00 ,30.00 ,35.00 ,

40.00 ,50.00 ,60.00 ,70.00 ,80.00 ,90.00 ,100.00)
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densitySI <-c(1000.00 ,1000.00 ,1000.00 ,999.00 ,998.00 ,997.00 ,996.00 ,
994.00 ,992.00 ,988.00 ,983.00 ,978.00 ,972.00 ,965.00 ,958.00)

# now call getAValue
result <-getAvalue(t,tempSI ,densitySI)
return(result)
}

The “library” approach is demonstrated in Listing 6; in this listing the path in the
source() command is unique to my machine – your path is likely to be different. I
find it is useful to contain all the various codes into a single directory and source that
directory once to find the path, then change all the source calls to that path. In fact
that path can be a string variable and the referencing can be automatic (as long as
the files exist!).

Once the look-up function is built then we can interrogate the table many times; and
even build a plot of the table – these features are demonstrated in Listing 6.

Listing 6. R code demonstrating use of getDensitySI().

## In R Console
> # Example demonstrating use of functions
> # load in the functions (must exist -- use path on your machine)
> source (’~/ Dropbox/1-CE-TTU -Classes/UnderDevelopment/

CE4333 -PCH -R/6-RScripts/getAvalue.R’)
> source (’~/ Dropbox/1-CE-TTU -Classes/UnderDevelopment/

CE4333 -PCH -R/6-RScripts/getDensitySI.R’)
> # Now use them
> getDensitySI (44)
[1] 990.4
> getDensitySI (54)
[1] 986
> getDensitySI (88)
[1] 966.4
> t<-seq(0,100,2) # make a temperature vector 0 to 100 in 2 degree increments
> d<-numeric (0) # forward declare d to store results
> howMany <-length(t)
> for(i in 1: howMany){
+ d[i]<-getDensitySI(t[i])
+ }
> plot(t,d,type="l",xlab=" Degrees Celsius",ylab=" Density (kg/m^3)")
>

The resulting plot is shown on Figure 37 below.

2.5 Sorting

Another frequent task in engineering hydraulics is the seemingly mundane task of
sorting or ordering things. Here we explore a couple of simple sorting algorithms,
just to show some of the thoughts that go into such a task, then will ultimately resort
to the internal sorting routines built into R.

2.5.1 Bubble Sort

The bubble sort is a place to start despite it’s relative slowness. It is a pretty reviled
algorithm (read the Wikipedia entry), but it is the algorithm that a naive programmer
might cobble together in a hurry, and despite its shortcomings (its really slow and
inefficient), it is robust.
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Figure 37. Plot of density versus temperature generated using the getDensity() function..
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Here is a description of the sorting task as described by Christian and Griffiths (2016)
(pg. 65):

“Imagine you want to alphabetize your unsorted collection of books. A
natural approach would be just to scan across the shelf looking for out-
of-order pairs – Wallace followed by Pynchon, for instance – and flipping
them around. Put Pynchon ahead of Wallace, then continue your scan,
looping around to the beginning of the shelf each time you reach the end.
When you make a complete pass without finding any more out-of-order
pairs on the entire shelf, then you know the job is done.

This process is a Bubble Sort, and it lands us in quadratic time. There
are n books out of order, and each scan through the shelf can move each
one at most one position. (We spot a tiny problem, make a tiny fix.) So
in the worst case, where the shelf is perfectly backward, at least one book
will need to be moved n positions. Thus a maximum of n passes through
n books, which gives us O(n2) in the worst case.7 . . . . . . For instance, it
means that sorting five shelves of books will take not five times as long as
sorting a single shelf, but twenty-five times as long.”

Converting the word description into R is fairly simple. We will have a vector of n
numbers (we use a vector because its easy to step through the different positions),
and we will scan through the vector once (and essentially find the smallest thing),
and put it into the first position. Then we scan again from the second position and
find the smallest thing remaining, and put it into the second position, and so on until
the last scan which should have the remaining largest thing. If we desire a decreasing
order, simply change the sense of the comparison.

Listing 7 is an R script that implements the algorithm – in the script the actual sort
is treated as a function (we may actually want to use it again someday) which is
loaded into the programming environment first, then an array is defined, and sorted.
The program (outside of the sorting algorithm) is really quite simple.

• Load the sorting function.

• Load contents into an array to be sorted.

• Echo (print) the array (so we can verify the data are loaded as anticipated).

• Sort the array, put the results back into the array (an in-place sort).

• Report the results.

Listing 7. R code demonstrating the naive bubble sort.

##############################################################
rm(list=ls()) # clear the object list (i.e. deallocate and clear memory)
### Bubble Sort Function -- Needs to be defined before sending array to sort ###
# Bubble Sort Function

7Actually, the average running time for Bubble Sort isn’t any better, as books will, on average, be
n/2 positions away from where they?re supposed to end up. One would round the n/2 passes of
n books up to O(n2).
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# MyLocation: ~/ Dropbox/1-CE -TTU -Classes/CE4333 -PCH -R/1-Lectures/Lecture03/ScriptsInLecture
# Bubble Sort with array indexing starting at [1]
# Compare to Python or C where arrays start at [0])
# by: Theodore G. Cleveland 2017 -0317
################################################################
bubble <- function(array)
{

# Prepare the sort , need to know how many things and need a temporary store
swap <- numeric (0) # temporary store (aka swap location)
howMany <- length(array) # how many things to be sorted
# The actual sorting process
for (irow in 1:( howMany -1))
{

for (jrow in 1:( howMany -irow))
{

if( array[jrow] > array[jrow +1])
{

swap <- array[jrow];
array[jrow] <- array[jrow +1];
array[jrow +1] <- swap;

}
}

}
# return result (sort in-place)
return(array)

}
##############################################################

##############################################################
xarray <- c(1003 ,3.2 ,55.5 , -0.0001 , -6 ,666.6 ,102) # the array to sort
print(xarray)
xarray <- bubble(xarray)
print(xarray)
##############################################################

Figure 38 is a screen capture of the script running. In the figure we see that the
program (near the bottom of the file) assigns the values to the vector named array and
the initial order of the array is [1003, 3.2, 55.5,−0.0001,−6, 666.6, 102]. The smallest
value in the example is −6 and it appears in the 5-th position, not the 1-st as it
should.

The first pass through the array will move the largest value, 1003, in sequence to the
right until it occupies the last position. Repeated passes through the array move the
remaining largest values to the right until the array is ordered. One can consider the
values of the array at each scan of the array as a series of transformations (irow-th
scan) – in practical cases we don’t necessarily care about the intermediate values,
but here because the size is manageable and we are trying to get our feet wet with
algorithms, we can look at the values.

The sequence of results (transformations) after each pass through the array is shown
in the following list:

1. Initial value: [1003, 3.2, 55.5,−0.0001,−6, 666.6, 102].

2. First pass: [3.2, 55.5,−0.0001,−6, 666.6, 102, 1003].

3. Second pass: [3.2,−0.0001,−6, 55.5, 102, 666.6, 1003].

4. Third pass: [−0.0001,−6, 3.2, 55.5, 102, 666.6, 1003].

5. Fourth pass: [−6,−0.0001, 3.2, 55.5, 102, 666.6, 1003].

6. Fifth pass: [−6,−0.0001, 3.2, 55.5, 102, 666.6, 1003]. Sorted, fast scan.

7. Sixth pass: [−6,−0.0001, 3.2, 55.5, 102, 666.6, 1003]. Sorted, fast scan.
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Figure 38. Bubble Sort implemented in R.

We could probably add additional code to break from the scans when we have a single
pass with no exchanges – while meaningless in this example, for larger collections of
things, being able to break out when the sorting is complete is a nice feature.
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2.5.2 Insertion Sort

The next type of sorting would be to select one item and locate it either left or right
of an adjacent item based on its size – like sorting a deck of cards, or perhaps a better
description – again using the bookshelf analog from Christian and Griffiths (2016)
(pg. 65):

“. . . . . . You might take a different tack – pulling all the books off the shelf
and putting them back in place one by one. You’d put the first book in
the middle of the shelf, then take the second and compare it to the first,
inserting it either to the right or to the left. Picking up the third book,
you’d run through the books on the shelf from left to right until you found
the right spot to tuck it in. Repeating this process, gradually all of the
books would end up sorted on the shelf and you’d be done. Computer
scientists call this, appropriately enough, Insertion Sort. The good news
is that it’s arguably even more intuitive than Bubble Sort and doesn’t
have quite the bad reputation. The bad news is that it’s not actually that
much faster. You still have to do one insertion for each book. And each
insertion still involves moving past about half the books on the shelf, on
average, to find the correct place.

Although in practice Insertion Sort does run a bit faster than Bubble Sort,
again we land squarely, if you will, in quadratic time. Sorting anything
more than a single bookshelf is still an unwieldy prospect.”

Listing 8 is an R implementation of a straight insertion sort. The script is quite
compact, and I used indentation and extra line spacing to keep track of the scoping
delimiters. The sort works as follows, take the an element of the array (start with
2 and work to the right) and put it into a temporary location (called swap in my
script). Then compare locations to the left of swap. If smaller, then break from the
loop, exchange values, otherwise the values are currently ordered. Repeat (starting
at the next element) , when all elements have been traversed the resulting vector is
sorted. Here are the transformations for each pass through the outer loop:

1. Pass 0: [1003, 3.2, 55.5,−0.0001,−6, 666.6, 102], Initial array.

2. Pass 1: [3.2, 1003, 55.5,−0.0001,−6., 666.6, 102].

3. Pass 2: [3.2, 55.5, 1003,−0.0001,−6., 666.6, 102].

4. Pass 3: [−0.0001, 3.2, 55.5, 1003,−6., 666.6, 102].

5. Pass 4: [−6,−0.0001, 3.2, 55.5, 1003., 666.6, 102].

6. Pass 5: [−6,−0.0001, 3.2, 55.5, 666.6, 1003, 102].

7. Pass 6: [−6,−0.0001, 3.2, 55.5, 102, 666.6, 1003], Sorted array.

Figure 39 is a screen capture of the insertion sort in operation. Insertion sorting is
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reasonably fast for small lists (about 50 or so elements) and forms the basis of the
internal sorts in other routines that divide up the overall list into smaller lists, sort the
smaller lists, then uses a merge to collate back to the overall list (now sorted).

Listing 8. R code demonstrating the insertion sort.

### Straight Insertion Sort Function by: Theodore G. Cleveland 2017 -0317
rm(list=ls()) # clear the object list (i.e. deallocate and clear memory)
################################################################
insertSort <- function(array){
# Prepare the sort , need to know how many things and need a temporary store

swap <- numeric (0) # temporary store (aka swap location)
howMany <- length(array) # how many things to be sorted
for (j in 2: howMany) # select each position in turn

{
test <- 0 # set a test value , used to insert later
swap <- array[j] # current position to swap
for (i in seq(j-1,1,by=-1)) #find place to insert by ...

{
if (array[i] <= swap) # test if current position is bigger

{
test <- 1 # if true set test to 1, break inner loop
break
}

array[i+1] <- array[i] # otherwise exchange postions
}

if(test == 1) # if broke from loop , insert swap
array[i+1] <- swap

else
i = 0
array[i+1] <- swap # otherwise swap goes to first position

}
return(array) } # return result (sort in-place)

##############################################################
xarray <- c(1003 ,3.2 ,55.5 , -0.0001 , -6 ,666.6 ,102) # the array to sort
print(xarray)
xarray <- insertSort(xarray)
print(xarray)
##############################################################

Figure 39. Insertion Sort implemented in R.
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2.5.3 Merge Sort

A practical extension of these slow sorts is called the Merge Sort. It is an incredibly
useful method. One simply breaks up the items into smaller arrays, sorts those arrays -
then merges the sub-arrays into larger arrays (now already sorted), and finally merges
the last two arrays into the final, single, sorted array.

Here is a better description, again from Christian and Griffiths (2016):

“. . . . . . information processing began in the US censuses of the nineteenth
century, with the development, by Herman Hollerith and later by IBM, of
physical punch-card sorting devices. In 1936, IBM began producing a line
of machines called “collators” that could merge two separately ordered
stacks of cards into one. As long as the two stacks were themselves sorted,
the procedure of merging them into a single sorted stack was incredibly
straightforward and took linear time: simply compare the two top cards
to each other, move the smaller of them to the new stack you’re creating,
and repeat until finished.

The program that John von Neumann wrote in 1945 to demonstrate the
power of the stored-program computer took the idea of collating to its
beautiful and ultimate conclusion. Sorting two cards is simple: just put
the smaller one on top. And given a pair of two-card stacks, both of them
sorted, you can easily collate them into an ordered stack of four. Repeating
this trick a few times, you’d build bigger and bigger stacks, each one of
them already sorted. Soon enough, you could collate yourself a perfectly
sorted full deck – with a final climactic merge, like a riffle shuffle’s order-
creating twin, producing the desired result. This approach is known today
as Merge Sort, one of the legendary algorithms in computer science.”

There are several other variants related to Merge Sort; Quicksort and Heapsort being
relatives. The creation of a Merge Sort is left to the reader if there is a need, and
at this point we can just use the built-in sort() and/or order() functions in R –
which implements either a Shellsort (useful if character strings are to be sorted) or
Quicksort (used if numeric values are supplied). We also have to supply if we want
increasing or decreasing sorts.

2.5.4 Built-In R Sorts

Figure 40 illustrates using the built-in functions. For an ordinary sort, we simply use
the function name sort() and direct its output into an object (it can even be the
same vector as shown in the figure).

If we wish to sort several related columns, based on values in one of the columns,
it is easiest to construct a data frame (like a matrix), then order the contents based
on one of the columns, and send the results to another data frame, or we can send
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the result back to itself. Usually when we are manipulating multiple columns, we
are operating in a “relational database” kind of mindset, and it is probably to our
benefit to not destroy the original association structure. Be aware of the syntax of a
dataframe function, you will notice there is a comma that appears at the end of the
function that is important for the script to function.

For example, z <- z[order(xarray),] will function as shown,
whereas zztop <- z[order(xarray)] will not.

Figure 40. Sorting using built-in R functions.

Now if we return to the interpolation chapter just before this one, we can immedi-
ately see a need for sorting. The interpolation algorithm assumes that the explana-
tory structure (x-axis) is ordered, otherwise the interpolation equation will return
garbage.

I conclude the section on sorting with one more quoted section from Christian and
Griffiths (2016) about the value for sorting – which is already relevant to a lot of
computational hydraulics:

“The poster child for the advantages of sorting would be an Internet search
engine like Google. It seems staggering to think that Google can take the
search phrase you typed in and scour the entire Internet for it in less than
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half a second. Well, it can’t – but it doesn’t need to. If you’re Google,
you are almost certain that (a) your data will be searched, (b) it will be
searched not just once but repeatedly, and (c) the time needed to sort is
somehow “less valuable” than the time needed to search. (Here, sorting
is done by machines ahead of time, before the results are needed, and
searching is done by users for whom time is of the essence.) All of these
factors point in favor of tremendous up-front sorting, which is indeed what
Google and its fellow search engines do.”

Exercise Set 1

1. Build a function getDensityUS() that searches the table in Figure 36 and re-
turns the density of water in US customary units for a value of temperature
supplied in degrees Farenheight.

Submit your code and screen captures of the density for temperatures of 43o F ,
146o F , and 210o F .

2. Later in the class we will need functions to return viscosity to compute head
losses in pipe networks.

Build and test a function getKinViscosityUS() that searches the table in Fig-
ure ?? and returns the kinematic viscosity of water in US customary units for
a value of temperature supplied in degrees Farenheight

Submit the code and screen captures of the kinematic viscosity for tempera-
tures of 43o F , 146o F , and 210o F .

3. Build and test a function getKinViscositySI() that searches the table in Fig-
ure 36 and returns the kinematic viscosity of water in SI units for a value of
temperature supplied in degrees Celsius

Submit the code and screen captures of the kinematic viscosity for tempera-
tures of 13o C, 66o C, and 97o C.

4. Imagine you have two arrays, array1 and array2 that are linked in the sense
that each element of array1 is associated with the corresponding element of
array2. You wish to sort based on contents of array1 and maintain the cor-
respondence of array2. In words we would simply modify the script to move
and element of array2 whenever you move an element of array1.

Modify the Insertion Sort script to accept two arrays, the sort is based on
contents of the first array and you are to maintain correspondence with the
second array.
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Test your script on the following arrays:
array1 = [5, 6, 8, 2, 3, 4, 1]
array2 = [24, 35, 63, 3, 8, 15, 0]

when these are reordered, the result should be:
array1 = [1, 2, 3, 4, 5, 6, 8]
array2 = [0, 3, 8, 15, 35, 63]

Then modify your script to read input from an ASCII file that contains the
two arrays as columns (like in a spreadsheet) where you will sort on the first
column, and carry along the correspondence with the second column.

Apply the script on the file es3-pr1.txt.

5. Repeat the exercise above but use built-in R functions.8

This exercise set is also located on the class server as ES-1.

8My solution uses the data.frame() and order() functions. There are probably several other ways
to accomplish the goal – corresponding sorts are hugely important in many practical situations.
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3 Numerical Methods – Integrals, Derivatives, and

Newton’s Method

3.1 Numerical Integration of Functions

Numerical integration is the numerical approximation of

I =

∫ b

a

f(x)dx (7)

Consider the problem of determining the shaded area under the curve y = f(x) from
x = a to x = b, as depicted in Figure 41, and suppose that analytical integration is
not feasible.

Figure 41. Schematic of Panels for Numerical Integration. .

The function may be known in tabular form from experimental measurements or it
may be known in an analytical form. The function is taken to be continuous within
the interval a < x < b. We may divide the area into n vertical panels, each of width
∆x = (b− a)/n, and then add the areas of all strips to obtain A ≈

∫
ydx.

A representative panel of area Ai is shown with darker shading in the figure. Three
useful numerical approximations are listed in the following sections. The approxima-
tions differ in how the function is represented by the panels — in all cases the function
is approximated by known polynomial models between the panel end points.

In each case the greater the number of strips, and correspondingly smaller value of ∆x,
the more accurate the approximation. Typically, one can begin with a relatively small
number of panels and increase the number until the resulting area approximation stops
changing.
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3.1.1 Rectangular Panels

Figure 42 is a schematic of a rectangular panels. The figure is assuming the function
structure is known and can be evaluated at an arbitrary location in the ∆x dimension.
Each panels is treated as a rectangle, as shown by the representative panel whose

Figure 42. Rectangular Panel Schematic..

height ym is chosen visually so that the small cross-hatched areas are as nearly equal
as possible. Thus, we form the sum

∑
ym of the effective heights and multiply by ∆x.

For a function known in analytical form, a value for ym equal to that of the function
at the midpoint xi + ∆x/2 may be calculated and used in the summation.

For tabulated functions, we have to choose to either take ym as the value at the left
endpoint or right endpoint. This limitation is often quite handy when we are trying
to integrate a function that is integrable, but undefined on one endpoint.

Lets try some examples in R.
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Problem: Find the area under the curve y = x
√

1 + x2 from x = 0 to x = 2.

Solution: One solution is shown in Figure 43,which is a screen capture of a rudi-
mentary code that implements the rectangular panel method.9

Figure 43. Rectangular panel example showing code and resulting computed area using just 4 pan-
els..

The script does not implement any kind of error checking – we could enter text values
for the lower and upper values of x as well as the number of panels to use, and the
script would attempt to run. A better version would force us to enter numeric values,
and check for undefined ranges and such; devotion to error trapping is typical for
professional programs where you are going to distribute executable modules and not
expect the end user to be a programmer.

9The exact solution is A=3.393477
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For the time being, we will accept this approach (error trapping is left as an exercise),
however in your own scripts you should implement error traps where possible – you
may start without them but as you maintain your scripts, you will learn where data
entry errors occur and trap them.10

The actual listing depicted in Figure 43 is shown in Listing 9

Listing 9. R code demonstrating Rectangular Panel Numerical Integration.

# R script to implement rectangular panel numerical integration
################################# NOTE ####################################
## The interactive input requires the script to be sourced #
# In R console the command line would be #
# source(’PATH -TO-THE -FILE/RectangularPanelExample.R’) #
# where PATH -TO -THE -FILE is replaced with the actual path on your machine #
###########################################################################
# Function to be integrated (modify as needed) #
###########################################################################
y <- function(x){

y <- x * sqrt (1+x^2)
return(y)

}
###########################################################################
# Get lower ,upper and how many panels from user #
###########################################################################
xlow <- readline ("What is the lower limit of integration? ")
xhigh <- readline ("What is the upper limit of integration? ")
howMany <- readline ("How many panels? ")
# Convert the strings into numeric values
xlow <- as.numeric(unlist(strsplit(xlow , ",")))
xhigh <- as.numeric(unlist(strsplit(xhigh , ",")))
howMany <- as.numeric(unlist(strsplit(howMany , ",")))
# Compute some constants
deltax <- (xhigh - xlow)/howMany
accumulated_area <- 0.0 # initialize the accumulator
xx <- xlow+deltax /2 # initial value for x at middle of left -most panel
##########################################################################
# The actual numerical method #
##########################################################################
for (i in 1: howMany){

accumulated_area <- accumulated_area + deltax*y(xx) # y is the integrand function
xx <- xx+deltax

}
##########################################################################
# Report Result #
##########################################################################
message (" Approximate value of integral from ",xlow ," to ",xhigh ," is: ",accumulated_area)

Figure 44 is the same program run using 4,400, and 4000 panels observe the difference
in computed area as well as the results closeness to the exact solution.

3.1.2 Trapezoidal Panels

The trapezoidal panels are approximated as shown in Figure 45. The area Ai is the
average height (yi+yi+1)/2 times ∆x. Adding the areas gives the area approximation
as tabulated. For the example with the curvature shown, the approximation will be
on the low side. For the reverse curvature, the approximation will be on the high
side. The trapezoidal approximation is commonly used with tabulated values.

The same example as presented for rectangular panels is repeated, except using trape-
zoidal panels. The code is changed because we will evaluate at each end of the
panel (so no fussing to find an intermediate estimate for where to evaluate the func-
tion).

10For example, traps are used to force the user to enter a value that actually is meaningful, or select
a default value, or internally prevent division by zero.
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Figure 44. Rectangular panel example showing difference in computed area using 4, 400, and 4000
panels. The 4000 panel result is essentially equivalent to the exact solution. Such convergence to exact
values is typical.

Figure 45. Trapezoidal Panel Schematic..
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Figure 46 illustrates the trapezoidal method for approximating an integral. In the
example, the left and right panel endpoints in x are set as separate variables xleft and
xright and incremented by ∆x as we step through the count-controlled repetition to
accumulate the area. The corresponding y values are computed within the loop and
averaged, then multiplied by ∆x and added to the accumulator. Finally the x values
are incremented.

Figure 46. Trapezoidal panel example using 4, 400, and 4000 panels..

The actual listing depicted in Figure 46 is shown in Listing 10. Observe (at least for
this example) the method appears more accurate that the rectangular method for the
same number of panels, however also observe we are making twice as many function
calls.
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Listing 10. R code demonstrating Trapezoidal Panel Numerical Integration.

# R script to implement trapezoidal panel numerical integration
################################# NOTE ####################################
## The interactive input requires the script to be sourced #
# In R console the command line would be #
# source(’PATH -TO-THE -FILE/TrapezoidalPanelExample.R’) #
# where PATH -TO -THE -FILE is replaced with the actual path on your machine #
###########################################################################
# Function to be integrated (modify as needed) #
###########################################################################
y <- function(x){

y <- x * sqrt (1+x^2)
return(y)

}
###########################################################################
# Get lower ,upper and how many panels from user #
###########################################################################
xlow <- readline ("What is the lower limit of integration? ")
xhigh <- readline ("What is the upper limit of integration? ")
howMany <- readline ("How many panels? ")
# Convert the strings into numeric values
xlow <- as.numeric(unlist(strsplit(xlow , ",")))
xhigh <- as.numeric(unlist(strsplit(xhigh , ",")))
howMany <- as.numeric(unlist(strsplit(howMany , ",")))
# Compute some constants
deltax <- (xhigh - xlow)/howMany
accumulated_area <- 0.0 # initialize the accumulator
xleft <- xlow
xright <- xleft + deltax
##########################################################################
# The actual numerical method #
##########################################################################
for (i in 1: howMany){

yleft <- y(xleft)
yright <- y(xright)
accumulated_area <- accumulated_area + (yleft+yright)*deltax /2
xleft <- xleft + deltax
xright <- xright + deltax

}
##########################################################################
# Report Result #
##########################################################################
message (" Approximate value of integral from ",xlow ," to ",xhigh ," is: ",accumulated_area)

3.1.3 Parabolic Panels

Parabolic panels approximate the shape of the panel with a parabola. The area
between the chord and the curve (neglected in the trapezoidal solution) may be ac-
counted for by approximating the function with a parabola passing through the points
defined by three successive values of y.

This area may be calculated from the geometry of the parabola and added to the
trapezoidal area of the pair of strips to give the area ∆A of the pair as illustrated.
Adding all of the ∆As produces the tabulation shown, which is known as Simpson’s
rule. To use Simpson’s rule, the number n of strips must be even.

The same example as presented for rectangular panels is repeated, except using
parabolic panels. The code is changed yet again because we will evaluate at each
end of the panel as well as at an intermediate value.

Figure 48 is a screen capture of a parabolic panel integration. The actual script is
also listed in Listing 11. In the script, I substituted ∆x

2
for ∆x from Figure 47, so the

accumulation line has a 6 in the denominator (rather than the 3 in the figure).11

Observe that the estimated integral for 400 and 4000 panels is nearly the same,

11. . . ∆x
2 ×

1
3 = . . . ∆x

6
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Figure 47. Parabolic Panel Schematic..

Figure 48. Parabolic panel example using 4, 400, and 4000 panels.
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suggesting no need to go beyond a certain number of panels. Algorithms that detect
when to stop adding panels exist and would be implemented in many scientific and
engineering programming applications.

Listing 11. R code demonstrating Parabolic Panel Numerical Integration.

# R script to implement trapezoidal panel numerical integration
################################# NOTE ####################################
## The interactive input requires the script to be sourced #
# In R console the command line would be #
# source(’PATH -TO-THE -FILE/RectangularPanelExample.R’) #
# where PATH -TO -THE -FILE is replaced with the actual path on your machine #
###########################################################################
# Function to be integrated (modify as needed) #
###########################################################################
y <- function(x){

y <- x * sqrt (1+x^2)
return(y)

}
###########################################################################
# Get lower ,upper and how many panels from user #
###########################################################################
xlow <- readline ("What is the lower limit of integration? ")
xhigh <- readline ("What is the upper limit of integration? ")
howMany <- readline ("How many panels? ")
# Convert the strings into numeric values
xlow <- as.numeric(unlist(strsplit(xlow , ",")))
xhigh <- as.numeric(unlist(strsplit(xhigh , ",")))
howMany <- as.numeric(unlist(strsplit(howMany , ",")))
# Compute some constants
deltax <- (xhigh - xlow)/howMany
accumulated_area <- 0.0 # initialize the accumulator
xleft <- xlow
xmiddle <- xleft + deltax /2
xright <- xleft + deltax
##########################################################################
# The actual numerical method #
##########################################################################
for (i in 1: howMany){

yleft <- y(xleft)
ymiddle <- y(xmiddle)
yright <- y(xright)
accumulated_area <- accumulated_area + (yleft +4* ymiddle+yright)*deltax /6
xleft <- xright
xmiddle <- xleft + deltax /2
xright <- xleft + deltax

}
##########################################################################
# Report Result #
##########################################################################
message (" Approximate value of integral from ",xlow ," to ",xhigh ," is: ",accumulated_area)

If we study all the forms of the numerical method we observe that the numerical
integration method is really the sum of function values at specific locations in the
interval of interest, with each value multiplied by a specific weight. In this develop-
ment the weights were based on polynomials, but other method use different weighting
functions. An extremely important method is called gaussian quadrature, which is
outside the scope of the discussion herein — Gaussian quadrature routines are readily
available within R. The method is valuable because one can approximate convolution
integrals quite effectively using quadrature routines, while the number of function
evaluations for a polynomial based approximation could become hopeless.

When the function values are tabular, we are going to have to accept the rectangular
(with adaptations) and trapezoidal as our best tool to approximate an integral because
we don’t have any really effective way to evaluate the function between the tabulated
values – if we were to use our interpolation routine from earlier, its really going to be
a kind of trapezoidal rule anyway.
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3.2 Exercise Set 2

1. Write a script to approximate
∫ 3.4

1.8
exdx using rectangular panels.

Run your script using 6 and 600 panels.

(a) What is the analytical solution (e.g. do the calculus!)?

(b) What is the percent error between the analytical solution and the approx-
imation using 6 panels?

(c) What is the percent error between the analytical solution and the approx-
imation using 600 panels?

2. Write a script to approximate
∫ 3.4

1.8
exdx using trapezoidal panels.

Run your script using 6 and 600 panels.

(a) What is the analytical solution (e.g. do the calculus!)?

(b) What is the percent error between the analytical solution and the approx-
imation using 6 panels?

(c) What is the percent error between the analytical solution and the approx-
imation using 600 panels?

3. Based on the previous two exercises, which method do you think is more accu-
rate for a given panel count? Why (do you think so)?

4. Write a script to approximate
∫ 1

0
ln(x)dx using rectangular panels.

Run your script using 6 and 600 panels.

(a) What is the analytical solution (e.g. do the calculus!)?

(b) What is the percent error between the analytical solution and the approx-
imation using 6 panels?

(c) What is the percent error between the analytical solution and the approx-
imation using 600 panels?

5. Write a script to approximate
∫ 1

0
ln(x)dx using trapezoidal panels.

Run your script using 6 and 600 panels.

(a) Did you get an error message — why?

This exercise set is also located on the class server as ES-2
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3.3 Numerical Integration of Tabular Data

This subsection is going to work with tabular data — different from function evalua-
tion, but similar. To be really useful, we need to learn how to read data from a file —
manually entering tabular data is really time consuming, error prone, and just plain
idiotic.

So in this subsection we will first learn how to read data from a file into a list, then
we can process the list as if it were a function and integrate its contents.

3.3.1 Reading from a file – open, read, close files

R can read from an ASCII file (or even an Excel .csv file) using a multitude of meth-
ods. Common methods are read.table(...), read.table(...), read.table(...),
read.table(...), and read.table(...).

One can also use primatives12 to read individual rows in a file and process them.13

First, lets create a file named MyFile.txt. The extension is important so that we can
examine the file with other tools (a text editor) and remember that it is an ASCII
file. The contents of MyFile.txt are:

1 , 1

2 , 4

3 , 9

4 , 16

5 , 25

To read the contents into an R script we have to do the following:

1. Open a connection to the file — this is a concept common to all languages, it
might be called something different, but the program needs to somehow know
the location and name of the file.

2. Read the contents into an object — we have a lot of control on how this gets
done, for the time being we won’t exercise much control yet. When you do
substantial programs, you will depend on the control of the reads (and writes).

3. Disconnect the file — this too is common to all languages. Its a really easy step
to forget. Not a big deal if the program ends as planned but terrible if there
is a error in the program and the connection is still open. Usually noting bad
happens, but with an open connection it is possible for the file to get damaged.
If that file represents millions of customers data, that’s kind of a problem.

12Jargon to describe lower level tools within R
13We will use this approach later in the book – the interactive prompt and reads in the prior

subsection are similar to this approach where input is read into a string, then the string is converted
into the appropriate type of object (numeric or text).
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The read.table class of functions handles all three of these steps for us, we do have
to provide the filename and some information about the file structure. Later when
we are doing network simulation and other hydraulic techniques, different parts of
an input file will be read line-by-line and processed — for this task we will need to
handle these three steps using primatives.

Figure 49 illustrates the process. The input file has 5 lines, these get read then echoed
(printed) back to us. The actual script is pretty simple, notice how the filepath

and filename character variables are defined, then pasted together to produce a full
absolute file name.14

Listing 12 is a listing of the script used in Figure 49. The analyst should be able
to deduce that the filenames could be read from user input using the prompting
technique used in the earlier subsections, so if one is going to process a lot of similar
files the explicit naming could be replaced with variable naming – it would probably
be a good idea to confine the files to a reasonably memorable path.

Listing 12. R code demonstrating Reading from a File.

# R script to illustrate reading from a file using read.table
# The script is intentionally complicated to illustrate the
# three steps: open connection , read into object , close connection
filepath <- "~/ Dropbox/1-CE-TTU -Classes/CE4333 -PCH -R/3-Readings/PCHinR -LectureNotes /3-

Differentation/RScripts"
filename <- "MyFile.txt"
fileToRead <- paste(filepath ,filename ,sep ="/") # build the user absolute filename
# Here we open the connection to the file (within read.table)
# Then the read.table attempts to read the entire file into an object named zz
# Upon either fail or success , read.table closes the connection
zz <- read.table(fileToRead ,header=FALSE ,sep=",") # comma seperated ASCII , No header
# Echo zz
print(zz)

Now that we can read a file, we are now able to integrate tabular data.

3.4 Integrating tabular data

Suppose instead of a function we only have tabulations and wish to estimate the
area under the curve represented by the tabular values. Then our integration rules
from the prior sections still work more or less, except the rectangular panels will have
to be shifted to either the left edge or right edge of a panel (where the tabulation
exists).

Lets just examine an example. Suppose some measurement technology produced
Table 1 a table of related values. The excitation variable is x and f(x) is the re-
sponse.

14A file name can specify all the directory names starting from the root of the tree; then it is
called an absolute file name. Or it can specify the position of the file in the tree relative to a
default directory; then it is called a relative file name. On the computer I used to write this
workbook, the symbol ˜ , is the root to my user account, then the remaining directories from that
location are explicitly listed. The actual absolute name is /Users/cleveland/Dropbox/1-CE-TTU-
Classes/CE4333-PCH-R/3-Readings/PCHinR-LectureNotes/3-Differentation/RScripts
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Figure 49. Rudimentary file reading.

Table 1. Tabular values of an excitation–response relationship.

x f(x)

1.0 1.543
1.1 1.668
1.2 1.811
1.3 1.971
1.4 2.151
1.5 2.352
1.6 2.577
1.7 2.828
1.8 3.107

To integrate this table using the trapezoidal method is straightforward. We will
modify our earlier code to read the table (which we put into a file), and compute the
integral.
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Figure 50 is a screen capture of a script that implements the file read and the numerical
integration. The conversion of the method from the functional form in the previous
section is pretty straightforward. The main nusiance here is the syntax required
to access the “x” values and the “y” values. In R the most generic approach is
object$name, where object is the data frame name, and name is the variable (column)
name. If you don’t use headers, R assigns names as V1,V2,...,Vmax.

Figure 50. Integrating tabular data..

Realistically the only other simple integration method for tabular data is the rectan-
gular rule, either using the left edge of a panel or the right edge of a panel (and you
could do both and average the result which would result in the same outcome as the
trapezoidal method). For the sake of completeness lets do both and then compare
the results from all four approaches (trapezoidal, rectangular-left, rectangular-right,
average rectangular).

First, Figure 51 implements the file read and tabular integration using the rectangular
panel method, evaluating the function at the left edge of each panel.
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Figure 51. Integrating tabular data. Rectangular panel, evaluate at left edge..

Next, Figure 52 implements the file read and tabular integration using the rectangular
panel method, evaluating the function at the left edge of each panel.

Now lets compare the results from using the three (four) approaches. Table 2 are the
results by method.

Table 2. Comparison of tabular integration.

Method Computed Area

Trapezoidal Panels 1.7683
Rectangular - Left Edge 1.6901
Rectangular - Right Edge 1.8465
Arithmetic Mean Rectangular 1.7683

What Table 2 illustrates is that the trapezoidal rule is simply the average of the
rectangular rule evaluated at first the left-edge then the right-edge of a panel.
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Figure 52. Integrating tabular data. Rectangular panel, evaluate at right edge..

3.5 Numerical Differentiation

Similar in context to numerical integration is approximation of derivatives. If the
functions are representable as functions, then differencing degenerates into the selec-
tion of an appropriate difference formula. If the function is tabular, the same decision
is presented, but we have to pay additional attention to the quantity of observations
available.

3.6 Difference Approximations for Tabulated Data

Here we will introduce differencing by an example. Suppose we want to convert a
cumulative data series into an incremental data series. It is operationally related to
numerical differentiation.
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As an example (leading to an algorithm) consider the cumulative rainfall time series
in Table 3.

We shall import this data into R, then plot the data, then construct a computational
procedure to extract the incremental values from the cumulative values. To load the
data into R we start the program and then read the contents of a data file that
contains the data into R, then we will introduce the plotting tools in R. In addition
to plotting, we will also learn about headers and attaching an object (which gives
access to header names rather than the object$name structure.

Table 3. Cumulative Rainfall Time Series.

hours cumulative rain
0.0 0.00
0.5 1.06
1.0 2.99
1.5 4.80
2.0 4.80
2.5 4.80
3.0 4.80
3.5 4.80
4.0 4.80
4.5 4.80
5.0 4.80
5.5 4.80

The plot suggests that the values are accumulated at the end of the time interval, thus
the value accumulated is some average “rate” multiplied by the time interval. The
line segment between each point is called a “secant” line. The slope of each secant
line, provides that average “rate”. So a fundamental computational step will be a
function that computes the slope given any two points (assumed to be adjacent —
so that’s why sorting can become important, although the program doesn’t actually
care).

3.6.1 Slope of a Secant Line

slopeOfSecant is a prototype function that we write to that computes the slope of the
secant line through two known points on a function f(x1) and f(x2). The function
could be tabular or evaluated. The script assumes tabular in that the function is
evaluates external to slopeOfSecant.

Listing 13. R code demonstrating the prototype function slopeOfSecant.

############## slope function prototype ####################
slopeOfSecant <-function(f1 ,f2,x1,x2){

slopeOfSecant <- (f2-f1)/(x2-x1);
return(slopeOfSecant)

}
#######################################################
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Figure 53. Plot of Cumulative Rainfall Time Series.

This slope is also a first order approximation of a derivative (forward, backward, and
centered differences depending on values supplied). This function can then be used
to compute “derivatives” of data series using a disaggregation function.

As an illustrative example, if we present parts of the cumulative rainfall data series
we can recover the average rate between the inputs. Figure 54 is a screen capture of
such a test.

3.6.2 Disaggregation

disaggregate is a prototype function that computes the slopes of the secant lines
joining adjacent pairs of input data. Depending on the way the input arrays are
presented to the disaggregate function, the function returns either the backward
difference approximation to the function’s derivative or if an index is presented in-
stead of actual t values, then the function returns the incremental values that when
aggregated reconstruct the original input function.

Listing 14. R code demonstrating the prototype function disaggregate().

######## disaggregate function prototype ###########
# returns a vector of slopes computed by sloepOfSecant
disaggregate <-function(f,x,dfdx){

n<-length(x) # length of vectors
dfdx <-rep(0,n); # zero dfdx
for (i in 2:n){dfdx[i]<-slopeOfSecant(f[i-1],f[i],x[i-1],x[i]);};
dfdx[1]<-0;
return(dfdx)}

############################################################
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Figure 54. Script with slopeOfSecant prototype inserted and validation that we recover rate and can
re-accumulate correctly.

3.6.3 Numerical Differentiation

A related concept is to determine the average rate for the time interval, the principal
difference is that the rate occurs during the entire time interval and should be assigned
to the beginning of the interval instead of the end of the interval. A subtle change in
the disaggregate function can accomplish the task, we will name that new function
brbt. The name is a nemonic for “backward-rate, backward-time” differencing.

Listing 15. R code demonstrating the prototype function brbt().

########### backward rate , backward time prototype ###########
brbt <-function(f,x,dfdx){

n<-length(x) # length of vectors
dfdx <-rep(0,n); # zero dfdx
for (i in 1:(n-1)){dfdx[i]<-slopeOfSecant(f[i],f[i+1],x[i],x[i+1]) ;};
dfdx[n]<-0;
return(dfdx)}

############################################################

Finally, putting everything together, we have the toolkit to determine the incremen-
tal rates (which is an approximation to the derivative of the cumulative rates) and
incremental depths which are these individual rates multiplied by the length of the
time interval. Figure 55 is a screen capture of the R script that implements these
functions on the tabular data.

Listing 16 is a listing of the R script that produced Figure 55. The intermediate steps
from Figure 54 is removed in this listing.
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Figure 55. Plot of Cumulative Rainfall Time Series (BLUE), Incremental Depth Time Series
(GREEN), and Average Rate Time Series (RED).

Listing 16. R code demonstrating Numerical Differencing.

# R script to illustrate numerical differencing
rm(list=ls()) # clear all objects
############ Prototype (forward define) Functions #########
############## slope function prototype ####################
slopeOfSecant <-function(f1 ,f2,x1,x2){

slopeOfSecant <- (f2-f1)/(x2-x1);
return(slopeOfSecant)}

######## disaggregate function prototype ###########
disaggregate <-function(f,x,dfdx){

n<-length(x) # length of vectors
dfdx <-rep(0,n); # zero dfdx
for (i in 2:n){dfdx[i]<-slopeOfSecant(f[i-1],f[i],x[i-1],x[i]);};
dfdx[1]<-0;
return(dfdx)}

########### backward rate , backward time prototype ###########
brbt <-function(f,x,dfdx){

n<-length(x) # length of vectors
dfdx <-rep(0,n); # zero dfdx
for (i in 1:(n-1)){dfdx[i]<-slopeOfSecant(f[i],f[i+1],x[i],x[i+1]) ;};
dfdx[n]<-0;
return(dfdx)}

##############################################################

################ Build the filename #########################
filepath <- "~/ Dropbox/1-CE-TTU -Classes/CE4333 -PCH -R/3-Readings/PCHinR -LectureNotes /3-

Differentation/RScripts"
filename <- "cumulative_rainfall.txt"
fileToRead <- paste(filepath ,filename ,sep ="/") # build the user absolute filename
# Here we open the connection to the file (within read.table)
# Then the read.table attempts to read the entire file into an object named zz
# Upon either fail or success , read.table closes the connection
zz <- read.table(fileToRead ,header=TRUE ,sep=",") # comma seperated ASCII , No header
attach(zz) # attach associates the column names with the data below them.
## summary(zz) # useful to be sure data were imported correctly
incremental_depth <- disaggregate(cumulative_rain ,hours ,dfdx)
incremental_rate <- brbt(cumulative_rain ,hours ,dfdx)
dt <- 0.5 # how long each interval , make adaptive as exercise
incremental_depth <- incremental_depth*dt
print(cbind(zz ,incremental_rate ,incremental_depth))
################ Build the Plot #####################################
plot(hours ,cumulative_rain ,xlab="Time(hours)",ylab=" Cumulative Depth
(inches)",type="l",lwd=5,col="Blue",tck=1)
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lines(hours ,incremental_depth*dt ,pch=16,col=" green",lwd=3)
lines(hours ,incremental_rate ,pch=16,col="red",lwd=2,type="s")
text (3,4.1," Cumulative Rain",col="blue")
text (3,3.1," Incremental Rain",col=" green")
text (3,2.1," Incremental Rate",col="red")
#####################################################################
detach(zz) #deallocate the zz object

3.6.4 Aggregation

Aggregation is the compliment of disaggregation; instead of finding differences we are
trying to produce cumulatives from incremental values or rates. Aggregation is to
integration as disaggregation is to differentiation. Simple aggregation functions are
straightforward to build. Numerical integration (already introduced) is a bit more
challenging because there are many different ways to compute areas from tabular data
– we will illustrated rectangular, trapezoidal, and parabolic panels.

We can insert a prototype aggregate function that simply adds elements in a series
to prior elements and stores the value in another series. Another name for this kind
of arithmetic is a running sum. Functionally, it is rectangular panel (evaluate from
the left), numerical integration.

Listing 17. R code demonstrating the prototype function aggregate().

########### aggregate function prototype ###########
aggregate <-function(vector1 ,vector2){
n<-length(vector1)
# fill vector2 with zeros
vector2 <-rep(0,n)
vector2[1]<- vector1 [1]+0.0
for(i in 2:n)vector2[i]<-vector2[i-1]+ vector1[i]
return(vector2)}
###############################################

We add this function to the prototype list ate the top of the script and can run To
illustrate the use of aggregate we will aggregate the incremental depths into the
cumulative rainfall – we should recover the original cumulative rainfall series that
was originally supplied.

3.7 Exercises

1. Add the aggregate prototype function to collection of prototype functions in
the script. The add some code like:

new_cum_rain<-aggregate(incremental_depth,dummy)

plot(hours,cumulative_rain,xlab="Time(hours)",ylab="Cumulative Depth

(inches)",type="l",lwd=5,col="Blue",tck=1)

lines(hours,new_cum_rain,col="red",lwd=1.5)

Demonstrate that the two series are identical (e.g. plotting on top of one an-
other).
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2. (Advanced) Modify the disaggregate() prototype function to automatically
determine the time spacing (x) and perform the correct multiplication within
the function to return the correct increments. You only have to add one line of
code to the prototype function at

for (i in 2:n){dfdx[i]<-slopeOfSecant(f[i-1],f[i],x[i-1],x[i]);

deltax <- # you need to define this in terms of x[i] and x[i-1]!

dfdx[i]<- deltax*dfdx[i];};

3.8 Finite-Difference Formulas

What we have just done is to explore the use of finite-difference approximations for
derivatives. Some common formulas for difference formulas are listed below (without
derivation – you should be able to find explanation in any numerical methods text).
All the difference equations presented here are the result of truncated Taylor series
expansions about x. The “order” refers to the magnitude of truncation error, and
this magnitude is proportional to the step size (∆x) raised to a power (the order).
Truncation error decreases as the step size is decreased, but one is approaching a
divide-by-zero situation (because numerical methods don’t do limits just yet!).

3.8.1 First Derivatives

Equation 8 is a first-order backwards difference.

df

dx
≈ f(x)− f(x−∆x)

∆x
(8)

Equation 9 is a first-order backwards difference.

df

dx
≈ f(x+ ∆x)− f(x)

∆x
(9)

Equation 10 is a second-order central difference.

df

dx
≈ f(x+ ∆x)− f(x−∆x)

2∆x
(10)

3.8.2 Second Derivatives

Equation 11 is a second-order central difference.

d2f

dx2
≈ f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2
(11)
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3.8.3 Third Derivatives

Equation 12 is a sixth-order central difference.

d3f

dx3
≈ f(x+ 2∆x)− 2f(x+ ∆x) + 2f(x−∆x) + f(x− 2∆x)

2∆x3
(12)

The procedure to generate such difference formulas is general and can supply esti-
mates with approximations of any degree. The accuracy depends on the location
and number of field variable values involved in the approximation. The selection of
a formula is not at all trivial (especially with tabulations), but beyond the scope of
this handbook.

Despite known complications, this is a general tool used in computational hydraulics
and we will use it throughout the remainder of the handbook – in some examples
it will not be obvious that it is finite differencing, and in others it will be explicitly
obvious. The next section introduces Newton’s method, and finite-differences will be
used to approximate the derivative (Quasi-Newton) to implement the method. The
procedure is really quite common and imbedded in a lot of the computational tools
we use professionnaly.
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3.9 Single Variable Quasi-Newton Methods

The application of fundamental principles of modeling and mechanics often leads to
an algebraic or transcendental equation that cannot be easily solved and represented
in a closed form. In these cases a numerical method is required to obtain an estimate
of the root or roots of the expression.

Newton’s method is an iterative technique that can produce good estimates of so-
lutions to such equations. The method is employed by rewriting the equation in
the form f(x) = 0, then successively manipulating guesses for x until the function
evaluates to a value close enough to zero for the modeler to accept.

Figure 56 is a graph of some function whose intercept with the x−axis is unknown.
The goal of Newton’s method is to find this intersection (root) from a realistic first
guess. Suppose the first guess is x1, shown on the figure as the right-most specific
value of x. The value of the function at this location is f(x1). Because x1 is supposed
to be a root the difference from the value zero represents an error in the estimate.
Newton’s method simply provides a recipe for corrections to this error.

Figure 56. Graph of Arbitrary Function..

Provided x1 is not near a minimum or maximum (slope of the function is not zero)
then a better estimate of the root can be obtained by extending a tangent line from
x1, f(x1) to the x-axis. The intersection of this line with the axis represents a better
estimate of the root.

This new estimate is x2. A formula for x2 can be derived from the geometry of
the triangle x2,f(x1),x1. Recall from calculus that the tangent to a function at a

Page 71 of 278



CE 4333 Practical Computational Hydraulics SUMMER 2017

particular point is the first derivative of the function. Therefore, from the geometry
of the triangle and the definition of tangent we can write,

tan(θ) =
df

dx

∣∣∣∣∣
x1

=
f(x1)

x1 − x2

(13)

Solving the equation for x2 results in a formula that expresses x2 in terms of the first
guess plus a correction term.

x2 = x1 −
f(x1)
df
dx
|x1

(14)

The second term on the right hand side is the correction term to the estimate on the
right hand side. Once x2 is calculated we can repeat the formula substituting x2 for
x1 and x3 for x2 in the formula. Repeated application usually leads to one of three
outcomes:

1. a root;

2. divergence to ±∞; or

3. cycling.

These three outcomes are discussed below in various subsections along with some
remedies.

The generalized formula is

xk+1 = xk −
f(xk)
df
dx
|xk

(15)

If the derivative is evaluated using analytical derivatives the method is called Newton’s
method, if approximations to the derivative are used, it is called a quasi-Newton
method.

3.9.1 Newton’s Method — Using analytical derivatives

This subsection presents an example in R of implementing Newton’s method with
analytical derivatives. The algorithm itself is:

1. Write the function in proper form, and code it into a computer.

2. Write the derivative in proper form and code it into a computer.

3. Make an initial guess of the solution (0 and 1 are always convenient guesses).

4. Evaluate the function, evaluate the derivative, calculate their ratio.

5. Subtract the ratio from the current guess and save the result as the update.
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6. Test for stopping:

(a) Did the update stay the same value? Yes, then stop, probably have a
solution.

(b) Is the function nearly zero? Yes, then stop we probably have a solution.

(c) Have we tried too many updates? Yes, then stop the process is probably
cycling, stop.

7. If stopping is indicated proceed to next step, otherwise proceed back to step 4.

8. Stopping indicated, report last update as the result (or report failure to find
solution), and related information about the status of the numerical method.

The following example illustrates these step as well as a R implementation of Newton’s
method.

Suppose we wish to find a root (value of x) that satisfies Equation 16.

f(x) = ex − 10cos(x)− 100 (16)

Then we will need to code it into a script. Here is a code fragment that will work:

Listing 18. R code fragment for the function calculation.

# Define Function Here
func <- function(x)
{

func <- exp(x) -10*cos(x) -100;
return(func);

}

The next step is to code the derivative. In this case, Equation 17 is the derivative of
Equation 16.

df

dx
|(x) = ex + 10 sin(x) (17)

A code fragment to compute the value of the derivative at any value of x that will
work is:

Listing 19. R code fragment for the derivative calculation.

# Define Derivative Here
dfdx <- function(x)
{

dfdx <- exp(x) + 10*sin(x);
return(dfdx);

}

Next we will need script to read in an initial guess, and ask us how many trials we
will use to try to find a solution, as well as how close to zero we should be before we
declare victory.
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Listing 20. R code fragment for reading input data from the programmer.

# Read some values from the console
message(’Enter an initial guess for X for Newton method : ’)
xnow <- as.numeric(readline ())
message(’Enter iteration maximum : ’)
HowMany <- as.numeric(readline ())
message(’Enter a tolerance value for stopping (e.g. 1e-06) : ’)
HowSmall <- as.numeric(readline ())
## There are several other ways to make these reads! The scan() function would probably

also work.

The use of HowSmall; is called a zero tolerance. We will use the same numerical value
for two tolerance tests. Also notice how we are using error traps to force numeric
input. Probably overkill for this example, but we already wrote the code in an earlier
chapter, so might as well use the code. Professional codes do a lot of error checking
before launching into the actual processing — especially of the processing part is
time consuming, its worth the time to check for obvious errors before running far
a few hours then at some point failing because of an input value error that was
predictable.

Now back to the tolerance tests. The first test is to determine if the update has
changed or not. If it has not, we may not have a correct answer, but there is no point
continuing because the update is unlikely to move further. The test is something
like

IF |xk+1 − xk| < Tol. THEN Exit and Report Results

The second test is if the function value is close to zero. The structure of the test is
similar, just an different argument. The second test is something like

IF |f(xk+1)| < Tol. THEN Exit and Report Results

One can see from the nature of the two tests that a programmer might want to make
the tolerance values different. This modification is left as a reader exercise.

Checking for maximum iterations is relatively easy, we just include code that checks
for normal exit the loop.15

Now we simply connect the three fragments, and we have a working R script that
implements Newton’s method for Equation 16. Listing 21 is the entire code module
that implements the method, makes the various tests, and reports results. Figure 57
is a screen capture of the program run in R.

The example is specific to the particular function provided, but the programmer could
move the two functions func and dfdx into a user specified module, and then load
that module in the program to make it even more generic. The next section will use
such an approach to illustrate the ability to build a generalized Newton method and
only have to program the function itself.

15Rather than breaking from the loop.
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Listing 21. R code demonstrating Newton’s Method calculations.

# Newtons Method in R
# Define Function Here
func <- function(x)
{

func <- exp(x) -10*cos(x) -100;
return(func);

}
# Define Derivative Here
dfdx <- function(x)
{

dfdx <- exp(x) + 10*sin(x);
return(dfdx);

}
# Newton ’s Method Here
# Read some values from the console
message(’Enter an initial guess for X for Newton method : ’)
xnow <- as.numeric(readline ())
message(’Enter iteration maximum : ’)
HowMany <- as.numeric(readline ())
message(’Enter a tolerance value for stopping (e.g. 1e-06) : ’)
HowSmall <- as.numeric(readline ())
# Now start the iterations
for (i in 1: HowMany) {

xnew <- xnow - func(xnow)/dfdx(xnow)
# test for stopping

if (abs(xnew -xnow) < HowSmall){
message(’Update not changing ’)
xnow <- xnew
print(cbind(xnow ,xnew ,func(xnew)))
break

}
if (abs(func(xnew) < HowSmall)) {

message(’Function value close to zero ’)
xnow <- xnew
print(cbind(xnow ,xnew ,func(xnew)))
break

}
# next iteration
xnow <- xnew
}
if (i >= HowMany){

message(’Iteration limit reached ’)
print(cbind(xnow ,xnew ,func(xnew)))

}

3.9.2 Newton’s Method — Using Finite-Differences to estimate deriva-
tives

A practical difficulty in using Newton’s method is determining the value of the deriva-
tive in cases where differentiation is difficult. In these cases we can replace the deriva-
tive by a difference equation and then proceed as in Newton’s method.

Recall from calculus that the derivative was defined as the limit of the difference
quotient:

df

dx
|x = lim

∆x→0

f(x+ ∆x)− f(x)

∆x
(18)

A good approximation to the derivative should be possible by using this formula with
a small, but non-zero value for ∆x.

df

dx
|x ≈

f(x+ ∆x)− f(x)

∆x
(19)

When one replaces the derivative with the difference formula the root finding method
the resulting update formula is
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Figure 57. Several runs of the program using the analytical derivative to illustrate different kinds of
responses..

xk+1 = xk −
f(xk)∆x

f(xk + ∆x)− f(xk)
(20)

This root-finding method is called a quasi-Newton method.

Listing 22 is the code fragment that we change by commenting out the analytical
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derivative and replacing it with a first-order finite difference approximation of the
derivative. The numerical value 1e− 06 is called the step size (∆x) and should be an
input value (rather than built-in to the code as shown here) like the tolerance test
values, and be passed to the function as another argument.

Listing 22. R code demonstrating Newton’s Method calculations.

# Define Derivative Here
dfdx <- function(x)
{
# dfdx <- exp(x) + 10*sin(x);

dfdx <- (func(x + 1e-06) - func(x) )/ (1e-06);
# func must already exist before first call!

return(dfdx);
}

Starting with the last example lets modify the analytical version of the code by
inserting the above fragment in place of the analytical derivative. Listing 23 is the
listing with the modification in place. Notice we have only changed a single line, and
not have a more flexible tool. The next modification (left as an exercise) is to detach
the creation of the function from the main algorithm, then we would have a general
purpose Quasi-Newton’s method.

Listing 23. R code demonstrating Newton’s Method calculations using finite-difference approxima-
tion for the derivative.

# Newtons Method in R
# Define Function Here
func <- function(x)
{

func <- exp(x) -10*cos(x) -100;
return(func);

}
# Define Derivative Here
dfdx <- function(x)
{
# dfdx <- exp(x) + 10*sin(x);

dfdx <- (func(x + 1.0e-06) - func(x))/(1.0e-06)
return(dfdx);

}
# Newton ’s Method Here
# Read some values from the console
message(’Enter an initial guess for X for Newton method : ’)
xnow <- as.numeric(readline ())
message(’Enter iteration maximum : ’)
HowMany <- as.numeric(readline ())
message(’Enter a tolerance value for stopping (e.g. 1e-06) : ’)
HowSmall <- as.numeric(readline ())
# Now start the iterations
for (i in 1: HowMany) {

xnew <- xnow - func(xnow)/dfdx(xnow)
# test for stopping

if (abs(xnew -xnow) < HowSmall){
message(’Update not changing ’)
xnow <- xnew
print(cbind(xnow ,xnew ,func(xnew)))
break

}
if (abs(func(xnew) < HowSmall)) {

message(’Function value close to zero ’)
xnow <- xnew
print(cbind(xnow ,xnew ,func(xnew)))
break

}
# next iteration
xnow <- xnew
}
if (i >= HowMany){

message(’Iteration limit reached ’)
print(cbind(xnow ,xnew ,func(xnew)))

}

Listing 23 is the main code. Notice how the function definitions are changed, in
particular dfdx.
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Figure 58 is a screen capture of the program run after the code modification above.

Figure 58. Program run after changing from analytical to finite-difference approximation for the
derivative..

The advantage of the approximate derivative is that we don’t have to do the calculus
— just code in the function.

The obvious advantage of modular coding is to protect the parts of the code that
are static, and just modify the function definitions. We can keep a working example
around in case we break something and use that to find what we broke.

3.9.3 Method Fails

The three subsections below describe the ways that the method routinely fails, along
with some suggestions for remedy. Generally we should plot the function before trying
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to find a root, but sometimes the root finding is a component of a more complex
program and we just want it to work. In that situation, the programmer would build
in many more tests that the three above to try to force a result before giving up.

3.9.4 Multiple Roots

Figure 59 illustrates the behavior in the presence of multiple roots. When there are
multiple roots the method will converge on the root that that is defined by the initial
guess.16 The initial estimate must be close enough to the desired root to converge
to the root.17 Another challenge is what happens if the initial guess is at the divide

Figure 59. Multiple roots..

(the peak of the function in Figure 59); in such cases we may actually get a divergent
solution because the slope of the function at that peak is nearly zero.

3.9.5 Cycling

Cycling can occur when the root is close to an inflection point of the function. Usual
practice is to again limit the step size to prevent such behavior. Figure 60 is an
illustration of cycling. A good remedy for cycling is to first detect the cycling, then
provide a small “shove” to the guess. Examination of root finding codes often reveals
a pseudo-random number generator within the code that will provide this shove when
cycling is detected.

16This behavior is called “sensitive dependence on initial conditions”.
17Ironically, we need a good idea of the answer before we start the method.
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Figure 60. Estimates cycling around a root..

3.9.6 Near-zero derivatives

The derivative in Equation 66 must not be zero, otherwise the guess corresponds to
a maximum or minimum of the function and the tangent line will never intersect the
x-axis. The derivative must not be too close to zero, otherwise the slope will be so
small as to make the correction too large to produce a meaningful update. Usual
practice is to limit the size of the correction term to some maximum and to use this
maximum value whenever the formula prescribes a larger step. Divergence to ±∞ is
usually explained by near-zero derivatives at the sign change. The bi-section method
is a little more robust in this respect.

3.10 Related Concepts

A couple of other root finding methods are worth mentioning because they can some-
times serve as a fallback when Newton’s method fails. Two robust methods are
bisection and false-positioning. These are discussed in the suggested reading list in
Chapra’s textbook.
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3.11 Exercise Set 3

1. Build a Newton’s Method program (or use mine) and make the program request
a tolerance value for “how close to zero” is the function, and “how small is the
change in update values.” Build your code using the modular approach (two
files). Test your code using the same example in the notes.

2. Now modify the main and the function module to use approximate derivatives
(the finite-difference formulation) and require the user supply a step size. Test
the code using the same example in the notes.

For each of the exercises above, prepare documentation similar to the notes
where you describe the salient points of your program.

3. Now use your program to find roots for the following equations:

(a) exp(x)− 3x2 = 0

(b) ln(x)− x+ 2 = 0

(c) tan(x)− x− 1 = 0

For these three equations, document your search for roots. Identify if there
are bad initial guesses that cause the program to fail to find a root. Also the
equations may have multiple roots. If you discover multiple roots, identify the
starting values one needs to use to converge to a particular root.

These exercises are also located on the class server in ES-3.
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4 Tank Drain Simulation using Finite-Differences

This section examines how to simulate the time to drain a tank. This particular
example is a common exercise in fluid mechanics and hydraulic engineering courses to
motivate the concept of control volumes and the conservation of mass. The equations
of motion are usually given (as they are here) based on an assumption of negligible
energy loss as the tank drains18.

The purpose is to gain some practice with numerical modeling techniques before
trying more complex methods in hydraulics.

4.1 Problem Description

Consider the tank depicted in Figure 61. The water depth in the tank at any instant
is z(t). The tank cross-section area is Atank and the outlet cross section area is Aout.
The product of Atank and z(t) is the volume in storage in the tank at some instant,
and the outflow from the tank is Q(t).

As a first model consider the computation of

1. Time to drain the tank from a known initial depth.

2. Storage in the tank at some given time.

3. Depth in tank at some given time.

4. Discharge rate at some instant in time.

5. How long to drain the tank to 1
2

or 1
4

full.

All these questions are reasonable kinds of questions that could arise in some engi-
neering design situation or (more likely) in an operations scenario. In this example
the tank has constant cross section, but it is not a far stretch to imagine that the
tank could represent a reservoir of variable geometry. A practical reason to ask such
questions arises in storm-water detention pond design (as well as reactor design in
wastewater when dynamic flows are considered) — the time to drain impacts the re-
maining capacity in a detention pond, the remaining capacity is what provides some
measure of control for back-to-back storms. If the tank drains too slowly, there will
not be enough reserve for a back-to-back storm, whereas if the tank drains too fast
it is hydraulically irrelevant.

While this problem seems detached from an open channel flow course, it [the problem]
is not. Each node in the open channel equations where flow depth is computed is
essentially such a tank. The tank area is not constant (instead the area is related to
depth and reach distance), but like this tank the inflows and outflows are, in-part,
governed by the depth already in the tank.

18Bernoulli’s equation.
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Figure 61. Storage tank with drain on bottom..

4.2 Computational Approach

This example will be handled first analytically (because it is simple to do so), then
by a simple finite-difference scheme implemented in R

4.3 Problem Analysis — Development of the Analytical So-
lution

To write an equation or set of equations for this problem, the relationship of tank
depth, areas, and discharges must be specified.

If we write Bernoulli’s equation along a streamline in the tank from the free surface
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to the outlet we would arrive at something like

pfs
γ

+
V 2
fs

2g
+ zfs =

pout
γ

+
V 2
out

2g
+ zout (21)

If we invoke the following reasonable assumptions:

1. pfs = 0 Free surface at zero gage pressure.

2. pout = 0 Pressure in jet is ≈ 0.

3. Vfs << Vout Free surface velocity is small relative to the outlet velocity.

4. zout = 0 the outlet is the datum.

The resulting relationship between depth, and discharge is

Q(t) = Aout ×
√

2gz(t) (22)

Now we have an equation of motion. A mass balance in the tank requires that the
storage decrease as the tank drains. Thus relating the change in tank depth and
discharge produces the ordinary differential equation (ODE) that governs (at least in
our model world) the tank.

Aout ×
√

2gz(t) = −Atank ×
dz

dt
(23)

If one collects the constants −Aout

Atank

√
2g = α the ODE is a little simpler to exam-

ine19

α[z(t)]
1
2 =

dz

dt
(24)

Equation 24 can be separated and integrated

∫ T

0

α dt =

∫ 0

z(0)

dz

[z(t)]
1
2

(25)

The solution is

z(t) = (z(0)
1
2 − α

2
t)2 (26)

19The constants can be collected in this case because the geometry stays constant in the tank —
changing geometries would have areas as functions of depth and could not be collected in this
fashion.

Page 84 of 278



CE 4333 Practical Computational Hydraulics SUMMER 2017

4.3.1 Application of Analytical Solution in R

This section presents the analytical solution coded in Excel, R, and FORTRAN.

Analytical solutions are usually straightforward to represent in environments like R.
In this example, a single line of code builds the relationship and a couple more lines
for a plot.

> depth<-function(alpha,time,initialDepth){(sqrt(initialDepth)-0.5*alpha*time)^2}

> tt<-seq(1,1000)

> plot(tt,depth(alpha,tt,5),xlab="Time (minutes)",ylab="Depth (meters)")

The actual “plot” is left as an exercise.

4.4 Problem Analysis — Development of the Finite-Difference
Approximation

The finite difference approximation follows the same principles up to Equation 24 then
approximates the derivative term by its difference quotient for small time steps20

α[z(t)]
1
2 ≈ ∆z

∆t
(27)

Notice some features of 27. First the equal sign is changed to “approximately” equal;
second the derivative is changed to a related rate. The remainder of the “equation”
is unchanged. The trick here is to understand how to interpret the equation.

The approximation states that the rate of change of depth with time is
approximately equal to the product of the geometric and gravitational
constant and the square root of the current depth.

Using this approximation, and knowing the depth in the tank to start produces an
algorithm to explore the tank behavior. First expand the difference equation.

α[z(t)]
1
2 =

z(t+ ∆t)− z(t)

∆t
(28)

Then rearrange to isolate values at time t+ ∆t,

z(t+ ∆t) = z(t) + ∆tα[z(t)]
1
2 (29)

All the terms on the right hand side are known and the equation21 tells the modeler

20Recall the fundamental theorem of calculus where the difference quotient is taken to the limit and
this limit is called the derivative — here we don’t go to the limit, instead using small but finite
steps.

21Now known as an update equation
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how to approximate depth at a future time. Because the analysis assumed the differ-
ence quotient is close to the derivative, the time steps need to be kept pretty small
(in fact in many problems the time step is constrained by the physics for stability
and by the computation regime for precision).

The particular update here is an implementation of Euler’s method22. There are
other methods — the reader should observe that the time difference scheme could be
backwards so that the discharge could be at an unknown time, or a weighted average
of the two times, or a variety of other ways to approximate the derivative.

4.5 Application of the Finite-Difference Approximation in
R

This section presents the same set of “solutions” using the finite-difference model. In
these cases the underlying algorithm is that expressed by Equation 29.

To model the tank using R the modeler needs to write the necessary equation struc-
ture in the proper order. Listing 24 is a crude implementation — note how the update
quotient is actually built with a test for near zero values to prevent attempted square
root of a negative number. Also note how there is some flexibility to change the time
step.

Listing 24. R code demonstrating time to drain calculations.

> # Time to Drain Model
> AreaTank <-987
> AreaPipe <-1
> alpha <-sqrt (2*9.8)*AreaPipe/AreaTank
> z<-numeric (0) # define the depth array
> z[1]<-5.0 # initial depth
> dt <-5.0 # time step size
> # program the update difference quotient
> dzdt <-function(alpha ,depth){if(depth >= 0.001) alpha*sqrt(depth) else 0}
> # update many times
> for (i in 1:500){z[i+1]=z[i]-dt*dzdt(alpha ,z[i])}
> length(z) # get length for plotting
[1] 501
> time <-seq (0 ,500)*dt
> plot(time ,z,xlab="Time (minutes)",ylab=" Depth (meters)")

The result of the plot call is displayed in Figure 62

The plot displays a lot of zero values, the student should explore tricks to plot only
the interesting portion of the behavior. The student should also explore how to plot
both the analytical and numerical solution on the same graph.

What this section presented is actually quite simple. The engineer in any case will
have to conceptualize the physical system into a structure amenable to mathematical
representation. The tools are the conservation of mass, momentum, and energy. Then
relationships between components must be established — generally time, lengths, and
forces are somehow related. These relationships, whether empirical or fundamental
constitute the basis to build a model to reality.

22One of many methods to approximate solutions to ordinary differential equations
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Figure 62. Plot of relationship of elapsed time and depth of water in tank..
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Next the modeler has to convert these relationships into a structure that can be solved
using the tools at hand: in this case R. Finally the application is built and used for
the problem of interest. While intellectually desirable to have a fairly general tool,
the engineer should never be afraid to use a purpose built tool if a general tool is
unavailable. Be sure to test the tool and know its limitations.

In the example a simple hydraulics computation was presented to motivate these mod-
eling steps. Solutions were constructed in the R programming environments.

4.6 Exercise Set 4

1. Adapt the R script and build a simulator that approximates the depth of water
in a cylindrical drum lying on its side as a function of time. Figure 63 is a sketch
of the drum of interest. Also desired is the volume in storage in the drum as a
function of time.

Figure 63. Sketch of drum dimensions.

The drum is drained by a 2-inch diameter short pipe at the bottom of the drum.
The velocity of water in the pipe is Ve =

√
2 g h where g is gravitational

acceleration and h is water depth in the tank above the outlet. The drum is
4-feet long and 2-feet in diameter. Simulate the time to drain from 1

2
full to

empty, then generalize to any starting depth (up to the tank diameter).

Produce a time versus depth and time versus storage plot for the drum using
R.

Document your work in a short modeling report that includes conceptualization,
problem analysis (development of requisite equations), coding, any testing, and
finally the application of the model.

2. Adapt the R script and build a simulator for a trough of arbitrary dimensions
as shown in Figure 64.
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Figure 64. Sketch of trough dimensions.

The angle with the vertical of the sloping sides is α, and the distance between
the parallel ends is B. The width of the trough is W0 + 2h tan α, where h is
the distance from the trough bottom. The velocity of water issuing from the
opening in the bottom of the trough is equal to Ve =

√
2 g h. The area of the

water stream at the bottom of the trough is Ae.

Produce a drainage curve (time versus depth) for the case where h0 = 5m,
W0 = 1m, α = 30o, B = 10m, and Ae = 1m2.

Document your work in a short modeling report that includes conceptualization,
problem analysis (development of requisite equations), coding, any testing, and
finally the application of the model.

These exercises are also located on the class server as ES-4.
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5 Simultaneous Linear Systems of Equations

Many engineering simulations require the solution of simultaneous algebraic equa-
tions. These algebraic equation systems are either linear or non-linear in the unknown
variables. Many computation schemes have been developed to solve the resulting
systems, mostly depending on the structure of the systems (and the corresponding
coefficient matrices).

The solution of linear (or non-linear for that matter) can be accomplished using either
direct methods or iterative (successive approximation) methods. The method choice
depends on:

1. The amount of computation required (size of the problem) and computer mem-
ory available.23

2. The accuracy of the solution required.

3. The ability to control accuracy (i.e. find accurate enough solutions) to improve
overall computation speed and throughput.

Direct solution methods lead to results by means of finite and predictable opera-
tions count, but at the expense of error amplification and difficulty to deal with
near-singular systems. Iterative methods can converge to exact solutions, are robust
in near-singular cases, but at the expense of a non-predictable number of opera-
tions.

In this chapter we will see how to solve systems using built-in method(s) in R and
will also see the simplest of the iterative methods, Jacobi iteration. Jacobi iteration is
presented for several reasons: it is simple to program, it shows the beauty of iteration
when it works, and introduces a concept called pre-conditioning. For problems in
this workbook, the built in solve(...) is recomended; we will use Jacobi iteration
later on the the aquifer flow models, because the model equation structure is quite
amenable to this kind of solution method.

For really large systems of equations iterative methods probably dominate because
they are quite amenable to out-of-core solution — Jacobi iteration is ideal for parallel
processing in a GPU24

23In the past, the memory was indeed an issue – its less so today; a really big problem of thousands
of equations and thousands of variables might indeed be too big for any single computer array
and would require out-of-core solver techniques, which I suspect are a slowly dying art.

24Graphics Processing Unit — Nearly all our laptops have GPU; either an Intel, NVIDIA, or AMD.
These are intended for rendering graphics, but can be directly accessed with the proper software
tools and can perform floating point operations really quickly. For example on my laptop I have
an NVIDIA GeForce GT750M which I can program using a CUDA toolkit. If I had a really large
system to solve, I would try Jacobi iteration, make each equation a thread, the solution guess
a thread, and the update a thread. Its relatively easy to multiply, add, and divide threads, so
one could compute the update directly from parallel thread multiplication using the guess, then
thread addition to update the guess, and repeat. GPU programming is beyond this handbook, but
remember that one can trade efficiency for speed if the operations are simple vector arithmetic.
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5.1 Numerical Linear Algebra – Matrix Manipulation

This section introduces use of matrices in R to learn how to address particular ele-
ments of a matrix – once that is understood, the remaining arithmetic is reasonably
straightforward.

5.2 The Matrix — A data structure

Listing 25 is script fragment that reads in two different matrices A and B, and writes
them back to the screen. While such an action alone is sort of meaningless, the code
does illustrate how to read the two different files, and write back the result in a row
wise fashion.

The two matrices are

A =


12 7 3

4 5 6

7 8 9

 (30)

and

B =


5 8 1 2

6 7 3 0

4 5 9 1

 (31)

Now that we have a way (albeit pretty arcane) for getting matrices into our pro-
gram from a file25 we can explore some elementary matrix arithmetic operations, and
then will later move on to some more sophisticated operations, ultimately culminat-
ing in solutions to systems if linear equations (and non-linear systems in the next
chapter).

25The read from a file is a huge necessity — manually entering values will get old fast. I have
written matrix generators whose purpose in life is to construct matrices and put them into files
for subsequent processing — often these programs are pretty simple because of structure in a
problem, at other times they rival the solution tool in complexity; once for a Linear Programming
model (circa 1980’s) I developed a code to write a 1200 X 1200 matrix to a file, which would be
functionally impossible to enter by hand.
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Listing 25. R code demonstrating reading in two matrices.

# R script for some matrix operations
############## READ IN DATA FROM A FILE ####################
filepath <- "~/ Dropbox/1-CE-TTU -Classes/CE4333 -PCH -R/3-Readings/PCHinR -LectureNotes /5-

LinearSystems/RScripts"
filename <- "MatrixA.txt"
fileToRead <- paste(filepath ,filename ,sep ="/") # build the user absolute filename
# Read the first file
yy <- read.table(fileToRead ,header=FALSE ,sep=",") # comma seperated ASCII , No header
filename <- "MatrixB.txt" # change the filename
fileToRead <- paste(filepath ,filename ,sep ="/") # build the user absolute filename
# Read the second file
zz <- read.table(fileToRead ,header=FALSE ,sep=",") # comma seperated ASCII , No header
############## Get Row and Column Counts ###################
HowManyColumnsA <- length(yy)
HowManyRowsA <- length(yy$V1)
HowManyColumnsB <- length(zz)
HowManyRowsB <- length(zz$V1)
############### Build A and B Matrices ####################
Amat <- matrix(0,nrow = HowManyRowsA , ncol = HowManyColumnsA)
Bmat <- matrix(0,nrow = HowManyRowsB , ncol = HowManyColumnsB)
for (i in 1: HowManyRowsA){

for(j in 1:( HowManyColumnsA)){
Amat[i,j] <- yy[i,j]

}
}
rm(yy) # deallocate zz and just work with matrix and vectors
for (i in 1: HowManyRowsB){

for(j in 1:( HowManyColumnsB)){
Bmat[i,j] <- zz[i,j]

}
}
rm(zz) # deallocate zz and just work with matrix and vectors
############# Echo Input ###################################
print(Amat)
print(Bmat)

5.3 Matrix Arithmetic

Analysis of many problems in engineering result in systems of simultaneous equations.
We typically represent systems of equations with a matrix. For example the two-
equation system,

2x1 + 3x2

4x1 − 3x2

= 8

= − 2
(32)

Could be represented by set of vectors and matrices26

A =

2 3

4 −3

 x =

x1

x2

 b =

 8

−2

 (33)

and the linear system then written as

A · x = b (34)

26Usually called “vector-matrix” form. Additionally, a vector is really just a matrix with column
rank = 1 (a single column matrix).
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So the “algebra” is considerably simplified, at least for writing things, however we now
have to be able to do things like multiplication (indicated by ·) as well as the concept
of addition and subtraction, and division (multiplication by an inverse). There are
also several kinds of matrix multiplication – the inner product as required by the
linear system, the vector (cross product), the exterior (wedge), and outer (tensor)
product are a few of importance in both mathematics and engineering.

The remainder of this section will examine the more common matrix operations.

5.3.1 Matrix Definition

A matrix is a rectangular array of numbers. 1 5 7 2
2 9 17 5
11 15 8 3

 (35)

The size of a matrix is referred to in terms of the number of rows and the number of
columns. The enclosing parenthesis are optional above, but become meaningful when
writing multiple matrices next to each other. The above matrix is 3 by 4.

When we are discussing matrices we will often refer to specific numbers in the matrix.
To refer to a specific element of a matrix we refer to the row number (i) and the column
number (j). We will often call a specific element of the matrix, the ai,j -th element
of the matrix. For example a2,3 element in the above matrix is 17. In R we would
refer to the element as a matrix[i][j] or whatever the name of the matrix is in the
program.

5.3.2 Multiply a matrix by a scalar

A scalar multiple of a matrix is simply each element of the matrix multiplied by the
scalar value. Consider the matrix A below.

A =

12 7 3
4 5 6
7 8 9

 (36)

If the scalar is say 2, then 2×A is computed by doubling each element of A, as

2A =

24 14 6
8 10 12
17 16 18

 (37)

In R we can simply perform the arithmetic as
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Listing 26. R code demonstrating scalar multiplication.

#######################
twoA <- 2 * Amat
print(twoA)

Figure 65 is an example using the earlier A matrix and multiplying it by the scalar
value of 2.0.

Figure 65. Multiply each element in amatrix by a scalar .
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5.3.3 Matrix addition (and subtraction)

Matrix addition and subtraction are also element-by-element operations. In order to
add or subtract two matrices they must be the same size and shape. This require-
ment means that they must have the same number of rows and columns. To add or
subtract a matrix we simply add or subtract the corresponding elements from each
matrix.

For example consider the two matrices A and 2A below

A =

12 7 3
4 5 6
7 8 9

 2A =

24 14 6
8 10 12
17 16 18

 (38)

For example the sum of these two matrices is the matrix named 3A, shown be-
low:

A + 2A =

12 + 24 7 + 14 3 + 6
4 + 8 5 + 10 6 + 12
7 + 14 8 + 16 9 + 18

 =

36 21 9
12 15 18
21 24 27

 (39)

Now to do the operation in R, we need to read in the matrices, perform the addition,
and write the result. In the code example in 66 I added a third matrix to store the
result – generally we don’t want to clobber existing matrices, so we will use the result
instead.

Subtraction is performed in a similar fashion, except the subtraction operator is
used.
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Figure 66. Add each element in A to each element in twoA, store the result in threeA..
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5.3.4 Multiply a matrix

One kind of matrix multiplication is an inner product. Usually when matrix multi-
plication is mentioned without further qualification ,the implied meaning is an inner
product of the matrix and a vector (or another matrix).

Matrix multiplication is more complex than addition and subtraction. If two matrices
such as a matrix A (size l x m) and a matrix B ( size m x n) are multiplied together,
the resulting matrix C has a size of l x n. The order of multiplication of matrices is
extremely important27.

To obtain C = A B, the number of columns in A must be the same as the number of
rows in B. In order to carry out the matrix operations for multiplication of matrices,
the i, j-th element of C is simply equal to the scalar (dot or inner) product of row i
of A and column j of B.

Consider the example below

A =

(
1 5 7
2 9 3

)
B =

 3 −2
−2 1
1 1

 (40)

First, we would evaluate if the operation is even possible, A has two rows and three
columns. B has three rows and two columns. By our implied multiplication “rules”
for the multiplication to be defined the first matrix must have the same number of
rows as the second matrix has columns (in this case it does), and the result matrix will
have the same number of rows as the first matrix, and the same number of columns
as the second matrix (in this case the result will be a 2X2 matrix).

C = AB =

(
c1,1 c1,2

c2,1 c2,2

)
(41)

And each element of C is the dot product of the row vector of A and the column
vector of B.

27Matrix multiplication is not transitive; A B 6= B A.
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c1,1 =
(
1 5 7

)
·

 3
−2
1

 =
(
(1)(3) + (5)(−2) + (7)(1)

)
= 0 (42)

c1,2 =
(
1 5 7

)
·

−2
1
1

 =
(
(1)(−2) + (5)(1) + (7)(1)

)
= 10 (43)

c2,1 =
(
2 9 3

)
·

 3
−2
1

 =
(
(2)(3) + (9)(−2) + (3)(1)

)
= −9 (44)

c2,2 =
(
2 9 3

)
·

−2
1
1

 =
(
(2)(−2) + (9)(1) + (3)(1)

)
= 8 (45)

Making the substitutions results in :

C = AB =

(
0 10
−9 8

)
(46)

So in an algorithmic sense we will have to deal with three matrices, the two source
matrices and the destination matrix. We will also have to manage element-by-element
multiplication and be able to correctly store through rows and columns. In R this
manipulation is handled for us by the matrix multiply operator % * %.

Figure 67 is a script that multiplies the two matrices above and prints the re-
sult.28

5.3.5 Identity matrix

In computational linear algebra we often need to make use of a special matrix called
the “Identity Matrix”. The Identity Matrix is a square matrix with all zeros except
the i, i0-th element (diagonal) which is equal to 1:

28Internal to R the actual code for the multiplication is three nested for-loops. The outer loop
counts based rows of the first matrix, the middle loop counts based on columns of the second
matrix, and the inner most loop counts based on columns of the first matrix ( or rows of the
second matrix). In many practical cases we may actually have to manipulate at the element level
— similar to how the zz object was put into a matrix explicitly above.
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Figure 67. Matrix multiplication example.

I3×3 =

1 0 0
0 1 0
0 0 1

 (47)

Usually we don’t bother with the size subscript i used above and just stipulate that
the matrix is sized as appropriate. Multiplying any matrix by (a correctly sized)
identity matrix results in no change in the matrix. IA = A
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In R the identity matrix is easily created using <matrix name> <- diag(dimension).

5.3.6 Matrix Inverse

In many practical computational and theoretical operations we employ the concept
of the inverse of a matrix. The inverse is somewhat analogous to“dividing” by the
matrix. Consider our linear system

A · x = b (48)

If we wished to solve for x we would “divide” both sides of the equation by A. Instead
of division (which is essentially left undefined for matrices) we instead multiply by
the inverse of the matrix29. The inverse of a matrix A is denoted by A−1 and by
definition is a matrix such that when A−1 and A are multiplied together, the identity
matrix I results. e.g. A−1A = I

Lets consider the matrixes below

A =

(
2 3
4 −3

)
(49)

A−1 =

1
6

1
6

2
9
−1

9

 (50)

We can check that the matrices are indeed inverses of each other using R and matrix
multiplication — it should return an identity matrix.

Figure 68 is our multiplication script modified where A = A and B = A−1 per-
form the multiplication and then report the result. The result is the identity matrix
regardless of the order of operation.30

Now that we have some background on what an inverse is, it would be nice to know
how to find them — that is a remarkably challenging problem. Here we examine a
classical algorithm for finding an inverse if we really need to — computationally we
only invert if necessary, there are other ways to “divide” that are faster.

5.3.7 Gauss-Jordan method of finding A−1

There are a number of methods that can be used to find the inverse of a matrix using
elementary row operations. An elementary row operation is any one of the three
operations listed below:

29The matrix inverse is the multiplicative inverse of the matrix – we are defining the equivalent of a
division operation, just calling it something else. This issue will be huge later on in our workbook,
especially when we are dealing with non-linear systems

30Why do you think this is so, when above we stated that multiplication is intransitive?
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Figure 68. Matrix multiplication used to check an inverse..

1. Multiply or divide an entire row by a constant.

2. Add or subtract a multiple of one row to/from another.

3. Exchange the position of any 2 rows.

The Gauss-Jordan method of inverting a matrix can be divided into 4 main steps.
In order to find the inverse we will be working with the original matrix, augmented
with the identity matrix – this new matrix is called the augmented matrix (because
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no-one has tried to think of a cooler name yet).

A|I =

(
2 3 | 1 0
4 −3 | 0 1

)
(51)

We will perform elementary row operations based on the left matrix to convert it to
an identity matrix – we perform the same operations on the right matrix and the
result when we are done is the inverse of the original matrix.

So here goes – in the theory here, we also get to do infinite-precision arithmetic, no
rounding/truncation errors.

1. Divide row one by the a1,1 value to force a 1 in the a1,1 position. This is
elementary row operation 1 in our list above.

A|I =

(
2/2 3/2 | 1/2 0
4 −3 | 0 1

)
=

(
1 3/2 | 1/2 0
4 −3 | 0 1

)
(52)

2. For all rows below the first row, replace rowj with rowj − aj,1 ∗ row1. This
happens to be elementary row operation 2 in our list above.

A|I =

(
1 3/2 | 1/2 0

4− 4(1) −3− 4(3/2) | 0− 4(1/2) 1− 4(0)

)
=

(
1 3/2 | 1/2 0
0 −9 | −2 1

)
(53)

3. Now multiply row2 by 1
a2,2

. This is again elementary row operation 1 in our list

above.

A|I =

(
1 3/2 | 1/2 0
0 −9/− 9 | −2/− 9 1/− 9

)
=

(
1 3/2 | 1/2 0
0 1 | 2/9 −1/9

)
(54)

4. For all rows above and below this current row, replace rowj with rowj − a2,2 ∗
row2. This happens to again be elementary row operation 2 in our list above.
What we are doing is systematically converting the left matrix into an identity
matrix by multiplication of constants and addition to eliminate off-diagonal
values and force 1 on the diagonal.

A|I = (55)(
1 3/2− (3/2)(1) | 1/2− (3/2)(2/9) 0− (3/2)(−1/9)
0 1 | 2/9 −1/9

)
= (56)(

1 0 | 1/6 1/6
0 1 | 2/9 −1/9

)
(57)
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5. As far as this example is concerned we are done and have found the inverse.
With more than a 2X2 system there will be many operations moving up and
down the matrix to eliminate the off-diagonal terms.

So the next logical step is to build an algorithm to perform these operations for
us.

In R inversion is simply performed using the solve(...) function where the only
argument passed to the function is the matrix.31

Figure 69 is a screen capture of using solve(...) to find the inverse of A. The result
is identical to the input matrix A−1 above. While we now have the ability to solve
linear systems by rearrangement into

x = A−1 · b (58)

this is generally not a good approach (we are solving n linear systems to obtain the
inverse, instead of only the one we seek!).

Instead to solve a linear system, we would supply the coefficient matrix A and the
right hand side b, and then supply these two matrices to the solve routine
(e.g. x <- solve(A,b)).

31If we have to write code ourselves, its not terribly hard, but is lengthy and consequently error-
prone. Sometimes we have no choice, but in this workbook, we will use the built-in tool as much as
possible. R does not use Gaussian reduction unless we tell it to do so, it implements a factorization
called LU (or Cholesky) decomposition, then computes the inverse by repeated solution of a linear
system with the right hand side being selected from one of the identify matrix columns (as was
done above).
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Figure 69. The matrix inversion script showing results of a run and various input and output..
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5.4 Jacobi Iteration – An iterative method to find solutions

Iterative methods are often more rapid and economical in storage requirements than
the direct methods in solve(...).32 The methods are useful (necessary) for non-
linear systems of equations — we will use this feature later when we find solutions to
networks of pipelines.

Lets consider a simple example:

8x1 + 1x2 − 1x3

1x1 − 7x2 + 2x3

2x1 + 1x2 + 9x3

= 8
= − 4
= 12

(59)

The solution is x1 = 1, x2 = 1, x3 = 1. We begin the iterative scheme by refactoring
each equation in terms of a single variable (there is a secret pivot step to try to make
the system diagonally dominant – the example above has already been pivoted, or
“pre-conditioned” for the solution method):

x1

x2

x3

= 1.000 −0.125x2 0.125x3

= 0.571 0.143x1 0.286x3

= 1.333 −0.222x1 −0.111x2

(60)

Then supply an initial guess of the solution (e.g. (0, 0, 0)) and put these values into
the right-hand side, the resulting left-hand side is an improved (hopefully) solution.
Repeat the process until the solution stops changing, or goes obviously haywire.

This sequence of operation for the example above produces the results listed in Table
4.

Table 4. Jacobi Iteration Solution Sequence.

Iteration: 1-st 2-nd 3-rd 4-th 5th 6-th 7-th 8-th
x1 0 1.000 1.095 0.995 0.993 1.002 1.001 1.000
x2 0 0.571 1.095 1.026 0.990 0.998 1.001 1.000
x3 0 1.333 1.048 0.969 1.000 1.004 1.001 1.000

As a practical matter, refactoring the equations can instead be accomplished by com-
puting the inverse of each diagonal coefficient – and matrix multiplication, scalar
division, and vector addition are all that is required to find a solution (if the method
will actually work).

In linear algebra terms the Jacobi iteration method (without refactoring) performs
the following steps:

32The R solve routine is pretty robust, if you tell it sparse=TRUE it has a lot of internal methods to
pre-condition the problem for fast solution. But for really big systems we may wish to program
our own solver — especially if these systems have some special and predictable structure.
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1. Read in A, b, and xguess.

2. Construct a vector from the diagonal elements of A. This vector, W, will have
one column, and same number of rows as A.

3. Perform matrix arithmetic to compute an error vector, residual = A·xguess−b.

4. Divide this error vector by the diagonal weights update = residual/W

5. Update the solution vector xnew = xguess − update

6. Test for stopping, if not indicated, move the new solution into the guess and
return to step 3.

7. If time to stop, then report result and stop.

Listing 27 implements in R the algorithm described above to find solutions by the
Jacobi iteration method. The script does not pre-condition the linear system (so we
have to do that ourselves).

Listing 27. R code demonstrating Jacobi Iteration.

# R script to implement Jacobi Iteration Method to
# find solution to simultaneous linear equations
# assumes matrix is pre -conditioned to diagional dominant
# assumes matrix is non -singular
############## READ IN DATA FROM A FILE ####################
filepath <- "~/ Dropbox/1-CE-TTU -Classes/CE4333 -PCH -R/3-Readings/PCHinR -LectureNotes /5-

LinearSystems/RScripts"
filename <- "LinearSystem000.txt"
fileToRead <- paste(filepath ,filename ,sep ="/") # build the user absolute filename
# Here we open the connection to the file (within read.table)
# Then the read.table attempts to read the entire file into an object named zz
# Upon either fail or success , read.table closes the connection
zz <- read.table(fileToRead ,header=FALSE ,sep=",") # comma seperated ASCII , No header
############## Row and Column Counts #######################
HowManyColumns <- length(zz)
HowManyRows <- length(zz$V1)
tolerance <- 1e-12 #stop when error vector is small
itermax <- 200 # maximum number of iterations
############### Build A, x, and B ##############################
Amat <- matrix(0,nrow = HowManyRows , ncol = (HowManyColumns -2) )
xguess <- numeric (0)
Bvec <- numeric (0)
Wvec <- numeric (0)
############################################################
for (i in 1: HowManyRows){

for(j in 1:( HowManyColumns -2)){
Amat[i,j] <- zz[i,j]

}
Bvec[i] <- zz[i,HowManyColumns -1]
xguess[i] <- zz[i,HowManyColumns]
Wvec[i] <- Amat[i,i]

}
rm(zz) # deallocate zz and just work with matrix and vectors
##################### Implement Jacobi Iteration #############
for(iter in 1: itermax){
Bguess <- Amat %*% xguess
residue <- Bguess - Bvec
xnew <- xguess - residue/Wvec
xguess <- xnew
testval <- t(residue) %*% residue
if (testval < tolerance) {

message ("sum squared error vector small : ",testval);
break

}
}
if( iter == itermax) message (" Method Fail")
message (" Number Iterations : ", iter)
message (" Coefficient Matrix : ")
print(cbind(Amat))
message (" Solution Vector : ")
print(cbind(xguess))
message (" Right -Hand Side Vector : ")
print(cbind(Bvec))
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Figure 70 is a screen capture of the script in Listing 27 applied to the example
problem.

Figure 70. Jacobi Iteration applied to Example Problem.
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6 Simultaneous Non-Linear Systems of Equations

Non-linear systems are extensions of the linear systems cases except the systems
involve products and powers of the unknown variables. Non-linear problems are
often quite difficult to manage, especially when the systems are large (many rows and
many variables).

The solution to non-linear systems, if non-trivial yet alone even possible, are itera-
tive.

Within the iterative steps is a linearization component – these linear systems which
are intermediate computations within the overall solution process are treated by an
appropriate linear system method (direct or iterative).

In R it is sometimes successful to solve by the nonlinear minimization tool built-in,
but neither efficient, nor particularly useful when the system gets large. On the CRAN

there are a couple of packages devoted to non-linear systems, and these would be
reasonable places to consider.

In this chapter we will illustrate an iterative technique called Quasi-Linearization,
and the next chapter we will formally extend Newton’s method to multi-dimensional
cases.

x2 + y2

ex + y
= 4
= 1

(61)

Suppose we have a solution guess xk, yk, which of course could be wrong, but we could
linearize about that guess as

A =

(
xk + yk
0 + 1

)
x =

(
xk+1

yk+1

)
b =

(
4

1− exk

)
(62)

Now the system is linear, and we can solve for xk+1 much like the Jacobi iteration of
the previous chapter. If the system is convergent (not all are) then we update in the
same fashion, and repeat until complete.

Listing 28 is a script that implements the quasi-linearization method. The starting
vector is crucial, and the next several screen captures illustrate good starting vectors
(resulting in a solution) and poor ones.
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Listing 28. R code demonstrating Non-Linear by quasi-linearization.

# R script to solve non -linear example by quasi -linearization
Amat <- matrix(0,nrow=2,ncol =2)
Brhs <- numeric (0)
x_guess <- c(-1.9, 0.8)
maxiter <- 20
message (" Initial Guess"); print(x_guess); message (" Original Equations - x_guess ");
message( x_guess [1]^2 + x_guess [2]^2, " : should be 4 ")
message( exp(x_guess [1]) + x_guess [2], " : should be 1 ")
# Construct the current quasi -linear model
for (iter in 1: maxiter){
Amat [1,1] <- x_guess [1]; Amat [1,2] <- x_guess [2];
Amat [2,1] <- 0 ; Amat [2,2] <- 1;
Brhs [1] <- 4
Brhs [2] <- 1-exp(x_guess [1])
# Solve for the new guess
x_new <- solve(Amat ,Brhs)
# Update
x_guess <- x_new
}
print(Amat); print(Brhs);
message (" Current Guess"); print(x_new)
message (" Original Equations - x_new")
message( x_new [1]^2 + x_new [2]^2, " : should be 4 ")
message( exp(x_new [1]) + x_new[2], " : should be 1 ")

Figure 71 is a screen capture of the algorithm started near a solution, that sort-of
converges to the solution. Not really satisfying, but at least not divergent.

Figure 71. Quasi-linear, started near a solution, converges (sort-of) to the solution.
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Figure 72 is a screen capture of the algorithm started near a solution, that fails to
converge — it actually diverged.

Figure 72. Quasi-linear, started near a solution, fails to converge.

What is really needed is a much more reliable algorithm. Sometimes the non-linear
minimization tools can successfully be used. We will try that next.

Lets restructure our equation system a bit into

f(x) =
f1(x, y) = x2 + y2 −4
f2(x, y) = ex + y −1

(63)

At the solution x, the result should be f(x) = 0. But if we are not at a solution,
then the result will be non-zero (and represents the error) — one tool we have is a
non-linear minimization tool in R that can minimize functions. So now we need the
sum-of-squared errors, which with vectors is simply the inner product of the vector
with itself:

F(x) = f(x)T · f(x) (64)
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So lets rewrite the script to construct f(x) and F(x), then implement the non-linear
minimizer, nlm(...) in R. Listing 29 is a listing that implements these changes.
Notice the two prototype functions, the first takes vector input and returns vector
output — internal (to the function) definition of a vector using func <- numeric(0)

provides the memory space in the program.33

Listing 29. R code demonstrating Non-Linear by Minimization.

# R script for system of non -linear equations using minimization
# WARNING -- This is not recomended for large systems
# forward define the functions
####### f(x) #################
func <- function(x_vector){

func <- numeric (0)
func [1] <- x_vector [1]^2 + x_vector [2]^2 - 4
func [2] <- exp(x_vector [1]) + x_vector [2] - 1
return(func)

}
######### F(x) ###############
bigF <- function(x_vector){

vector <- numeric (0)
vector <- func(x_vector)
bigF <- t(vector) \%*\% vector
return(bigF)

}
#############################
# forward define some variables
# starting guess
x_guess <- c(1,-1.7)
result <- nlm(bigF ,x_guess)
message (" Estimated bigF Value : ",result$minimum)
message (" Estimated x_vector Value : ")
print(result$estimate)
message (" Estimated func Value : ")
print(func(result$estimate))

Figure 73 is a screen capture of the script for the first solution to the system of equa-
tions, we have started quite close to a solution and the method converges to the correct
solution. The object named result contains several items of which we have only ac-
cessed two. Notice how we have addressed these items using the name$attribute

method.

Figure 74 is a screen capture of the script for the second solution to the system of
equations, we have started quite close to a solution and the method converges to the
correct solution.

Naturally, to be really useful we should test the method for starting values relatively
far from the solution; Figure 75 is a screen capture of such testing for a few different
start vectors. Observe that the solution at (-1.8,0.8) is the preferred solution in
most cases unless we start very close to the second solution at (1,-1.7). This kind
of preference to one solution over another is quite common in non-linear systems
(sometimes these particular solutions are called attractors). The related observation
is that we can find starting vectors that simply fail — this phenomenon is also quite
common (sometimes called sensitive dependence on initial conditions).

33If you get an error message with the words ... Atomic ...., it means that something in a
function is trying to address a variable for which there is no space, or trying to address a global
(external to the function) variable directly. These are pretty hard errors to debug (fix), so I have
gotten into the habit of building and testing the prototype functions before I even try to get the
rest of the program to run.
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Figure 73. Solution using nlm(...). Start vector (-1.8,0.8).

Figure 74. Solution using nlm(...). Start vector (1.0,-1.7).
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Figure 75. Solution using nlm(...). Varying start vectors.

Using a non-linear minimization technique to solve systems of non-linear equations
is not recommended for anything bigger than a few equations (maybe as many as 8
or 9). Quasi-linearization is a good technique — the example here is intentionally
pathological. The next chapter presents a better technique than quasi-linearization
that can be used for large systems (assuming they will converge at all), and it is the
method that will be used for pipeline networks.
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7 Numerical Methods – Multiple Variable Quasi-

Newton Method

This chapter formally presents the Newton-Raphson method as the preferred alter-
native to using an optimizer routine to solve systems of non-linear equations. The
method is used later in the document to solve for flows and heads in a pipeline net-
work.

Lets return to our previous example where the function f is a vector-valued function
of a vector argument.

f(x) =
f1 = x2 + y2 −4
f2 = ex + y −1

(65)

Lets also recall Newtons method for scalar valued function of a single variable.

xk+1 = xk −
f(xk)
df
dx
|xk

(66)

Extending to higher dimensions, the value x become the vector x and the function f()
becomes the vector function f(). What remains is an analog for the first derivative
in the denominator (and the concept of division of a matrix).

The analog to the first derivative is a matrix called the Jacobian which is comprised
of the first derivatives of the function f with respect to the arguments x. For example
for a 2-value function of 2 arguments (as our example above)

df

dx
|xk =>

 ∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2

 (67)

Next recall that division is replaced by matrix multiplication with the multiplicative
inverse, so the analogy continues as

1
df
dx
|xk

=>

 ∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2

−1

(68)

Lets name the Jacobian J(x).

So the multi-variate Newton’s method can be written as

xk+1 = xk − J(x)−1|xk · f(x)|xk (69)
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In the linear systems chapter we did find a way to solve for an inverse, but its not
necessary – a series of rearrangement of the system above yields a nice scheme tthat
does not require inversion of a matrix.

First, move the xk to the left-hand side.

xk+1 − xk = −J(x)−1|xk · f(x)|xk (70)

Next multiply both sides by the Jacobian.

J(x)|xk · (xk+1 − xk) = −J(x)|xk · J(x)−1|xk · f(x)|xk (71)

Recall a matrix multiplied by its inverse returns the identity matrix (the matrix
equivalent of unity)

−J(x)|xk · (xk+1 − xk) = f(x)|xk (72)

So we now have an algorithm:

1. Start with an initial guess xk, compute f(x)|xk , and J(x)|xk .

2. Test for stopping. Is f(x)|xk close to zero? If yes, exit and report results,
otherwise continue.

3. Solve the linear system J(x)|xk · (xk+1 − xk) = f(x)|xk .

4. Test for stopping. Is (xk+1 − xk) close to zero? If yes, exit and report results,
otherwise continue.

5. Compute the update xk+1 = xk − (xk+1 − xk), then

6. Move the update into the guess vector xk <= xk+1 =and repeat step 1. Stop
after too many steps.

Now to repeat the example from the previous chapter, except we will employ this
algorithm.

The function (repeated)

f(x) =
f1 = x2 + y2 −4
f2 = ex + y −1

(73)

Then the Jacobian, here we will compute it analytically because we can

J(x) =>

2x 2y

ex 1

 (74)
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Listing 30 is a listing that implements the Newton-Raphson method with analytical
derivatives.

Listing 30. R code demonstrating Newton’s Method calculations.

# R script for system of non -linear equations using Newton -Raphson with analytical
derivatives

# forward define the functions
####### f(x) #########################
func <- function(x_vector){

func <- numeric (0)
func [1] <- x_vector [1]^2 + x_vector [2]^2 - 4
func [2] <- exp(x_vector [1]) + x_vector [2] - 1
return(func)

}
######## J(x) #########################
jacob <- function(x_vector){

jacob <- matrix(0,nrow=2,ncol =2)
jacob [1,1] <- 2* x_vector [1] ; jacob [1,2] <- 2* x_vector [2];
jacob [2,1] <- exp(x_vector [1]); jacob [2,2] <- 1 ;
return(jacob)

}
####### Solver Parameters #############
x_guess <- c(2. ,-0.8)
tolerancef <- 1e-9 # stop if function gets to zero
tolerancex <- 1e-9 # stop if solution not changing
maxiter <- 20 # stop if too many iterations
x_now <- x_guess
###### Newton -Raphson Algorithm ########
for (iter in 1: maxiter){

funcNow <- func(x_now)
testf <- t(funcNow) %*% funcNow
if(testf < tolerancef){

message ("f(x) is close to zero : ", testf);
break

}
dx <- solve(jacob(x_now),funcNow)
testx <- t(dx) %*% dx
if(testx < tolerancex){

message (" solution change small : ", testx);
break

}
x_now <- x_now - dx

}
#########################################
if( iter == maxiter) {message (" Maximum iterations -- check if solution is converging : ")}
message (" Initial Guess"); print(x_guess);
message (" Initial Function Value: "); print(func(x_guess));
message ("Exit Function Value : ");print(func(x_now));
message ("Exit Vector : "); print(x_now)

Figure 76 implements the script in Listing 30 for the example problem.

The next variant is to approximate the derivatives – usually a Finite-Difference ap-
proximation is used, either forward, backward, or centered differences – generally
determined based on the actual behavior of the functions themselves or by trial and
error. For really huge systems, we usually make the program itself make the adaptions
as it proceeds.

The coding for a finite-difference representation of a Jacobian is shown in Listing 31.
In constructing the Jacobian, we observe that each column of the Jacobian is simply
the directional derivative of the function with respect to the variable associated with
the column. For instance, the first column of the Jacobian in the example is first
derivative of the first function (all rows) with respect to the first variable, in this case
x. The second column is the first derivative of the second function with respect to the
second variable, y. This structure is useful to generalize the Jacobian construction
method because we can write (yet another) prototype function that can take the
directional derivatives for us, and just insert the returns as columns. The example
listing is specific to the 2X2 function in the example, but the extension to more
general cases is evident.
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Listing 31. R code demonstrating Newton’s Method calculations using finite-difference approxima-
tions to the partial derivatives.

# R script for system of non -linear equations using Newton -Raphson with
# finite -difference approximated derivatives
# forward define the functions
####### f(x) #########################
func <- function(x_vector){

func <- numeric (0)
func [1] <- x_vector [1]^2 + x_vector [2]^2 - 4
func [2] <- exp(x_vector [1]) + x_vector [2] - 1
return(func)

}
######## J(x) #########################
jacob <- function(x_vector ,func){ #supply a vector and the function name
# the columns of the jacobian are just directional derivatives

dv <- 1e-06 #perturbation value for finite difference
df1 <- numeric (0);
df2 <- numeric (0);
dxv <- x_vector;
dyv <- x_vector;

# perturb the vectors
dxv [1] <- dxv [1]+dv;
dyv [2] <- dyv [2]+dv;
df1 <- (func(dxv) - func(x_vector))/dv;
df2 <- (func(dyv) - func(x_vector))/dv;
jacob <- matrix(0,nrow=2,ncol =2)

# for a more general case should put this into a loop
jacob [1,1] <- df1[1] ; jacob [1,2] <- df2[1] ;
jacob [2,1] <- df1[2] ; jacob [2,2] <- df2[2] ;
return(jacob)

}
####### Solver Parameters #############
x_guess <- c(2. ,-0.8)
tolerancef <- 1e-9 # stop if function gets to zero
tolerancex <- 1e-9 # stop if solution not changing
maxiter <- 20 # stop if too many iterations
x_now <- x_guess
###### Newton -Raphson Algorithm ########
for (iter in 1: maxiter){

funcNow <- func(x_now)
testf <- t(funcNow) %*% funcNow
if(testf < tolerancef){

message ("f(x) is close to zero : ", testf);
break

}
dx <- solve(jacob(x_now ,func),funcNow)
testx <- t(dx) %*% dx
if(testx < tolerancex){

message (" solution change small : ", testx);
break

}
x_now <- x_now - dx

}
#########################################
if( iter == maxiter) {message (" Maximum iterations -- check if solution is converging : ")}
message (" Initial Guess"); print(x_guess);
message (" Initial Function Value: "); print(func(x_guess));
message ("Exit Function Value : ");print(func(x_now));
message ("Exit Vector : "); print(x_now)
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Figure 76. Newton-Raphson using Analytical Derivatives.

Figure 77. Newton-Raphson using Finite-Difference Approximated Derivatives.
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8 Pipelines and Networks

Pipe networks, like single path pipelines, are analyzed for head losses in order to size
pumps, determine demand management strategies, and ensure minimum pressures in
the system. Conceptually the same principles are used for steady flow systems: con-
servation of mass and energy; with momentum used to determine head losses.

8.1 Pipe Networks – Topology

Network topology refers to the layout and connections. Networks are built of nodes
(junctions) and arcs (links).

8.1.1 Continunity (at a node)

Water is considered incompressible in steady flow in pipelines and pipe networks, and
the conservation of mass reduces to the volumetric flow rate, Q,

Q = AV (75)

where A is the cross sectional of the pipe, and V is the mean section velocity. Typical
units for discharge is liters per second (lps), gallons per minute (gpm), cubic meters
per second (cms), cubic feet per second (cfs), and million gallons per day (mgd). The
continuity equation in two cross-sections of a pipe as depicted in Figure 78 is

A1V1 = A2V2 (76)

Junctions (nodes) are where two or more pipes join together. A three-pipe junction
node with constant external demand is shown in Figure 10. The continuity equation
for the junction node is

Q1 −Q2 −Q3 −D = 0 (77)

Figure 78. Continuity of mass (discharge) across a change in cross section.

In design analysis, all demands on the system are located at junctions (nodes), and
the flow connecting junctions is assumed to be uniform across the cross sections (so
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Figure 79. Continuity of mass (discharge) across a node (junction).

that mean velocities apply). If a substantial demand is located between nodes, then
an additional node is established at the demand location.

8.1.2 Energy Loss (along a link)

Equation 101 is the one-dimensional steady flow form of the energy equation typically
applied for pressurized conduit hydraulics.

p1

ρg
+ α1

V 2
1

2g
+ z1 + hp =

p2

ρg
+ α2

V 2
2

2g
+ z2 + ht + hl (78)

where p
ρg

is the pressure head at a location, αV
2

2g
is the velocity head at a location, z

is the elevation, hp is the added head from a pump, ht is the added head extracted
by a turbine, and hl is the head loss between sections 1 and 2. Figure 87 is a sketch
that illustrates the various components in Equation 101.

In network analysis this energy equation is applied to a link that joins two nodes.
Pumps and turbines would be treated as separate components (links) and their hy-
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Figure 80. Definition sketch for energy equation.

draulic behavior must be supplied using their respective pump/turbine curves.

8.1.3 Velocity Head

The velocity in αV
2

2g
is the mean section velocity and is the ratio of discharge to flow

area. The kinetic energy correction coefficient is

α =

∫
A
u3dA

V 3A
(79)

where u is the point velocity in the cross section (usually measured relative to the
centerline or the pipe wall; axial symmetry is assumed). Generally values of α are
2.0 if the flow is laminar, and approach unity (1.0) for turbulent flow. In most water
distribution systems the flow is usually turbulent so α is assumed to be unity and the
velocity head is simply V 2

2g
.

8.1.4 Added Head — Pumps

The head supplied by a pump is related to the mechanical power supplied to the flow.
Equation 102 is the relationship of mechanical power to added pump head.

ηP = Qρghp (80)

where the power supplied to the motor is P and the “wire-to-water” efficiency is
η.
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If the relationship is re-written in terms of added head34 the pump curve is

hp =
ηP

Qρg
(81)

This relationship illustrates that as discharge increases (for a fixed power) the added
head decreases. Power scales at about the cube of discharge, so pump curves for
computational application typically have a mathematical structure like

hp = Hshutoff −KpumpQ
exponent (82)

8.1.5 Extracted Head — Turbines

The head recovered by a turbine is also an “added head” but appears on the loss side
of the equation. Equation 109 is the power that can be recovered by a turbine (again
using the concept of “water-to-wire” efficiency is

P = ηQρght (83)

8.2 Pipe Head Loss Models

The Darcy-Weisbach, Chezy, Manning, and Hazen-Williams formulas are relation-
ships between physical pipe characteristics, flow parameters, and head loss. The
Darcy-Weisbach formula is the most consistent with the energy equation formulation
being derivable (in structural form) from elementary principles.

hLf
= f

L

D

V 2

2g
(84)

where hLf
is the head loss from pipe friction, f is a dimensionless friction factor, L is

the pipe length, D is the pipe characteristic diameter, V is the mean section velocity,
and g is the gravitational acceleration.

The friction factor, f , is a function of Reynolds number ReD and the roughness ratio
ks
D

.

f = σ(ReD,
ks
D

) (85)

The structure of σ is determined experimentally. Over the last century the structure
is generally accepted to be one of the following depending on flow conditions and pipe
properties

1. Laminar flow (Eqn 2.36, pg. 17 Chin (2006)) :

f =
64

ReD
(86)

34A negative head loss!
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2. Hydraulically Smooth Pipes(Eqn 2.34 pg. 16 Chin (2006)):

1√
f

= −2log10(
2.51

Red
√
f

) (87)

3. Hydraulically Rough Pipes(Eqn 2.34 pg. 16 Chin (2006)):

1√
f

= −2log10(
ke
D

3.7
) (88)

4. Transitional Pipes (Colebrook-White Formula)(Eqn 2.35 pg. 17 Chin (2006)):

1√
f

= −2log10(
ke
D

3.7
+

2.51

Red
√
f

) (89)

5. Transitional Pipes (Jain Formula)(Eqn 2.39 pg. 19 Chin (2006)):

f =
0.25

[log10(
ke
D

3.7
+ 5.74

Re0.9d
)]2

(90)

8.3 Pipe Networks Solution Methods

Several methods are used to produce solutions (estimates of discharge, head loss,
and pressure) in a network. An early one, that only involves analysis of loops is
the Hardy-Cross method. A later one, more efficient, is a Newton-Raphson method
that uses node equations to balance discharges and demands, and loop equations to
balance head losses. However, a rather ingenious method exists developed by Haman
and Brameller (1971), where the flow distribution and head values are determined
simultaneously. The task here is to outline the Haman and Brameller (1971) method
on the problem below – first some necessary definitions and analysis.

The fundamental procedure is:

1. Continuity is written at nodes (node equations).

2. Energy loss (gain) is written along links (pipe equations).

3. The entire set of equations is solved simultaneously.

8.4 Network Analysis

Figure 81 is a sketch of the problem that will be used. The network supply is the
fixed-grade node in the upper left hand corner of the drawing. The remaining nodes
(N1 – N4) have demands specified as the purple outflow arrows. The pipes are labeled
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Figure 81. Pipe network for illustrative example with supply and demands identified. Pipe dimen-
sions and diameters are also depicted..

(P1 – P6), and the red arrows indicate a positive flow direction, that is, if the flow is
in the indicated direction, the numerical value of flow (or velocity) in that link would
be a positive number.

Define the flows in each pipe and the total head at each node as Qi and Hi where the
subscript indicates the particular component identification. Expressed as a vector,
these unknowns are:

[Q1, Q2, Q3, Q4, Q5, Q6, H1, H2, H3, H4] = x

If we analyze continuity for each node we will have 4 equations (corresponding to
each node) for continunity, for instance for Node N2 the equation is

Q2 −Q3 Q6 = 4

Similarily if we define head loss in any pipe as ∆Hi = f 8Li

π2gD5
i
|Qi|Qi or ∆Hi = LiQi,

where Li = f 8Li

π2gD5
i
|Qi|, then we have 6 equations (corresponding to each pipe) for

energy, for instance for Pipe (P2) the equation is35

−L2Q2 H1 −H2 = 0

35The seemingly awkward way of writing the equations will become apparent shortly!

Page 124 of 278



CE 4333 Practical Computational Hydraulics SUMMER 2017

If we now write all the node equations then all the pipe equations we could construct
the following coefficient matrix below:36

1 −1 0 −1 0 0 0 0 0 0
0 1 −1 0 0 1 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0
0 0 1 0 1 0 0 0 0 0
−L1 0 0 0 0 0 −1 0 0 0

0 −L2 0 0 0 0 1 −1 0 0
0 0 −L3 0 0 0 0 1 0 −1
0 0 0 −L4 0 0 1 0 −1 0
0 0 0 0 −L5 0 0 0 1 −1
0 0 0 0 0 −L6 0 −1 1 0

Declare the name of this matrix A(x), where x denotes the unknown vector of Q
augmented by H as above. Next consider the right-hand-side at the correct solution
(as of yet still unknown!) as

[0, 4, 3, 1, −100, 0, 0, 0, 0, 0] = b

So if the coefficient matrix is correct then the following system would result:

A(x) · x = b

which would look like



1 −1 0 −1 0 0 0 0 0 0
0 1 −1 0 0 1 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0
0 0 1 0 1 0 0 0 0 0
−L1 0 0 0 0 0 −1 0 0 0

0 −L2 0 0 0 0 1 −1 0 0
0 0 −L3 0 0 0 0 1 0 −1
0 0 0 −L4 0 0 1 0 −1 0
0 0 0 0 −L5 0 0 0 1 −1
0 0 0 0 0 −L6 0 −1 1 0





Q1

Q2

Q3

Q4

Q5

Q6

H1

H2

H3

H4


=



0
4
3
1
−100

0
0
0
0
0


(91)

Observe, the system is non-linear because the coefficient matrix depends on the cur-
rent values of Qi for the Li terms. However, the system is full-rank (rows == columns)
so it is a candidate for Newton-Raphson.

36The horizontal lines divide the node and the pipe equations. The upper partition are the node
equations in Q and H, the lower partition are the pipe equations in Q and H

Page 125 of 278



CE 4333 Practical Computational Hydraulics SUMMER 2017

Further observe that the upper partition from column 6 and smaller is simply the
node-arc incidence matrix, and the lower partition for the same columns only contains
Li terms on its diagonal, the remainder is zero. Next observe that the partition
associated with heads in the node equations is the zero-matrix.

Lastly (and this is important!) the lower right partition is the transpose of the node-
arc incidence matrix subjected to scalar multiplication of −1. The importance is that
all the information needed to find a solution is contained in the node-arc incidence
matrix and the right-hand-side – the engineer does not need to identify closed loops
(nor does the computer need to find closed loops).

The trade-off is a much larger system of equations, however solving large systems is
far easier that searching a directed graph to identify closed loops, furthermore we
obtain the heads as part of the solution process.
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9 Pipelines Network Analysis

The prior chapter introduced the non-linear system that results from the analysis of
the pipeline network. This chapter continues the effort and produces a workable R
script that can compute flows and heads given just the node-arc incidence matrix,
and pipe properties.

Recall from the prior chapter the non-linear system to be solved is

A(x) · x = b

which would look like



1 −1 0 −1 0 0 0 0 0 0
0 1 −1 0 0 1 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0
0 0 1 0 1 0 0 0 0 0
−L1 0 0 0 0 0 −1 0 0 0

0 −L2 0 0 0 0 1 −1 0 0
0 0 −L3 0 0 0 0 1 0 −1
0 0 0 −L4 0 0 1 0 −1 0
0 0 0 0 −L5 0 0 0 1 −1
0 0 0 0 0 −L6 0 −1 1 0





Q1

Q2

Q3

Q4

Q5

Q6

H1

H2

H3

H4


=



0
4
3
1
−100

0
0
0
0
0


(92)

The system is non-linear because the coefficient matrix depends on the current values
of Qi for the Li terms. The upper partition from column 6 and smaller is simply
the node-arc incidence matrix, and the lower partition for the same columns only
contains Li terms on its diagonal, the remainder is zero. Next observe that the
partition associated with heads in the node equations is the zero-matrix. The lower
right partition is the transpose of the node-arc incidence matrix subjected to scalar
multiplication of −1. So using the Newton-Raphson approach discussed earlier we
develop a script in R that produces estimates of discharge and total head in the
system depicted in Figure 81.

9.1 Script Structure

The script will need to accomplish several tasks including reading the node-arc inci-
dence matrix supplied as the file in Figure 82 and convert the strings into numeric
values. The script will also need some support functions defined before constructing
the matrix.

The rows of the input file are:
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4

6

1.00 0.67 0.67 0.67 0.67 0.5

800 800 700 700 800 600

0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

0.000011

1 1 1 1 1 1

1 -1 0 -1 0 0

0 1 -1 0 0 1

0 0 0 1 -1 -1

0 0 1 0 1 0

0 4 3 1 -100 0 0 0 0 0

Figure 82. Input file for the problem.

1. The node count.

2. The pipe count.

3. Pipe diameters, in feet.

4. Pipe lengths, in feet.

5. Pipe roughness heights, in feet.

6. Kinematic viscosity in feet2/second.

7. Initial guess of flow rates (unbalanced OK, non-zero vital!)

8. The next four rows are the node-arc incidence matrix.

9. The last row is the demand (and fixed-grade node total head) vector.

9.1.1 Support Functions

The Reynolds number will need to be calculated for each pipe at each iteration of
the solution, so a Reynolds number function will be useful. For circular pipes, the
following equation should work,

Re(Q) =
8L

µπD
|Q| (93)

The Jain equation (Jain, 1976) that directly computes friction factor from Reynolds
number, diameter, and roughness is

f(ks, D,Re) =
0.25

[log( ks
3.7D

+ 5.74
Re0.9

)]2
(94)
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Once you have the Reynolds number for a pipe, and the friction factor, then the head
loss factor that will be used in the coefficient matrix (and the Jacobian) is

Li = f
8Li

π2gD5
i

|Qi| (95)

These three support functions are coded in R as shown in Listing 32.

Listing 32. R Code to compute Reynolds numbers and friction factors
.

#############################################################
############## Forward Define Support Functions #################
#############################################################
# Jain Friction Factor Function -- Tested OK 23SEP16
friction_factor <- function(roughness ,diameter ,reynolds){

temp1 <- roughness /(3.7* diameter);
temp2 <- 5.74/( reynolds ^(0.9));
temp3 <- log10(temp1+temp2);
temp3 <- temp3 ^2;
friction_factor <- 0.25/ temp3;
return(friction_factor)

}
# Velocity Function
velocity <- function(diameter ,discharge){

velocity <- discharge /(0.25* pi*diameter ^2)
return(velocity)

}
# Reynolds Number Function
reynolds_number <- function(velocity ,diameter ,mu){

reynolds_number <- abs(velocity)*diameter/mu
return(reynolds_number)

}
# Geometric factor function
k_factor <- function(howlong ,diameter ,gravity){

k_factor <- (16* howlong)/(2.0* gravity*pi^2* diameter ^5)
return(k_factor)

}

9.1.2 Augmented and Jacobian Matrices

The A(x) is built using the node-arc incidence matrix (which does not change),
and the current values of Li. You will also need to build the Jacobian of A(x) to
implement the update as-per Newton-Raphson.

A brief review; at the solution we can write

[A(x)] · x− b = f(x) = 0 (96)

Lets assume we are not at the solution, so we need a way to update the current value
of x. Recall from Newton’s method (for univariate cases) that the update formula
is

xk+1 = xk − (
df

dx
|xk)−1f(xk) (97)

The Jacobian will play the role of the derivative, and x is now a vector (instead of
a single variable). Division is not defined for matrices, but the multiplicative inverse
is (the inverse matrix), and plays the role of division. Hence, the extension to the
pipeline case is
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xk+1 = xk − [J(xk)]
−1f(xk) (98)

where J(xk) is the Jacobian of the coefficient matrix A evaluated at xk. Although a
bit cluttered, here is the formula for a single update step, with the matrix, demand
vector, and the solution vector in their proper places.

xk+1 = xk − [J(xk)]
−1{[A(xk)] · xk − b} (99)

As a practical matter we actually never invert the Jacobian37, instead we solve the
related Linear system of

[J(xk)] ·∆x = {[A(xk)] · xk − b} (100)

for ∆x, then perform the update as xk+1 = xk - ∆x

The Jacobian of the pipeline model is a matrix with the following properties:

1. The partition of the matrix that corresponds to the node formulas (upper left
partition) is identical to the original coefficient matrix — it will be comprised
of 0 or ± 1 in the same pattern at the equivalent partition of the A matrix.

2. The partition of the matrix that corresponds to the pipe head loss terms (lower
left partition), will consist of values that are twice the values of the coefficients
in the original coefficient matrix (at any supplied value of xk.

3. The partition of the matrix that corresponds to the head terms (lower right
partition), will consist of values that are identical to the original matrix.

4. The partition of the matrix that corresponds to the head coefficients in the node
equations (upper right partition) will also remain unchanged.

You will want to take advantage of problem structure to build the Jacobian (you could
just finite-difference the coefficient matrix to approximate the partial derivatives, but
that is terribly inefficient if you already know the structure).

9.1.3 Stopping Criteria, and Solution Report

You will need some way to stop the process – the three most obvious (borrowed from
Newton’s method) are:

1. Approaching the correct solution (e.g. [A(x)] · x− b = f(x) = 0).

37Inverting the matrix every step is computationally inefficient, and unnecessary. As an example,
solving the system in this case would at worst take 10 row operations each step, but nearly 100
row operations to invert at each step – to accomplish the same result, generate an update. Now
imagine when there are hundreds of nodes and pipes!
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2. Update vector is not changing (e.g. xk+1 = xk), so either have an answer, or
the algorithm is stuck.

3. You have done a lot of iterations (say 100).

Listing 33 is a code fragment to find the flow distribution and heads for the example
problem. Not listed is the forward defined functions already listed above – these
should be placed into the script in the location shown (or directly sourced into the
code in R).

Listing 33. R Code to Implement Pipe Network Solution
This fragment reads the data file and converts it into numeric values and reports back the values.

# Steady Flow in a Pipe Network Using Hybrid Method (and Newton -Raphson) based on
# Haman YM , Brameller A. Hybrid method for the solution of piping networks. Proc IEEE

1971;118(11) :1607?12.
#
# Clear all existing objects
rm(list=ls())

###############################################################
############## Forward Define Support Functions Go Here ##########
###############################################################
# Read Input Data Stream from File
zz <- file(" PipeNetwork.txt", "r") # Open a connection named zz to file named PipeNetwork.

txt
nodeCount <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
pipeCount <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
diameter <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
distance <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
roughness <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
viscosity <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
flowguess <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
nodearcs <- (readLines(zz , n = nodeCount , ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
rhs_true <- (readLines(zz , n = pipeCount+nodeCount , ok = TRUE , warn = TRUE ,encoding = "

unknown", skipNul = FALSE))
close(zz) # Close connection zz
#
# Convert Input Stream into Numeric Structures
diameter <-as.numeric(unlist(strsplit(diameter ,split=" ")))
distance <-as.numeric(unlist(strsplit(distance ,split=" ")))
roughness <-as.numeric(unlist(strsplit(roughness ,split=" ")))
viscosity <-as.numeric(unlist(strsplit(viscosity ,split=" ")))
flowguess <-as.numeric(unlist(strsplit(flowguess ,split=" ")))
nodearcs <-as.numeric(unlist(strsplit(nodearcs ,split=" ")))
rhs_true <-as.numeric(unlist(strsplit(rhs_true ,split=" ")))
# convert nodearcs a matrix
# We will need to augment this matrix for the actual solution -- so after augmentation will

deallocate the memory
nodearcs <-matrix(nodearcs ,nrow=nodeCount ,ncol=pipeCount ,byrow = TRUE)
# echo input
message ("Node Count = ",nodeCount)
message ("Pipe Count = ",pipeCount)
message ("Pipe Lengths = "); distance
message ("Pipe Diameters = "); diameter
message ("Pipe Roughness = "); roughness
message ("Fluid Viscosity = ",viscosity)
message (" Initial Guess = "); flowguess
message ("Node -Arc -Incidence Matrix = "); nodearcs
#
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Listing 34 is a code fragment to construct the coefficient matrix structure for the
non-changing part and allocate variables for the Newton-Raphson method.

Listing 34. R Code to Implement Pipe Network Solution
This fragment constructs the initial A(x) matrix and allocates variables used in the iteration loop.

# create the augmented matrix
headCount <- nodeCount
flowCount <- pipeCount
augmentedRowCount <- nodeCount+pipeCount
augmentedColCount <- flowCount+headCount
augmentedMat <- matrix(0,nrow=augmentedRowCount ,ncol=augmentedColCount ,byrow = TRUE)
#
augmentedMat
# build upper left partition of matrix -- this partition is constants from node -arc matrix
for (i in 1: nodeCount){

for (j in 1: flowCount){
augmentedMat[i,j] <- nodearcs[i,j]

}
}
augmentedMat
# build lower right partition of matrix -- this partition is -1* transpose(node -arc) matrix
istart <- nodeCount +1
iend <- nodeCount+pipeCount
jstart <- flowCount +1
jend <- flowCount+headCount
for (i in istart:iend ){

for(j in jstart:jend ){
augmentedMat[i,j] <- -1*nodearcs[j-jstart+1,i-istart +1]

}
}
augmentedMat
# here it should be safe to delete the nodearc matrix
rm(nodearcs)
# Need some vorking vectors
HowMany <- 50
tolerance1 <- 1e-24
tolerance2 <- 1e-24
velocity_pipe <-numeric (0)
reynolds <- numeric (0)
friction <- numeric (0)
geometry <- numeric (0)
lossfactor <- numeric (0)
jacbMatrix <- matrix(0,nrow=augmentedRowCount ,ncol=augmentedColCount ,byrow = TRUE)
gq <- numeric (0)
solvecguess <- numeric(length=augmentedRowCount)
solvecnew <- numeric(length=augmentedRowCount)
solvecguess [1: flowCount] <- flowguess [1: flowCount]

# compute geometry factors (only need once , goes outside iteration loop)
for (i in 1: pipeCount)
{

geometry[i] <- k_factor(distance[i],diameter[i] ,32.2)
}
geometry

Listing 35 is the code fragment that implements the iteration loop of the Newton-
Raphson method. Within each iteration, the support functions are repeatedly used
to construct the changing part of the coefficient and Jacobian matrices, solving the
resulting linear system, performing the vector update, and testing for stopping.

Page 132 of 278



CE 4333 Practical Computational Hydraulics SUMMER 2017

Listing 35. R Code to Implement Pipe Network Solution
This fragment executes the iteration loop where the Newton-Raphson method and updates are imple-
mented.

# going to wrap below into an interation loop -- forst a single instance
for (iteration in 1: HowMany){
################### BEGIN ITERATION OUTER LOOP ###########################
# compute current velocity
for (i in 1: pipeCount)
{

velocity_pipe[i]<-velocity(diameter[i],flowguess[i])
}
# compute current reynolds
for (i in 1: pipeCount)
{

reynolds[i]<-reynolds_number(velocity_pipe[i],diameter[i],viscosity)
}
# compute current friction factors
for (i in 1: pipeCount)
{

friction[i]<-friction_factor(roughness[i],diameter[i],reynolds[i])
}
# compute current loss factor
for (i in 1: pipeCount)
{

lossfactor[i] <- friction[i]* geometry[i]*abs(flowguess[i])
}
# build the function matrix
# operate on the lower left partition of the matrix
istart <- nodeCount +1
iend <- nodeCount+pipeCount
jstart <- 1
jend <- flowCount
for (i in istart:iend ){

for(j in jstart:jend ){
if ((i-istart +1) == j) augmentedMat[i,j] <- -1* lossfactor[j]

}
}
# now build the current jacobian
# slick trick -- we will copy the current function matrix , then modify the lower left

partition
jacbMatrix <- augmentedMat
# build the function matrix
# operate on the lower left partition of the matrix
istart <- nodeCount +1
iend <- nodeCount+pipeCount
jstart <- 1
jend <- flowCount
for (i in istart:iend ){

for(j in jstart:jend ){
if ((i-istart +1) == j) jacbMatrix[i,j] <- 2* jacbMatrix[i,j]

}
}

# now build the gq() vector
gq <- augmentedMat %*% solvecguess - rhs_true
gq
dq <- solve(jacbMatrix ,gq)
# update the solution vector
solvecnew <- solvecguess - dq
solvecnew
# # now test for stopping
test <- abs(solvecnew - solvecguess)
if( t(test) %*% test < tolerance1){

message (" Update not changing -- exit loop and report current update ")
message (" Iteration count = ",iteration)
solvecguess <- solvecnew
flowguess [1: flowCount] <- solvecguess [1: flowCount]
break

}
test <- abs(gq)
if( t(test) %*% test < tolerance2 ){

message ("G(Q) close to zero -- exit loop and report current update ")
message (" Iteration count = ",iteration)
solvecguess <- solvecnew
flowguess [1: flowCount] <- solvecguess [1: flowCount]
break

}
solvecguess <- solvecnew
flowguess [1: flowCount] <- solvecguess [1: flowCount]
################### END OF ITERATION OUTER LOOP #############################
}
message (" Current Results ")
print(cbind(solvecguess ,gq,dq))
print(cbind(friction ,diameter ,distance ,velocity_pipe))
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Figure 83 is a screen capture of the script running the example problem. The first
column in the output is the solution vector. The first 6 rows are the flows in pipes
P1-P6. The remaining 4 rows are the heads at nodes N1-N4.

Figure 83. Screen capture of R script for pipe network analysis.
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9.2 Exercises

1. Figure 84 is a five-pipe network with a water supply source at Node 1, and
demands at Nodes 1-5. Table 5 is a listing of the node and pipe data.

Figure 84. Layout of Simple Network.

Table 5. Node and Pipe Data.

Pipe ID Diameter
(inches)

Length (feet) Rougnhess
(feet)

P1 8 800 0.00001
P2 8 700 0.00001
P3 8 700 0.00001
P4 8 800 0.00001
P5 6 600 0.00001

Node ID Demand
(CFS)

Elevation
(feet)

Head (feet)

N1 2.0 0.0 100
N2 4.0 0.0 ?
N3 3.0 0.0 ?
N4 1.0 0.0 ?

Code the script, build an input file, and determine the flow distribution In your
solution you are to supply

(a) An analysis showing the development of the node-arc incidence matrix
based on the flow directions in Figure 84,

(b) The input file you constructed to provide the simulation values to your
script, and

(c) A screen capture (or output file) showing the results.

2. Code the script and determine the flow distribution in Figures 85 and 86. As-
sume Node N1 has a total head of 300 feet.

In your solution you are to supply
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Figure 85. Pipe network for illustrative example with supply and demands identified. Pipe lengths
(in feet) and diameters (in feet) are also depicted..

Figure 86. Pipe network for illustrative example with pipes and nodes labeled..

(a) An analysis showing the development of the node-arc incidence matrix
based on the flow directions in Figure 86,

(b) The input file you constructed to provide the simulation values to your
script, and

(c) A screen capture (or output file) showing the results.
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3. Modify the script to include node elevation information to compute pressures.
Assume all nodes are at elevation 200 feet.
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10 Pumps and Valves

The addition of pumps, turbines, and valves increases some of the complexity for a
network simulator. Valves and other fittings like elbows and such, that have a fixed
setting are modeled as links and the resulting equations look much like pipe loss
equations.

Pumps while also logically categorized as links are more complex because their head
loss behavior is firstly negative – that is they add head to a flow system, and their
ability to actually function is governed by their own performance curve. First we will
reviwe the modified Bernoulli equation again and then construct a prototype pump
function to add to the program and simulate pump performance.

10.1 Energy Loss (along a link)

Equation 101 is the one-dimensional steady flow form of the energy equation typically
applied for pressurized conduit hydraulics.

p1

ρg
+ α1

V 2
1

2g
+ z1 + hp =

p2

ρg
+ α2

V 2
2

2g
+ z2 + ht + hl (101)

where p
ρg

is the pressure head at a location, αV
2

2g
is the velocity head at a location, z

is the elevation, hp is the added head from a pump, ht is the added head extracted
by a turbine, and hl is the head loss between sections 1 and 2. Figure 87 is a sketch
that illustrates the various components in Equation 101.

In network analysis this energy equation is applied to a link that joins two nodes.
Pumps and turbines would be treated as separate components (links) and their hy-
draulic behavior must be supplied using their respective pump/turbine curves.

10.1.1 Added Head — Pumps

The head supplied by a pump is related to the mechanical power supplied to the flow.
Equation 102 is the relationship of mechanical power to added pump head.

ηP = Qρghp (102)

where the power supplied to the motor is P and the “wire-to-water” efficiency is
η.

If the relationship is re-written in terms of added head38 the pump curve is

hp =
ηP

Qρg
(103)

38A negative head loss!
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Figure 87. Definition sketch for energy equation.

Figure 88 is a typical pump curve depicting the kind of information available from a
manufacturer of a pump.

Figure 88. Pump Curve.

In introductory fluid mechanics we spend effort to match the pump curve to the
system curve (head losses in our distribution system) and that match tells us how
the pump-system combination should function. The pump curve relationship, as well
as Equation 103, illustrates that as discharge increases (for a fixed power) the added
head decreases. Power scales at about the cube of discharge, so pump curves for
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computational application typically have a mathematical structure like

hp = Hshutoff −KpumpQ
exponent (104)

In computational hydraulics we will need to represent the added as a head loss term
(with opposite sign), and the functional form represented by Equation 104 is a good
starting point. Practical (professional) programs will allow the curve to be represented
in a tabular form and will use interpolation (just like our examples earlier) to specify
the added head at a particular flow rate.

The next example will illustrate how to add pumps into the model.

Example 1: Pipe network with pumps
Figure 89 is a sketch of the problem that will be used. The network supply is the
fixed-grade node in the upper left hand corner of the drawing – in this example its
head is set at zero. The remaining nodes (N1 – N4) have demands specified as the
purple outflow arrows. The pipes are labeled (P2 – P6), and the red arrows indicate a
positive flow direction, that is, if the flow is in the indicated direction, the numerical
value of flow (or velocity) in that link would be a positive number. The pump replaces

Figure 89. Pipe Network with a Pump.

pipe (P1) from the previous version of this example. We will use the observation that
we really only need to identify which links are pumps, substitute in the correct added
head component and then solve the system as in the earlier example.

We have to specify how the pump curve will be represented. In this example we will
use a functional form.

hp(Q) = Hshutoff −Kpump ×Qn (105)

For this example we will use the following numerical values for the pump function:
Hshutoff = 104.54 feet, Kpump = 0.25 feet/cfs2, and n = 2.
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The hp(Q) is actually written as an added head factor, just like the friction factor,
so we will use absolute values of flow so the term at each computational step can be
placed in the augmented maxrix as if it were a head loss term; the solver will not
know the difference.

The actual functional form employed is

hp(Q) = [Hshutoff/|Q| −Kpump × |Q|]Q (106)

As before the sign of Q at the solution conveys flow direction. The program example
does not trap the potential divide by zero error Hshutoff/|Q|, but one could test for
zero flow, and just apply the shutoff head. Listing 36 implements the prototype
function described above.

Listing 36. R Code to pump prototype function
.

.....
# Pump Curve factor function
p_factor <- function(shutoff ,constant ,exponent ,flow){

p_factor <- shutoff/abs(flow) - constant*abs(flow^(exponent -1))
return(p_factor)

}

Next we have to read in the pump characteristics, I decided to just have pumps
replace links (so I won’t have to rebuild a node-arc-incidence matrix), so the pump
characteristics are

1. Link ID – the index of the pipe that is replaced by a pump.

2. Shutoff head.

3. Kpump.

4. Exponent on the pump curve, n. Typically it will be larger than 1.0.

Listing 37 implements the reads from the input file, and builds the pump matrix.

Listing 37. R Code to include pumps in a pipeline network
.

# Read Input Data Stream from File
zz <- file(" PipeNetwork.txt", "r") # Open a connection named zz to file named PipeNetwork.

txt
pumpCount <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
nodeCount <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
.....
rhs_true <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
pumps <- (readLines(zz, n = pumpCount , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul

= FALSE))
close(zz) # Close connection zz
.....
pumps <-as.numeric(unlist(strsplit(pumps ,split =" ")))
# convert nodearcs a matrix
# We will need to augment this matrix for the actual solution -- so after augmentation will

deallocate the memory
nodearcs <-matrix(nodearcs ,nrow=nodeCount ,ncol=pipeCount ,byrow = TRUE)
pumps <-matrix(pumps ,nrow=pumpCount ,ncol=4,byrow=TRUE)
.....
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Next we will have to compute the added head factor at each step, just like the friction
factor, and we will overwrite the pipe that the pump replaces.39

Listing 38 implements the computation of the added head factor, and the pump
selection factor.

Listing 38. R Code to include pumps in a pipeline network
.

.................
# compute the current pump factor
if(pumpCount > 0){
for (i in 1: pumpCount)

{
addedhead[i] <- p_factor(pumps[i,2],pumps[i,3], pumps[i,4], flowguess[pumps[i,1]])

}
}

# build the function matrix
# operate on the lower left partition of the matrix
istart <- nodeCount +1
iend <- nodeCount+pipeCount
jstart <- 1
jend <- flowCount
for (i in istart:iend ){

for(j in jstart:jend ){
if ((i-istart +1) == j) {augmentedMat[i,j] <- -1* lossfactor[j];
if(pumpCount > 0){

for(ipump in 1: pumpCount) {
if(j == pumps[ipump ,1]) augmentedMat[i,j] <- addedhead[ipump]

}
}

}
}

}
# print(augmentedMat)
..................

The remainder of the code is unchanged. Listing 39 illustrates the changes in the
input file. We have added a row to indicate how many pumps will be used as the
first record in the file. The last record after the right-hand side vector is the pump
characteristics; one row for each pump. The scripts also test if there are zero pumps
and skip code as needed. Observe we still preserve Link #1 data because its part of
the node-arc matrix, but the length and diameter of the link is irrelevant (but need
to be non-zero because we compute friction factors as if there were a pipe, but never
use them.

Listing 39. Input file with pumps at link#1 in a pipeline network
.

1 <== how many pumps
4
6
1.00 0.67 0.67 0.67 0.67 0.5 <== link #1 needs values as placeholders , but are not used
800 800 700 700 800 600
0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
0.000011
1 1 1 1 1 1
1 -1 0 -1 0 0
0 1 -1 0 0 1
0 0 0 1 -1 -1
0 0 1 0 1 0
0 4 3 1 0 0 0 0 0 0
1 100.54 0.25 2.0 <== Pump Link ID, H\_shutoff , K\_pump , Exponent

Figure 90 is a screen capture of the example problem run in R Studio. The script
produces the correct flow values, and the pump specified was intended to match the

39This approach is decidedly a hack for illustration purposes. A more advanced program would
probably just treat everything as a link and use a similar database build structure to determine if
a link is a head loss or head add link. My reasoning is that there will be fewer pumps than pipes
in any system, so overwriting a fictitious pipe is not too much trouble.
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Figure 90. Pipe Network with a Pump.

previous problem closely in that it produces enough head so that node N1 has nearly
the same head value as the problem without a pump.

10.1.2 Fitting (Minor) Losses

In addition to head loss in the conduit, other losses are created by inlets, outlets,
transitions, and other connections in the system. In fact such losses can be used to
measure discharge (think of the orifice plate in the fluids laboratory). The fittings
create additional turbulence that generates heat and produces the head loss.

Equation 107 is the typical loss model

hminor = K
V 2

2g
(107)

where K is called a minor loss coefficient, and is tabulated (e.g. Table 6) for various
kinds of fittings.

The use is straightforward, and multiple fittings are summed in the loss term in the
energy equation. In practical computation, these losses make the most sense when
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Table 6. Minor Loss Coefficients for Different Fittings.
Fitting Type K

Tee, Flanged, Line Flow 0.2
Tee, Threaded, Line Flow 0.9
Tee, Flanged, Branched Flow 1.0
Tee, Threaded , Branch Flow 2.0
Union, Threaded 0.08
Elbow, Flanged Regular 90o 0.3
Elbow, Threaded Regular 90o 1.5
Elbow, Threaded Regular 45o 0.4
Elbow, Flanged Long Radius 90o 0.2
Elbow, Threaded Long Radius 90o 0.7
Elbow, Flanged Long Radius 45o 0.2
Return Bend, Flanged 180o 0.2
Return Bend, Threaded 180o 1.5
Globe Valve, Fully Open 10
Angle Valve, Fully Open 2
Gate Valve, Fully Open 0.15
Gate Valve, 1/4 Closed 0.26
Gate Valve, 1/2 Closed 2.1
Gate Valve, 3/4 Closed 17
Swing Check Valve, Forward Flow 2
Ball Valve, Fully Open 0.05
Ball Valve, 1/3 Closed 5.5
Ball Valve, 2/3 Closed 200
Diaphragm Valve, Open 2.3
Diaphragm Valve, Half Open 4.3
Diaphragm Valve, 1/4 Open 21
Water meter 7

associated with a particular pipe. If we rewrite the loss equation

hminor =
K

2g

16Q2

π2D4
(108)

we see that these terms can be added to a pipe either as an additional loss term and
placed in the augmented matrix in the same way as the other loss term.

10.1.3 Extracted Head — Turbines

The head recovered by a turbine is also an “added head” but appears on the loss side
of the equation. Equation 109 is the power that can be recovered by a turbine (again
using the concept of “water-to-wire” efficiency is

P = ηQρght (109)

An approach similar to pumps would be employed — the effort in all these cases is to
represent the hydraulic components as a loss factor so the non-linear solver we have
already built can be used.
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11 Pipeline Transients — Water Hammer

Unsteady flow in closed conduits is important for estimating the forces involved from
a sudden change in discharge from a pump failing (or starting), or the closing (or
opening) of a valve. The flow variation will create a pressure wave traveling along
the pipe.40 The computational goal is to estimate the magnitude and timing of these
extreme pressures to evaluate the safety of the conduit, or design a pump shutdown
(or startup) or valve operation protocol to control these extreme pressures to some
acceptable magnitude.

11.1 Analysis

If the conduit walls are treated as elastic material, and the liquid is compressible the
velocity of a wave along the conduit is

c =

√
1

ρ( 1
Ef

+ D
Ec·e)

(110)

The value c is called the celerity, Ef is the fluid modulus of elasticity, D is the conduit
diameter, Ec is the pipe material modulus of elasticity, e is the conduit wall thickness.
Typical values for water are Ef = 2.2×109 Pa and for steel Ec = 160×109 Pa.

The pipe is approximated as a series of steel rings (all in line, negligible Poisson ratio)
with uniform internal pressure in each ring (but can be different for adjacent rings).
The relative pressure head inside the pipe at any given ring is related to the pipe
diameter as

H =
2c2

g
×

d
2
− d0

2
d
2

(111)

where d
2

is the radius under pressure head H and d0

2
is the radius when pressure head

is zero gage.41

The continuity equation is written for each ring, and a force balance is written between
each ring.42

40These waves will travel in alternating directions as they find boundaries as each end of the dis-
turbed discharge conduit – in some sense the pimeplin becomes a resonant chamber. Over time
the magnitude of the waves will decrease as friction dissipates the energy. During these transients
high and low pressures are applied to the pipe walls and fixtures and can concievably damage
them.

411 atmosphere absolute. It is usually easier to work with gage pressure in practice.
42The time to drain problem is mildly similar the tanks represent a ring where the change in depth

(head) is related to outflow velocity; the outflow velocity is related to force at the outlet – in that
case the pressure force of the water above the outlet; Bernoulli’s equation for that case simplified
the work considerably. Here we will have a series of tanks (rings) that communicate pressure head
and velocity between them. We will arrive at a staggered spatial and temporal grid.
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The resulting coupled set of differential equations are

∂V
∂t

+V ∂V
∂x

+g ∂H
∂x

= −2τ0
r

∂H
∂t

+V ∂H
∂x

+ c2

g
∂V
∂x

= 0
(112)

The shear wall stress is τ0 and the entire term is usefully approximated as

2τ0

r
=
fV |V |

2d
(113)

where f is a friction factor (Darcy-Wiesbach). The finite-difference approximation
of the above equations is challenging for a variety of reasons, however a useful sim-
plification can be achieved by neglecting the non-linear terms and assuming friction
terms are small relative to the time-scale of the problem at a particular location. The
resulting simplified model is

∂V
∂t

+g ∂H
∂x

+fV |V |
2d

= 0

∂H
∂t

+ c2

g
∂V
∂x

= 0

(114)

The model is completed by specification of initial and boundary conditions. The
velocity and pressure heads are determined before the initiation of the flow change.
For the development herein, we will use the simplest boundary conditions which are
a specified head at one end of our pipeline (a reservoir) and a specified velocity at
the other end of our pipeline. A reasonably simple model of a valve-type condition
is

V (t) =
A(t)

A0

√
2gH(t) (115)

where A(t) is the time varying open area of the conduit at the valve, and A0 is the
cross sectional area of the conduit when fully open. For an instant close or open A(t)
is a step function.

11.2 Explicit Finite-Difference Model

An explicit finite-difference scheme (much like the tank-drain model, but there are
coupled components of H and V ) can be constructed using a staggered space-time
grid like that depicted in Figure 91.

The figure depicts the spatial dimension along the horizontal axis. Each index value
(i, i+1, i+2, . . . ) labeled as a circle in the figure represents the interface between
two “rings, and fluid flow values are computed at these locations. Each index value
labeled as a triangle in the figure represents the space within a “ring” and the head
values are computed at these locations. Thus in the figure, location i (solid vertical
lines) is the interface between rings i-1 and i. The values of head in the i-1 and i ring
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Figure 91. Staggered grid (in space and time).

determine the velocity that traverses the ring interface. For instance if the head in i-1
is larger than in ring i, flow should be from left to right in that time interval.

A similar staggered structure is depicted in the vertical time domain. Time levels
are treated in the same fashion where all the head values are used to update veloc-
ity values, then these updated velocity values are in turn used to update the head
values.

The boundary conditions are applied at each end of the computational domain –
Typically node 1 where head is a fixed value, and velocity depends on the head in
node 2, and node N, where velocity is determined from the valve model, and head at
N-1 is computed.

The application of the finite-difference equations to the linearized set of partial dif-
ferential equations for any interior node (of either type) is

V
n+3/2
i −V n+1/2

i

∆t
+ g

Hn+1
i −Hn+1/2

i−1

∆x
+

fV
n+1/2
i |V n+1/2

i |
2d

= 0

Hn+1
i −Hn

i

∆t
+ c2

g

V
n+1/2
i+1 −V n+1/2

i

∆x
= 0

(116)
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11.3 An Example R Implementation

Figure 92 is a sketch showing a pipeline supplied by a reservoir on the left with
constant head of 5 meters. The reservoir will be quite large relative to the volume
in the pipeline – think of Lake Mead on Boulder Canyon (Hoover Dam), and the
pipeline is a supply pipe to a water treatment plant for a nearby community.

Figure 92. Pipeline with a constant head reservoir at the left side, and a valve shutdown at the right
side.

The pipeline itself is 6 kilometers long (about 3.5 miles), with a diameter of 0.5 meters
(about 18 inches) , and the pipe wall thickness is 4 millimeters (a little under 1/4
inch thick). The steady flow velocity with the valve open is 9.9 meters/second (30
feet per second – really fast for real pipes).

The valve is closed over a 2 second interval, with linear decrease in outlet area during
the closure. Neglecting frictional losses in the system, compute and plot the pressures
at the valve for a 250-second duration.

The script to accomplish these computations is shown in Listing 40. The code includes
provision for the friction term, here we will just set it to zero. The code also sets time
step size based on the Courant condition. The Courant number must equal unity for
the algorithm to be stable.
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Listing 40. R Code to compute for a pipeline transient example
.

##########################################################################################
# Pipeline Transients using Explicit Finite Differences (linearized formulation) #
##########################################################################################
rm(list=ls()) # deallocate memory
######## prototype functions ###############
celerity <- function(density ,elasticity_fluid ,elasticity_solid ,diameter ,thickness){

temp1 <- 1.0/ elasticity_fluid
temp2 <- diameter /( elasticity_solid*thickness)
temp3 <- temp1 + temp2
temp4 <- density*temp3
celerity <- sqrt (1.0/ temp4)
return(celerity)

}
### Simulator Code ##############################
# Simulation Conditions (this section could be replaced with an input file)
# fluid properties
density <- 1000 #kg/m^3
elasticity_fluid <- 2.0e09 #Pa
elasticity_solid <- 160.0 e09 #Pa
diameter <- 0.500 #m
thickness <- 0.004 #m
cc <- celerity(density ,elasticity_fluid ,elasticity_solid ,diameter ,thickness)
print(cc)
# simulation properties
deltax <- 600 #meters
courantRatio <- 0.99 #select courant ratio to set time step. If bigger than 1 unstable
deltat <- courantRatio *( deltax/cc) # force to be courant number for stability
# allocate head and velocity vectors , assign initial values
startHead <- 5.0 #meters
startVelo <- 9.9 #meters/second
pipeLength <- 6000 #meters
closeTime <- 2.0 #seconds
simulationDuration <- 250 #seconds
frictionFactor <- 0.015 #Moody Chart
cellCount <- as.integer (( pipeLength /600) +1)
head <- numeric (0)
velocity <- numeric (0)
for(i in 1: cellCount){

head[i]<-startHead
velocity[i]<-startVelo

}
# useful constants
dtdx <- deltat/deltax
cc2g <- cc ^2/9.81
do2 <- 1.0/( diameter *2) #used when friction included
# allocate some output vectors
etime <-numeric (0)
headvalve <-numeric (0)
velocitytank <-numeric (0)
# simulation values
etime [1] <- 0
headvalve [1] <- head[cellCount]
velocitytank [1] <-velocity [1]
######################
# Time Stepping Loop #
######################
maxiter <- 1+ simulationDuration/deltat
for(itime in 2: maxiter){

etime[itime]<-etime[itime -1]+ deltat
###### valve closure model ##############

closeRatio <- 1.0 - (etime[itime]/ closeTime)
if(closeRatio >= 0.0){
velocity[cellCount] <- closeRatio*sqrt (2*9.8*( head [1]))
}
else{
velocity[cellCount] <- 0
}

####### update velocity #########
for(i in 1:( cellCount -1)){

friction <- frictionFactor*velocity[i]*abs(velocity[i])*do2
velocity[i]= velocity[i] -9.81* dtdx*(head[i+1]-head[i])-deltat*friction

}
####### update head #########
for(i in 2:( cellCount)){

head[i]=head[i]-cc2g*dtdx*( velocity[i]-velocity[i-1])
}
headvalve[itime]<-head[cellCount]
velocitytank[itime] <-velocity [1]
}
# report results
message (" Maximum head at valve : ",max(headvalve))
message (" Minimum head at valve : ",min(headvalve))
# plot results
par(mfrow=c(2,1))
plot(etime ,headvalve ,type="l",pch=19,lwd=3,tck=1,xlab="Time (seconds)",ylab="Head at Valve

(meters)",col="red")
plot(etime ,velocitytank ,type="l",pch=19,lwd=3,tck=1,xlab="Time (seconds)",ylab=" Velocity at

Tank (meters/sec)",col="blue")
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The listing seems elaborate, but it is relatively simple. First is a prototype function
for the celerity. Next material properties and simulation characteristics are supplied.
For the code to be more general, one would probably move a lot of these assignments
into a file read structure.

Once everything is ready, the algorithm begins time-stepping. Within any single time
step the following activities are performed:

1. Determine the downstream velocity at the valve based on the required closure
model.

2. Update the velocity in each interior interface (1 to the section before the valve).

3. Update the head in each interior cell (2 to the last cell, which is upstream of
the valve).

4. Record the head at the valve, and the velocity at the tank exit.

When the requisite time steps are completed, then report and plot the results.

Figure 93 is the example presented herein using R Studio. The friction factor was
set to 0, and the courant ratio was set to 1. The head at the valve oscillates from
+∆ H to −∆ H, and the velocity repeatedly changes direction an value from +9.9
t0 -9.9 meters per second, exactly phase shifted relative to head by one-half cycle.
The time for the values to change is twice the pipeline length divided by the wave
speed.

Figure 93. Pipeline transient simulation.

Now if we add the friction term say f = 0.015 which would be a value for a smooth
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pipe (especially at the flow velocities in the example) the effect of frictional damping
is evident in the simulation and is displayed in Figure 94

Figure 94. Pipeline simulation with friction.

Exercises

Exercise Set ES-9 On Class Server
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12 Open Channel Flow

This chapter derives the St. Venant equations for one-dimensional (1-D) open channel
flow. The equations were originally developed in the 1850’s, so the concept is not very
new. The tools have changed since that time; computational methods have greatly
increased the utility of these equations.

12.1 St. Venant Equations

In general, 1-D unsteady flow would be considered state-of-practice computation;
every engineer would be expected to be able to make such calculations (albeit using
software). 2-D computation is becoming routine using general purpose software. 3-D
computation as of this writing (circa 2009) is still in the realm of state-of-art, and
would not be within the capability a typical consulting firm.

The conservation of mass, momentum, and energy in the context of the cell balance
method is used to develop the mathematical and computational structure. The cell
balance is a computational structure that is analogous to the Reynolds transport
theorem, except the end result are difference equations that can be updates to ap-
proximate physical processes. We later employ the method for porous media flow.
The philosophy is a hybrid approach – instead of developing the differential equations
first, then numerical approximations, the numerical constructs are built directly and
the limiting process is employed to demonstrate that the constructs indeed mimic the
differential equations that describe our current understanding of the physics.

12.1.1 The Computational Cell

The cell balance method envisions the world as representable by a computational cell
(or more typically a collection of cells) with some finite dimension, fixed in space
about a cell centroid. Some dimensions are changeable – such as depth.43

The fundamental computational element is a computational cell or a reach.44 Figure
95 is a sketch of a portion of a channel. The left-most section is uphill (and upstream)
of the right-most section. The section geometry is arbitrary, but is drawn to look like
a channel cross section.

The length of the reach (distance between each section along the flow path) is ∆x.
The depth of liquid in the section is z, the width at the free surface is B(z), the

43This concept is distinct from a particle view of the world, which will be explored in future versions
of this course.

44Some professional software, in particular HEC-RAS, considers a reach to be a specific portion of
a river system that may be comprised of several computational sub-reaches (cells). The engineer
will need to consider the context and the tool used to decide which way to describe their problem
— and it is quite possible that the author of this document may be wrong in terminology!
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functional relationship established by the channel geometry. The flow into the reach
on the upstream face is Q− ∂Q

∂x
∗ ∆x

2
. The flow out of the reach on the downstream face

is Q+ ∂Q
∂x
∗ ∆x

2
. The direction is strictly a sign convention and the development does

not require flow in a single direction. The topographic slope is S0, assumed relatively
constant in each reach, but can vary between reaches.

Figure 95. Reach/Computational Cell.

12.1.2 Assumptions

The development of the unsteady flow equations in this chapter uses several assump-
tions:

1. The pressure distribution at any section is hydrostatic — this assumption allows
computation of pressure force as a function of depth.

2. Wavelengths are long relative to flow depth — this is called the shallow wave
theory.

3. Channel slopes are small enough so that the topographic slope is roughly equal
to the tangent of the angle formed by the channel bottom and the horizontal.

4. The flow is one-dimensional — this assumption implies that longitudinal di-
mension is large relative to cross sectional dimension. Generally river flows will
meet this assumption, it fails in estuaries where the spatial dimensions (length
and width) are roughly equal. Thus rivers that are hundreds of feet wide im-
ply that reaches are miles long. If this assumption cannot be met, then 2-D
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methods are more appropriate.

5. Friction is modeled by Chezy or Manning’s type empirical models. The partic-
ular friction model does not really matter, but historically these equations have
used the friction slope concept as computed from one of these empirical models.

The tools that are used to build the equations are conservation of mass and linear
momentum.

12.1.3 Conservation of Mass

The conservation of mass in the cell is the statement that mass entering and leaving
the cell is balanced by the accumulation or lass of mass within the cell. For pedagog-
ical clarity, this section goes through each part of a mass balance then assembles into
a difference equation of interest.

Mass Entering: Mass enters from the left of the cell in our sketch. This direction only
establishes a direction convention and negative flux means the arrow points in the
direction opposite of that in the sketch. In the notation of the sketch mass entering
in a short time interval is:

Ṁin = ρ ∗ (Q− ∂Q

∂x
∗ ∆x

2
) ∗∆t (117)

where ρ is the fluid density. Notice that the mass flux is evaluated at the cell interface
and not the centroid, while by convention ρ is assumed to be defined as an average
cell property.

Mass Leaving: Mass leaves from the right of the cell in our sketch. In the notation
of the sketch mass leaving is:

Ṁout = ρ ∗ (Q+
∂Q

∂x
∗ ∆x

2
) ∗∆t (118)

Mass Accumulating: Mass accumulating within the reach is stored in the prism de-
picted in the sketch by the dashed lines. The product of density and prism volume is
the mass added to (or removed from) storage.

The rise in water surface in a short time interval is ∂z
∂t
∗ ∆t. The plan view area of

the prism is B(z)∗∆x. The product of these two terms is the mass added to storage,
expressed as:

Ṁstorage = ρ ∗ (
∂z

∂t
∗∆t) ∗B(z) ∗∆x (119)

Equating the accumulation to the net inflow produces
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ρ ∗ (
∂z

∂t
∗∆t) ∗B(z) ∗∆x = ρ ∗ (Q− ∂Q

∂x
∗ ∆x

2
) ∗∆t− ρ ∗ (Q+

∂Q

∂x
∗ ∆x

2
) ∗∆t (120)

This is the mass balance equation for the reach. If the flow is isothermal, and essen-
tially incompressible then the density is a constant and can be removed from both
sides of the equation.

(
∂z

∂t
∗∆t) ∗B(z) ∗∆x = (Q− ∂Q

∂x
∗ ∆x

2
) ∗∆t− (Q+

∂Q

∂x
∗ ∆x

2
) ∗∆t (121)

Rearranging the right hand side produces

(
∂z

∂t
∗∆t) ∗B(z) ∗∆x = −∂Q

∂x
∗ ∆x

2
∗∆t− ∂Q

∂x
∗ ∆x

2
∗∆t = −∂Q

∂x
∗∆x ∗∆t (122)

Dividing both sides by ∆x ∗∆t yields

(
∂z

∂t
) ∗B(z) = −∂Q

∂x
(123)

This equation is the conventional representation of the conservation of mass in 1-D
open channel flow. If the equation includes lateral inflow the equation is adjusted to
include this additional mass term. The usual lateral inflow is treated as a discharge
per unit length added into the mass balance as expressed in Equation 151.

(
∂z

∂t
) ∗B(z) +

∂Q

∂x
= q (124)

This last equation is one of the two equations that comprise the St. Venant equations.
The other equation is developed from the conservation of linear momentum — the
next section.

12.1.4 Conservation of Momentum

The conservation of momentum is the statement of the change in momentum in the
reach is equal to the net momentum entering the reach plus the sum of the forces on
the water in the reach. As in the mass balance, each component will be considered
separately for pedagogical clarity.

Figure 96 is a sketch of the reach element under consideration, on some non-zero
sloped surface.

Momentum Entering: Momentum entering on the left side of the sketch is
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Figure 96. Equation of motion definition sketch.

ρ ∗QV = ρ ∗ V 2A (125)

Momentum Leaving: Momentum leaving on the right side of the sketch is

ρ ∗QV +
∂

∂x
(ρ ∗QV )δx = ρ ∗ V 2A+

∂

∂x
(ρ ∗ ρ ∗ V 2A)δx (126)

Momentum Accumulating: The momentum accumulating is the rate of change of
linear momentum:

dL

dt
=
d (mV )

dt
=

∂

∂t
(ρ ∗ AV ∗ δx) = ρ ∗ δx ∂

∂t
(ρ ∗ AV ) (127)

Forces on the liquid in the reach:

Gravity forces: The gravitational force on the element is the product of the mass in
the element and the downslope component of acceleration.

The mass in the element is ρ ∗ Aδx

The x-component of acceleration is g sin(α), which is ≈ S0 for small values of
α.

The resulting force of gravity is is the product of these two values:

Fg = ρg ∗ AS0 δx (128)
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Friction forces: Friction force is the product of the shear stress and the contact area.
In the reach the contact area is the product of the reach length and average wetted
perimeter.

Ffr = τ ∗ Pw ∗ δx (129)

where Pw = A/R, R is the hydraulic radius. A good approximation for shear stress in
unsteady flow is τ = ρgRSf . Sf is the slope of the energy grade line at some instant
and is also called the friction slope. This slope can be empirically determined by a
variety of models, typically Chezy’s or Manning’s equation is used. In either of these
two models, we are using a STEADY FLOW equation of motion to mimic unsteady
behavior — nothing wrong, and it is common practice, but this decision does limit
the frequency response of the model (the ability to change fast — hence the shallow
wave theory assumption!).

The resulting friction model is

Ffr = ρgASf ∗ δx (130)

Pressure forces: [Set the equations, backfill discussion next version]

Fp =

∫
A

dF (131)

Figure 97. Pressure integral sketch.
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dF = (z − h)ρgξ(h)dh (132)

where ξ(h) is the width of the panel at a given distance above the channel bottom
(h) at any section.

Fp net = Fp up − Fp down (133)

Fp net = Fp − (Fp +
∂Fp
∂x
∗ δx) = −∂Fp

∂x
∗ δx (134)

−∂Fp
∂x
∗ δx = − ∂

∂x
[

∫ Z

0

ρg(z − h)ξ(h)dh]δx (135)

Fp net = −ρg[
∂z

∂x

∫ Z

0

ξ(h)dh+

∫ Z

0

(z − h)ξ(h)
∂ξ(h)

∂x
dh]δx (136)

The first term integrates to the cross sectional area, the second term is the variation
in pressure with position along the channel.

The other pressure force to consider is the bank force (the pressure force exerted by
the banks on the element). This force is computed using the same type of integral
structure except the order is swapped.

Fp bank = [

∫ Z

0

ρg(z − h)
∂ξ(h)

∂x
δx]dh (137)

Now we put everything together.

Momentumin −Momentumout +
∑

F =
d(mV )

dt
(138)

Substitution of the pieces:

Momentumin−Momentumout +Fp net +Fbank +Fgravity −Ffriction =
d(mV )

dt
(139)

Now when the expressions for each expressions for each part
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ρ ∗ V 2A− ρ ∗ V 2A− ∂

∂x
(ρ ∗ V 2A)δx

−ρg ∂z
∂x

∫ Z

0

ξ(h)dhδx− [

∫ Z

0

ρg(z − h)
∂ξ(h)

∂x
dh]δx

+[

∫ Z

0

ρg(z − h)
∂ξ(h)

∂x
δx]dh

+ρg ∗ AS0 δx

−(ρgRSf ∗ δx)

= ρ ∗ δx ∂
∂t

(ρ ∗ g ∗ AV )

(140)

Each row of Equation 140 is in order:

1. Net momentum entering the reach.

2. Pressure force differential at the end sections.

3. Pressure force on the channel sides.

4. Gravitational force.

5. Frictional force opposing flow.

6. Total acceleration in the reach (change in linear momentum).

Canceling terms and dividing by ρδx (isothermal, incompressible flow; reach has finite
length) Equation 140 simplifies to

− ∂

∂x
(V 2A)− g ∂z

∂x

∫ Z

0

ξ(h)dh+ g ∗ AS0 − (gRSf∗) =
∂

∂t
(g ∗ AV ) (141)

The second term integral is the sectional flow area, so it simplifies to

− ∂

∂x
(V 2A)− g ∂z

∂x
A+ gAS0 − gASf =

∂

∂t
(AV ) (142)

The term with the square of mean section velocity is expanded by the chain rule, and
using continunity becomes (notice the convective acceleration term from the change
in area with time)

∂

∂t
(AV ) = A

∂V

∂t
+ V

∂A

∂t
= A

∂V

∂t
− V A∂V

∂x
− V 2∂A

∂x
(143)
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Now expand and construct

−V 2∂A

∂x
− 2V A

∂V

∂x
− gA∂z

∂x
+ gA(S0 − Sf ) = A

∂V

∂t
− V A∂V

∂x
− V 2∂A

∂x
(144)

Cancel common terms and simplify

−V A∂V
∂x
− gA∂z

∂x
+ gA(S0 − Sf ) = A

∂V

∂t
(145)

Equation 145 is the final form of the momentum equation for practical use. It will be
rearranged in the remainder of this essay to fit some other purposes, but this is the
expression of momentum in the channel reach.

Divide by gA and obtain

−V
g

∂V

∂x
− ∂z

∂x
+ (S0 − Sf ) =

1

g

∂V

∂t
(146)

Now rearrange to place the two slopes on the left side, and the remaining part of
momentum to the right side. Equation 147 let’s us examine the several flow regimes
common in open channel flows.

S0 − Sf =
1

g

∂V

∂t
+
∂z

∂x
+
V

g

∂V

∂x
(147)

If the local acceleration (first term on the right) is zero, the depth taper (middle
term on the right) is zero45, and the convective acceleration (last term on the right)
is zero, then the expression degenerates to the algebraic equation of normal flow
(S0 = Sf ). If just the local acceleration term is zero, and all the remaining terms
are considered, then the expression degenerates to the ordinary differential equation
of gradually varied flow. Finally, if all the terms are retained, then the dynamic flow
(shallow wave) conditions are in effect and the resulting model is a partial differential
equation.

Re-iterating these typical flow regimes.

1. Uniform flow; algebraic equation.

Sf = S0 (148)

45Zero depth taper means constant depth flow.
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2. Gradually varied flow; ordinary differential equation.

Sf = S0 −
∂z

∂x
− V

g

∂V

∂x
(149)

3. Dynamic flow (shallow wave) conditions; partial differential equation.

Sf = S0 −
∂z

∂x
− V

g

∂V

∂x
− 1

g

∂V

∂t
(150)

The coupled pair of equations, Equation 151 for continuity and Equation 152 for
momentum are called the St. Venant equations and comprise a coupled hyperbolic
differential equation system.

(
∂z

∂t
) ∗B(z) +

∂Q

∂x
= q (151)

S0 − Sf −
∂z

∂x
− V

g

∂V

∂x
− 1

g

∂V

∂t
= 0 (152)

Solutions ((z, t) and (V, t) functions) are found by a variety of methods including
finite difference, finite element, finite volume, and characteristics methods.

In the next chapter we will examine solutions to the gradually varied flow equation,
then proceed to a finite difference solution to the full dynamic equations in the fol-
lowing chapter.
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13 Steady Water Surface Profiles

13.1 Steady Uniform Flow

In the previous chapter uniform flow was defines at the situation where friction slope
and channel slope are the same. In this kind of flow the profile grade line (channel
bottom), the hydraulic grade line (water surface), and the energy grade line are all
parallel. The following would be implied

Sf =
∆hL
∆x

= S0 (153)

Suppose we apply the Darcy-Weisbach head loss model (and adapt it for non-circular
conduit)

hL = f
L

4Rh

V 2

2g
(154)

13.2 Steady Gradually Varied Flow

Need a brief theory

13.2.1 Finite Difference Methods — Fixed Depth Change Step Method

The fixed-step refers to fixed changes in depth for which we solve to find the variable
spatial steps. The method is a very simple method for computing water surface
profiles in prismatic channels. A prismatic channel is a channel of uniform cross
sectional geometry46 with constant bed (topographic) slope.

In such channels with smooth (non-jump) steady flow the continunity and momentum
equations are

Q = AV (155)

where Q is volumetric discharge, A is cross sectional flow area, and V is the mean
section velocity.

and

V

g

dV

dx
+
dh

dx
= So − Sf (156)

where h is the flow depth (above the bottom), and x is horizontal the distance along
the channel.

46Channel geometry is same at any section, thus rectangular, trapezoidal, and circular channels if
the characteristic width dimension is constant would be prisimatic.
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For the variable step method, the momentum equation is rewritten as a difference
equation (after application of calculus to gather terms) then rearranged to solve for
the spatial step dimension 47.

V 2
i+1

2g
− V 2

i

2g

∆x
+
hi+1 − hi

∆x
= So − S̄f (157)

where S̄f is the average slope of the energy grade line between two sections (along a
reach of length ∆x, the unknown value).

Rearrangement to isolate ∆x produces an explicit update equation that can be eval-
uated to fond the different values of ∆x associated with different flow depths. The
plot of the accumulated spatial changes versus the sum of the flow depth and bottom
elevation is the water surface profile.

(hi+1 +
V 2
i+1

2g
)− (hi +

V 2
i

2g
)

So − S̄f
= ∆x (158)

The distance between two sections with known discharges is computed using the
equation, all the terms on the left hand side are known values. The mean energy
gradient (S̄f ) is computed from the mean of the velocity, depth, area, and hydraulic
radius for the two sections.

The friction slope can be computed using Manning’s, Chezy, or the Darcy-Weisbach
friction equations adapted for non-circular, free-surface conduits.

13.2.2 Coding the algorithm in R

Here the method is illustrated in R to illustrate the tool as a programming environ-
ment48.

First we build a set of utility functions, these will be used later in the backwater

function:

Listing 41 are utility functions for rectangular channels for flow area given channel
depth and width for rectangular and wetted perimeter given depth and width. Differ-
ent geometries will need different functions (probably by numerical methods rather
than actual functional relationships).

47The equation here is written moving upstream, direction matters for indexing. Thus position i+1
is assumed upstream of position i in this essay. This directional convention is not generally true in
numerical methods and analysts need to use care when developing their own tools or using other
tools. A clever analyst need not rewrite code, but simple interchange of upstream and downstream
depths will handle both backwater and front-water curves.

48The R code in this essay is broken into parts and some unnecessary line feeds are included to fit
the page.
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Listing 41. R Code for prototype hydraulic support functions (for rectangular channels)
.

# Depth -Area Function
area <-function(depth ,width){

area <-depth*width;
return(area)
}

# Wetted perimeter function for rectangular channel
perimeter <-function(depth ,width){

perimeter <-2*depth+width;
return(perimeter)
}

# 2-point average - useful with friction slopes
avg2point <-function(x1,x2){

avg2point < -0.5*(x1+x2);
return(avg2point)
}

Listing 42 is a listing of the code for the hydraulic radius (ratio of the above results),
this is a generic function, it does not need to know the flow geometry

Listing 42. R Code for prototype hydraulic radius function
.

# Hydraulic radius function
radius <-function(area ,perimeter){

radius <-area/perimeter;
return(radius)
}

Listing 43 is a listing of code for the friction slope given Manning’s n, discharge,
hydraulic radius, and flow area. Notice that this function implicitly assumes SI units
(the 1.49 constant in U.S. Customary units is not present). For U.S. Customary units
either add the constant or convert the US units into equivalent SI units.

Listing 43. R Code for prototype friction slope function)
.

# Friction slope function
slope_f <-function(discharge ,mannings_n ,area ,radius){

slope_f <-(discharge ^2)*( mannings_n ^2)/( (radius ^(4/3))*(area ^2) );
return(slope_f)
}

The semi-colons in the functions are probably unnecessary, but have value because it
forces the expression to its left to be evaluated and helps prevent ambiguous49 code.
Also notice the use of the scope { } delimiter, the delimiter is required, however
there is no requirement to line feed — I simply find it easier to read my own code in
this fashion (and count delimiters).

At this point, we would have 5 useful, testable functions (and we should test before
the next step.

Listing 44 is the step-backwater method implemented as a function. This function
computes the space steps, changes in depth, etc. as per the algorithm. The function
is a FORTRAN port, so it is not a terribly efficient use of R, but it illustrates count
controlled repetition (for loops), array indexing, and use of the utility functions to
make the code readable as well as ensure that the parts work before the whole program
is assembled. This concept is really crucial, if you can build a tool of parts that are
known to work, it helps keep logic errors contained to known locations.

49To the human operator; the computer will either accept the code or throw an error.
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Listing 44. R Code for prototype friction slope function)
.

# Backwater curve function
backwater <-function(begin_depth ,end_depth ,how_many ,discharge ,width ,mannings_n ,slope){
#
## Example function call will be shown in class and on movie.
#
# Other functions must exist otherwise will spawn errors
#
# Prepare space for vectors
depth <-numeric (0)
bse <-numeric (0)
wse <-numeric (0)

# change in depth for finding spatial steps
delta_depth <-(begin_depth -end_depth)/( how_many)

# assign downstream value
depth[1]<- begin_depth

# depth values to evaluate
for (i in 2: how_many){depth[i]<-depth[1]-i*delta_depth}

#velocity for each depth
velocity <-discharge/area(depth ,width)

# numeric vector for space steps (destination space)
deltax <-numeric (0)

# next for loop is very FORTRANesque!
for (i in 1:( how_many -1)){
#compute average depth in reach

depth_bar <-avg2point(depth[i],depth[i+1]);
#compute average area in reach

area_bar <-area(depth_bar ,width);
#compute average wetted perimeter

perimeter_bar <-perimeter(depth_bar ,width);
#compute average hydraulic radius

radius_bar <-radius(area_bar ,perimeter_bar);
#compute friction slope

friction <-slope_f(discharge ,mannings_n ,area_bar ,radius_bar)
# compute change in distance for each change in depth

deltax[i]<-( (depth[i+1]+( velocity[i+1]^2) /(2*9.8)
- (depth[i] + (velocity[i]^2) /(2*9.8)) ) / (slope -friction);

}
# space for computing cumulative distances
distance <-numeric (0);
distance [1]<-0;
bse[1]<-0; # bottom elevation at origin
for (i in 2:( how_many)){

distance[i]<-distance[i-1]+ deltax[i-1]; # spatial distances
bse[i]<-bse[i-1]- deltax[i-1]* slope; # bottom elevations
}

wse <-bse+depth # water surface elevations
# output
z<-cbind(distance ,depth ,bse ,wse) # bind output into 4 columns

return(z)
#
}

13.2.3 Example 1 — Backwater curve

Figure 98 is a backwater curve50 for a rectangular channelwith discharge over a weir
(on the right hand side — not depicted). The channel width is 5 meters, bottom
slope 0.001, Manning’s n = 0.02 and discharge Q = 55.4m

3

sec
.

Using the backwater function and some plot calls in R we can duplicate the figure
(assuming the figure is essentially correct).

50Page 85. Koutitas, C.G. (1983). Elements of Computational Hydraulics. Pentech Press, London
138p. ISBN 0-7273-0503-4
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Figure 98. Example backwater curve.

Listing 45. R Console Output when script is run
.

> # here is the function call
> backwater(begin_depth =8, end_depth=5,how_many =31,

+ discharge =55.4, width=5, mannings_n =0.02 , slope =0.001)
distance depth bse wse

[1,] 0.0000 8.000000 0.0000000 8.000000
[2,] -283.3504 7.806452 0.2833504 8.089802
[3,] -428.0112 7.709677 0.4280112 8.137689
[4,] -574.8516 7.612903 0.5748516 8.187755
[5,] -724.0433 7.516129 0.7240433 8.240172
[6,] -875.7785 7.419355 0.8757785 8.295133

... Many Rows ...
[29,] -7186.0943 5.193548 7.1860943 12.379643
[30,] -8389.5396 5.096774 8.3895396 13.486314
[31,] -11393.2010 5.000000 11.3932010 16.393201

Figure 99 is the same situation computed and plotted using the script in this es-
say51.

51With some additions that will be demonstrated in class!
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Figure 99. Backwater curve computed and plotted using R.

13.2.4 Example 2 — Front-water curve

Figure 100 is another illustrative case. Here the water discharges into a horizontal
channel at a rate of 1m

3

sec
per meter width. Assuming Manning’s n ≈ 0.01 we wish

to compute the profile downstream of the gate and determine if it will extend to the
sharp edge52.

We would need to know the critical depth for the section (≈ 0.47meters), then com-
pute the profile moving from the gate downstream (a frontwater curve with respect
to the gate).

With the backwater function, all we really need to do is change the function argu-
ments because it is already built for rectangular channels.

Observe that the distance is now incrementing forward (by choice of begin and end
depths). Figure 101 is the situation computed and plotted using the script.

52Obviously the profile will change a lot near the edge, but the question is will the profile continue
to rise as depicted if the edge were further away?
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Figure 100. example caption.

Listing 46. R Console Output when script is run
.

> # The function --- note the changes in parameter values!
> backwater(begin_depth =0.1, end_depth =0.47, how_many =20,

+ discharge=1,width=1, mannings_n =0.01, slope =0.000)
distance depth bse wse

[1,] 0.00000 0.1000 0 0.1000
... Rows ...
[13,] 79.00486 0.3405 0 0.3405
[14,] 82.82243 0.3590 0 0.3590
... Rows ...
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Figure 101. Frontwater curve computed and plotted using R.
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13.2.5 Finite Difference Methods — Fixed Space Change Method

The fixed-depth change, variable-space result is a useful tool, but not terribly practi-
cal because we mostly perform engineering hydraulics calculations to estimate values
(depth, pressure, force) at prescribed locations in space, so we need another ap-
proach to the problem where we can prescribe the spatial locations, and solve for the
depths.

First the gradually varied flow equation is rearranged for relating the change in specific
energy between two section to the spatial difference and the slope differences as

∆hs = ∆(h+
V 2

2g
) = ∆x(So − Sf ) (159)

The computation of hi+1, Vi+1 from hi, Vi is performed by iteration. An initial value
for hi+1 that is known to be too large is used in Equation 159 along with the known
value of hi to compute a trial value hs(i+1).

Then the trial value is used in the right hand side of Equation 160

hs = (h+
V 2

2g
) (160)

The two trial values are compared and the next value of hi+1 is computed by suces-
sively decreasing until the two values computed by the difference equation and the
definition of specific energy coincide. The example below uses a method from Ham-
ming to make the comparisons and adjust the guesses until they are sufficiently close
enough.

Example (Non-Prismatic Channel), Fixed Spatial Steps)
A plan view of a rectangular channel of variable width as shown in Figure 102.

Figure 102. Non-Prismatic Rectangular Channel.

Page 169 of 278



CE 4333 Practical Computational Hydraulics SUMMER 2017

The channel conveys Q = 100 m3/sec, with a bottom slope of 0.001 and average
Manning’s n value of 0.033. A backwater curve is caused by a weir at the downstream
end (to the right in the figure) by a 7 meter tall weir. Flow depth over the weir is at
critical depth hc = 2.17 meters. Normal flow in the upstream portion for 10-meter
channel width is hn = 5.6 meters. Using the fixed space step method determine and
plot a profile view of the water surface and channel bottom.

Figure 103 is a screen capture of the result for the example problem.

Figure 103. Backwater curve computed and plotted using R.

Listing 47 is an entire listing for the example problem. The listing introduces our
first intricate use of for(...), while(...), and the use of break to control the
program logic. The outer for(...) loop is used to step through the various cross
sections while the two inner while(...) “loops” are used to perform the specific
energy balancing logic and exit under different conditions.

In older languages where goto ... <label> was allowed logical control crossed
over loopback paths. Computer scientists claimed that a goto ... <label> was
unnecessary – this example here was ported from a FORTRAN code from the 1980’s,
and indeed the goto ... <label> statements were not required.
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Listing 47. R script for Backwater Curve by Fixed Space Method
.

###### Fixed Space Step Method for Backwater Curve ###########
#Uses Hamming ’s Method for Matching Specific Energy at Sections
################
imax <- 30 #number of computational stations
dx <- -1000 #spacing between stations
manningsN <- 0.033 #mannings n value
slopeChan <- 0.001 #channel slope
normalD <- 5.6 #upstream station normal depth
controlD <- 9.17 #downstream station control depth
discharge <- 100 #steady discharge
#################
topwidth <- numeric (0) # allocate a topwidth vector
# populate the vector -- should use a file read for general program
topwidth <- c

(10,10,10,11,12,13,14,13,12,11,10,9,8,7,8,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10)
# populate the vector (should convert to a file read)
velo <- rep(0,imax) # allocate a velocity vector , put zeroes everywhere
velo [1] <- discharge/topwidth [1]/ controlD #set velocity at control section
depth <- rep(0,imax) # allocate a depth vector , put zeroes everywhere
depth [1] <- controlD
spDepth <- rep(0,imax) # allocate a sp. depth vector , put zeroes everywhere
spDepth [1] <- ((velo [1]^2) /(2.0*9.81)) + depth [1]
spDepthT <- rep(0,imax) # allocate a sp. depth vector , put zeroes everywhere
#################
for(i in 2:imax){

depth[i] <- 10
difn <- 1.0
dh <- 1.0
while(dh > 0.0001){

dif <- difn
ntest <- 0
depth[i]<-depth[i]-dh

### do while loop 2
while(dh > 0){

velo[i] <- discharge/topwidth[i]/depth[i]
avgDepth <- 0.5*( depth[i-1]+ depth[i])
avgTopW <- 0.5*( topwidth[i-1]+ topwidth[i])
avgV <- discharge/avgTopW/avgDepth
hydR <- avgDepth*avgTopW /( avgTopW +2.0* avgDepth)
sFric <- (avgV ^2)*( manningsN ^2)/(hydR ^(1.33))
spDepth[i] <- spDepth[i-1]+( slopeChan -sFric)*dx
spDepthT[i] <- depth[i]+( velo[i]^2/(2.0*9.81))
difn <- spDepthT[i]-spDepth[i]

# print(difn)
# print(cbind(i,depth[i],spDepth[i],spDepthT[i],dh))

if(ntest > 0){
dh <- dh/10.0
break #break from do while loop 2
}

if(dif*difn > 0){
break #break from do while loop 2

}
depth[i] <- depth[i] + dh
ntest <- 1

} #do while loop 2
} # do while loop 1

} # for loop
##### report results #####
# build x-vector
distance <- seq(0,(imax -1)*dx ,dx)
bottom <- -distance*slopeChan
watersurface <- depth+bottom
plot(distance ,watersurface ,ylim=c(0,max(watersurface)),type="l",col="blue",lwd =3)
lines(distance ,bottom ,col="brown",lwd=3)

13.3 Exercise Set 10

1. Modify the (variable space step method) R code for U.S. Customary units. Use
the modified function to compute the water surface profile for a wide rectangular
channel with Manning’s n = 0.022, bottom slope S0 = 0.0048, and discharge
per unit width of Q

W
= 5ft

3

sec
. Determine how far along the channel x = L does

it take for the flow depth to rise from a value of y = 3.0ft to y = 4.0ft. Is the
4-ft depth position upstream or downstream of the 3-ft depth position? Plot
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the water surface profile.53.

2. Modify the (variable space step method) area and perimeter functions as
well as the backwater functions for a trapezoidal channel. Apply the modified
functions for a trapezoidal channel with a [2 : 1] side slope, 3.5ft bottom width,

0.012 bed slope, that discharges from a reservoir at Q = 185ft
3

sec
. You should

assume the upstream value is at critical depth (≈ 2.7ft) and compute the
profile to within 2% of normal depth. Plot the profile54 .

3. Convert the fixed space step example problem into US customary units. Then
modify the script for US customary units and repeat the example.

These exercises are also located on the class server as ES-10

53Guideline: The profile should extend less than 400 feet for this problem — if your profiles are
going further, there is probably something wrong with your functions or input values.

54Guideline: The profile should extend less than 100 feet for this problem — if your profiles are
going further, there is probably something wrong with your functions or input values.
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14 Finite-Difference Method for Unsteady Open

Channel Flow

Solving the St. Venant Equations is accomplished by mapping the physical system and
the set of partial differential equations into an algebraic structure that a computer
can manipulate. Finite-difference, finite-element, finite-volume, and marker-in-cell
are the typical methods. The simplest form of solution that is conditionally stable
and reasonably straightforward to program is called the Lax-Diffusion scheme.

This scheme is reasonably accurate and useful for practical problems as well as to
learn what goes on under the hood of a professional tool like HEC-RAS.

14.1 Governing Difference Equations – Lax Scheme

The finite-difference analysis converts the two PDEs into an algebraic update struc-
ture and maps boundary conditions onto a computational domain. The two PDEs
are continuity and momentum; they are coupled in the same sense as they were in the
water-hammer part of pipeline flow – the resulting difference scheme will look quite
similar.

14.1.1 Continunity

The continuity equation for a computational cell (reach) is

∂y

∂t
= −A

B

∂V

∂x
− V ∂y

∂x
(161)

A is the depth-area function (a function of x and y). B is the depth-topwidth function
(a function of x and y). The Lax scheme uses spatial averaging to represent the A,
B, and V terms that appear as coefficients on the partial derivatives on the right-
hand side of the equation. The time derivative is accomplished with a conventional
forward-in-time first order

finite difference model, and the spatial derivatives are conventional

first-order centered differences.

14.1.2 Momentum

The momentum equation is

∂V

∂t
= g(S0 − Sf )− V

∂V

∂x
− g ∂y

∂x
(162)
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and also uses spatial averages for the coefficients on the spatial derivatives in the right
hand side of the equation as well as spatial averages for the friction and topographic
slopes. Friction slope can be recovered using any resistance model, Chezy-Manning’s
is typical.

14.2 Mapping from the Physical to Computational Domain

The next important step is to map the physical world to the computer world.

Figure 104. Plan view of a stream. Flow in figure is from left to right.

Figure 104 is a schematic of a stream that is to be modeled. The stream has some
width, depth, and path. The dashed line in the figure is the thalweg and is the
pathline of the stream. Distances in the computational model are along this path.
The conventional orientation is “looking downstream.” So when the cross sections are
stationed the distances in a cross section are usually referenced as distanced from the
left bank, looking downstream.

Figure 105 is a schematic that depicts the relationship of left-bank, cross section,
elevations, and such – all referenced to the concept of “looking downstream.”

Figure 105. Schematic of relationship of cross-section, elevation, and left bank.
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Figure 106 is a schematic of the next step of mapping into the computational do-
main.

Figure 106. Schematic of physical interpretation of a reach, cell, and node.

In the figure the stream is divided into cells called reaches (or cells, depends on
context and author). The centroid of the reach is canned the node, and most of
the arithmetic is written with the understanding that all properties of the reach are
somehow “averaged” and these averages are assigned to these nodes. Adjacent nodes
are connected (in the computer) by links. The continuity and momentum equations
collectively describe the node average behavior (such as depth) and link behavior
(such as momentum flux).

Figure 107 is a schematic of three adjacent nodes that is used to develop the difference
equations.

Figure 107. Schematic of three adjacent nodes, with average depth and section velocity depicted at
the node. Different schemes map these quantities to different places in the cell – often velocities are
at cell interfaces.
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In the figure both the velocities and depths are mapped to the node (Lax-Diffusion
scheme), but other schemes map the velocities to the interfaces. Again this decision
affects the differencing scheme; the differencing scheme chooses the location. A kind
of chicken and egg situation.

At this point the mapping has abstracted considerably from the physical world and
the computer world loses sense of sinuosity. In this development, we will assume the
reach lengths are all the same value, the velocities are all parallel to the local thalweg
and perpendicular to the cross sections, and the depth is measured from the channel
bottom. The differencing scheme then replaces the continuity and momentum PDEs
with update equations to map the water surface position and mean section velocity at
the nodes to different moments in time. The updating is called time-stepping.

14.3 Building the Difference Equations

The partial derivatives are replaced with difference quotients that approximate their
behavior. The mapping in some sense influences the resulting difference scheme.

14.3.1 Time Differences

The naive time difference is
∂y

∂t
≈ yt+∆t

i − yti
∆t

(163)

Lax replaced the known time-level term with its spatial average from adjacent cells.
For the depth;

∂y

∂t
≈

yt+∆t
i − 1

2
(yti−1 + yti+1

∆t
(164)

Similarly for mean section velocity

∂V

∂t
≈

V t+∆t
i − 1

2
(V t

i−1 + V t
i+1

∆t
(165)

14.3.2 Space Differences

Lax used centered differences for the spatial derivatives

∂y

∂x
≈

yti+1 − yti−1

2∆x
(166)

∂V

∂x
≈

V t
i+1 − V t

i−1

2∆x
(167)
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Lax also used spatial averages for the depth-area and slope functions

1

2
(
A

B
|ti−1 +

A

B
|ti+1) (168)

1

2
(Stf,i−1 + Stf,i+1) (169)

These difference formulations are substituted into continunity and momentum and
then rearranged to isolate the terms at the t+ ∆t time level.

14.3.3 Continunity

Starting with the PDE,
∂y

∂t
= −A

B

∂V

∂x
− V ∂y

∂x
(170)

first replace the time derivative

yt+∆t
i − 1

2
(yti−1 + yti+1

∆t
= −A

B

∂V

∂x
− V ∂y

∂x
(171)

then replace the space derivatives

yt+∆t
i − 1

2
(yti−1 + yti+1

∆t
= −A

B

V t
i+1 − V t

i−1

2∆x
− V

yti+1 − yti−1

2∆x
(172)

then the spatial averages for the remaining terms.

yt+∆t
i − 1

2
(yti−1+yti+1)

∆t
= −1

2
(A
B
|ti−1 + A

B
|ti+1)

V t
i+1−V t

i−1

2∆x
− 1

2
(V t

f,i−1 + V t
f,i+1)

yti+1−yti−1

2∆x (173)

Next multiply by ∆t

yt+∆t
i − 1

2
(yti−1 + yti+1) = −∆t1

2
(A
B
|ti−1 + A

B
|ti+1)

V t
i+1−V t

i−1

2∆x
−∆t1

2
(V t

f,i−1 + V t
f,i+1)

yti+1−yti−1

2∆x

(174)
Move the time level t term to the right hand side

yt+∆t
i = 1

2
(yti−1 + yti+1)−∆t1

2
(A
B
|ti−1 + A

B
|ti+1)

V t
i+1−V t

i−1

2∆x
−∆t1

2
(V t

f,i−1 + V t
f,i+1)

yti+1−yti−1

2∆x

(175)
Rename the constant ∆t

2∆x
= r and simplify

yt+∆t
i = 1

2
(yti−1 + yti+1)− r

2
(A
B
|ti−1 + A

B
|ti+1)(V t

i+1 − V t
i−1)− r

2
(V t

f,i−1 + V t
f,i+1)(yti+1 − yti−1)

(176)
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14.3.4 Momentum

Again, starting with the PDE, make the time substitution

V t+∆t
i − 1

2
(V t

i−1 + V t
i+1)

∆t
= g(S0 − Sf )− V

∂V

∂x
− g ∂y

∂x
(177)

next the space derivatives

V t+∆t
i − 1

2
(V t

i−1+V t
i+1)

∆t
= g(S0 − Sf )− V

V t
i+1−V t

i−1

2∆x
− g y

t
i+1−yti−1

2∆x (178)

then the spatial averages55

V t+∆t
i − 1

2
(V t

i−1+V t
i+1)

∆t
= g(S0 − 1

2
(Stf,i−1 + Stf,i+1))− 1

2
(V t

i−1 + V t
i+1)

V t
i+1−V t

i−1

2∆x
− g y

t
i+1−yti−1

2∆x

(179)
Multiply by ∆t

V t+∆t
i − 1

2
(V t

i−1 + V t
i+1) = ∆tg(S0 − 1

2
(Stf,i−1 + Stf,i+1))−∆t1

2
(V t

i−1 + V t
i+1)

V t
i+1−V t

i−1

2∆x
−∆tg

yti+1−yti−1

2∆x

(180)
Rename the constant ∆t

2∆x
= r and isolate the t+ ∆t term

V t+∆t
i = 1

2
(V t

i−1 + V t
i+1) + ∆tg(S0 − 1

2
(Stf,i−1 + Stf,i+1))− r

2
(V t

i−1 + V t
i+1)(V t

i+1 − V t
i−1)− rg(yti+1 − yti−1)

(181)

The pair of update equations, Equation 176 and 181 are the interior point update
equations.

Figure 108 depicts the updating information transfer. At each cell the three known
values of a variable (y or V ) are projected to the next time line as depicted in the
figure. Boundary conditions are the next challenge. These are usually handled using
characteristic equations (unless the boundaries are really simple).

14.3.5 Example 1 – Steady flow in a rectangular channel

The backwater curve situation for a rectangular channel with discharge over a weir
is repeated. The channel width is 5 meters, bottom slope 0.001, Manning’s n = 0.02
and discharge Q = 55.4m

3

sec
. We will start with the flow depth artificially large and

observe that the transient solver will eventually produce an equilibrium solution that
is the same as the steady-flow solver. Generally such a simulation is a good idea
to test a new algorithm – it should be stable enough to convereg to and maintain a
steady solution.

55If the channel slope is changing, then this would be subjected to a spatial averaging scheme too!
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Figure 108. Relation of the linked reaches to solution of the equations in the XT-plane. Explicit up-
dating (as used herein) uses the three values at the known time level to project (update) the unknown
value at the next time level. Boundary behavior is an independent calculation, dependent on the evolu-
tion of the interior solution.

A script that implements these concepts is listed on the next several pages. The script
is comprised of several parts, and for the sake of taking advantage of the ability of
R to read and operate on files, the script will have several “libraries” that read by a
main control program. The main program controls the overall solution process, while
the library functions can be built and tested in advance.

First are prototype functions for the hydraulic components associated with the chan-
nel geometry, shown on listing 48.

Listing 48. R code demonstrating prototype hydraulic functions.

# hydraulic functions -- save in file named <lax -diffusion -hydraulics -lib.R>
# depth == flow depth
# bottom == bottom width of trapezoidal channel
# side == side slope (same value both sides) of trapezoidal channel
# computed values:
# bt == computed topwidth :: ar == flow area , used in fd update :: wp == wetted perimeter ,

used in fd update
bt <- function(depth ,bottom ,side){ # depth -topwidth function
topwidth <- (bottom + 2.0* side*depth);
return(topwidth);

} # tested 12 MAR2015 TGC
ar <- function(depth ,bottom ,side){ # depth area function
area <- (depth*( bottom+side*depth));
return(area)

} # tested 12 MAR2015 TGC
# depth perimeter
wp <- function(depth ,bottom ,side){
perimeter <- (bottom +2.0* depth*sqrt (1.0+ side*side));
return(perimeter)

} # tested 12 MAR2015 TGC

The next set of functions are prototype functions for reporting the output – it will
be cleaner to build the output functions separate from the control program, and send
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the necessary vectors when we want to actually print results. Listing 49 is a listing
of such functions (albeit specific to the particular code).

Listing 49. R code demonstrating prototype display (printing) functions.

# display functions -- save in a file named <lax -diffusion -display -lib.R>
###### Message Functions #####################
writenow <- function(t,dt ,y,v,b0,s) { # printing functions
message (" __________ ")
message ("Time = ",t," seconds .","Time step length = ",dt ," seconds ")
aa <- ar(y,b0 ,s);
qq <- aa*v
brb <- bt(y,b0,s)
ww <- wp(y,b0 ,s)
message("--in write now ----")
print(cbind(y,qq,v,qq,brb ,ww ,zz))
message("-----------------")
return () #observe a NULL return , this function messages to the output device , so there is

nothing to return.
}
###### Plotting Functions #####################
plotnow <-function(t,x,y,v){
mainlabel=c("Flow Depth at time = ",t," seconds ")

plot(x,y,main=mainlabel ,xlab=" distance (m)",ylab="depth (m)",xlim=c(0 ,30000),ylim=c
(0,15),type="l",lwd=3,col="blue")

lines(x,v,lwd=3,col="red",type="l")
return () #observe a NULL return , this function plots to the graphics device , so there is

nothing to return.
}

Listing 50. R code demonstrating prototype finite-difference formulation/function.

###### Finite Difference Functions ############
finitedifference <-function (){
r <- 0.5*dt/dx;
###### LEFT BOUNDARY ##########
## MODIFY TO A REFLECTION BOUNDARY ##
## THEN SUPPLY DISCHARGE TO THE FIRST CELL AND USE CONTINUNITY TO FIND DEPTH ##
## qq is the interpolated hydrograph flow value
#debug message ("left boundary ",qq$y)
#debug message ("left boundary ",y[1])
#######################################################
vp[1] <<- qq$y/ar(y[1],b0,s);
ab <- ar(y[2],b0,s);
bb <- bt(y[2],b0,s);
cb <- sqrt(g*bb/ab);
rb <- ab/wp(y[2],b0,s);
sfb <- (mn2*v[2]*v[2])/(rb ^(1.333));
#debug print(cbind(ab,bb ,cb,rb ,sfb));
cn <- v[2] -cb*y[2]+ g*(s0-sfb)*dt;
yp[1] <<- (vp[1] - cn )/cb;
######################################################
### gives y,v at location 1 time level k+1
#debug message("--left bndry ----")
#debug print(cbind(y,yp,v,vp,sfb ,cn,rb));
######## RIGHT BOUNDARY ##############
## MODIFY TO A FREE OUTFALL
## USE A WEIR EQUATION BASED ON SOME REFERENCE DEPTH
vp[nn]<<- (y[n]-yd)*sqrt (9.8*y[n]);
## USE CHARACTERISTIC LINE TO FIND ASSOCIATED DEPTH
aa <- ar(y[n],b0,s);
ba <- bt(y[n],b0,s);
ca <- sqrt(g*ba/aa);
ra <- aa/wp(y[n],b0,s);
sfa <- (mn2*v[n]*v[n])/(ra ^(4.0/3.0));
cp <- v[n] + ca*y[n]+g*(s0-sfa)*dt;
yp[nn] <<- (cp - vp[nn])/ca;

# ## fixed stage
# yp[nn] <<- yd ;
# aa <- ar(y[n],b0 ,s);
# ba <- bt(y[n],b0 ,s);
# ca <- sqrt(g*ba/aa);
# ra <- aa/wp(y[n],b0,s);
# sfa <- (mn2*v[n]*v[n])/(ra ^(4.0/3.0));
# cp <- v[n] + ca*y[n]+g*(s0 -sfa)*dt;
# vp[nn] <<- (cp - ca*yp[nn]); # check sign
# message("--right bndry ----")
# print(cbind(y,yp,v,vp));

# reflection boundary , find depth along a characteristic
# vp[nn] <<-0 ;
# aa <- ar(y[n],b0 ,s);
# ba <- bt(y[n],b0 ,s);
# ca <- sqrt(g*ba/aa);
# ra <- aa/wp(y[n],b0,s);
# sfa <- (mn2*v[n]*v[n])/(ra ^(4.0/3.0));
# cp <- v[n] + ca*y[n]+g*(s0 -sfa)*dt;
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# yp[nn] <<- (cp - vp[nn])/ca;
##print(cbind(y,yp,v,vp));
######## INTERIOR NODES AND REACHES ###############
# loop through the interior nodes
for (i in 2:n){ # begin interior node loop scope
aa <- ar(y[i-1],b0,s);
ba <- bt(y[i-1],b0,s);
pa <- wp(y[i-1],b0,s);
ra <- aa/pa;
sfa <- (mn2*v[i-1]*v[i-1])/(ra ^(4.0/3.0));
ab <- ar(y[i+1],b0,s);
bb <- bt(y[i+1],b0,s);
pb <- wp(y[i+1],b0,s);
rb <- ab/pb;
sfb <- (mn2*v[i+1]*v[i+1])/(rb ^(4.0/3.0));
# need averages of sf , hydraulic depth
dm <- 0.5*(aa/ba + ab/bb);
sfm <- 0.5*( sfa+sfb);
vm <- 0.5*(v[i-1]+v[i+1]);
ym <- 0.5*(y[i-1]+y[i+1]);
# update momentum
# note the double <<, this structure forces the
# value to be global and accessible
# to other functions when the script is run
vp[i] <<- vm -r*g*(y[i+1] - y[i-1]) -r*vm*(v[i+1] - v[i-1]) + g*dt*(s0 -sfm);
# update depth
yp[i] <<- ym - r*dm*(v[i+1] - v[i-1]) -r*vm*(y[i+1] - y[i-1]);
} # end of interior node loop scope
} # end of function scope

Listing 51. R code demonstrating prototype updating function.

###### Solution Update Function ###########
update <-function(y,yp,v,vp){
y <<- yp;
v <<- vp;
return ()
}
### NEED ADAPTIVE TIME STEPPING FOR THE FLOOD WAVE
###### Adaptive Time Step Functions ###########
## here is where we do adaptive time stepping
bestdt <-function(y,v){

bestdt <- dt # start with current time step
for (i in 1:nn){

a <- ar(y[i],b0,s);
b <- bt(y[i],b0,s);
c <- sqrt(g*a/b);
dtn <- dx/abs((v[i])+c)
# now test
if(dtn <= bestdt){bestdt <- dtn}

} # end loop scope
dt <<- bestdt

} #end bestdt function
###### Solution Update Function ###########
update <-function(y,yp,v,vp){

y <<- yp;
v <<- vp;
return ()

}

[Present the problem, and important features – then to solution listed below. Uses
the library]

# main program for st. venant

rm(list=ls())

setwd("~/Dropbox/CE5361-2015-1/Project2/Project2-Problem2")

# clear workspace and set directory

source(’~/Dropbox/CE5361-2015-1/Project2/Project2-Problem2/Project2.2.Lib.R’)

###### Problem Constants #######

# these are constants that define the problem

# change for different problems

# a good habit is to assign constants to names so the

# program is readable by people in a few years
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g <-9.81 # gravitational acceleration, obviously SI units

n <- 29 # number of reaches

#q0 <- 110 # initial discharge

q0 <- 11 # initial discharge

#yd <- 3.069 # initial flow depth in the model

yd <- 1.000 # initial flow depth in the model

#yu <- 3.069 # upstream constant depth

yu <- 1.1 # upstream constant depth

# mn <- 0.013 # Manning’s n

mn <- 0.02 # Manning’s n

# b0 <- 20 # bottom width

b0 <- 5 # bottom width

## modify for problem 1 s0 <- 0.0001 # longitudinal slope (along direction of flow)

s0 <- 0.0000001 # longitudinal slope (along direction of flow)

#s <- 2.0 # side slope (passed to calls to hydraulic variables)

s <- 0.0 # side slope (passed to calls to hydraulic variables)

l <- 30000.0 # total length (the lenght of computational domain)

tmax <- 640000 # total simulation time in seconds

iprt <- 8 # print every iprt time steps

nn <- n+1 # how many nodes, will jack with boundaries later

mn2 <- mn*mn # Manning’s n squared, will appear a lot.

a <- ar(yd,b0,s) # flow area at beginning of time

v0 <- q0/a # initial velocity

######## Here we build vectors ###############

y <- numeric(nn) # create nn elements of vector y

yp <- numeric(nn) # updates go in this vector, same length as y

v <- numeric(nn) # create nn elements of vecotr v

vp <-numeric(nn) # updates go in this vector, same length and v

ytmp <-numeric(nn)

vtmp <-numeric(nn)

y <- rep(yd,nn) # populate y with nn things, each thing has value yd

v <- rep(v0,nn) # populate v with nn things, each thing has value v0

b <- bt(yd,b0,s) # topwidth at beginning

c <- sqrt(g*a/b) # celerity at initial conditions

###

hydrograph <- numeric(1)

dummy<- read.csv(file="hydrograph.csv",header=F)

elapsedtime <- dummy$V1; # forst column of hydrograph is time

hydrograph <- dummy$V2; # second column of hydrograph is flow

print(cbind(c))

dx <- l/n # delta x, length of a reach

xx <- dx*seq(1:nn)-1000 # Spatial locations of nodes, used for plotting

zz <- 30 - s0*xx # bottom channel elevation

dt <- dx/(v0 + c) # the time step that satisfies the courant condtions

kmax <- round(tmax/dt) # set maximum number of time steps
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print(cbind(dx,dt))

### Run the simulation ###

k <- 0 # time counter

t <- 0.0 # elapsed time

pdf("junk2.2.plot.pdf") # graphics device for plots -- plotnow() sends data to plot

writenow(t,dt,y,v,b0,s) # Write initial conditions

plotnow(t,xx,y,v)

####### BEGIN TIME STEPPING ########

message("kmax =", kmax)

for (itime in 1:kmax){

## put in the hydrograph here -- use approx function to interpolate

## we are after the second value qq$y in the approx function

qq <<- approx(elapsedtime,hydrograph,t)

print (qq$x);

print (qq$y);

#debug print(qq$y)

############# NEED ADAPTIVE TIME STEPPING FOR THE HYDROGRAPH ROUTING #############

bestdt(y,v);

############# THIS IS A HACK TO GET STABILITY #################

# halve the time step

dt <- dt/16

finitedifference(); # Finite difference a single time step

#update(ytmp,yp,vtmp,vp); # Update vectors

#update(y,yp,v,vp); # Update vectors

#bestdt(yp,vp)

message("dt now = ",dt);

#finitedifference(); # Finite difference a single time step

ytmp <- (yp+ytmp)/2;

vtmp <- (vp+vtmp)/2;

update(y,yp,v,vp); # Update vectors

message(" dt is ",dt);

t <- t+dt; # Increment simulation time

k <- k+1; # Increment loop counter

if (k%%iprt == 0){writenow(t,dt,y,v,b0,s)}; # Write current conditions every iprt time steps

if (k%%iprt == 0){plotnow(t,xx[seq(1,nn,1)],(y[seq(1,nn,1)]),(v[seq(1,nn,1)]))}; # Plot current solution

# reset the time step

############ UNHACK TO KEEP ADAPTIVE TIME STEPPING WORKING ###########

dt <- 16*dt

}

dev.off() # disconnect the pdf file.

Page 183 of 278



CE 4333 Practical Computational Hydraulics SUMMER 2017

14.3.6 Example 2 – Routing a storm hydrograph

The initial depth in a horizontal channel of rectangular cross section is 1 meter. The
channel is 29 kilometers long and ends with a non-reflection boundary condition.
The initial discharge in the channel is 0 cubic meters per second. The upstream
input hydrograph is shown in Figure 109. The manning friction factor is n = 1/40.
Simulate the water surface elevation over time in the channel.

Figure 109. Upstream hydrograph for example.

14.3.7 Example 3 – Sudden gate closing in an aqueduct channel

To illustrate a script to implement these concepts consider the example problem:
Flow in a 1000-m long trapezoidal channel with a bottom width of 20-m, side slope
of 2H:1V, longitudinal slope S0=0.0001, and Manning’s resistance n=0.013. Initial
discharge in the channel is 110 m3/s and initial flow depth is 3.069 m. Simulate the
flow and depth at every 100-m station when a downstream gate is closed at t=0.
Produce a graph of depth and velocity versus location for t=0, 60, 360 seconds.

14.3.8 Example 4 – Long waves in a tidal-influenced channel

14.4 Quasi-2D Methods

[Use Cleveland and Botkins report to make explain – then make adaptation]

14.5 Exercises
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15 Using Method of Characteristics for Boundary

Conditions

The method of characteristics is a technique used to find boundary conditions for
the finite-difference model(s). The readings for this chapter (on the server) contain
several examples of the method of characteristics to establish boundary values for the
model

Starting again with continuity and momentum

∂y

∂t
= −A

B

∂V

∂x
− V ∂y

∂x
(182)

∂V

∂t
= g(S0 − Sf )− V

∂V

∂x
− g ∂y

∂x
(183)

multiply the continuity equation by a term λ, them add the result to the momentum
equation to obtain

λ
∂y

∂t
+ λ

A

B

∂V

∂x
+ λV

∂y

∂x
+ g

∂y

∂x
+
∂V

∂t
+ V

∂V

∂x
= g(S0 − Sf ) (184)

Define the λ as

V + λ
A

B
=
dx

dt
= V +

g

λ
(185)

where dx
dt

is from the total derivative

dF

dt
=
∂F

∂t
+
∂F

∂x

∂x

∂t
(186)

[ need sketchs to define + and - characteristics then extrapolate back to the boundary.]
[ for Summer 2017 - use the boundary conditions in the code without explain]
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16 Flow in Porous Materials

Flow in porous media is a topic that appears in many branches of engineering and
science, e.g., ground water hydrology, reservoir engineering, soil science, soil mechan-
ics, and chemical engineering (filtration). The aquifer, which is the porous medium
domain of the hydrologist, or the oil reservoir, which is the porous medium of the
petroleum engineer are typical examples.

Figure 110 is a sketch of different aquifer classifications. A confined aquifer (pressure
aquifer) is one bounded above and below by impermeable formations. In a well
penetrating such an aquifer, the water level will rise above the base of the confining
formation. Water levels in wells that sample a certain aquifer define an imaginary
surface called the piezometric surface.

Figure 110. Aquifer classifications.

An unconfined aquifer (water table aquifer; phreatic aquifer) is one with the water
table as its upper boundary. The classifications are important because the equations
of motion are different in different kinds of aquifers.
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16.1 Storage

Storativity of an aquifer is the relationship between changes in head within the aquifer
and the quantity of water stored in the aquifer. Figure 111 is a sketch showing the
storage process in a confined, and unconfined aquifer.

Figure 111. Illustrative sketches of definition of storage coefficient.

The mechanism of storage is different for confined and unconfined aquifers. In a
confined aquifer the water is stored or released by compression and decompression of
water and the solid matrix (like a sponge squeezed while wrapped in plastic wrap).
In an unconfined aquifer the water is stored or released from the pore space when the
water table elevation changes.

The storage coefficient (confined) or specific yield (unconfined) is the volume of water
added to (or removed from) storage per unit area of aquifer per unit change in head.
The usual symbols are S, and Sy.

16.2 Permeability

Permeability is the material property that relates the resistance of flow through the
porous medium to the hydraulic gradient.

16.3 Head Loss Models

Darcy’s law (a linear flux model) is the head loss model used for porous media flow.
Equation 187 is Darcy’s law expressed as a head loss model.

hL =
QL

KA
(187)
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where Q is the discharge in the aquifer, L is the length in the flow direction, A is
the cross sectional area of aquifer (pore space and solid phase), K is the hydraulic
conductivity.56

A more useful (for computation) form of the head loss model, is to express it [the loss
equation] as an equation of motion as in Equation 188.

Q = −KA∂h
∂x

(188)

where−∂h
∂x

is the hydraulic gradient (slope of the hydraulic grade line) in the aquifer.

Figure 112 is a diagram that illustrates the relationships expressed by Darcy’s law.

Figure 112. Schematic diagram of unidirectional flow in a generic aquifer, showing heads in two
measuring wells located distance L apart..

The cross-sectional flow area, A, is the product of height of the aquifer block and its
width [in this case the width is into the plane of the paper]. The distance between
two measurement points is L. The head at the two points is h1 and h2. The gradient
of head, ∂h

∂x
, is h2−h1

L
. The hydraulic gradient is −∂h

∂x
, is h1−h2

L
. Finally Darcy’s law

(for the drawing) is Q = KAh1−h2

L
.

56also called the permeability
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16.4 Confined Aquifer Flow

Using Figure 112 as a starting point, we can develop a computational model of flow
in a confined aquifer. Let’s decide that the distance L in the figure is going to be
divided into a series of connected, small blocks. The flow direction in the figure will
be declared the x direction, the depth into the drawing is declared the y direction,
and the height of the block is declared the z direction.

Figure 113 is a diagram of one such small block.

Figure 113. Single computational cell definition sketch.

Using this diagram we can now develop a set of expressions for the cell volume, solids
volume in the cell, pore volume in the cell (where water actually can flow), and solids
mass.

Vcell = ∆x×∆y ×∆z (189)

Vsoild = (1− ω)∆x×∆y ×∆z (190)

Vpore = ω∆x×∆y ×∆z (191)

Msolid = ρs(1− ω)∆x×∆y ×∆z (192)
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Next write a mass balance for water in the cell;

dMwater

dt
= MInflow −MOutlfow (193)

The left side of the expression is simply the storage term, and in the context of storage
coefficients and aquifer head is replaced by

dMwater

dt
|
cell

= ρwSs∆x∆y∆z
∂hi
∂t

(194)

where hi is the head in the i−th cell.

The right hand side of the expression is based on writing Darcy’s law for the cell,
using values in adjacent (hydraulically connected) cells.

Figure 114. Multiple computational cell definition sketch.

Figure 114 is a sketch showing three such cells. The i−th cell is the cell of interest,
the cell to the left is cell ID i− 1, and the cell to the right is cell ID i+ 1.

We now write Darcy’s law for each face of cell i, treating the head in each of the cell
centers as if they were the sampling wells of Figure 112.57

Darcy’s law for the left face is

MInflow = Qleft = ρwK∆y∆z
hi−1 − hi

∆x
(195)

57In the context of Figure 112, the cell face is halfway between the two wells; the cell centers are at
the wells.
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Similarly for the right face,

MOutflow = Qright = ρwK∆y∆z
hi − hi+1

∆x
(196)

Now combine these together in the mass balance

ρwSs∆x∆y∆z
∂hi
∂t

= (ρwK∆y∆z
hi−1 − hi

∆x
)− (ρwK∆y∆z

hi − hi+1

∆x
) (197)

Next divide by the water density ρw,

Ss∆x∆y∆z
∂hi
∂t

= (K∆y∆z
hi−1 − hi

∆x
)− (K∆y∆z

hi − hi+1

∆x
) (198)

The divide by cell width ∆y,

Ss∆x∆z
∂hi
∂t

= (K∆z
hi−1 − hi

∆x
)− (K∆z

hi − hi+1

∆x
) (199)

Rewrite the right hand side into gradient of head form

Ss∆x∆z
∂hi
∂t

= (K∆z
hi+1 − hi

∆x
)−(K∆z

hi − hi−1

∆x
) = K∆z

∂h

∂x
|i →i+1 −K∆z

∂h

∂x
|i−1 →i

(200)

Divide by cell distance, ∆x,

Ss∆z
∂hi
∂t

=
K∆z ∂h

∂x
|i →i+1 −K∆z ∂h

∂x
|i−1 →i

∆x
(201)

Take limit as ∆x → 0,

Ss∆z
∂h

∂t
=

∂

∂x
(K∆z

∂h

∂x
) (202)

Finally, stipulate that Ss∆z = S, the storage coefficient (for confined aquifer), and
define the aquifer transmissivity as K∆z = T and we have performed a back-handed
way to get the partial differential equation of aquifer flow.

S
∂h

∂t
=

∂

∂x
(T
∂h

∂x
) (203)

Ironically, the analysis actually provides an algorithm to approximate head in the
aquifer at Equation 203 – which is the subject of the next two chapters.
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16.5 Unconfined Aquifer Flow

Unconfined aquifer flow has an upper boundary of flow defined by the phreatic surface
(water table). If we assume the flow lines are parallel to the aquifer bottom (they
are not, but the assumption is often quite adequate) then the governing PDE can be
modified with the ∆z term replaced by the saturated thickness. Writing Darcy’s law
for each face of cell i in Figure 114, treating the head in each of the cell centers as
if they were the sampling wells of Figure 112.58. The primary difference is that the
average head between two adjacent cells, h , is used as the thickness term rather
than ∆z.

Darcy’s law for the left face is

MInflow = Qleft = ρwK∆y h
hi−1 − hi

∆x
(204)

Similarly for the right face,

MOutflow = Qright = ρwK∆y h
hi − hi+1

∆x
(205)

Now combine these together in the mass balance, replacing the term Ss∆z with Sy
the specific yield of the unconfined aquifer we obtain

ρwSy∆x∆y
∂hi
∂t

= (ρwK∆y h
hi−1 − hi

∆x
)− (ρwK∆y h

hi − hi+1

∆x
) (206)

Next divide by the water density ρw,

Sy∆x∆y
∂hi
∂t

= (K∆y h
hi−1 − hi

∆x
)− (K∆y h

hi − hi+1

∆x
) (207)

The divide by cell width ∆y,

Sy∆x
∂hi
∂t

= (K h
hi−1 − hi

∆x
)− (K h

hi − hi+1

∆x
) (208)

Rewrite the right hand side into gradient of head form

Sy∆x
∂hi
∂t

= (K h
hi+1 − hi

∆x
)− (K h

hi − hi−1

∆x
) = K h

∂h

∂x
|i →i+1 −K h

∂h

∂x
|i−1 →i

(209)

Divide by cell distance, ∆x,

Sy
∂hi
∂t

=
K h ∂h

∂x
|i →i+1 −K h ∂h

∂x
|i−1 →i

∆x
(210)

58In the context of Figure 112, the cell face is halfway between the two wells; the cell centers are at
the wells.
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Take limit as ∆x → 0,

Sy
∂h

∂t
=

∂

∂x
(K h

∂h

∂x
) (211)

Equation ?? is the equation for unconfined aquifer flow in a horizontal unconfined
aquifer. In the next chapter we will start with Equation 209 and build our numerical
method using it as the base construct for the difference equations.
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17 Steady Groundwater Flow

This chapter presents methods for the approximation of heads in steady groundwater
flow where the time derivative vansihes.

17.1 Confined Aquifer Flow

We will address approximating heads in a confined aquifer, first in one spatial dimen-
sion, then in two spatial dimensions. The 2D example is a vertical aquifer slice, but
the method described would also work just fine for a horizontal layer. The extension
to a third spatial dimension is relatively straightforward if one can picture each 2D
horizontal slice as a layer.

17.1.1 Finite-Difference Methods – 1 Spatial Dimension

Using Equation 203 as a starting point for simulating aquifer behavior, the steady flow
condition means that the left hand side vanishes (there is no change in storage).

0 = (K∆y∆z
hi−1 − hi

∆x
)− (K∆y∆z

hi − hi+1

∆x
) (212)

Next we will use the arithmetic mean values of the material properties (K) at the
cell interfaces, so the difference equation becomes

0 = (
1

2
(Ki−1 +Ki)∆y∆z

hi−1 − hi
∆x

)− (
1

2
(Ki +Ki−1)∆y∆z

hi − hi+1

∆x
) (213)

Now lets group some constants:

Ai = 1
2∆x

(Ki−1 +Ki)∆y∆z
Bi = 1

2∆x
(Ki +Ki+1)∆y∆z

(214)

Now substitute into the difference equation

0 = Ai(hi−1)− (Ai +Bi)(hi) +Bi(hi+1) (215)

Now all that remains is to specify boundary conditions, and then implement an algo-
rithm to solve the resulting system of algebraic equations.59

Some of the plausible boundary conditions are:

1. Specified head boundary (pretty easy to specify in a computer representation).

59I have assumed that the spatial step, ∆x is the same for each cell – it doesn’t have to be, but
relaxing that assumption complicates the specifications of the constants A and B.
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2. Zero-flux boundary (also easy to specify using the cell-centered formulation
herein).

3. Specified flux boundary (using a modeling trick not too hard to specify).

These three types of conditions should handle the majority of practical situations
where one would need to model an aquifer system.

Lets examine the difference equation a little bit – assume we have the correct values
then

hi =
Ai(hi−1) +Bi(hi+1)

(Ai +Bi)
(216)

which suggests a nice algorithm. We will simply apply boundary conditions, then
evaluate the expression for each cell, and after we do the expression for al the cells,
we will repeat the process until the solution stops changing. Computationally, we
are employing a Jacobi iteration scheme, which will work nicely for this particular
problem structure. An alternative, equally valid, would be to construct the linear
system of equations (in this case it will be a three-banded matrix), and apply an
appropriate row reduction technique to find the solution.

Here are a few examples:

Example 1: 1D Steady Flow in a Confined Aquifer using Jacobi Iteration
First the iterative approach.

Consider the aquifer depicted in Figure 112. Suppose that the two wells are located
400 meters apart, and we wish to approximate the head distribution in the aquifer
using the multiple-cell-balance model. Further suppose that the desired cell spacing
is ∆x =100 meters. Additionally suppose the aquifer is 100 meters wide (∆y =100
meters), and the thickness is 50 meters (∆z =50 meters). The hydraulic conductivity
everywhere in the aquifer is 0.2 meters per second.

Figure 115 is the original sketch, annotated with cell spacing, material properties,
and the head at the two wells. In the figure, Well 1 has a head measurement of 100
meters, whereas Well 2 has a head measurement of 60 meters. Because the flow is
steady, and the material properties are spatially invariant, the EGL/HGL would be
a line (the blue one in the figure) connecting the wells sloping from Well 1 to Well
2.

We will use the cell balance model to estimate the EGL/HGL in the aquifer (i.e. find
the piezometric surface60 between the two wells).

Listing 52. R code demonstrating an Aquifer Flow Simulator for Steady Flow
This fragment of code contains ....

# 1D-confined -aquifer -steady -flow

60Hydraulic head or piezometric head is a specific measurement of liquid pressure above a geodetic
datum. It is usually measured as a liquid surface elevation, expressed in units of length, at the
entrance (or bottom) of a piezometer. In an aquifer, it can be calculated from the depth to water
in a piezometric well, and given information of the piezometer’s elevation and screen depth.
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Figure 115. Schematic diagram of unidirectional flow in a generic aquifer, showing heads in two
measuring wells. The diagram is annotated with the cell spacing for the example (in magenta), as well
as the cell ID. The aquifer material properties are constant (K=0.2 m/s). The head in the left well
(Well 1) is 100 meters. The head in the right well (Well 2) is 60 meters..

# Implements Finite -Difference Porous Medium Flow using Jacobi Iteration
# Assumes boundary cells 1 and ncells are fixed head cells.
zz <- file(" input1.dat", "r") # Open a connection named zz to file named input.dat
#
# read the simulation conditions
#
deltax <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltay <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltaz <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
ncells <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
tolerance <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
hydhead <-(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
hydcond <-(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
close(zz)
#
# split the multiple column strings into numeric components for a vector
#
hydhead <-as.numeric(unlist(strsplit(hydhead ,split=" ")))
hydcond <-as.numeric(unlist(strsplit(hydcond ,split=" ")))
#
# built a position array for plotting
#
distance <-numeric(ncells)
distance [1]<-deltax /2.0
for (i in 2: ncells){distance[i]<-distance[i-1]+ deltax}
#
# Plot Distance vs. Head before calculations
#
plot(distance ,hydhead ,col="red",xlim=c(0,deltax*ncells),ylim=c(0,max(hydhead)*2.0) ,pch=21,

tck =1)
lines(distance ,hydhead ,col="red",type="l",lwd=3)
#
# built the transmissivity arrays
#
amat <-numeric(ncells) # make an ncells long array
bmat <-numeric(ncells) # make an ncells long array
for(irow in 2:(ncells -1)){

amat[irow]<-((hydcond[irow -1]+ hydcond[irow ])*deltay*deltaz)/(2.0* deltax)
bmat[irow]<-((hydcond[irow ]+ hydcond[irow +1])*deltay*deltaz)/(2.0* deltax)

}
#
# #se Jacobi iteration to find a solution to the difference equations
#
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headold <-hydhead # copy the head array , used to test for stopping
maxit <- 100 # set the maximum number of iterations (to prevent infinite loop)
for (iter in 1:maxit){

for (irow in 2:(ncells -1)){
hydhead[irow]<-(amat[irow]* hydhead[irow -1]+ bmat[irow]* hydhead[irow +1])/(amat[irow]+bmat

[irow])
}

# test for stopping iterations
percentdiff <- sum((hydhead -headold)^2)
if (percentdiff < tolerance){break}
headold <-hydhead

}
#
# Add the steady -flow solution to the graph -- both points and a line.
#
lines(distance ,hydhead ,col="blue",type="p")
lines(distance ,hydhead ,col="blue",type="l",lwd=3)

Listing 52 is a R script that reads an input file, computes the head distirbution (the
“blue line”) and plots the result. The script also plots the initial values of the heads
used in the computation engine. Only the left most value and right most value remain
unchanged as they represent the boundary conditions for the problem.

The iterative method is elementary for this case – the replication of the head array
at each step is used to test for stopping when the solution meets some tolerance. The
compute, test, update part of the script is a common structure in iterative problems,
and when we modify the program for transient (time-varying) behavior it will come
in handy. There is no error trapping in the example – so it is quite possible to supply
an input file that would not work.

Listing 53 is the contents of the input file (input1.dat) that is read by the script.
To model different condtions, we would change the input file contents and leave the
script alone.

Listing 53. Input File for Example Problem
This fragment of code contains ....

100
100
50

5
1e-12
100 100 100 100 60
0.2 0.2 0.2 0.2 0.2
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Figure 116. Plot of computed head in each cell using Jacobi interation. The head in the left well
(Well 1) is 100 meters. The head in the right well (Well 2) is 60 meters. The steady flow solution is
the blue line labelled “Computed Head Array”..

Finally, for this problem Figure 116 is the output graphics from the script. The red
line is the value of heads supplied in the input file (these can be any values as long
as the left and right values represent the conditions at the two wells); the blue line
is the computed piezometric surface. The markers are the computed head for each
cell.

Example 2: 1D Steady Flow in a Confined Aquifer using Gaussian Reduc-
tion The second example is the identical physical situation, but instead of iterative
computations in our code, we will instead construct a simultaneous linear system
(Ax = b) where the coefficient matrix A is constructed from the difference equations
and solved simultaneously.

First we have to specify how to construct the matrices – essentially because h1 and
h5 are known, there are only three unknowns in the 5-cell example. So we will have
a linear system with 3 equations and 3 unknowns. Here is the linear system in the
context of the development of the difference equations.

−(A2 + B2)× h2 B2 × h3 0× h4 = −A3 × h1

A3 × h2 −(A3 + B3)× h3 B3 × h4 = 0
0× h2 A4 × h3 −(A4 + B4)× h4 = −B4 × h5
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A more compact representation is(
−(A2 + B2) B2 0

A3 −(A3 + B3) B3

0 A4 −(A4 + B4)

)(
h2

h3

h4

)
=

(
−A3h1

0
−B4h5

)

Recall that the values for the coefficient matrix are known, as are the values h1 and
h5. Now we will modify the script, to use the linear system solver and dispense with
the iteration entirely.

The modification(s) are to read in the values for the material and spatial properties
– just use the same code. Then construct the compact matrix-vector equation by
careful looping on the index values. In the 5 cell example, only the inner three cells
[2-4] are part of the linear system. So we use indexing in the arithmetic to build the
coefficient matrix and right-hand-side.

Then when we have the solution, we need to put the computed values back into their
correct position in the head vector. Listing 54 is a code listing that performs the
various tasks. The script is intentionally built to use the same input file as the prior
example.

The computed results are identical (as anticipated). The next step (and the point
of building such tools) is to try different spatial sizing (partly to be sure the code is
generic and automatically adapts to such changes), and to apply the tool to aquifers
with different material properties.
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Listing 54. R code demonstrating an Aquifer Flow Simulator for Steady Flow
This version constructs coefficient matrix then solves the linear system. The program uses the same
input file.

# 1D-confined -aquifer -steady -flow
# Implements Finite -Difference Porous Medium Flow using Gaussian reduction
# Assumes boundary cells 1 and ncells are fixed head cells.
zz <- file(" input1.dat", "r") # Open a connection named zz to file named input.dat
# read the simulation conditons
deltax <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltay <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltaz <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
ncells <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
tolerance <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
hydhead <-(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
hydcond <-(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
close(zz)
# split the multiple column strings into numeric components for a vector
hydhead <-as.numeric(unlist(strsplit(hydhead ,split=" ")))
hydcond <-as.numeric(unlist(strsplit(hydcond ,split=" ")))

# built a position array for plotting
distance <-numeric(ncells)
distance [1]<-deltax /2.0
for (i in 2: ncells){distance[i]<-distance[i-1]+ deltax}
plot(distance ,hydhead ,col="red",xlim=c(0,deltax*ncells),ylim=c(0,max(hydhead)*2.0) ,pch=21,

tck =1)
lines(distance ,hydhead ,col="red",type="l",lwd=3)
# built the transmissivity arrays
amat <-numeric(ncells) # make an ncells long array
bmat <-numeric(ncells) # make an ncells long array
for(irow in 2:(ncells -1)){

amat[irow]<-((hydcond[irow -1]+ hydcond[irow ])*deltay*deltaz)/(2.0* deltax)
bmat[irow]<-((hydcond[irow ]+ hydcond[irow +1])*deltay*deltaz)/(2.0* deltax)

}
amatrix <- matrix(0,ncells -2,ncells -2) # prefill matrix with zeros
rhs <- matrix(0,ncells -2) # prefill vector with zeros
####################################################################
## build matrices here -- there are array indexing things going on #
## because we only have three equations to deal with. #
## hydhead [1] is the left boundary #
## hydhead[ncells] is the right boundary #
## Only build the non -zero elements using the structure of the #
## difference -equation stencil (mask , computational molecule ...) #
####################################################################
## first row special
for (irow in 1:1){

amatrix[irow ,1]= -1.0*( amat[irow +1]+ bmat[irow +1])
amatrix[irow ,2]= bmat[irow +1]
rhs[irow] = -amat[irow +1]* hydhead[irow]

}
## interior rows
for (irow in 2:(ncells -3)){

amatrix[irow ,irow -1]= amat[irow +1]
amatrix[irow ,irow]= -1.0*( amat[irow +1]+ bmat[irow +1])
amatrix[irow ,irow +1]= bmat[irow +1]

}
## last row special
for (irow in (ncells -2):(ncells -2)){

amatrix[irow ,ncells -3]= amat[irow +1]
amatrix[irow ,ncells -2]= -1.0*( amat[irow +1]+ bmat[irow +1])
rhs[irow] = -bmat[irow +1]* hydhead[irow +2]

}
####################################################################
## Now solve the linear system amatrix*unkvector=rhs for unkvector #
## then put values from unkvector into correct position hydhead #
####################################################################
unkvector <-solve(amatrix ,rhs)
for (irow in 2:(ncells -1)){

hydhead[irow] <- unkvector[irow -1]
}
###################################################################
## Plot the computed values in blue #
###################################################################
lines(distance ,hydhead ,col="blue",type="p")
lines(distance ,hydhead ,col="blue",type="l",lwd=3)
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The next part of the example is what is the cell size is changed? The whole point
of input files and such to to keep the script generic. So to check this situation, lets
halve the space size (50 meters spacing, instead of 100 meters). Thus instead of 5
cells of 100 meters each, we now have 5 cells of 50 meters each. Listing 55 is a listing
of what the input file looks like, other than twice as many initial heads and K values,
essentially the same input.

Listing 55. Input File for Example Problem
.

50 << changed cell size
100
50

9 << more cells
1e-12
100 100 100 100 100 100 100 100 60 << more cells
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 << more cells

Figure 117. Plot of computed head in each cell using different cell spacing. The head in the left well
(Well 1) is 100 meters. The head in the right well (Well 2) is 60 meters. The steady flow solution is
the blue line labelled “Computed Head Array”..

Lastly, before we move to 2-Dimensional cases, lets examine when the material prop-
erties change. In this change, we will leave the first third of the aquifer with the same
properties, but decrease hydraulic conductivity in the next third by 1/2 and the last
third by 1/4 again.

Listing 56 is the input file for this case. The anticipated result is that the HGL/EGL
will change slope twice (starting out shallow, and getting steeper as we move to the
right).
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Listing 56. Input File for Example Problem
.

50
100
50

9 <<
1e-12
100 100 100 100 100 100 100 100 60 << more cells
0.2 0.2 0.2 0.1 0.1 0.1 0.05 0.05 0.05 << more cells

Figure 118 is the results with this different input file and indeed as anticipated there
are three different slopes (it looks like curvature on the plot, but its really just three
different line segments with different slopes.).

Figure 118. Plot of computed head in each cell using different cell spacing. The head in the left well
(Well 1) is 100 meters. The head in the right well (Well 2) is 60 meters. The steady flow solution is
the blue line. The apparent curvature is really the three different slopes anticipated as the material
properties change..

17.1.2 Finite-Difference Methods – 2 Spatial Dimensions

If we perform an analysis in the same way as we did to arrive at Equation 203 except
now include another direction (the y-direction) we will have an aquifer in two spatial
dimensions. The governing equation becomes

S
∂h

∂t
=

∂

∂x
(Tx

∂h

∂x
) +

∂

∂y
(Ty

∂h

∂y
) (217)

The meanings of the terms are the same, except the transmissivity terms now have
subscripts to indicate they can have different values depending on direction.
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Then as before we will construct the difference-equation model from a multiple-cell
balance model of the aquifer at a cell of interest, then extend the equations to cover
the entire model domain.

Figure 119 is a plan view schematic of a aquifer with flow to be computed in two
directions (x and y). The cell indexing convention in the sketch is that rows are in-
dexed by the letter j and columns are indexed by the letter i. This naming convention
is arbitrary; in some instances it may be preferable to reverse the convention. The
schematic also shows the assumed flow directions; for column i, flows are upward in
the drawing, and for row j, flows are from left to right. If indeed the opposite is true
for a given set of boundary conditions and material properties, then the flows will be
computed as negative numbers – hence the convention here is that “positive flow” is
right and up.

Figure 119. Plan view schematic of 2-dimensional multiple cell balance computational stencil.

As in the one-dimensional development the storage term is

dMwater

dt
|
cell

= ρwSs∆x∆y∆z
∂hi
∂t

(218)

where hi is the head in the i−th cell.

The mass flows entering the i− th, j − th cell are:

MInflow = Qleft+Qbottom = ρwKx∆y∆z
hi−1,j − hi,j

∆x
+ρwKy∆x∆z

hi,j−1 − hi,j
∆y

(219)

The mass flows leaving the i− th, j − th cell are:

MInflow = Qright +Qtop = ρwKx∆y∆z
hi,j − hi+1,j

∆x
+ ρwKy∆x∆z

hi,j − hi,j+1

∆y
(220)
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Now write the entire balance equation

ρwSs∆x∆y∆z ∂hi
∂t

= [ρwKx∆y∆z
hi−1,j−hi,j

∆x
+ ρwKy∆x∆z

hi,j−1−hi,j
∆y

]−

[ρwKx∆y∆z
hi,j−hi+1,j

∆x
+ ρwKy∆x∆z

hi,j−hi,j+1

∆y
]

(221)

Next replace Ss∆z with the storage coefficient S, and the Kx,y∆z with the transmis-
sivity Tx,y terms, and divide by the density of the fluid and the cell plan view area
∆x∆y to obtain a more compact form of the difference equation.

S ∂hi
∂t

= [ 1
∆x
Tx

hi−1,j−hi,j
∆x

+ 1
∆y
Ty

hi,j−1−hi,j
∆y

]−

[ 1
∆x
Tx

hi,j−hi+1,j

∆x
+ 1

∆y
Ty

hi,j−hi,j+1

∆y
]

(222)

As in the one-dimensional case, lets again consider steady flow (we will do transient
flows later on)

0 = [ 1
∆x
Tx

hi−1,j−hi,j
∆x

+ 1
∆y
Ty

hi,j−1−hi,j
∆y

]−

[ 1
∆x
Tx

hi,j−hi+1,j

∆x
+ 1

∆y
Ty

hi,j−hi,j+1

∆y
]

(223)

Also as in the one-dimensional case, we will approximate the spatial variation of the
material properties (transmissivity) as arithmetic mean values between two cells, so
making the following definitions:

Ai,j = 1
2∆x2 (Tx,(i−1,j) + Tx,(i,j))

Bi,j = 1
2∆x2 (Tx,(i,j) + Tx,(i+1,j))

Ci,j = 1
2∆y2 (Ty,(i,j−1) + Ty,(i,j))

Di,j = 1
2∆y2 (Ty,(i,j) + Ty,(i,j+1))

(224)

Substitution into the difference equation yields

0 = Ai,jhi−1,j +Bi,jhi+1,j− (Ai,j +Bi,j +Ci,j +Di,j)hi,j +Ci,jhi,j−1 +Di,jhi,j+1 (225)

As before we can explicitly write the cell equation for hi,j as
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hi,j =
[Ai,jhi−1,j +Bi,jhi+1,j + Ci,jhi,j−1 +Di,jhi,j+1]

[Ai,j +Bi,j + Ci,j +Di,j]
(226)

This difference equation represents an approximation to the governing flow equation,
the accuracy depending on the cell size. Boundary conditions are applied directly into
the analogs (another name for the difference equations) at appropriate locations on
the computational grid. Also as in the one-dimensional case we can generate solutions
either by iteration or solving the resulting linear system.

Example 1: 2D Steady Flow in a Confined Aquifer using Jacobi Iteration
As before we will start the example with a simple physical condition and use Jacobi
iteration61 to obtain a solution. We will also incorporate two kinds of boundary
conditions (fixed head as before, and no-flow boundaries).

Figure 120 is a schematic of this example. The right panel of the figure shows the
index naming convention. The known material properties are transmissivity (in each
direction, at each cell center, and the thickness of the aquifer (b == ∆z). Our task

Figure 120. Schematic of 2-dimensional aquifer. The left and right boundaries are constant head
boundaries, whereas the upper and lower boundaries are no-flow.

is to simulate the aquifer with the 5 x 5 model shown. The left and right boundaries
will be treated as specified head boundaries. The upper and lower boundary will be
treated as no flow boundaries.

The head on the left is 100 meters and the right is 60 meters (same as before).
The transmissivity (Kx,y∆z=10) square meters per second (but to be consistent with
the earlier models we will supply a value of K and ∆z; keeping with the earlier

61Jacobi iteration for large domain problems (say 200x200) or bigger, is pretty inefficient – bet-
ter iterative methods are available; however they represent clever changes to the basic iteration
methods explained here, hence Jacobi is a good place to start.
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examples the values are K = 0.2 meters per second, and ∆z = 50 meters. The
spatial dimensions are ∆x = 100 meters and ∆y = 100 meters.

Listing 57 is a listing that implements the method – in this case there are changes to
the data reading (to read and build matrices), and notice how the no-flow boundary
conditions are implemented.

Listing 57. R code demonstrating an Aquifer Flow Simulator for 2D Steady Flow. This code frag-
ment implements the Jacobi iteration. A subsequent listing shows the contour plot syntax. In the ex-
ample the two fragments are joined and run as a single source file
.

# Implements 2D-Confined Aquifer Steady Flow Finite -Difference using Jacobi Iteration
# Assumes no-flow boundary row=1,and nrows. Assumes fixed head boundary col=1, and ncols
# Head boundary conditions are entered in input file
zz <- file(" input1.dat", "r") # Open a connection named zz to file named input.dat
# read the simulation conditons
deltax <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltay <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltaz <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
nrows <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
ncols <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
tolerance <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
hydhead <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
hydcondx <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
hydcondy <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
close(zz)
# split the multiple column strings into numeric components for a vector
hydhead <-as.numeric(unlist(strsplit(hydhead ,split=" ")))
hydcondx <-as.numeric(unlist(strsplit(hydcondx ,split=" ")))
hydcondy <-as.numeric(unlist(strsplit(hydcondy ,split=" ")))
# convert the numeric vectors into matrices for easier indexing
hydhead <-matrix(hydhead ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
hydcondx <-matrix(hydcondx ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
hydcondy <-matrix(hydcondy ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
# built the transmissivity arrays
amat <-matrix(0,nrows ,ncols)
bmat <-matrix(0,nrows ,ncols)
cmat <-matrix(0,nrows ,ncols)
dmat <-matrix(0,nrows ,ncols)
for(irow in 2:(nrows -1)){

for(jcol in 2:(ncols -1)){
amat[irow ,jcol]<-(( hydcondx[irow -1,jcol ]+ hydcondx[irow ,jcol ])*deltaz)/(2.0* deltax ^2)
bmat[irow ,jcol]<-(( hydcondx[irow ,jcol ]+ hydcondx[irow+1,jcol ])*deltaz)/(2.0* deltax ^2)
cmat[irow ,jcol]<-(( hydcondy[irow ,jcol -1]+ hydcondy[irow ,jcol ])*deltaz)/(2.0* deltay ^2)
dmat[irow ,jcol]<-(( hydcondy[irow ,jcol ]+ hydcondy[irow ,jcol +1])*deltaz)/(2.0* deltay ^2)

}
}
headold <-hydhead # copy the head array , used to test for stopping
maxit <- 100 # set the maximum number of iterations (to prevent infinite loop)
for (iter in 1:maxit){

# first and last row special == no flow boundaries
for(jcol in 1:ncols){

hydhead[1,jcol]= hydhead[2,jcol]
hydhead[nrows ,jcol]= hydhead[nrows -1,jcol]

}
for (irow in 2:(nrows -1)){

for (jcol in 2:(nrows -1)){
hydhead[irow ,jcol] =

(amat[irow ,jcol]* hydhead[irow -1,jcol ] +
bmat[irow ,jcol]* hydhead[irow+1,jcol ] +
cmat[irow ,jcol]* hydhead[irow ,jcol -1] +
dmat[irow ,jcol]* hydhead[irow ,jcol +1] )/

(amat[irow ,jcol]+bmat[irow ,jcol]+cmat[irow ,jcol]+dmat[irow ,jcol])
}

}
# test for stopping iterations

percentdiff <- sum((hydhead -headold)^2)
if (percentdiff < tolerance){

message ("Exit iterations because tolerance met")
break}

headold <-hydhead #update the current head vector
}
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Instead of line plots, the built-in contouring algorithm in R is used to render the
output plot(s). Listing 58 is the script that generates a contour plot. The rows are
actually plotted in the vertical, and columns in the horizontal, so the plot is rotated
relative to the definition sketch.62

Listing 58. R code demonstrating building a contour plot from the computed head distribution
.

##############################################################
### built position arrays for contour plotting ###
##############################################################
distancex <-numeric(nrows)
distancey <-numeric(ncols)
distancex [1]<-50
distancey [1]<-50
for (irow in 2:nrows){distancex[irow]<-distancex[irow -1]+ deltax}
for (jcol in 2:ncols){distancey[jcol]<-distancey[jcol -1]+ deltay}
##############################################################
### contour plot of head -- note axes are rotated ###
##############################################################
contour(distancex ,distancey ,hydhead ,

plot.title = title(main = "Steady 2D Aquifer Model (Head in Meters)",
xlab = "Meters (Y axis) ====>>",
ylab = "Meters (X axis) ====>>"))

Listing 59 is a listing of the input file. The only major change from the one-
dimensional examples is the entire head and transmissivity arrays are supplied.

Listing 59. Input File for Example Problem
.

100
100
50

5
5
1e-12
100 100 100 100 60
100 100 100 100 60
100 100 100 100 60
100 100 100 100 60
100 100 100 100 60
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2

Figure 121 is a screen capture of the R output (using the R studio IDE). The plot is
on the right side of the screen image. Figure 122 is a screen capture of just the plot,
rotated, and with the boundaries identified (no-flow top and bottom; fixed head left
and right).

Inspection of the script shows that there are still some parts of the script that could
use generalization (namely the graphics portion, and a more sophisticated approach
to boundary conditions), but otherwise we have the beginnings of a useful tool.
To demonstrate the utility, lets change the input file to represent a different prob-
lem.

62This kind of plotting is a hold-over from line-printer days, where the long axis would be oriented to
the vertical so that it could print to its heart’s content and still fit on the paper. Older tractor-feed
line-printers could print 135 characters wide, and as long as the paper roll held out. The paper
was called green-bar; each perforated sheet was 11x17 and the sheets were connected. Essentially
the paper length was functionally infinite, but the width was fixes at 17 inches.
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Figure 121. Output from R script for 2D model. Observe how the X-axis is plotted upward, and the
Y-axis is plotter left to right. The plotting is because of how ROWS and COLUMNS were indexed in
the script. Rather than alter the script, I find it easier to rotate the problem for practical application..
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Figure 122. Output from R script for 2D model, rotated and annotated to fit the original problem
statement.
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Example 3: 2D Vertical Slice in a Confined Aquifer using Jacobi Iteration
with Low Permeability Inclusion

Figure 146 is a schematic of a different situation that now only requires us to change
the contents of the data file, and re-run the scripts unchanged. Some additional
modifications have been added, mostly messages to the user because of anticipated
long run times. The data file is changed a bit and two lines are added to help with
the plotting – they represent the axis labels used in the contour plots. The boundary
conditions are still directly coded into the algorithm, and that would be the next
modification to the code - general boundary condition information.63

Figure 123. Schematic of vertical slice in an aquifer with low permeability inclusion. Values are indi-
cated on the schematic .

The following pages contain the code fragments (listings) for the head calculations,
and the contour plotting. As above, these listings are combined into a single file (the
fragmentation herein is to fit the printed page layout) and then run as a script.

Listing 60 is the listing for the head calculations. Listing 61 is the is the listing for
the plotting calculations. Listing 84 is the input file for the problem. The file in this
case is named input2.dat.

In addition the generalized boundary conditions, the reader should consider making
the program prompt the user for the file name, so that the program is more deployable.
Once a generalized boundary condition component is incorporated as well as a file
prompt, the script would be useful in many practical situations. When we add wells to
the governing PDE the tool would be quite relevant for engineering calculations.

63That modification is left for homework.
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Listing 60. 2D Steady Confined Aquifer Flow Script.

# 2D Aquifer Flow Model using Jacobi Iteration
# deallocate memory
rm(list=ls())
zz <- file(" input2.dat", "r") # Open a connection named zz to file named input.dat
# read the simulation conditons
deltax <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltay <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltaz <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
nrows <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
ncols <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
tolerance <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
maxiter <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
distancex <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
distancey <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
hydhead <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
hydcondx <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
hydcondy <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
close(zz)
# split the multiple column strings into numeric components for a vector
distancex <-as.numeric(unlist(strsplit(distancex ,split=" ")))
distancey <-as.numeric(unlist(strsplit(distancey ,split=" ")))
hydhead <-as.numeric(unlist(strsplit(hydhead ,split=" ")))
hydcondx <-as.numeric(unlist(strsplit(hydcondx ,split=" ")))
hydcondy <-as.numeric(unlist(strsplit(hydcondy ,split=" ")))
# convert the numeric vectors into matrices for easier indexing
hydhead <- matrix(hydhead ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
hydcondx <-matrix(hydcondx ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
hydcondy <-matrix(hydcondy ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
# here we perform the velocity potential calculations
# built the transmissivity arrays
amat <-matrix(0,nrows ,ncols)
bmat <-matrix(0,nrows ,ncols)
cmat <-matrix(0,nrows ,ncols)
dmat <-matrix(0,nrows ,ncols)
for(irow in 2:(nrows -1)){

for(jcol in 2:(ncols -1)){
amat[irow ,jcol]<-(( hydcondx[irow -1,jcol ]+ hydcondx[irow ,jcol ])*deltaz)/(2.0* deltax

^2)
bmat[irow ,jcol]<-(( hydcondx[irow ,jcol ]+ hydcondx[irow+1,jcol ])*deltaz)/(2.0* deltax

^2)
cmat[irow ,jcol]<-(( hydcondy[irow ,jcol -1]+ hydcondy[irow ,jcol ])*deltaz)/(2.0* deltay

^2)
dmat[irow ,jcol]<-(( hydcondy[irow ,jcol ]+ hydcondy[irow ,jcol +1])*deltaz)/(2.0* deltay

^2)
}

}
headold <- hydhead # copy the head array , used to test for stopping
tolflag <- FALSE
for (iter in 1: maxiter){

# first and last row special == no flow boundaries
for(jcol in 1:ncols){

hydhead[1,jcol]<-hydhead[2,jcol]
hydhead[nrows ,jcol]<-hydhead[nrows -1,jcol]

}
for (irow in 2:(nrows -1)){

for (jcol in 2:(ncols -1)){
hydhead[irow ,jcol] <-

(amat[irow ,jcol]* hydhead[irow -1,jcol ] +
bmat[irow ,jcol]* hydhead[irow+1,jcol ] +
cmat[irow ,jcol]* hydhead[irow ,jcol -1] +
dmat[irow ,jcol]* hydhead[irow ,jcol +1] )/

(amat[irow ,jcol]+bmat[irow ,jcol]+cmat[irow ,jcol]+dmat[irow ,jcol])
}

}
# test for stopping iterations
percentdiff <- sum((hydhead -headold)^2)
if (percentdiff < tolerance){

message ("Exit iterations in velocity potential because tolerance met");
message (" Iterations =", iter);
tolflag <- TRUE
break}

headold <-hydhead #update the current head vector
if( iter %% 1000 == 0){message (" Calculating in Potential Function ",iter ," of ",maxiter , "

iterations ")}
}
if (tolflag == FALSE){message ("Exit iterations in potential function at max iterations ")}

}
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Listing 61. Contour plotting script.

##############################################################
### built position arrays for contour plotting ###
##############################################################
velocity_plt <-matrix(0,ncols ,nrows)
for( i in 1:nrows){

for( j in 1:ncols){
velocity_plt[j,i]= hydhead[i,j]

}
}
##############################################################
### contour plot of head -- note axes are rotated ###
##############################################################
contour(distancex ,distancey ,velocity_plt ,

plot.title = title(main = "Head (Blue) Map",
xlab = "Meters (X axis) ====>>",
ylab = "Meters (Y axis) ====>>"),

col="blue",lwd=3,nlevels =20)

Listing 62. Input file for 2D vertical slice confined aquifer with low permeability inclusion. The com-
ments in the listing should be removed for running the program.

1
10
1
13
23
1e-16 ## Stopping Criterion
50000 ## Maximum Iterations
5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 225
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 0.0001 0.0001 0.0001 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 0.0001 0.0001 0.0001 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 0.0001 0.0001 0.0001 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 0.0001 0.0001 0.0001 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 0.0001 0.0001 0.0001 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 0.0001 0.0001 0.0001 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Lastly, the result of running the script on the input file is shown in figure 147

Now when you run the script, it seems to take a long time and many iterations. This
observation is indeed correct – the ratio of conductivity terms and spatial discretiza-
tion exerts a lot of influence on how fast the script can find a solution. This problem
exists for most iterative methods. One could use the built-in solve( ...) function,
and simply solve the linear system without regard to structure, but assembly of the
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Figure 124. Vertical slice in an aquifer with low permeability inclusion using Jacobi iteration scripts.

system matrix is non-trivial.64 The head “array” would need to be addressed as a
vector (we can use pointers to accomplish this task — not too hard, but we would
need to build the coefficient matrix, solve the system, and de-construct the result).
This task is saved for a future edition.

17.1.3 Generalizing the Boundary Conditions

In the prior examples the boundary conditions for the problems were kind of glossed
over. We applied a fixed head boundary on the left and right edges of the rectangular
domain, and zero-flux boundary at the top and bottom edges. A useful improvement
is to allow the user to choose which type by supplying information in the input file. I
find the easiest way (as we are just learning) is to assume the entire model is always
surrounded by a constant head condition and use a mask to tell the program when
that is not true.

The code fragments for making this change are pretty straightforward, and are dis-
played in Listing 63. We need to read in boundary indicators for the top, bottom,
left, and right boundaries. Then convert them into numeric values for later. Here I
choose to use a zero to indicate a zero-flux boundary and any non-zero (usually a 1)
to indicate a fixed head boundary.

64The system will be penta-diagional, and knowing this structure we could code a very efficient
solver – in this case we will use the built-in function, although we will tell the program that the
matrix is sparse (e.g. sparse = TRUE) in the function call.
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Next we apply the conditions within the solver loop by assigning the compued value
of the adjacent cell (either above, below, left, or right as appropriate). The reaminder
of the script is unchanged, of coude we need to include the new input values in the
data file as in Listing 64.

Listing 63. Script fragments for implementing generalized boundary conditions.

### Up in the input read section of the script ########
# add boundary conditions 0= fixed head , 1= no flow
boundarytop <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
boundarybottom <- (readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
boundaryleft <- (readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul

= FALSE))
boundaryright <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul

= FALSE))
hydhead <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
.........
### Convert to numeric ######
boundarytop <-as.numeric(unlist(strsplit(boundarytop ,split =" ")))
boundarybottom <-as.numeric(unlist(strsplit(boundarybottom ,split=" ")))
boundaryleft <-as.numeric(unlist(strsplit(boundaryleft ,split=" ")))
boundaryright <-as.numeric(unlist(strsplit(boundaryright ,split=" ")))
...........
#### Apply the conditions ####
for (iter in 1: maxiter){
# Boundary Conditions
# Top and Bottom
for(jcol in 1: ncols){

if(boundarytop[jcol] == 0){hydhead[1,jcol]<-hydhead[2,jcol]} #no-flow at top
if(boundarybottom[jcol] == 0){hydhead[nrows ,jcol]<-hydhead[2,jcol]} #no -flow at bottom
# otherwise values are fixed head

}
for(irow in 1: nrows){

if(boundaryleft[irow] == 0){hydhead[irow ,1]<- hydhead[irow ,2]} #no-flow at left
if(boundaryright[irow] == 0){hydhead[irow ,ncols]<-hydhead[irow ,ncols -1]} #no -flow at

right
# otherwise values are fixed head

}
for (irow in 2:(nrows -1)){
...........

Listing 64. Input file for 2D vertical slice confined aquifer with low permeability inclusion using a
generalized boundary mask. The comments in the listing should be removed for running the program.

1
10
1
13
23
1e-8
5000
5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 225
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 # Boundary Conditions along Top
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 # Boundary Conditions along Bottom
1 1 1 1 1 1 1 1 1 1 1 1 1 # Boundary Conditions along Left
1 1 1 1 1 1 1 1 1 1 1 1 1 # Boundary Conditions along Right
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 0.001 0.001 0.001 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 0.001 0.001 0.001 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 0.001 0.001 0.001 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
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10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 0.001 0.001 0.001 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 0.001 0.001 0.001 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 0.001 0.001 0.001 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Addition of the generalized boundary conditions expands the utility of our script as
illustrated in the next example.

Example 4: 2D Vertical Slice in for Computing Heads (Pore Pressure)
under a Dam

Figure 125 is a schematic of a dam built upon a permeable ground layer 80 meters
thick (segment A to I). The dam has a base 60 meters wide (segment B to F), with
an upstream water depth of 10 meters. The downstream side of the dam is at 0
meters depth (otherwise its not a very good dam!). A sheetpile cutoff wall is installed
beneath the dam (segment C to D to U to E). The ground layer has a hydraulic
conductivity of K = 1× 10−4 meters per second.

Figure 125. Schematic of a dam on permeable soil with the sheet pile curtain underneath the dam.

Important engineering questions are what is the pore water pressure under the dam,
and is what is the total seepage under the dam? The pore water pressure can be found
by solving for heads under the dam then subtracting the elevation of the computation
location elative to a datum. The flow is found by Darcy’s law applied under the dam
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(shown as locations 1,2,3,4, and 5 in the sketch), which in turn requires computation of
head under the dam. Thus the questions are answered by finding the head distribution
under the dam.

The flow field (mathematically) extends an infinite distance upstream and down-
stream, but as a practical matter the contribution to seepage far upstream of the
dam is negligible, and hence is approximated by the finite domain depicted.

Using the tools we have already built we can simply build an input file, run our
script and determine the head distribution (and thus compute the discharges under
the dam. There are two ways to conceptualize the model domain, we will examine
both.

The first is to represent the domain as shown, and make the following specifications
in the boundary condition information, and we will treat the sheetpile cutoff wall
as a low permeability inclusion (much like the the prior example). The boundary
conditions are:

1. The segment from A to B is a constant head boundary with value equal to 10.

2. The segment from B to F is a zero-flux boundary.

3. The segment from B to C to D to U to E to F should be treated as a zero-
flux boundary, but our mask does not extend into the interior – however the
sheetpile itself can be approximated by providing a very small permeability.
Alternately we could (should) modify the code to handle interior boundaries –
but that is outside the scope of this chapter.

4. The segment from F to G is a constant head boundary with value equal to 0.

5. The segment form G to H is a constant head boundary with value equal to 0.

6. The segment from H to I is a zero-flux boundary.

7. The segment from I to A is a constant head boundary with value equal to 10.

Listing 65 is the input file that is used that incorporates the boundary conditions
stated above. Observe how all we did was change the ∆x and ∆y specifications,
modified the boundary condition arrays, and set the row and column counts.

Listing 65. Input file for 2D vertical slice for Dam Seepage Example.

10
10
1
9
31
1e-12
5000
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

250 260 270 280 290 300
0 10 20 30 40 50 60 70 80
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 216 of 278



CE 4333 Practical Computational Hydraulics SUMMER 2017

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0000001 0.0000001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0000001 0.0000001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0000001 0.0000001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0000001 0.0000001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0000001 0.0000001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.00010

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Figure 126 is a screen capture of the code running and producing the contour plot.
I was unable to force the plot to plot the zero head contour, however the problem is
symmetric, so this line should be the mirror image of the 10 meter contour on the
left of the image.

The contour plot itself (even with these cautions) is a little deceptive, so I added a
write command at the end of the script to write the contents of the hydraulic head ar-
ray to a file that can be loaded into Excel to make the requisite flow calculations.

A screen capture of the output data loaded into an Excel spreadsheet is shown on
Figure 127. The red shaded area in the figure is where the sheetpile cutoff wall is
located.
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Figure 126. Screen capture of the script run with the different input file.

If we apply Darcy’s law to the orange portion in the vertical direction (where flow
mush be vertical to seep under the dam) the result is about 3.76 m3 per day, per
meter of width (perpendicular to Figure Figure 125). These computations are shown
in the spreadsheet beneath the output data.

Figure 127. Output file loaded into Excel for further analysis.
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This example (like most roll-your-own) requires some specific knowledge of hydraulics
to interpret the results, in this case knowing to apply Darcy’s law along the bottom
of the reservoir to determine the flow rate, and to integrate (sum up) the individual
cell flows to obtain total flow.

The second way to solve this example, and perhaps better is to take advantage of
the symmetry and cut the domain in half, as in Figure 128. In this method we can
actually specify the sheetpile as a boundary, and we will obtain the same results, but
only need to supply half as much input data.

Figure 128. Output file loaded into Excel for further analysis.

Listing 66 is the input file for this symmetry based approach.

Listing 66. Input file for 2D vertical slice for Dam Seepage Example using Symmetry.

10
10
1
9
15
1e-16
5000
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0 10 20 30 40 50 60 70 80
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 5
10 10 10 10 10 10 10 10 10 10 10 10 10 10 5
10 10 10 10 10 10 10 10 10 10 10 10 10 10 5
10 10 10 10 10 10 10 10 10 10 10 10 10 10 5
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10 10 10 10 10 10 10 10 10 10 10 10 10 10 5
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

0.0001 0.0001

Figure 129 is the result of using the half-domain approach.

Figure 129. Output file loaded into Excel for further analysis.

If we repeat the flow calculations, this time along the portion at the bottom of the
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sheetpile, we obtain nearly the same result, 3.74 m3 per day, per meter of width. This
second way of solving the problem is more correct because we didn’t have to choose
an artificial value to mimic the effect of the sheetpile.

17.1.4 Internal sources/sinks to handle a discharge (well) at a specific
location

The last concept we will add here is to illustrate a means to approximate the effect of a
localized source (recharge or an injection well) or sink (pumping well). To incorporate
these kinds of inputs we add the terms to Equation 217 to obtain Equation 227

S
∂h

∂t
=

∂

∂x
(Tx

∂h

∂x
) +

∂

∂y
(Ty

∂h

∂y
) +R−Q (227)

where R and Q are recharge and pumping expressed in dimensions of L3

T
.

The resulting difference equation is

0 = [ 1
∆x
Tx

hi−1,j−hi,j
∆x

+ 1
∆y
Ty

hi,j−1−hi,j
∆y

]−

[ 1
∆x
Tx

hi,j−hi+1,j

∆x
+ 1

∆y
Ty

hi,j−hi,j+1

∆y
]

+
Ri,j

∆x∆y
− Qi,j

∆x∆y

(228)

These additions are incorporated into our program by only adding a few code frag-
ments in certain places. Listing 67 shows the various added components to handle a
well field. Observe we can incorporate recharge as if it were a well with a negative
pumping rate so for this document it is not considered separately, although in many
practical cases that might be a preferable way to incorporate the process.

Listing 67. Input file for 2D Steady flow with generalized boundary conditions and wells.

# 2D Steady Confined -- With Boundary Arrays -- And Pumping Array
# 2D Aquifer Flow Model using Jacobi Iteration
# deallocate memory
rm(list=ls())
zz <- file(" wellfield.dat", "r") # Open a connection named zz to file named input.dat
# read the simulation conditons
deltax <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltay <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltaz <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
nrows <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
ncols <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
tolerance <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
maxiter <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
distancex <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
distancey <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
# add boundary conditions 0= fixed head , 1= no flow
boundarytop <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
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boundarybottom <- (readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",
skipNul = FALSE))

boundaryleft <- (readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul
= FALSE))

boundaryright <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul
= FALSE))

hydhead <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =
FALSE))

# hydhead is now the initial condition array #
hydcondx <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
hydcondy <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
# add pumping array
pumping <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
close(zz)
# split the multiple column strings into numeric components for a vector
distancex <-as.numeric(unlist(strsplit(distancex ,split=" ")))
distancey <-as.numeric(unlist(strsplit(distancey ,split=" ")))
boundarytop <-as.numeric(unlist(strsplit(boundarytop ,split =" ")))
boundarybottom <-as.numeric(unlist(strsplit(boundarybottom ,split=" ")))
boundaryleft <-as.numeric(unlist(strsplit(boundaryleft ,split=" ")))
boundaryright <-as.numeric(unlist(strsplit(boundaryright ,split=" ")))
hydhead <-as.numeric(unlist(strsplit(hydhead ,split=" ")))
hydcondx <-as.numeric(unlist(strsplit(hydcondx ,split=" ")))
hydcondy <-as.numeric(unlist(strsplit(hydcondy ,split=" ")))
pumping <-as.numeric(unlist(strsplit(pumping ,split=" ")))
# convert the numeric vectors into matrices for easier indexing
hydhead <- matrix(hydhead ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
hydcondx <-matrix(hydcondx ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
hydcondy <-matrix(hydcondy ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
pumping <-matrix(pumping ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
# here we perform the velocity potential calculations
# built the transmissivity arrays
amat <-matrix(0,nrows ,ncols)
bmat <-matrix(0,nrows ,ncols)
cmat <-matrix(0,nrows ,ncols)
dmat <-matrix(0,nrows ,ncols)
qrat <-matrix(0,nrows ,ncols)
for(irow in 2:(nrows -1)){

for(jcol in 2:(ncols -1)){
amat[irow ,jcol]<-(( hydcondx[irow -1,jcol ]+ hydcondx[irow ,jcol ])*deltaz)/(2.0* deltax

^2)
bmat[irow ,jcol]<-(( hydcondx[irow ,jcol ]+ hydcondx[irow+1,jcol ])*deltaz)/(2.0* deltax

^2)
cmat[irow ,jcol]<-(( hydcondy[irow ,jcol -1]+ hydcondy[irow ,jcol ])*deltaz)/(2.0* deltay

^2)
dmat[irow ,jcol]<-(( hydcondy[irow ,jcol ]+ hydcondy[irow ,jcol +1])*deltaz)/(2.0* deltay

^2)
qrat[irow ,jcol]<-(-1.0)*pumping[irow ,jcol ]/( deltax*deltay)

}
}
headold <- hydhead # copy the head array , used to test for stopping
tolflag <- FALSE
for (iter in 1: maxiter){
# Boundary Conditions
# Top and Bottom
for(jcol in 1: ncols){

if(boundarytop[jcol] == 0){hydhead[1,jcol]<-hydhead[2,jcol]} #no-flow at top
if(boundarybottom[jcol] == 0){hydhead[nrows ,jcol]<-hydhead[nrows -1,jcol]} #no-flow at

bottom
# otherwise values are fixed head

}
for(irow in 1: nrows){

if(boundaryleft[irow] == 0){hydhead[irow ,1]<- hydhead[irow ,2]} #no-flow at left
if(boundaryright[irow] == 0){hydhead[irow ,ncols]<-hydhead[irow ,ncols -1]} #no -flow at

right
# otherwise values are fixed head

}
for (irow in 2:(nrows -1)){

for (jcol in 2:(ncols -1)){
hydhead[irow ,jcol] <-

( qrat[irow ,jcol] +
amat[irow ,jcol]* hydhead[irow -1,jcol ] +
bmat[irow ,jcol]* hydhead[irow+1,jcol ] +
cmat[irow ,jcol]* hydhead[irow ,jcol -1] +
dmat[irow ,jcol]* hydhead[irow ,jcol +1] )/

(amat[irow ,jcol]+bmat[irow ,jcol]+cmat[irow ,jcol]+dmat[irow ,jcol])
}

}
# test for stopping iterations
percentdiff <- sum((hydhead -headold)^2)
if (percentdiff < tolerance){

message ("Exit iterations in velocity potential because tolerance met");
message (" Iterations =", iter);
message (" Current error : ",percentdiff);
tolflag <- TRUE
break}

headold <-hydhead #update the current head vector
if( iter %% 1000 == 0){message (" Calculating in Potential Function ",iter ," of ",maxiter , "

iterations ")}

Page 222 of 278



CE 4333 Practical Computational Hydraulics SUMMER 2017

}
if (tolflag == FALSE){

message ("Exit iterations in potential function at max iterations ")
message (" Current error : ",percentdiff)
}

##############################################################
### built position arrays for contour plotting ###
##############################################################
velocity_plt <-matrix(0,ncols ,nrows)
for( i in 1:nrows){

for( j in 1:ncols){
velocity_plt[j,i]= hydhead [(nrows +1)-i,j]

}
}
##############################################################
### contour plot of head -- note axes are rotated ###
##############################################################
contour(distancex ,distancey ,velocity_plt ,

plot.title = title(main = "Head (Blue) Map",
xlab = "Meters (X axis) ====>>",
ylab = "Meters (Y axis) ====>>"),

col="blue",lwd=3,nlevels =21,xlim=c(0 ,300),ylim=c(0 ,300),zlim=c(-1,40),tck=1)
# write to an ASCII file to show in Excel
write(t(hydhead), file=’damseepage -out.txt ’,ncolumns = ncols ,sep=",")
message ("min head : ",min(hydhead))

Example 5: 4 Wells in a rectangular aquifer Figure 130 is a rectangular aquifer
with 4 wells as shown. The aquifer thickness is 1 meters. The aquifer is surrounded
with a constant head boundary of 30 meters. The hydraulic conductivity is K =
0.033 m/day.

Using a 10 meter × 10 meter grid spacing estimate the pumping rate in each well so
that the head within the rectangular area defined by the well field is no greater than
15 meters.

Figure 130. Rectangular aquifer with 4 wells.
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Listing 68 is the input file for the modified script for the example problem. The file
takes several pages in this document — as the input requirements become substantial,
one would write separate scripts just to build input files to structure them properly.
We are essentially constructing a specialized database, and manually building that
database can become tedious whereas we can automatically populate portions of the
database with a script.

Listing 68. Input file for 4 well example.

10
10
1
28
28
1e-16
5000
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

250 260 270
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

250 260 270
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
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0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.430 0.000 0.000 0.000 0.000
0.430 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.430 0.000 0.000 0.000 0.000
0.430 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure 131 is a screen capture of the script run with the datafile above. The con-
tour plot shows the “cone of depression” around the well field. The script has an
added message that reports the smallest head, and that report was used to adjust the
pumping rates at the four wells until the value was at the prescribed 15 meters.
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Figure 131. Rectangular aquifer with 4 wells.

The value for a single well is 0.430 m3

day
(using the units of hydraulic conductivity as

a guide). If the goal was then to specify particular pumps, that flow value and the
required lift would be used to specify and purchase pumps for the system.

We will repeat he problem in the next section of the workbook, except the aquifer
will be unconfined — we expect different results, but will be able to re-use the input
file.

17.2 Unconfined Aquifer Flow

Equation 229 is the meaningful part of Equation 209 from the previous chapter, which
is our starting point for building unconfied flow computations.

Sy∆x
∂hi
∂t

= (K h
hi+1 − hi

∆x
)− (K h

hi − hi−1

∆x
) (229)

17.2.1 Finite-Difference Methods

Here we will start with 2D flow – if you have a 1D problem to solve, just make the
model 3 cells wide in the un-needed axis and it will accomplish the same goal (and
avoid having separate codes for different dimensions).
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Here is the unconfined flow equation in 2 dimensions

Sy∆x∆y ∂hi
∂t

= [Kx∆y h
hi−1,j−hi,j

∆x
+Ky∆x h

hi,j−1−hi,j
∆y

]−

[Kx∆y h
hi,j−hi+1,j

∆x
+Ky∆x h

hi,j−hi,j+1

∆y
]

(230)

Next divide by the cell plan view area ∆x∆y to obtain a more compact form of the
difference equation.

S ∂hi
∂t

= [ 1
∆x
Kx h

hi−1,j−hi,j
∆x

+ 1
∆y
Ky h

hi,j−1−hi,j
∆y

]−

[ 1
∆x
Kx h

hi,j−hi+1,j

∆x
+ 1

∆y
Ky h

hi,j−hi,j+1

∆y
]

(231)

Again consider steady flow (we will do transient flows later on)

0 = [ 1
∆x
Kx h

hi−1,j−hi,j
∆x

+ 1
∆y
Ky h

hi,j−1−hi,j
∆y

]−

[ 1
∆x
Kx h

hi,j−hi+1,j

∆x
+ 1

∆y
Ky h

hi,j−hi,j+1

∆y
]

(232)

We will approximate the spatial variation of the K h ) as arithmetic mean values
between two cells, so making the following definitions:

Ai,j = 1
2∆x2 (Kx,(i−1,j)hi−1,j +Kx,(i,j)hi,j)

Bi,j = 1
2∆x2 (Kx,(i,j)hi,j +Kx,(i+1,j)hi+1,j)

Ci,j = 1
2∆y2 (Ky,(i,j−1)hi,j−1 +Ky,(i,j)hi,j)

Di,j = 1
2∆y2 (Ky,(i,j)hi,j +Ky,(i,j+1)hi,j+1)

(233)

Substitution into the difference equation yields

0 = Ai,jhi−1,j +Bi,jhi+1,j− (Ai,j +Bi,j +Ci,j +Di,j)hi,j +Ci,jhi,j−1 +Di,jhi,j+1 (234)

As before we can explicitly write the cell equation for hi,j as, however the system
is a bit non-linear as the A,B,C,D coefficients are themselves functions of the cell
values.

hi,j =
[Ai,jhi−1,j +Bi,jhi+1,j + Ci,jhi,j−1 +Di,jhi,j+1]

[Ai,j +Bi,j + Ci,j +Di,j]
(235)
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This difference equation represents an approximation to the governing flow equation,
the accuracy depending on the cell size. Boundary conditions are applied directly
into the analogs (another name for the difference equations) at appropriate locations
on the computational grid. Also as in the one-dimensional case we can generate
solutions either by iteration or solving the resulting non-linear system. Fortunately
theses kinds of systems are pretty well conditioned and one can usually compute the
A,B,C,D coefficients from the most recent value (in an iterative sense) of h and
proceeds as if the system is linear and it usually eventually converges.65

The method is again demonstrated by example.

Example 6: 4 Wells in a rectangular unconfined aquifer
Figure 132 is a rectangular aquifer with 4 wells as shown – the drawing is identi-
cal to the previous example, except the aquifer is now an unconfined aquifer. The
saturated thickness before the pumps are turned on is 30 meters. The aquifer is sur-
rounded with a constant head boundary of 30 meters. The hydraulic conductivity is
K = 0.033 m/day.

Using a 10 meter × 10 meter grid spacing estimate the pumping rate in each well
so that the head within the rectangular area defined by the well field is no greater
than 15 meters. In this example, the pumping rates will be quite a bit larger because
the saturated thickness at the desired drawdown is 15 times larger that the previous
example.

Listing 69 is an R script that performs the indicated computations. Upon initial in-
spection it appears nearly identical to the confined flow script, except the A,B,C,D
computations are moved into the iteration loop, so they are updated after each iter-
ation.

Observe that the ∆z value is still read into the script, but never used. I am being
somewhat lazy here; however it illustrates a code development protocol to re-use as
much code as possible until the program functions as desired, then we could go back
and delete unused components. I choose to retain the ∆z so I would only have to
change the input file pumping array and not create an entirely new input file structure.
As stated earlier, as the problems get big, we would write scripts that build the input
files before we run the computation engines.

65The approach here is called the variable transmissivity approach as thats all i really did in the
difference equation development – as long as there is not too much curvature in the head distri-
bution or dramatic changes in material properties in adjacent cells the Jacobi iteration method
already employed will function, albeit slowly compared to more elaborate methods. In this course
we are satisfied with these relatively primitive constructs, and more sophisticated approaches are
presented in the groundwater hydrology class taught by others.
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Figure 132. Rectangular aquifer with 4 wells.

Listing 69. R script implementing unconfined aquifer flow computations with wells and generalized
boundary conditions..

# 2D Steady UnConfined -- With Boundary Arrays -- And Pumping Array
# 2D Aquifer Flow Model using Jacobi Iteration
# deallocate memory
rm(list=ls())
zz <- file(" wellfield2.dat", "r") # Open a connection named zz to file named input.dat
# read the simulation conditons
deltax <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltay <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltaz <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
# here we retain deltaz but will not use it, we assume head is the deltaz
nrows <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
ncols <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
tolerance <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
maxiter <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
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distancex <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =
FALSE))

distancey <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =
FALSE))

# add boundary conditions 0= fixed head , 1= no flow
boundarytop <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
boundarybottom <- (readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
boundaryleft <- (readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul

= FALSE))
boundaryright <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul

= FALSE))
hydhead <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
# hydhead is now the initial condition array #
hydcondx <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
hydcondy <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
# add pumping array
pumping <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
close(zz)
# split the multiple column strings into numeric components for a vector
distancex <-as.numeric(unlist(strsplit(distancex ,split=" ")))
distancey <-as.numeric(unlist(strsplit(distancey ,split=" ")))
boundarytop <-as.numeric(unlist(strsplit(boundarytop ,split =" ")))
boundarybottom <-as.numeric(unlist(strsplit(boundarybottom ,split=" ")))
boundaryleft <-as.numeric(unlist(strsplit(boundaryleft ,split=" ")))
boundaryright <-as.numeric(unlist(strsplit(boundaryright ,split=" ")))
hydhead <-as.numeric(unlist(strsplit(hydhead ,split=" ")))
hydcondx <-as.numeric(unlist(strsplit(hydcondx ,split=" ")))
hydcondy <-as.numeric(unlist(strsplit(hydcondy ,split=" ")))
pumping <-as.numeric(unlist(strsplit(pumping ,split=" ")))
# convert the numeric vectors into matrices for easier indexing
hydhead <- matrix(hydhead ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
hydcondx <-matrix(hydcondx ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
hydcondy <-matrix(hydcondy ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
pumping <-matrix(pumping ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
# here we perform the velocity potential calculations
# allocate the transmissivity arrays
amat <-matrix(0,nrows ,ncols)
bmat <-matrix(0,nrows ,ncols)
cmat <-matrix(0,nrows ,ncols)
dmat <-matrix(0,nrows ,ncols)
# allocate and build the pumping array
qrat <-matrix(0,nrows ,ncols)
for(irow in 2:(nrows -1)){

for(jcol in 2:(ncols -1)){
qrat[irow ,jcol]<-(-1.0)*pumping[irow ,jcol ]/( deltax*deltay)

}
}
headold <- hydhead # copy the head array , used to test for stopping
tolflag <- FALSE
for (iter in 1: maxiter){
# built the variable transmissivity arrays

for(irow in 2:(nrows -1)){
for(jcol in 2:(ncols -1)){

amat[irow ,jcol]<-(( hydcondx[irow -1,jcol ]* hydhead[irow -1,jcol ]
+hydcondx[irow ,jcol ]* hydhead[irow ,jcol ]))/(2.0* deltax ^2)

bmat[irow ,jcol]<-(( hydcondx[irow ,jcol ]* hydhead[irow ,jcol ]
+hydcondx[irow+1,jcol ]* hydhead[irow+1,jcol ]))/(2.0* deltax ^2)

cmat[irow ,jcol]<-(( hydcondy[irow ,jcol -1]* hydhead[irow ,jcol -1]
+hydcondy[irow ,jcol ]* hydhead[irow ,jcol ]))/(2.0* deltay ^2)

dmat[irow ,jcol]<-(( hydcondy[irow ,jcol ]* hydhead[irow ,jcol ]
+hydcondy[irow ,jcol +1]* hydhead[irow ,jcol +1]))/(2.0* deltay ^2)

}
}

# Boundary Conditions
# Top and Bottom
for(jcol in 1: ncols){

if(boundarytop[jcol] == 0){hydhead[1,jcol]<-hydhead[2,jcol]} #no-flow at top
if(boundarybottom[jcol] == 0){hydhead[nrows ,jcol]<-hydhead[nrows -1,jcol]} #no-flow at

bottom
# otherwise values are fixed head

}
for(irow in 1: nrows){

if(boundaryleft[irow] == 0){hydhead[irow ,1]<- hydhead[irow ,2]} #no-flow at left
if(boundaryright[irow] == 0){hydhead[irow ,ncols]<-hydhead[irow ,ncols -1]} #no -flow at

right
# otherwise values are fixed head

}
for (irow in 2:(nrows -1)){

for (jcol in 2:(ncols -1)){
hydhead[irow ,jcol] <-

( qrat[irow ,jcol] +
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amat[irow ,jcol]* hydhead[irow -1,jcol ] +
bmat[irow ,jcol]* hydhead[irow+1,jcol ] +
cmat[irow ,jcol]* hydhead[irow ,jcol -1] +
dmat[irow ,jcol]* hydhead[irow ,jcol +1] )/

(amat[irow ,jcol]+bmat[irow ,jcol]+cmat[irow ,jcol]+dmat[irow ,jcol])
}

}
# test for stopping iterations
percentdiff <- sum((hydhead -headold)^2)
if (percentdiff < tolerance){

message ("Exit iterations in velocity potential because tolerance met");
message (" Iterations =", iter);
message (" Current error : ",percentdiff);
tolflag <- TRUE
break}

headold <-hydhead #update the current head vector
if( iter %% 1000 == 0){message (" Calculating in Potential Function ",iter ," of ",maxiter , "

iterations ")}
}
if (tolflag == FALSE){

message ("Exit iterations in potential function at max iterations ")
message (" Current error : ",percentdiff)
}

##############################################################
### built position arrays for contour plotting ###
##############################################################
velocity_plt <-matrix(0,ncols ,nrows)
for( i in 1:nrows){

for( j in 1:ncols){
velocity_plt[j,i]= hydhead [(nrows +1)-i,j]

}
}
##############################################################
### contour plot of head -- note axes are rotated ###
##############################################################
contour(distancex ,distancey ,velocity_plt ,

plot.title = title(main = "Head (Blue) Map",
xlab = "Meters (X axis) ====>>",
ylab = "Meters (Y axis) ====>>"),

col="blue",lwd=3,nlevels =21,xlim=c(0 ,300),ylim=c(0 ,300),zlim=c(-1,40),tck=1)
# write to an ASCII file to show in Excel
write(t(hydhead), file=’damseepage -out.txt ’,ncolumns = ncols ,sep=",")
message ("min head : ",min(hydhead))

Listing 70 is the relevant portion of the input file for the example. The remainder of
the file is unchanged from the previous example (hence the reason I retained the ∆z
variable).

Listing 70. Relevant portion of input file for unconfined flow example. Only the pumping values are
different..

...........
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.500 0.000 0.000 0.000 0.000

9.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.500 0.000 0.000 0.000 0.000

9.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
.............

Figure 133 is a screen capture of the example implemented in R. The plot is practically
the same as in the previous example (in fact of the labels were not moved on the
contour lines, the figures would look identical) however the pumping rate is 20 times
larger for apparently the same head distribution — so if the dewatering effort were
in an unconfined aquifer, perhaps for an excavation for a foundation, choosing the
correct conditions would be kind of important.66

66Well more than “kind-of” — absolutely vital to size the dewatering points and pumps.
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Figure 133. Rectangular unconfined aquifer with 4 wells. Solution and plotting using R.

As a quick summary of this chapter we started with a 1D situation and built a couple
of finite-difference models to illustrate the use of solve(...) and our homebrew
Jacobi iteration method. Next we progressed to a 2D situation (it can either be a
slice or a layer) and used the Jacobi iteration method. Using a formal linear solver
would also work quite well, but the matrix assembly is a bit tedious – so that was left
for future editions of this book. Once we had our 2D computation engine working
we extended capability by adding generalized boundary condition capability to the
exterior boundaries (the same can be done for interior cells – the matrix assembly logic
is awkward, so that too is left for future editions). Once the generalized boundary
modification was built, we then added a recharge/pumping capability. This last model
is functionally useful (although it needs testing against known solutions to detect any
coding errors). To complete the chapter, a simple modification using the variable
transmissivity construct allowed us to extend our capability to unconfined aquifers.
The next chapter will illustrate unsteady flow where the left hand side of the PDEs
is no longer zero.
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17.3 Exercises

1. Repeat Example 5 (4 Wells in a Confined Aquifer) with an aquifer thickness of
10 meters and determine:

(a) The pumping rate in each well that produces a minimum aquifer head of
15 meters.

(b) Produce a contour plot of this solution and report the required pumping
rate in cubic meters per day.

(c) Plot the head in a elevation/profile view (vertical slice into the aquifer –
section a–a in the sketch) that passes through the middle of the aquifer
(between the wells) running from left to right.

2. Figure 134 is a plan view map of the hydrologic setting of the OBLEO aquifer.
The aquifer is an unconfined aquifer with a single well, P-1, in its geographic
center. The aquifer is bounded to the North and South by mountains, and
the East and West by two large lakes. The water elevation in each lake is 100.0
meters above some datum, while the ground elevation at the well is 200.0 meters
above the same datum.

Rainfall records indicate that recharge to the subsurface is approximately 250
mm/yr. The aquifer is homogeneous and isotropic (Kx = Ky) with a hydraulic
conductivity value of K = 100m/day, and a specific yield Sy = 0.25. The
example constructs a computer model to help determine the safe yield of the
aquifer - assume minimum permissible saturated thickness is 50 m.

(a) Write/Modify an R script to include a recharge array (in addition to a
pumping array). Take care that you use the correct sign when adding this
array into the computation engine.

(b) What kind of boundary condition makes sense for the two lakes?

(c) What kind of boundary condition makes sense for the two mountain ranges?

(d) Build an input file in the structure used in the examples. Use a grid size
of 100km X 100km67.

(e) Compute the head distribution and produce a contour plot with just recharge
(no pumping).

(f) Plot the head in a elevation/profile view (vertical slice into the aquifer)
that passes through the well running from West to East. (Lake to Lake).

(g) Compute the head distribution with recharge and pumping at a rate that
produces a minimum saturated thickness of about 50 meters.

(h) Produce a contour plot of this solution and report the required pumping

67Yes, i am aware that this aquifer is over 600 miles between the lakes!
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Figure 134. Obleo Aquifer Setting (Plan View).

rate in cubic meters per day.

(i) Plot the head in a elevation/profile view (vertical slice into the aquifer)
that passes through the well running from West to East. (Lake to Lake).

(j) Capture these plots into a brief report where you compare the aquifer
conditions before pumping and during pumping.
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18 Unsteady Groundwater Flow

18.1 Confined Aquifers

18.1.1 Finite-Difference Methods – 1 Spatial Dimension

Using Equation 203 as a starting point for simulating aquifer behavior, the unsteady
flow condition means that the left hand side remains.

S∆x∆y
ht+∆t
i − hti

∆t
= (K∆y∆z

hi−1 − hi
∆x

)− (K∆y∆z
hi − hi+1

∆x
) (236)

Next we will use the arithmetic mean values of the material properties (K) at the
cell interfaces, so the difference equation becomes

S∆x∆y
ht+∆t
i − hti

∆t
= (

1

2
(Ki−1 +Ki)∆y∆z

hi−1 − hi
∆x

)−(
1

2
(Ki+Ki−1)∆y∆z

hi − hi+1

∆x
)

(237)

Now divide both sides by ∆x∆y to obtain

S
ht+∆t
i − hti

∆t
= (

1

2
(Ki−1 +Ki)∆z

hi−1 − hi
∆x2

)− (
1

2
(Ki +Ki−1)∆z

hi − hi+1

∆x2
) (238)

Multiply by ∆t
Si

to obtain

ht+∆t
i −hti =

∆t

Si
× [(

1

2
(Ki−1 +Ki)∆z

hi−1 − hi
∆x2

)− (
1

2
(Ki+Ki−1)∆z

hi − hi+1

∆x2
)] (239)

Now lets group some constants:

Ai = ∆t
2Si∆x2 (Ki−1 +Ki)∆z

Bi = ∆t
2Si∆x2 (Ki +Ki+1)∆z

(240)

Now substitute into the difference equation.

ht+∆t
i = Ai(h

∗
i−1)− (Ai +Bi)(hi)

∗ +Bi(h
∗
i+1) + hti (241)

Next we have to decide what time level to evaluate the right hand side terms that
have the ∗ time superscript.
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18.1.2 Explicit Formulation

If we choose to evaluate at the current time step, the method is called an explicit
method. It works fine, but stability requirements force us to use ratios of space
and time steps that are often limiting — this behavior is called “conditional stabil-
ity.”

ht+∆t
i = Ai(h

t
i−1)− (Ai +Bi)(hi)

t +Bi(h
t
i+1) + hti (242)

The advantage of this construct is simplicity for programming – in fact one can
actually solve these kind of problem graphically if you choose a proper space and
time step.

18.1.3 Implicit Formulation

If instead we choose to evaluate at the new time step, the method is called an implicit
method.

ht+∆t
i = Ai(h

t+∆t
i−1 )− (Ai +Bi)(h

t+∆t
i ) +Bi(h

t+∆t
i+1 ) + hti (243)

A slight rearrangement of the equation produces a structure very amenable to Jacobi
iteration (with all its faults!)

0 = Ai(h
t+∆t
i−1 )− (Ai +Bi + 1)(ht+∆t

i ) +Bi(h
t+∆t
i+1 ) + hti (244)

If indeed we decide to use Jacobi iteration, then the system to be solved is

ht+∆t
i =

Ai(h
t+∆t
i−1 ) +Bi(h

t+∆t
i+1 ) + hti

Ai +Bi + 1
(245)

18.2 Finite-Difference Methods – 2 Spatial Dimensions

Rather than build a 1D example, in this section we will just build a 2D example. We
will use a fully-implicit method to take advantage of our Jacobi solver we have already
built, and incorporate both the boundary condtion masks and a pumping array. The
result will be a functional tool, that with some further modifications could be used
for actual groundwater engineering problems, albeit the computations would seem
quite slow. However, a few hours of run time is a lot loss costly than drilling wells in
the wrong places — for a professional problem we would probably use MODFLOW
which has far more efficient solvers (but interestingly works about the same).68

68At the conclusion of the example, we will compare the results to MODFLOW and demonstrate
that the two tools produce the same answers. Generally we won’t often have to build our own
codes – however if we do, they should produce the same results as a professional code for the
same problem. Then we would use our homebuilt code for whatever special need we have that
the professional code cannot conveniently address.
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Starting with
S ∂hi

∂t
= [ 1

∆x
Tx

hi−1,j−hi,j
∆x

+ 1
∆y
Ty

hi,j−1−hi,j
∆y

]−

[ 1
∆x
Tx

hi,j−hi+1,j

∆x
+ 1

∆y
Ty

hi,j−hi,j+1

∆y
]

+
Ri,j

∆x∆y
− Qi,j

∆x∆y

(246)

We apply the finite difference approach to the time derivative and obtain

S
ht+∆t
i −hti

∆t
= [ 1

∆x
Tx

hi−1,j−hi,j
∆x

+ 1
∆y
Ty

hi,j−1−hi,j
∆y

]−

[ 1
∆x
Tx

hi,j−hi+1,j

∆x
+ 1

∆y
Ty

hi,j−hi,j+1

∆y
]

+
Ri,j

∆x∆y
− Qi,j

∆x∆y

(247)

Proceeding as above in the 1D case, we will isolate the time levels, multiply through
by ∆t, and divide by S we obtain

ht+∆t
i = hti + ∆t

Si
[ 1
∆x
Tx

hi−1,j−hi,j
∆x

+ 1
∆y
Ty

hi,j−1−hi,j
∆y

]−

∆t
Si

[ 1
∆x
Tx

hi,j−hi+1,j

∆x
+ 1

∆y
Ty

hi,j−hi,j+1

∆y
]

+ ∆t
Si

Ri,j

∆x∆y
− ∆t

Si

Qi,j

∆x∆y

(248)

Next if we choose the time level on the right-hand side as t, we would have an explicit
scheme69, however if we choose to evaluate at the new time level t+ ∆t, we have an
implicit scheme. We are going to choose an implicit scheme to leverage our work on
the Jacobi solver we have already built so the difference equation becomes

ht+∆t
i = hti + ∆t

Si
[ 1
∆x
Tx

ht+∆t
i−1,j−h

t+∆t
i,j

∆x
+ 1

∆y
Ty

ht+∆t
i,j−1−h

t+∆t
i,j

∆y
]−

∆t
Si

[ 1
∆x
Tx

ht+∆t
i,j −ht+∆t

i+1,j

∆x
+ 1

∆y
Ty

ht+∆t
i,j −ht+∆t

i,j+1

∆y
]

+ ∆t
Si

Rt
i,j

∆x∆y
− ∆t

Si

Qt
i,j

∆x∆y

(249)

Equation 249 is the difference equation we will code into our R script with some mod-
ifications to allow time stepping and plotting results. I set the pumping and recharge
at time level t, but one could just as well choose to average over two time levels. As

69Easy to program, but conditionally stable and usually requiring a very small time step for stability.
Here we will use an implicit scheme, which will be unconditionally stable – we will still use pretty
small time steps for accuracy, but not need to worry too much about stability.
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long as the time steps are small relative to changes in pumping and recharge70, it
won’t make much practical difference.

Observe a very important part of the difference equation, hti is known at the beginning
of a time step and does not change during the computation effort for that time period
– it is just another constant like recharge or pumping. However, once we have the
update, then it is changed and the next time step is begun. The observation is
important to remember because we are simply going to wrap a time stepping loop
around our already tested and working Jacobi solver.

Employing the same A,B,C,D structure as the unsteady 2D solvers we built the
update model is

Also as in the one-dimensional case, we will approximate the spatial variation of the
material properties (transmissivity) as arithmetic mean values between two cells, so
making the following definitions:

Ai,j = ∆t
2Si ∆x2 (Tx,(i−1,j) + Tx,(i,j))

Bi,j = ∆t
2Si ∆x2 (Tx,(i,j) + Tx,(i+1,j))

Ci,j = ∆t
2Si ∆y2 (Ty,(i,j−1) + Ty,(i,j))

Di,j = ∆t
2Si ∆y2 (Ty,(i,j) + Ty,(i,j+1))

Ei,j = ∆t
Si ∆x∆y

(250)

Substitution into the difference equation and writing the cell equation for hi,j yields

ht+∆t
i,j =

[Ai,jh
t+∆t
i−1,j +Bi,jh

t+∆t
i+1,j + Ci,jh

t+∆t
i,j−1 +Di,jh

t+∆t
i,j+1]

[Ai,j +Bi,j + Ci,j +Di,j + 1]
+ hti +Ei,j[R

t
i,j −Qt

i,j] (251)

This equation is quite amenable to the Jacobi iteration technique, with the addition
of the two left-most terms for head at the start of the time step and the net recharge
less pumping. Notice the +1 in the denominator of the weighting term – it reflects
that ht+∆t

i,j appears on both the left and right hand side of Equation 249.

Listing 71 is an R script that implements these changes. In the script the plotting
has been moved into the prototype function, so we can generate a plot when we wish.
The input data reading portion has a line added to capture the time step length,
the maximum number of time steps to take, a printing frequency (make a plot every
iprint time steps), and a storage coefficient array. Observe that the printing test
makes use of the MODULO construct in R.

70Stress periods on the order of months for time steps in days
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The actual script use will be demonstrated by the next example.

Listing 71. R code demonstrating an Aquifer Flow Simulator for 2D Unsteady Confined Aquifer
Flow. This code fragment implements the Jacobi iteration to solve the linear system at each time
step. A plotting prototype function is used so we can plot to a graphics device at specified intervals
(multiples of the total number of time steps). A graphics device is used (rather than plotting to the R
Studio environment) so multiple plots at different simulation times can be rendered.

# 2D Unsteady Confined -- With Boundary Arrays and Wells using Jacobi Iteration
# deallocate memory
rm(list=ls())
##############################################################
# prototype plotting function #
##############################################################
plotnow <-function(headnow ,ncols ,nrows ,etime ,deltat){
### built position arrays for contour plotting
velocity_plt <-matrix(0,ncols ,nrows)
for( i in 1:nrows){

for( j in 1:ncols){
velocity_plt[j,i]= headnow[i,j]

}
}
### contour plot of head -- note axes are rotated
#debug message (" elapsed time : ",maxtime * deltat)
mytitle <- paste("Head (Blue) Map at Time = :",etime*deltat ," seconds ")
contour(distancex ,distancey ,velocity_plt ,

plot.title = title(main = mytitle ,
xlab = "Meters (X axis) ====>>",
ylab = "Meters (Y axis) ====>>"),

col="blue",lwd=3,nlevels =20)
}
################################################################
################################################################
zz <- file(" input2.dat", "r") # Open a connection named zz to file named input.dat
# read the simulation conditons
deltax <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltay <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltaz <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltat <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
nrows <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
ncols <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
tolerance <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
maxiter <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
maxtime <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
iprint <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
distancex <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
distancey <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
# add boundary conditions 0= fixed head , 1= no flow
boundarytop <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
boundarybottom <- (readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
boundaryleft <- (readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul

= FALSE))
boundaryright <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul

= FALSE))
hydhead <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
# hydhead is now the initial condition array #
hydcondx <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
hydcondy <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
storage <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
pumping <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
close(zz)
# split the multiple column strings into numeric components for a vector
distancex <-as.numeric(unlist(strsplit(distancex ,split=" ")))
distancey <-as.numeric(unlist(strsplit(distancey ,split=" ")))
boundarytop <-as.numeric(unlist(strsplit(boundarytop ,split =" ")))
boundarybottom <-as.numeric(unlist(strsplit(boundarybottom ,split=" ")))
boundaryleft <-as.numeric(unlist(strsplit(boundaryleft ,split=" ")))
boundaryright <-as.numeric(unlist(strsplit(boundaryright ,split=" ")))
hydhead <-as.numeric(unlist(strsplit(hydhead ,split=" ")))
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hydcondx <-as.numeric(unlist(strsplit(hydcondx ,split=" ")))
hydcondy <-as.numeric(unlist(strsplit(hydcondy ,split=" ")))
storage <-as.numeric(unlist(strsplit(storage ,split=" ")))
pumping <-as.numeric(unlist(strsplit(pumping ,split=" ")))
# convert the numeric vectors into matrices for easier indexing
hydhead <- matrix(hydhead ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
hydcondx <-matrix(hydcondx ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
hydcondy <-matrix(hydcondy ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
storage <-matrix(storage ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
pumping <-matrix(pumping ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
# allocate a graphics device for sequential plotting
pdf ("2d-unsteady -confined -junk.plot.pdf") # send any plots to file
# here we perform the velocity potential calculations
# built the transmissivity arrays
amat <-matrix(0,nrows ,ncols)
bmat <-matrix(0,nrows ,ncols)
cmat <-matrix(0,nrows ,ncols)
dmat <-matrix(0,nrows ,ncols)
qrat <-matrix(0,nrows ,ncols)
for(irow in 2:(nrows -1)){

for(jcol in 2:(ncols -1)){
amat[irow ,jcol]<-(( hydcondx[irow -1,jcol ]+ hydcondx[irow ,jcol ])*deltat*deltaz)

/(2.0* storage[irow ,jcol]* deltax ^2)
bmat[irow ,jcol]<-(( hydcondx[irow ,jcol ]+ hydcondx[irow+1,jcol ])*deltat*deltaz)

/(2.0* storage[irow ,jcol]* deltax ^2)
cmat[irow ,jcol]<-(( hydcondy[irow ,jcol -1]+ hydcondy[irow ,jcol ])*deltat*deltaz)

/(2.0* storage[irow ,jcol]* deltay ^2)
dmat[irow ,jcol]<-(( hydcondy[irow ,jcol ]+ hydcondy[irow ,jcol +1])*deltat*deltaz)

/(2.0* storage[irow ,jcol]* deltay ^2)
qrat[irow ,jcol]<-(-1.0)*deltat*pumping[irow ,jcol ]/( deltax*deltay*storage[irow ,jcol])
}

}
####### initial conditions ######################################
headnow <- hydhead
for (tstep in 1: maxtime){ ### this is the outer time -stepping loop
###### use jacobi to solve for a single time step ###############
hydhead <- headnow
headold <- hydhead # copy the head array , used to test for stopping
tolflag <- FALSE
for (iter in 1: maxiter){
# Boundary Conditions
# Top Row
for(jcol in 1: ncols){

if(boundarytop[jcol] == 0){hydhead[1,jcol]<-hydhead[2,jcol]} #no-flow at top
if(boundarybottom[jcol] == 0){hydhead[nrows ,jcol]<-hydhead[2,jcol]} #no -flow at bottom
# otherwise values are fixed head

}
for(irow in 1: nrows){

if(boundaryleft[irow] == 0){hydhead[irow ,1]<- hydhead[irow ,2]} #no-flow at left
if(boundaryright[irow] == 0){hydhead[irow ,ncols]<-hydhead[irow ,ncols -1]} #no -flow at

right
}

for (irow in 2:(nrows -1)){
for (jcol in 2:(ncols -1)){

hydhead[irow ,jcol] <- ( headnow[irow ,jcol] +
qrat[irow ,jcol] +

amat[irow ,jcol]* hydhead[irow -1,jcol ] +
bmat[irow ,jcol]* hydhead[irow+1,jcol ] +
cmat[irow ,jcol]* hydhead[irow ,jcol -1] +
dmat[irow ,jcol]* hydhead[irow ,jcol +1] )/

(amat[irow ,jcol]+bmat[irow ,jcol]+cmat[irow ,jcol]+dmat[irow ,jcol ]+1)
}

}
# test for stopping iterations
percentdiff <- sum((hydhead -headold)^2)
if (percentdiff < tolerance){

message ("Exit iterations in velocity potential because tolerance met");
message (" Iterations =", iter);
message (" Current error : ",percentdiff);
tolflag <- TRUE
break

}
headold <-hydhead #update the current head vector

# if( iter %% 1000 == 0){message (" Calculating in Potential Function ",iter ," of ",maxiter ,
" iterations ")}

}
if (tolflag == FALSE){
# message ("Exit iterations in potential function at max iterations ")

message (" Current error : ",percentdiff)
}

# perform an update
headnow <- hydhead
########## end of a time step ################################
# check for plotnow
if(tstep %% iprint ==0){plotnow(headnow ,ncols ,nrows ,tstep ,deltat)}
}
# exit the time -stepping loop
# output ending conditons
write(t(hydhead), file=’2d-unsteady -confined.txt ’,ncolumns = ncols ,sep=",")
# deallocate (disconnect) graphics device
dev.off() # disconect the pdf file

Page 241 of 278



CE 4333 Practical Computational Hydraulics SUMMER 2017

Example 1: Rectangular Aquifer with Pumping – Unsteady Flow Figure 135
is a plan view of a confined aquifer with a Well field located as shown, near the Red
River. The head in the river is 1000 meters as is the head at the South boundary, the
Green Swamp. The aquifer thickness is about 10 meters. The hydraulic conductivity
of the water producing zone is 20 meters per day. Determine the head distribution
every 100 days of pumping at a rate of 20,000 cubic meters per day for 1000 days
(about 3 years). The storage coefficient of the aquifer is S = 0.01.

Figure 135. Rectangular aquifer with wellfield. North and South boundaries are fixed head. East and
West boundaries are Zero-Flux.

Each cell in the sketch is 1000X1000 meters.

Listing 72 is the input file for the example problem. Literally it only has two new
“lines.”

Listing 72. Input file for the Hubbleville Aquifer Example. Annotations in the listing need to be re-
moved for actual running of the file and are included to illustrate the various parts of the input data.

1000 <== Delta x
1000 <== Delta y
10 <== Delta z (thickness)
0.1 <== Time step length (in days)
10 <==row count
10 <== column count
1e-8 <== tolerance for linear solver
1000 <== how many trials per linear system
10000 <== how many time steps
1000 <== print every ## time step
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
1 1 1 1 1 1 1 1 1 1 <== boundary conditions
1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0

Page 242 of 278



CE 4333 Practical Computational Hydraulics SUMMER 2017

0 0 0 0 0 0 0 0 0 0
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 <== initial head array
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
20 20 20 20 20 20 20 20 20 20 20 20 <== Kx array
20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 <== Ky array
20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <== Storage coefficient
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.11
0 0 0 0 0 0 0 0 0 0 <== pumping array
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 20000 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Figures 136 and 137 are plots of the head distribution after 300 and 900 days (in the
first year and the third year of pumping). In the plots one can observe that the cone
of depression is growing (outward from the well field), and the numerical values of
the contours are reflecting the progressively declining head elevations.

At some point the head distribution would stop changing (and equilibrium solution)
and would agree with a steady flow simulation for the same aquifer conditions. If one
were to perform a “cut-and-fill” analysis of the contour maps, the amount of aquifer
dewatered (difference in head multiplied by the storage coefficient, integrated over
the entire area shown) would equal the volume pumped from the system.71

The next section will extend the concept to an unconfied aquifer – again using the
variable transmissivity approach of the prior chapter.

71Numerically very close – there might be some differences because of arithmetic precision issues.
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Figure 136. Plot of head after 300 days of pumping.

Figure 137. Plot of head after 900 days of pumping.
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18.3 Unconfined Aquifers

As in the previous chapter, we will start with the unconfined flow equation in 2
dimensions

Sy∆x∆y ∂hi
∂t

= [Kx∆y h
hi−1,j−hi,j

∆x
+Ky∆x h

hi,j−1−hi,j
∆y

]−

[Kx∆y h
hi,j−hi+1,j

∆x
+Ky∆x h

hi,j−hi,j+1

∆y
]

(252)

Next divide by the cell plan view area ∆x∆y to obtain a more compact form of the
difference equation.

S ∂hi
∂t

= [ 1
∆x
Kx h

hi−1,j−hi,j
∆x

+ 1
∆y
Ky h

hi,j−1−hi,j
∆y

]−

[ 1
∆x
Kx h

hi,j−hi+1,j

∆x
+ 1

∆y
Ky h

hi,j−hi,j+1

∆y
]

(253)

Now finite-difference the left hand side and add pumping and recharge

S
ht+∆t
i −hti

∆t
= [ 1

∆x
Kx h

hi−1,j−hi,j
∆x

+ 1
∆y
Ky h

hi,j−1−hi,j
∆y

]−

[ 1
∆x
Kx h

hi,j−hi+1,j

∆x
+ 1

∆y
Ky h

hi,j−hi,j+1

∆y
]

+
Ri,j

∆x∆y
− Qi,j

∆x∆y

(254)

Multiply through by ∆t and divide by Sy (specific yield – analogous to storage coef-
ficient).

ht+∆t
i = hti + [ ∆t

Sy,i ∆x
Kx h

hi−1,j−hi,j
∆x

+ ∆t
Sy,i ∆y

Ky h
hi,j−1−hi,j

∆y
]−

[ ∆t
Sy,i ∆x

Kx h
hi,j−hi+1,j

∆x
+ ∆t

Sy,i ∆y
Ky h

hi,j−hi,j+1

∆y
]

+
∆t Ri,j

Sy,i ∆x∆y
− ∆t Qi,j

Sy,i ∆x∆y

(255)

Next we will approximate the spatial variation of the K h as arithmetic mean values
between two cells, so making the following definitions:
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Ai,j = ∆t
2Sy,i ∆x2 (Kx,(i−1,j)hi−1,j +Kx,(i,j)hi,j)

Bi,j = ∆t
2Sy,i ∆x2 (Kx,(i,j)hi,j +Kx,(i+1,j)hi+1,j)

Ci,j = ∆t
2Sy,i ∆y2 (Ky,(i,j−1)hi,j−1 +Ky,(i,j)hi,j)

Di,j = ∆t
2Sy,i ∆y2 (Ky,(i,j)hi,j +Ky,(i,j+1)hi,j+1)

Ei,j = ∆t
Sy,i ∆x∆y

(256)

Collect the terms

ht+∆t
i = hti+

Ai,jh
t∗
i−1,j +Bi,jh

t∗
i+1,j − (Ai,j +Bi,j + Ci,j +Di,j)h

t∗
i,j+

Ci,jh
t∗
i,j−1 +Di,jh

t∗
i,j+1 + Ei,j[R

t∗
i,j −Qt∗

i,j]

(257)

When we eventually decide whether to use explicit or implicit we will specify the time
levels (t∗). As a practical matter the computation of the A,B,C,D terms will have
to be at a known or intermediate time level so it is not superscripted with a time level
index – although it is clear in the definition of the terms that a time level is needed
to perform the requisite multiplications.

18.3.1 Explicit Formulation

The explicit formulation would specify the time levels on the right hand side as t.
The resulting difference equation is

ht+∆t
i = hti+

Ai,jh
t
i−1,j +Bi,jh

t
i+1,j − (Ai,j +Bi,j + Ci,j +Di,j)h

t
i,j+

Ci,jh
t
i,j−1 +Di,jh

t
i,j+1 + Ei,j[R

t
i,j −Qt

i,j]

(258)

Everything on the right-hand side is known, so other than being conditionally stable
(and using a small time step) we could start from known conditions and evolve the
solution forward in time. There is non-linearity imbedded in the A,B,C,D terms,
but they are evaluated at known time levels. As with the other unsteady case, the
required time steps are small and dependent on the spatial and time step sizes, as well
as the material properties. Unlike the previous case, the stability is also dependent
on the solution itself and hence unpredictable in advance (although we can make very
good guesses).
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18.3.2 Implicit Formulation

The implicit formulation would specify the time levels on the right hand side as t+∆t.
We would also have to decide how to handle the recharge and pumping – either an
average over two adjacent times, or at the old (or new) time level. Here we choose
the old time level, mostly for simplicity in building the R script.

The resulting difference equation is

ht+∆t
i = hti+

Ai,jh
t+∆t
i−1,j +Bi,jh

t+∆t
i+1,j − (Ai,j +Bi,j + Ci,j +Di,j)h

t+∆t
i,j +

Ci,jh
t+∆t
i,j−1 +Di,jh

t+∆t
i,j+1 + Ei,j[R

t
i,j −Qt

i,j]

(259)

Observe that ht+∆t
i appears on both sides of the equation, so some additional manip-

ulation is needed, first collect all the ht+∆t
i terms on the left side

(Ai,j +Bi,j + Ci,j +Di,j + 1)ht+∆t
i = hti+

Ai,jh
t+∆t
i−1,j +Bi,jh

t+∆t
i+1,j + Ci,jh

t+∆t
i,j−1 +Di,jh

t+∆t
i,j+1 + Ei,j[R

t
i,j −Qt

i,j]
(260)

Then divide both sides by the constant to get an update formula

ht+∆t
i =

hti + Ai,jh
t+∆t
i−1,j +Bi,jh

t+∆t
i+1,j + Ci,jh

t+∆t
i,j−1 +Di,jh

t+∆t
i,j+1 + Ei,j[R

t
i,j −Qt

i,j]

(Ai,j +Bi,j + Ci,j +Di,j + 1)
(261)

The formula above is now structured so we can use our existing Jacobi iteration solver
we developed in the previous chapter. As we did for the steady case, we will simply
move where the A,B,C,D terms are computed.72

Listing 73 is a listing that implements the revised finite-difference equation structure
for the unconfined flow equation. The new listing literally involved moving the portion
of the steady, unconfined flow code that creates the variable transmissivity arrays to
just before the assignment of boundary conditions in the unsteady confined code, and
removing the existing instance of the unsteady confined code portion that created the
A,B,C,D portions.

The script was then tested (just to see if it runs) with the same Hubbleville input
file. In the revised version, ∆z is still read into the program, but not actually used.
Again this is an act of laziness as well as code re-usability.

72They will go inside the Jacobi solver loop. We will pay a steep computational cost, but still be
able to use our existing toolkit, handle the non-linearity by lagging the material properties a single
iteration step, and still have an unconditionally stable solution method.
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Listing 73. Listing for R implementation for unsteady unconfined flow using Jacobi iteration.

# 2D Unsteady Unconfined -- With Boundary Arrays and Wells
# 2D Aquifer Flow Model using Jacobi Iteration
# deallocate memory
rm(list=ls())
##############################################################
# prototype plotting function #
##############################################################
plotnow <-function(headnow ,ncols ,nrows ,etime ,deltat){
### built position arrays for contour plotting
velocity_plt <-matrix(0,ncols ,nrows)
for( i in 1:nrows){

for( j in 1:ncols){
velocity_plt[j,i]= headnow[i,j]

}
}
### contour plot of head -- note axes are rotated
#debug message (" elapsed time : ",maxtime * deltat)
mytitle <- paste("Head (Blue) Map at Time = :",etime*deltat ," time units ")
contour(distancex ,distancey ,velocity_plt ,

plot.title = title(main = mytitle ,
xlab = "Meters (X axis) ====>>",
ylab = "Meters (Y axis) ====>>"),

col="blue",lwd=3,nlevels =10)
}
################################################################
################################################################
zz <- file(" hubbleville.dat", "r") # Open a connection named zz to file named input.dat
# read the simulation conditons
deltax <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltay <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltaz <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltat <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
nrows <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
ncols <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
tolerance <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
maxiter <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
maxtime <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
iprint <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
distancex <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
distancey <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
# add boundary conditions 0= fixed head , 1= no flow
boundarytop <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
boundarybottom <- (readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
boundaryleft <- (readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul

= FALSE))
boundaryright <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul

= FALSE))
hydhead <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
# hydhead is now the initial condition array #
hydcondx <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
hydcondy <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
storage <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
pumping <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
close(zz)
# split the multiple column strings into numeric components for a vector
distancex <-as.numeric(unlist(strsplit(distancex ,split=" ")))
distancey <-as.numeric(unlist(strsplit(distancey ,split=" ")))
boundarytop <-as.numeric(unlist(strsplit(boundarytop ,split =" ")))
boundarybottom <-as.numeric(unlist(strsplit(boundarybottom ,split=" ")))
boundaryleft <-as.numeric(unlist(strsplit(boundaryleft ,split=" ")))
boundaryright <-as.numeric(unlist(strsplit(boundaryright ,split=" ")))
hydhead <-as.numeric(unlist(strsplit(hydhead ,split=" ")))
hydcondx <-as.numeric(unlist(strsplit(hydcondx ,split=" ")))
hydcondy <-as.numeric(unlist(strsplit(hydcondy ,split=" ")))
storage <-as.numeric(unlist(strsplit(storage ,split=" ")))
pumping <-as.numeric(unlist(strsplit(pumping ,split=" ")))
# convert the numeric vectors into matrices for easier indexing
hydhead <- matrix(hydhead ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
hydcondx <-matrix(hydcondx ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
hydcondy <-matrix(hydcondy ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
storage <-matrix(storage ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
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pumping <-matrix(pumping ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
# allocate a graphics device for sequential plotting
pdf ("2d-unsteady -confined -junk.plot.pdf") # send any plots to file
# here we perform the velocity potential calculations
# built the transmissivity arrays
amat <-matrix(0,nrows ,ncols)
bmat <-matrix(0,nrows ,ncols)
cmat <-matrix(0,nrows ,ncols)
dmat <-matrix(0,nrows ,ncols)
qrat <-matrix(0,nrows ,ncols)
for(irow in 2:(nrows -1)){

for(jcol in 2:(ncols -1)){
# amat[irow ,jcol]<-(( hydcondx[irow -1,jcol ]+ hydcondx[irow ,jcol ])*deltat*

deltaz)/(2.0* storage[irow ,jcol]* deltax ^2)
# bmat[irow ,jcol]<-(( hydcondx[irow ,jcol ]+ hydcondx[irow+1,jcol ])*deltat*deltaz)

/(2.0* storage[irow ,jcol]* deltax ^2)
# cmat[irow ,jcol]<-(( hydcondy[irow ,jcol -1]+ hydcondy[irow ,jcol ])*deltat*deltaz)

/(2.0* storage[irow ,jcol]* deltay ^2)
# dmat[irow ,jcol]<-(( hydcondy[irow ,jcol ]+ hydcondy[irow ,jcol +1])*deltat*deltaz)

/(2.0* storage[irow ,jcol]* deltay ^2)
qrat[irow ,jcol]<-(-1.0)*deltat*pumping[irow ,jcol ]/( deltax*deltay*storage[irow ,jcol])
}

}
# for(irow in 2:(nrows -1)){
# for(jcol in 2:(ncols -1)){
# amat[irow ,jcol]<-(( hydcondx[irow -1,jcol ]+ hydcondx[irow ,jcol ])*deltaz)/(2.0*

deltax ^2)
# bmat[irow ,jcol]<-(( hydcondx[irow ,jcol ]+ hydcondx[irow+1,jcol ])*deltaz)/(2.0*

deltax ^2)
# cmat[irow ,jcol]<-(( hydcondy[irow ,jcol -1]+ hydcondy[irow ,jcol ])*deltaz)/(2.0*

deltay ^2)
# dmat[irow ,jcol]<-(( hydcondy[irow ,jcol ]+ hydcondy[irow ,jcol +1])*deltaz)/(2.0*

deltay ^2)
# }
# }
####### initial conditions ######################################
print(hydhead)
#maxtime <- 1
headnow <- hydhead
for (tstep in 1: maxtime){
###### use jacobi to solve for a single time step ###############
hydhead <- headnow
headold <- hydhead # copy the head array , used to test for stopping
tolflag <- FALSE
for (iter in 1: maxiter){
# built the variable transmissivity arrays for current time -step

for(irow in 2:(nrows -1)){
for(jcol in 2:(ncols -1)){

amat[irow ,jcol]<-(( hydcondx[irow -1,jcol ]* hydhead[irow -1,jcol ]
+hydcondx[irow ,jcol ]* hydhead[irow ,jcol ]))/(2.0* deltax ^2)

bmat[irow ,jcol]<-(( hydcondx[irow ,jcol ]* hydhead[irow ,jcol ]
+hydcondx[irow+1,jcol ]* hydhead[irow+1,jcol ]))/(2.0* deltax ^2)

cmat[irow ,jcol]<-(( hydcondy[irow ,jcol -1]* hydhead[irow ,jcol -1]
+hydcondy[irow ,jcol ]* hydhead[irow ,jcol ]))/(2.0* deltay ^2)

dmat[irow ,jcol]<-(( hydcondy[irow ,jcol ]* hydhead[irow ,jcol ]
+hydcondy[irow ,jcol +1]* hydhead[irow ,jcol +1]))/(2.0* deltay ^2)

}
}

# set the boundary conditions
for(jcol in 1: ncols){ #top and bottom rows

if(boundarytop[jcol] == 0){hydhead[1,jcol]<-hydhead[2,jcol]} #no-flow at top
if(boundarybottom[jcol] == 0){hydhead[nrows ,jcol]<-hydhead[2,jcol]} #no -flow at bottom
# otherwise values are fixed head

}
for(irow in 1: nrows){ #left and right columns

if(boundaryleft[irow] == 0){hydhead[irow ,1]<- hydhead[irow ,2]} #no-flow at left
if(boundaryright[irow] == 0){hydhead[irow ,ncols]<-hydhead[irow ,ncols -1]} #no -flow at

right
# otherwise values are fixed head

}
for (irow in 2:(nrows -1)){

for (jcol in 2:(ncols -1)){
hydhead[irow ,jcol] <- ( headnow[irow ,jcol] +

qrat[irow ,jcol] +
amat[irow ,jcol]* hydhead[irow -1,jcol ] +
bmat[irow ,jcol]* hydhead[irow+1,jcol ] +
cmat[irow ,jcol]* hydhead[irow ,jcol -1] +
dmat[irow ,jcol]* hydhead[irow ,jcol +1] )/

(amat[irow ,jcol]+bmat[irow ,jcol]+cmat[irow ,jcol]+dmat[irow ,jcol ]+1)
}

}
# test for stopping iterations
percentdiff <- sum((hydhead -headold)^2)
if (percentdiff < tolerance){

message ("Exit iterations in velocity potential because tolerance met");
message (" Iterations =", iter);
message (" Current error : ",percentdiff);
tolflag <- TRUE
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break
}

headold <-hydhead #update the current head vector
# if( iter %% 1000 == 0){message (" Calculating in Potential Function ",iter ," of ",maxiter ,

" iterations ")}
}
if (tolflag == FALSE){
# message ("Exit iterations in potential function at max iterations ")

message (" Current error : ",percentdiff)
}

# perform an update
headnow <- hydhead
########## end of a time step ################################
#print(headnow)
# check for plotnow
if(tstep %% iprint ==0){plotnow(headnow ,ncols ,nrows ,tstep ,deltat)}
}
# output ending conditons
write(t(hydhead), file=’2d-unsteady -confined.txt ’,ncolumns = ncols ,sep=",")
# deallocate (disconnect) graphics device
dev.off() # disconect the pdf file

Example 2: Unconfined Rectangular Aquifer with Pumping – Unsteady
Flow
Figure ?? is a plan view of an unconfined aquifer with a Well field located as shown,
near the Red River. The head in the river is 1000 meters as is the head at the South
boundary, the Green Swamp. The well field pumps 20,000 cubic meters per day. The
net recharge to the aquifer is 0.001 meters/day. The hydraulic conductivity of the
aquifer is 50 meters per day. The hydraulic conductivity of the swamp is about 500
meters per day. The specific yield of the aquifer is 0.35. The town of Hubbleville is
at elevation 1020 meters. The managers of the Green Swamp Conservation area are
concerned that pumping will significantly reduce groundwater discharge to the swamp
and threaten wildlife habitat. The town claims that the well is located sufficiently
close to the Red River so that induced recharge will contribute the significant portion
of water that flows to the well and none will come from the swamp. Each cell in the
sketch is 1000X1000 meters.

Use the unsteady, unconfined groundwater flow script to

1. Demonstrate that flow is towards the swamp with the well field inactive (zero
pumping, but non-zero recharge).

2. Determine if the flow is still towards the swamp with the well field activated
(non-zero pumping, non-zero recharge).

3. Assuming that water is eventually drawn from the swamp, determine how many
years the well field can be operated, before water is drawn from the swamp into
the well, or until the well de-waters (head drops below zero).

Answering these three questions is a matter of running our script three times, with
two input files. The first input file would be the problem conditions with the well
off, but with recharge on. Given that our prototype script does not have a recharge
array, we have two choices — add one and refactor the requesite parts of the script,
or observe that recharge is just negative pumping and simply change the pumping
array. I chose that second approach, the first is left as an exercise. So the recharge
for any cell in the correct problem units is

Ri,j = rate×∆x×∆y = 0.001 m/day × 1000 m × 1000 m = 1000m3/day (262)
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Figure 138. Hubbleville Aquifer System.

The first question is asking about a “pre-development” condition, so we need to run
our script once until the solution stops changing (an equilibrium solution) then use
the head distribution for this solution as the initial condition for the second run, when
we turn on the pump. An important observation is that the aquifer bottom elevation
is at 980 meters, so the hydraulic head in the swamp or at the river is only 20 meters
based on the profile sketch. Thus the maximum head in the aquifer should be less
than 1020 meters (otherwise the whole area is a swamp) and greater that zero. Once
the computations are completed we can add back the datum (980 meters) to recover
the various water elevations if we wish. For the example, I will just stipulate the
desired head is between zero and 40 meters.

Listing 74 is the input file for the pre-development conditions. The file was created
by running the script once with all the heads set to 20. Then at the end of the run
(30 years), the output heads were pasted back into the input file, and it was rerun.
This process was repeated several times until the program ran through all the time
steps using only a single iteration and the error term essentially reported as a small
constant value. At this condition, the system was deemed to be at equilibrium. The
listing shows the result that was used to produce Figure 139.

Examination of Figure 139 shows that the contour lines are parallel to the swamp and
the river (bottom and top) and slope from the middle (Y == 5500 meters) towards
each boundary. The highest plotted water elevation is 34 meters, which would be a
depth of about 6 meters beneath the town of Hubbleville. The high “ridge” is called
a groundwater divide. All water South of the divide flows to the swamp, whereas all
water North of the divide flows to the river.
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Listing 74. Input file for the Hubleville probelm – but as an unconfined aquifer – model is run to
equilibrium to establish the pre-development conditions. Here we choose to use 30 years simulation
time as sufficiently long and printed contour maps at 5 year intervals to assess if there is much change
as the solution proceeds.

1000
1000
10
1
10
10
1e-8
1000
10950
1825
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
20 20 20 20 20 20 20 20 20 20
21.33491 21.33491 21.33491 21.33491 21.33491 21.33491 21.33491 21.33491 21.33491 21.33491
23.18453 23.18453 23.18453 23.18453 23.18453 23.18453 23.18453 23.18453 23.18453 23.18453
29.33826 29.33826 29.33826 29.33826 29.33826 29.33826 29.33826 29.33826 29.33826 29.33826
32.70564 32.70564 32.70564 32.70564 32.70564 32.70564 32.70564 32.70564 32.70564 32.70564
34.12182 34.12182 34.12182 34.12182 34.12182 34.12182 34.12182 34.12182 34.12182 34.12182
33.83271 33.83271 33.83271 33.83271 33.83271 33.83271 33.83271 33.83271 33.83271 33.83271
31.79183 31.79183 31.79183 31.79183 31.79183 31.79183 31.79183 31.79183 31.79183 31.79183
27.61346 27.61346 27.61346 27.61346 27.61346 27.61346 27.61346 27.61346 27.61346 27.61346
20 20 20 20 20 20 20 20 20 20
500 500 500 500 500 500 500 500 500 500
500 500 500 500 500 500 500 500 500 500
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
500 500 500 500 500 500 500 500 500 500
500 500 500 500 500 500 500 500 500 500
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000

Now we will activate the pumping. The pumping rate is positive 20,000 cubic meters
per day. The recharge rate is a negative 1,000 cubic meters per day, so net pumping
is 19,000 cubic meters per day. We will change the contents of the single well field
cell, rename the file, and rerun the script.

Figure 140 is the result of the change. The plot is promising because the slope of the
water is still towards the swamp. However, if we examine the plot at 30 years we will
discover we have dewatered the aquifer in the wellfield (at some point the wells would
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Figure 139. Hubbleville Aquifer head distribution at equilibrium.

fail). So we can conclude that the swamp is safe, but the town of Hubbleville cannot
realistically recover the amount of water they desire.

While we have the model available, we can try different pumping rates to see how
much firm yield the town could expect. For the example, lets stipulate that the
smallest allowable head in the well field is 5 meters. Our goal is now to determine
how large a pumping rate we can use and keep the head at this location greater than
5 meters. The exercise is quite simple, we will change the pumping value and run the
script and examine the output. If the head is too small, decrease the pumping, if the
head is too large then increase the pumping and we stop when it is just right.73

73Goldilocks optimization!
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Figure 140. Hubbleville Aquifer head distribution at 5 years after well field is active.

Listing 75 is the input file used for the post development case with a pumping rate
set to 18,000 cubic meters per day. The simulation forecast that the head in the
well field cell would be 6.55 meters after 60 years of pumping. The stopping criteria
for each time step was still changing, hence we have not quite reached equilibrium –
however it would be safe to conclude that a firm yield of 18,000 cubic meters per day
is achievable and does not impact the swamp as was feared in the original problem
statement.

Figure 141 is the contour plot of the head distribution under these conditions. The
induced recharge from the river is evident by the contour that extends to the boundary
at the top. The swamp is South of the saddle point in the water table plot and water
south of this point flows towards the swamp (as desired).
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Listing 75. Input file for the Hubleville probelm – 60 year simulation. Pumping rate is 18000 cubic
meters per day.

1000
1000
10
1
10
10
1e-8
1000
21900
2190
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
20 20 20 20 20 20 20 20 20 20
21.33491 21.33491 21.33491 21.33491 21.33491 21.33491 21.33491 21.33491 21.33491 21.33491
23.18453 23.18453 23.18453 23.18453 23.18453 23.18453 23.18453 23.18453 23.18453 23.18453
29.33826 29.33826 29.33826 29.33826 29.33826 29.33826 29.33826 29.33826 29.33826 29.33826
32.70564 32.70564 32.70564 32.70564 32.70564 32.70564 32.70564 32.70564 32.70564 32.70564
34.12182 34.12182 34.12182 34.12182 34.12182 34.12182 34.12182 34.12182 34.12182 34.12182
33.83271 33.83271 33.83271 33.83271 33.83271 33.83271 33.83271 33.83271 33.83271 33.83271
31.79183 31.79183 31.79183 31.79183 31.79183 31.79183 31.79183 31.79183 31.79183 31.79183
27.61346 27.61346 27.61346 27.61346 27.61346 27.61346 27.61346 27.61346 27.61346 27.61346
20 20 20 20 20 20 20 20 20 20
500 500 500 500 500 500 500 500 500 500
500 500 500 500 500 500 500 500 500 500
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
500 500 500 500 500 500 500 500 500 500
500 500 500 500 500 500 500 500 500 500
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
50 50 50 50 50 50 50 50 50 50
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 17000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
-1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000

These three chapters introduced an important computational hydraulics problem –
namely that of flow in a porous medium. The governing equation of motion is Darcy’s
law. We computed the heads using a variety of methods, but mostly focused on Jacobi
iteration because for these kinds of problems it is a stable solution technique. It is
not particularly computationally efficient, but it works.

We choose not to even do explicit methods – not because they are bad, but because
they are conditionally stable which can be an undesired problem. 74 We also focused

74Explicit methods are easy to program, and if I were tasked with simulating an explosion (a chemical
reaction that moves outward from ignition at or above the speed of sound) or some other process
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Figure 141. Hubbleville Aquifer head distribution at 60 years after well field is active with pumping
rate of 18,000 meters per day.

on code reuse so the reader can look back over the three chapters and see the evolution
of the code as the problem got more complex.

Lastly, while not apparent, we have replicated much of the internal functionality of
the professional code MODFLOW which we could compare our work to if we had to use
the R script for something the professional code does not do easily. The scripts here
are very crude – to professionalize them we would want to add the concept of “layers”
so we could do 3D models, and want to generalize the file reading components of the
tool. We would also want to move much of the computation engine components into

that is not well documented, I would start with an explicit approach because I could get code up
and running quickly and identify other problems that might be encountered along the way.
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their own prototype functions so the structure of the program is easier to understand
and maintain. Nevertheless, if you have worked this far, you have seen what’s under
the hood of a groundwater flow code.75

18.4 Exercises

1. Figure 142 is a plan view of a confined aquifer system bounded by mountains
(no-flow) and a river (constant head). The 10 meter thick aquifer is approx-
imately horizontal. The material properties are reported as transmissivities
(T = K×thickness). The storage coefficient for the aquifer system is 0.05.
Figure 143 is the same aquifer system with a recharge gallery and a well field.

Figure 142. Aquifer system bounded on three sides with mountains, and one side by a river. The
aquifer is about 10 meters thick at the river.

(a) Develop or modify an R script to simulate the unsteady confined aquifer
system shown. Build your tool so that recharge and pumping are read
in as separate arrays. To handle the mountain intrusion into the plain
from the East in the sketch you will either have to modify how your script

75Actually you have also seen the code one would use for linear heat flow computations – because
the PDEs look the same, hence the solvers will work the same.
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Figure 143. Aquifer system bounded on three sides with mountains, and one side by a river. The
aquifer is about 10 meters thick at the river. A recharge gallery is shown where water in recharged into
the aquifer. A discharge gallery (wellfield) is shown where water is removed from the aquifer..

implements boundary conditions, or treat the mountain range as a low-
permeability (small T ) inclusion into the aquifer.

(b) Run your script and produce a contour plot of the head distribution in the
pre-development case at equilibrium.

(c) Describe how you decided equilibrium is reached.

(d) Compare your equilibrium solution to the same problem conditions run
using your steady-flow solver.

(e) Run the script with the post-development case, and produce contour plots
of the head distribution at 5 and 10 years of operation.

(f) Estimate the fraction of recharge water that is captured by the well field,
assuming the 10-year contour plot is an equilibrium condition.

2. Repeat Example 2 with the following changes:

(a) Modify the script (or build your own) that reads recharge as a separate
array (instead of the R-P hack that was employed in the example).

(b) Assume cloud seeding doubles the average recharge rate. Determine the
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amount of water that can be pumped from the well field such that the
head in the wellfield is greater than 5 meters after 60 years of pumping.

(c) Produce a contour map of the head distribution at your solution.

3. (Advanced) Modify your scripts to allow for different stress periods – intervals
of time where recharge and pumping remain constant but where different stress
periods can have different recharge and pumping rates. Develop examples to
illustrate the effect of the modification.

4. (Advanced) Modify the scripts to multiple layers to approximate a 3D aquifer
system. You will need to modify the difference equations to simulate the vertical
flow component between the layers.
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19 Flow Nets

Example 3: 2D Stream Function using Jacobi Iteration In steady aquifer
flow, the flow is irrotational (or at least can be modeled as such). There exists an
orthogonal function called the stream function (it is the function that exists in the
flow field when vorticity is zero). A really good explaination of stream functions (and
streamlines) appears on pages 381–398 in Zheng and Bennett (1995).

This function can be used to generate plots of streamlines for the same system.
The principal changes are the material properties representation and the boundary
conditions.

The stream function Ψ as a partial differential equation is

0 =
∂

∂x
(

1

Ty

∂Ψ

∂x
) +

∂

∂y
(

1

Tx

∂Ψ

∂y
) (263)

Observe how the material property is inverted and changes directional identity, oth-
erwise the equation is structurally identical to the groundwater flow equation (for
steady flow).

The difference equation is also almost the same

0 = [ 1
∆x

1
Ty

Ψi−1,j−Ψi,j

∆x
+ 1

∆y
1
Tx

Ψi,j−1−Ψi,j

∆y
]−

[ 1
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1
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+ 1
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1
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∆y
]

(264)

The substitutions are

Ai,j = 1
2∆x2 (T−1

y,(i−1,j) + T−1
y,(i,j))

Bi,j = 1
2∆x2 (T−1

y,(i,j) + T−1
y,(i+1,j))

Ci,j = 1
2∆y2 (T−1

x,(i,j−1) + T−1
x,(i,j))

Di,j = 1
2∆y2 (T−1

x,(i,j) + T−1
x,(i,j+1))

(265)

Substitution into the difference equation yields

0 = Ai,jΨi−1,j+Bi,jΨi+1,j−(Ai,j+Bi,j+Ci,j+Di,j)Ψi,j+Ci,jΨi,j−1 +Di,jΨi,j+1 (266)

As before we can explicitly write the cell equation for hi,j as
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Ψi,j =
[Ai,jΨi−1,j +Bi,jΨi+1,j + Ci,jΨi,j−1 +Di,jΨi,j+1]

[Ai,j +Bi,j + Ci,j +Di,j]
(267)

So at this point we could literally use the same script, however boundary conditions
also “invert.” A no-flow head-domain boundary is a constant value stream function-
domain boundary. A constant value head-domain boundary is a zero-gradient stream
function-domain boundary.

So we could use the same code, but probably are better off building a separate code
(it can read the same input file), and use it to generate stream functions. The prior
example code is modified to generate the stream function for its case (and plot the
stream function contours), which if overlaid on the head contours produces a flow
net.

The modified code literally changes the names of the head array to stream function,
modifies how the material properties (A,B,C,D) are constructed, and modified how
the boundary conditions are incorporated. Listing 76 is a listing that implements the
method – notice how the no-flow boundary conditions are implemented.

In this example the value of the stream function is arbitrarily set to range from 0
to 100. One useful interpretation of stream function values is that their differences
indicate the flow fraction (of total flow) that flows between the streamlines (contour
lines of constant stream function value).
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Listing 76. R code demonstrating an Stream Function Simulator for 2D Steady Flow. This code
fragment implements the Jacobi iteration. A subsequent listing shows the contour plot syntax. In the
example the two fragments are joined and run as a single source file
.

# 2D-streamfunction
# Implements Finite -Difference Stream Function using Jacobi Iteration
# Assumes no-flow boundary row=1,and nrows ==> constant stream function
# Assumes fixed head boundary col=1, and ncols ==> no-flux stream function -- stream

function runs from 0 to 100
zz <- file(" input1.dat", "r") # Open a connection named zz to file named input.dat
# read the simulation conditons
deltax <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltay <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltaz <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
nrows <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
ncols <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
tolerance <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
streamfn <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
hydcondx <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
hydcondy <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
close(zz)
# split the multiple column strings into numeric components for a vector
streamfn <-as.numeric(unlist(strsplit(streamfn ,split=" ")))
hydcondx <-as.numeric(unlist(strsplit(hydcondx ,split=" ")))
hydcondy <-as.numeric(unlist(strsplit(hydcondy ,split=" ")))
# convert the numeric vectors into matrices for easier indexing
streamfn <-matrix(streamfn ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
hydcondx <-matrix(hydcondx ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
hydcondy <-matrix(hydcondy ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
# built the transmissivity arrays
amat <-matrix(0,nrows ,ncols)
bmat <-matrix(0,nrows ,ncols)
cmat <-matrix(0,nrows ,ncols)
dmat <-matrix(0,nrows ,ncols)
for(irow in 2:(nrows -1)){

for(jcol in 2:(ncols -1)){
amat[irow ,jcol ]<-((1.0/ hydcondy[irow -1,jcol ]+1.0/ hydcondy[irow ,jcol ])*deltaz)

/(2.0* deltax ^2)
bmat[irow ,jcol ]<-((1.0/ hydcondy[irow ,jcol ]+1.0/ hydcondy[irow+1,jcol ])*deltaz)

/(2.0* deltax ^2)
cmat[irow ,jcol ]<-((1.0/ hydcondx[irow ,jcol -1]+1.0/ hydcondx[irow ,jcol ])*deltaz)

/(2.0* deltay ^2)
dmat[irow ,jcol ]<-((1.0/ hydcondx[irow ,jcol ]+1.0/ hydcondx[irow ,jcol +1])*deltaz)

/(2.0* deltay ^2)
}

}
# begin the calculations
streamold <-streamfn # copy the head array , used to test for stopping
maxit <- 100 # set the maximum number of iterations (to prevent infinite loop)
for (iter in 1:maxit){

# first and last row special == no flow boundaries in head , fixed value streamfunction
for(jcol in 1:ncols){

streamfn[1,jcol ]=0.0
streamfn[nrows ,jcol ]=100.0

}
for (irow in 2:(nrows -1)){
# first and last columns special == fixed head boundaries , no-gradient stream function

streamfn[irow ,1]= streamfn[irow ,2]
streamfn[irow ,nrows]= streamfn[irow ,nrows -1]
for (jcol in 2:(nrows -1)){

streamfn[irow ,jcol] =
(amat[irow ,jcol]* streamfn[irow -1,jcol ] +
bmat[irow ,jcol]* streamfn[irow+1,jcol ] +
cmat[irow ,jcol]* streamfn[irow ,jcol -1] +
dmat[irow ,jcol]* streamfn[irow ,jcol +1] )/

(amat[irow ,jcol]+bmat[irow ,jcol]+cmat[irow ,jcol]+dmat[irow ,jcol])
}

}
# test for stopping iterations

percentdiff <- sum((streamfn -streamold)^2)
if (percentdiff < tolerance){

message ("Exit iterations because tolerance met")
break}

streamold <-streamfn #update the current head vector
}
}
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Listing 77. R code demonstrating an Stream Function Simulator for 2D Steady Flow. This code
fragment implements the contour plotting
.

# echo contents for debugging
# streamfn
# streamold
##############################################################
### built position arrays for contour plotting ###
##############################################################
distancex <-numeric(nrows)
distancey <-numeric(ncols)
distancex [1]<-50
distancey [1]<-50
for (irow in 2:nrows){distancex[irow]<-distancex[irow -1]+ deltax}
for (jcol in 2:ncols){distancey[jcol]<-distancey[jcol -1]+ deltay}
##############################################################
### contour plot of head -- note axes are rotated ###
##############################################################
contour(distancex ,distancey ,streamfn ,

plot.title = title(main = "Stream Function Model",
xlab = "Meters (Y axis) ====>>",
ylab = "Meters (X axis) ====>>"))

}

Figure 144 is the stream function result. Compare it to Figure 121 and it should be
clear that the “lines” are at right angles to each other –that is the stream function
is orthogonal to the head function (which is anticipated, because of the nature of
the relationship between stream function and head functions; the orthogonality is a
consequence of the flow satisfying the the Cauchy-Riemann conditions.).

Figure 144. Output from R script for stream function model..

To complete the example, and prepare for the next example, we will modify the script
one more time to:

1. Read in the material property values, head values, etc. (no change).
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2. Compute the head distribution.

3. Compute the stream function distribution. (merge the two scripts)

4. Plot the head and stream function on the same graph – use different colors.
Also rotate the plots so axes agree with the problem statement.

Figure 145 is the result of these modifications.

Figure 145. Output from R script for velocity-potential, stream function model, rotated and anno-
tated to fit the original problem statement.

Listing 78 is a script fragment that implements the velocity-potential (here the same
thing as the head equations) portion of the computations. The data file is the same,
the only difference is the head values are copied to another vector (the stream func-
tions) for use in the next fragment.

Listing 79 is a script fragment that implements the stream-function calculations.
The A,B,C,D matrices are re-initialized and re-used. The stream function values
are computed using the same computation engine (code is repeated – generally poor
practice; done here to illustrate the re-use).

Listing 80 is the script fragment that rotates the results and plots the flow net.
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Listing 78. R code demonstrating an Velocity Potential (Aquifer Head) Simulator for 2D Steady
Flow. This code fragment implements the contour plotting
.

# 2D Velocity Potential Stream Function Model
# hydhead is velocity potential
# streamfm is stream function
zz <- file(" input1.dat", "r") # Open a connection named zz to file named input.dat
# read the simulation conditons
deltax <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltay <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltaz <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
nrows <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
ncols <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
tolerance <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
hydhead <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
hydcondx <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
hydcondy <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
close(zz)
# split the multiple column strings into numeric components for a vector
hydhead <-as.numeric(unlist(strsplit(hydhead ,split=" ")))
hydcondx <-as.numeric(unlist(strsplit(hydcondx ,split=" ")))
hydcondy <-as.numeric(unlist(strsplit(hydcondy ,split=" ")))
# convert the numeric vectors into matrices for easier indexing
hydhead <-matrix(hydhead ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
hydcondx <-matrix(hydcondx ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
hydcondy <-matrix(hydcondy ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
# copy the hydhead array into streamfn for later use
streamfn <- hydhead
# here we perform the velocity potential calculations
# built the transmissivity arrays
amat <-matrix(0,nrows ,ncols)
bmat <-matrix(0,nrows ,ncols)
cmat <-matrix(0,nrows ,ncols)
dmat <-matrix(0,nrows ,ncols)
for(irow in 2:(nrows -1)){

for(jcol in 2:(ncols -1)){
amat[irow ,jcol]<-(( hydcondx[irow -1,jcol ]+ hydcondx[irow ,jcol ])*deltaz)/(2.0* deltax

^2)
bmat[irow ,jcol]<-(( hydcondx[irow ,jcol ]+ hydcondx[irow+1,jcol ])*deltaz)/(2.0* deltax

^2)
cmat[irow ,jcol]<-(( hydcondy[irow ,jcol -1]+ hydcondy[irow ,jcol ])*deltaz)/(2.0* deltay

^2)
dmat[irow ,jcol]<-(( hydcondy[irow ,jcol ]+ hydcondy[irow ,jcol +1])*deltaz)/(2.0* deltay

^2)
}

}
# veloity potential
headold <-hydhead # copy the head array , used to test for stopping
maxit <- 100 # set the maximum number of iterations (to prevent infinite loop)
for (iter in 1:maxit){

# first and last row special == no flow boundaries
for(jcol in 1:ncols){

hydhead[1,jcol]= hydhead[2,jcol]
hydhead[nrows ,jcol]= hydhead[nrows -1,jcol]

}
for (irow in 2:(nrows -1)){

for (jcol in 2:(nrows -1)){
hydhead[irow ,jcol] =

(amat[irow ,jcol]* hydhead[irow -1,jcol ] +
bmat[irow ,jcol]* hydhead[irow+1,jcol ] +
cmat[irow ,jcol]* hydhead[irow ,jcol -1] +
dmat[irow ,jcol]* hydhead[irow ,jcol +1] )/

(amat[irow ,jcol]+bmat[irow ,jcol]+cmat[irow ,jcol]+dmat[irow ,jcol])
}

}
# test for stopping iterations
percentdiff <- sum((hydhead -headold)^2)
if (percentdiff < tolerance){

message ("Exit iterations because tolerance met")
break}

headold <-hydhead #update the current head vector
}
}
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Listing 79. R code demonstrating an Stream Function Simulator for 2D Steady Flow. This code
fragment implements the stream function
.

# built the streamfn transmissivity arrays -- notice reuse of the a,b,c,d arrays
amat <-matrix(0,nrows ,ncols)
bmat <-matrix(0,nrows ,ncols)
cmat <-matrix(0,nrows ,ncols)
dmat <-matrix(0,nrows ,ncols)
for(irow in 2:(nrows -1)){

for(jcol in 2:(ncols -1)){
amat[irow ,jcol ]<-((1.0/ hydcondy[irow -1,jcol ]+1.0/ hydcondy[irow ,jcol ])*deltaz)

/(2.0* deltax ^2)
bmat[irow ,jcol ]<-((1.0/ hydcondy[irow ,jcol ]+1.0/ hydcondy[irow+1,jcol ])*deltaz)

/(2.0* deltax ^2)
cmat[irow ,jcol ]<-((1.0/ hydcondx[irow ,jcol -1]+1.0/ hydcondx[irow ,jcol ])*deltaz)

/(2.0* deltay ^2)
dmat[irow ,jcol ]<-((1.0/ hydcondx[irow ,jcol ]+1.0/ hydcondx[irow ,jcol +1])*deltaz)

/(2.0* deltay ^2)
}

}
streamold <-streamfn # copy the head array , used to test for stopping
maxit <- 100 # set the maximum number of iterations (to prevent infinite loop)
for (iter in 1:maxit){

# first and last row special == no flow boundaries in head , fixed value streamfunction
for(jcol in 1:ncols){

streamfn[1,jcol ]=0.0
streamfn[nrows ,jcol ]=100.0

}
for (irow in 2:(nrows -1)){
# first and last columns special == fixed head boundaries , no-gradient stream function

streamfn[irow ,1]= streamfn[irow ,2]
streamfn[irow ,nrows]= streamfn[irow ,nrows -1]
for (jcol in 2:(nrows -1)){

streamfn[irow ,jcol] =
(amat[irow ,jcol]* streamfn[irow -1,jcol ] +
bmat[irow ,jcol]* streamfn[irow+1,jcol ] +
cmat[irow ,jcol]* streamfn[irow ,jcol -1] +
dmat[irow ,jcol]* streamfn[irow ,jcol +1] )/

(amat[irow ,jcol]+bmat[irow ,jcol]+cmat[irow ,jcol]+dmat[irow ,jcol])
}

}
# test for stopping iterations

percentdiff <- sum((streamfn -streamold)^2)
if (percentdiff < tolerance){

message ("Exit iterations because tolerance met")
break}

streamold <-streamfn #update the current head vector
}
}
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Listing 80. R code demonstrating an Velocity Potential – Stream Function Simulator for 2D Steady
Flow. This code fragment implements the contour plotting
.

##############################################################
### built position arrays for contour plotting ###
##############################################################
distancex <-numeric(nrows)
distancey <-numeric(ncols)
distancex [1]<-50
distancey [1]<-50
for (irow in 2:nrows){distancex[irow]<-distancex[irow -1]+ deltax}
for (jcol in 2:ncols){distancey[jcol]<-distancey[jcol -1]+ deltay}
# rotate the arrays - wasting memory. Fix for homework.
velocity_plt <-matrix(0,nrows ,ncols)
streamfn_plt <-matrix(0,nrows ,ncols)
for( i in 1:nrows){

for( j in 1:ncols){
velocity_plt[i,j]= hydhead[j,i]
streamfn_plt[i,j]= streamfn[j,i]

}
}
##############################################################
### contour plot of head -- note axes are rotated ###
##############################################################
contour(distancex ,distancey ,velocity_plt ,

plot.title = title(main = "Head (Blue) and Stream Function (Red)",
xlab = "Meters (X axis) ====>>",
ylab = "Meters (Y axis) ====>>"),

col="blue",lwd=3,xlim=c(50 ,450),ylim=c(50 ,450),nlevels =20)
contour(distancey ,distancex ,streamfn_plt ,add=TRUE ,col="red",lwd=3,nlevels =20)
}

Page 267 of 278



CE 4333 Practical Computational Hydraulics SUMMER 2017

Example 3: 2D Flow Net in a Confined Aquifer using Jacobi Iteration
with Low Permeability Inclusion

Figure 146 is a schematic of a different situation that now only requires us to change
the contents of the data file, and re-run the scripts unchanged. Some additional
modifications have been added, mostly messages to the user because of anticipated
long run times. The data file is changed a bit and two lines are added to help with
the plotting – they represent the axis labels used in the contour plots. The boundary
conditions are still directly coded into the algorithm, and that would be the next
modification to the code - general boundary condition information.76

Figure 146. Schematic of vertical slice in an aquifer with low permeability inclusion. Values are indi-
cated on the schematic. Example illustrates how to use the scripts to generate flow nets for the verti-
cal slice .

The following pages contain the code fragments (listings) for the velocity potential,
the stream function, and the contour plotting. As above, these listings are combined
into a single file (the fragmentation herein is to fit the printed page layout) and then
run as a script.

Listing 81 is the listing for the velocity potential calculations.

Listing 82 is the listing for the stream function calculations.

Listing 83 is the is the listing for the plotting calculations.

Listing 84 is the input file for the problem. The file in this case is named input2.dat.
In addition the generalized boundary conditons, the reader should consider making
the program prompt the user for the file name, so that the program is somewhat
deployable.

76That modification is left for homework.
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Listing 81. Velocity Potential Script.

# 2D Velocity Potential Stream Function Model
# hydhead is velocity potential; streamfm is stream function
rm(list=ls()) # deallocate (clear) memory
zz <- file(" input2.dat", "r") # Open a connection named zz to file named input.dat to read

input conditions
deltax <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltay <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
deltaz <-as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
nrows <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
ncols <-as.numeric(readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
tolerance <- as.numeric(readLines(zz, n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown",

skipNul = FALSE))
distancex <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
distancey <- (readLines(zz , n = 1, ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
hydhead <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
hydcondx <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
hydcondy <-(readLines(zz, n = nrows , ok = TRUE , warn = TRUE ,encoding = "unknown", skipNul =

FALSE))
close(zz)
# split the multiple column strings into numeric components for a vector
distancex <-as.numeric(unlist(strsplit(distancex ,split=" ")))
distancey <-as.numeric(unlist(strsplit(distancey ,split=" ")))
hydhead <-as.numeric(unlist(strsplit(hydhead ,split=" ")))
hydcondx <-as.numeric(unlist(strsplit(hydcondx ,split=" ")))
hydcondy <-as.numeric(unlist(strsplit(hydcondy ,split=" ")))
# convert the numeric vectors into matrices for easier indexing
hydhead <-matrix(hydhead ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
hydcondx <-matrix(hydcondx ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
hydcondy <-matrix(hydcondy ,nrow=nrows ,ncol=ncols ,byrow = TRUE)
# built the transmissivity arrays
amat <-matrix(0,nrows ,ncols)
bmat <-matrix(0,nrows ,ncols)
cmat <-matrix(0,nrows ,ncols)
dmat <-matrix(0,nrows ,ncols)
for(irow in 2:(nrows -1)){

for(jcol in 2:(ncols -1)){
amat[irow ,jcol]<-(( hydcondx[irow -1,jcol ]+ hydcondx[irow ,jcol ])*deltaz)/(2.0* deltax

^2)
bmat[irow ,jcol]<-(( hydcondx[irow ,jcol ]+ hydcondx[irow+1,jcol ])*deltaz)/(2.0* deltax

^2)
cmat[irow ,jcol]<-(( hydcondy[irow ,jcol -1]+ hydcondy[irow ,jcol ])*deltaz)/(2.0* deltay

^2)
dmat[irow ,jcol]<-(( hydcondy[irow ,jcol ]+ hydcondy[irow ,jcol +1])*deltaz)/(2.0* deltay

^2)
}

}
headold <-hydhead # copy the head array , used to test for stopping
tolflag <-FALSE
maxit <- 500000 # set the maximum number of iterations (to prevent infinite loop)
for (iter in 1:maxit){

# first and last row special == no flow boundaries
for(jcol in 1:ncols){

hydhead[1,jcol]<-hydhead[2,jcol]
hydhead[nrows ,jcol]<-hydhead[nrows -1,jcol]

}
for (irow in 2:(nrows -1)){

for (jcol in 2:(ncols -1)){
hydhead[irow ,jcol] <-

(amat[irow ,jcol]* hydhead[irow -1,jcol ] +
bmat[irow ,jcol]* hydhead[irow+1,jcol ] +
cmat[irow ,jcol]* hydhead[irow ,jcol -1] +
dmat[irow ,jcol]* hydhead[irow ,jcol +1] )/

(amat[irow ,jcol]+bmat[irow ,jcol]+cmat[irow ,jcol]+dmat[irow ,jcol])
}

}
# test for stopping iterations
percentdiff <- sum((hydhead -headold)^2)
if (percentdiff < tolerance){

message ("Exit iterations in velocity potential because tolerance met");
message (" Iterations =", iter);
tolflag <- TRUE
break}

headold <-hydhead #update the current head vector
if( iter %% 5000 == 0){message (" Calculating in Potential Function ",iter ," of ",maxit , "

iterations ")}
}
if (tolflag == FALSE){message ("Exit iterations in potential function at max iterations ")}
}
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Listing 82. Stream Function Script.

streamfn <-matrix (1.0,nrows ,ncols)
for (i in 1:nrows){

for(j in 1: ncols){
streamfn[i,j]=as.numeric(i)/as.numeric(nrows)

}
}
streamfn
# built the streamfn transmissivity arrays
amats <-matrix(0,nrows ,ncols)
bmats <-matrix(0,nrows ,ncols)
cmats <-matrix(0,nrows ,ncols)
dmats <-matrix(0,nrows ,ncols)
for(irow in 2:(nrows -1)){

for(jcol in 2:(ncols -1)){
amats[irow ,jcol ] <-((1.0/ hydcondy[irow -1,jcol ]+1.0/ hydcondy[irow ,jcol ])*deltaz)

/(2.0* deltax ^2)
bmats[irow ,jcol ] <-((1.0/ hydcondy[irow ,jcol ]+1.0/ hydcondy[irow+1,jcol ])*deltaz)

/(2.0* deltax ^2)
cmats[irow ,jcol ] <-((1.0/ hydcondx[irow ,jcol -1]+1.0/ hydcondx[irow ,jcol ])*deltaz)

/(2.0* deltay ^2)
dmats[irow ,jcol ] <-((1.0/ hydcondx[irow ,jcol ]+1.0/ hydcondx[irow ,jcol +1])*deltaz)

/(2.0* deltay ^2)
}

}
streamold <-streamfn # copy the head array , used to test for stopping
tolflag <-FALSE
maxit <- maxit /10 # set the maximum number of iterations (to prevent infinite loop)
for (iter in 1:maxit){

# first and last row special == no flow boundaries in head , fixed value streamfunction
for(jcol in 1:ncols){

streamfn[1,jcol ]=0.0
streamfn[nrows ,jcol ]=1.0

}
for (irow in 2:(nrows -1)){

# first and last columns special == fixed head boundaries , no-gradient stream function
streamfn[irow ,1]= streamfn[irow ,2]
streamfn[irow ,ncols]= streamfn[irow ,ncols -1]
for (jcol in 2:(ncols -1)){

streamfn[irow ,jcol] =
(amats[irow ,jcol]* streamfn[irow -1,jcol ] +

bmats[irow ,jcol]* streamfn[irow+1,jcol ] +
cmats[irow ,jcol]* streamfn[irow ,jcol -1] +
dmats[irow ,jcol]* streamfn[irow ,jcol +1] )/

(amats[irow ,jcol]+bmats[irow ,jcol]+cmats[irow ,jcol]+ dmats[irow ,jcol])
}

}
# test for stopping iterations
percentdiff <- sum((streamfn -streamold)^2)
if (percentdiff < tolerance)

{
message ("Exit iterations in stream function because tolerance met");
message (" Iterations =", iter);
tolflag <- TRUE;
break
}

streamold <-streamfn #update the current head vector
if( iter %% 5000 == 0){message (" Calculating in Stream Function ",iter ," of ",maxit , "

iterations ")}
}
if (tolflag == FALSE){message ("Exit iterations in stream function at max iterations ")}
}

Listing 83. Contour plotting script.

###############################################################################
### rotate arrays for contour plotting -- position values read in input ###
###############################################################################
velocity_plt <-matrix(0,ncols ,nrows)
streamfn_plt <-matrix(0,ncols ,nrows)
for( i in 1:nrows){

for( j in 1:ncols){
velocity_plt[j,i]= hydhead[i,j]
streamfn_plt[j,i]= streamfn[i,j]

}
}
##############################################################
### contour plot of head -- note axes are rotated ###
##############################################################
contour(distancey ,distancex ,velocity_plt ,

plot.title = title(main = "Head (Blue) and Stream Function (Red)",
xlab = "Meters (X axis) ====>>",
ylab = "Meters (Y axis) ====>>"),

col="blue",lwd=3,nlevels =20)
contour(distancey ,distancex ,streamfn_plt ,add=TRUE ,col="red",lwd=3,nlevels =20)
}
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Listing 84. Input file for 2D vertical slice confined aquifer with low permeability inclusion.

1
10
1
13
23
1e-16
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5
5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 225
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 90
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 0.0001 0.0001 0.0001 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 0.0001 0.0001 0.0001 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 0.0001 0.0001 0.0001 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 0.0001 0.0001 0.0001 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 0.0001 0.0001 0.0001 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 0.0001 0.0001 0.0001 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
}

Lastly, the result of running the script on the input file is shown in figure 147

Figure 147. Vertical slice in an aquifer with low permeability inclusion using Jacobi iteration scripts.
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[Modifications to handle generalized boundary conditions]
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19.1 Unconfined Aquifer Flow

19.1.1 Finite-Difference Methods

19.2 Exercises
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20 Heat and Mass Transport

20.1 Concentration

20.2 Tracer Hypothesis

20.3 Advection (Convection) Process

20.4 Diffusion Process

20.5 Dispersion Process

20.6 Reaction Processes

20.6.1 Linear Equilibrum Isotherms and Concept of Retardation

20.7 Advection, Dispersion, Retardation, Decay Mathemat-
ics
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21 Analytical Solutions to ADR Equations

21.1 Impulse Solution

21.2 Ogata-Banks Solution

21.3 2D-Injection (Hunt) Solution

21.4 2D-, and 3D- Domenico Robbins Solutions
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22 Numerical Solutions to ADR Equations

22.1 Explicit Methods

22.1.1 Centered Differences

22.1.2 Upwind Formulation(s)

22.2 Crank-Nicholson Methods
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