Chapter 9

9.1

ROUTING

Reservoir and Stream
Flow Routing

Figure 9.1.1 illustrates how stream flow increases as the variable source area extends into the
drainage basin. The variable source area is the area of the watershed that is actually contributing
flow to the stream at any point. The variable source area expands during rainfall and conlrucl;
thereafter.

Flow routing is the procedure to determine the time and magnitude of flow (i.e., the flow
hydrograph) at a point on a watercourse from known or assumed hydrographs at one or more points
upstream. If the flow is a flood, the procedure is specifically known as flood routing. Routing by
lumped system methods is called hydrologic (lumped) routing, and routing by distributed .\yslcm—\
methods is called hydraulic (distributed) routing.

For hydrologic routing, input /(¢), output Q(7), and storage S(1) as functions of time are related by
the continuity equation (3.3.10)

ds

T
Even if an inflow hydrograph /(7) is known, equation (9.1.1) cannot be solved directly to obtain the
outflow hydrograph Q(), because, both Q and § are unknown. A second relationship, or storage
function, is required to relate S, /, and Q; coupling the storage function with the continuity equations
provides a solvable combination of two equations and two unknowns.

The specific form of the storage function depends on the nature of the system being analyzed. In
reservoir routing by the level pool method (Section 9.2), storage is a nonlinear function of Q, S = f
(Q), and the function f{Q) is determined by relating reservoir storage and outflow to reservoir water
level. In the Muskingum method (Section 9.3) for flow routing in channels, storage is linearly related

to / and Q.

The effect of storage is to redistribute the
hydrograph to the position of the outflow hydrograph in a time of redistribution. In very long
channels, the entire flood wave
hydrograph may then be shifted by a time period longer than the time of redistribution. This
additional time may be considered the time of translation. The total time of flood movement
between the centroids of the inflow and outflow hydrographs is equal to the sum of the time of
redistribution and the time of translation. The process of redistribution modifies the shape of the

hydrograph, while translation changes its position.

I(t) — Q1) (9.1.1)

hydrograph by shifting the centroid of the inflow

also travels a considerable distance, and the centroid of its
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9.2 HYDROLOGIC RESERVOIR ROUTING
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Figure 9.2.1 Change of storage during a routing period Az.

In order to calculate the outflow Q; . 1, a storage-outflow function relating 25/Ar + Q and Q is
needed. The method for developing this function using elevation-storage and elevation-outflow
relationships is shown in Figure 9.2.2. The relationship between walcr‘ surfu\cc elevation and
reservoir storage can be derived by planimetering topographic maps or from field surveys. The
elevation-discharge relation is derived from hydraulic equations relating f)cud and discharge for
various types of spillways and outlet works. (See Chapter 17.) The valucA of At is taken as the time
interval of the inflow hydrograph. For a given value of water surface elevation, the values of storage §
and discharge Q are determined (parts (@) and (b) of Figure 9.2.2), and thcn the value ,Of 28 /At + Q is
calculated and plotted on the horizontal axis of a graph with the value of the outflow Q on the vertical
axis (part (c) of Figure 9.2.2). : . .

In routing the flow through time interval /, all terms on the right side ofcguanon (9,212) are known.
and so the value of 25 1/At+ Qj+1 can be computed. The corresponding value of Q;. ; can be
determined from the storage-outflow function 25/At + Q versus Q, either graphically or by linear
interpolation of tabular values. To set up the data required for the next time interval, the value of

(28;+1/M1—Qj+1) 18 calculated using

i PAYH
g@igy_ﬂ{ 1§ {f +Q,A,}, 20,1 (9.2.3)

The computation is then repeated for subsequent routing periods.
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EXAMPLE 9.2.1
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Table 9.2.1 Elevation-Discharge-Storage Data for Example 9.2.1
1 2 3 4
Head Discharge Storage 28 + 0 (cfs)
H (ft) 0 (cfs) S (ft5) At o
0.0 0 0 0.00
0.5 3 43,500 148.20
1.0 8 87,120 298.40
1.5 17 130,680 452.60
2.0 30 174,240 610.80
2:5 43 217,800 769.00
3.0 60 261,360 931.20
3.5 78 304,920 1094.40
4.0 97 348.480 1258.60
4.5 117 392,040 1423.80
5.0 137 435,600 1589.00
Table 9.2.2 Routing of Flow Through Detention Reservoir by the Level Pool Method (Example 9.2.1)
3 -S/ ‘-5/ +1
Time Inflow i+ 141 R || 9 il Qj+1 Outflow
¢t (min) I; (cfs) (cfs) (cfs) (cfs) (cfs)
0.00 0.00 0.00
10.00 10.00 10.00 0.00 10.00 0.20
20.00 20.00 30.00 9.60 39.60 0.80
30.00 30.00 50.00 37.99 87.99 1.78
40.00 40.00 70.00 84.43 154.43 321
50.00 50.00 90.00 148.01 238.01 5.99
60.00 60.00 110.00 226.04 336.04 10.20
70.00 55.00 115.00 315.64 430.64 15.72
80.00 50.00 105.00 399.21 504.21 21.24
90.00 45.00 95.00 461.72 556.72 25.56
100.00 40.00 85.00 505.61 590.61 28.34
110.00 35.00 75.00 533.93 608.93 29.85
120.00 30.00 65.00 549.24 614.24 30.28
130.00 25.00 55.00 553.67 608.67 29.83
140.00 20.00 45.00 549.02 594.02 28.62
150.00 15.00 35.00 536.78 571.78 26.79
160.00 10.00 25.00 518.19 543.19 24.44
170.00 5.00 15.00 494.30 509.30 21.66
180.00 0.00 5.00 465.98 470.98 18.51
190.00 0.00 0.00 433.96 433.96 15.91
200.00 0.00 0.00 402.14 402.14 14.05
210.00 0.00 0.00 374.03 374.03 12.41
220.00 0.00 0.00 349.20 349.20 10.97
230.00 0.00 0.00 327.27 327.27 9.69
240.00 0.00 0.00 307.90 307.90 8.55

With 0 = 0.2, then 28, /At — Q; for the next iteration is

25, 25, } V0, — 2(0.2) = 9.6 cf
2iip 5= +0:| 202 = 10 -2(0.2) =9.6¢cts
[AI Q‘} [Az i

The computation now proceeds to the next time interval. Refer to Table 9.2.2 for the remaining

computations.
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9.3 HYDROLOGIC RIVER ROUTING

The Muskingum method is a commonly used hydrologic routing method that is based upon a
variable discharge-storage relationship. This method models the storage volume of flooding
in a river channel by a combination of wedge and prism storage (Figure 9.3.1). During the
advance of a flood Wwave, inflow exceeds outflow. producing a wedge of Storage. During the
recession, outflow exceeds inflow, resulting in a negative wedge. In addition, there is a prism of
storage that is formed by a volume of constant Cross-section along the length of prismatic
channel.

Assuming that the Cross-sectional area of the flood flow is directly proportional to the discharge
at the section, the volume of prism storage is equal to KQ, where X is a proportionality coeffi-
cient (approximate as the travel time through the reach), and the volume of wedge storage is equal to
KX(1— Q), where X is a weighting factor having the range 0 < X < 0.5. The total storage is defined
as the sum of two components,

S:KQ+KX(I—Q) (9.31)
which can be Tearranged to give the storage function for the Muskingum method

S=K[XI+(1-x)Q] (9:32)

and represents a linear model for routing flow in streams,

. The value of x depends on the shape of the modeled wedge storage. The value of X ranges
from 0 for IeServoir-type Storage to 0.5 for g full wedge. When X — 0, there is no wedge and
hence no backwater; this is the case for 3 level-pool reservoir. In natural streams, X is between 0
and 0.3, with a mean value near (.2, Great accuracy in determining X may not be necessary
because the results of the method are relatively insensitive to the \'a]lxe of this parameter. The
parameter K is the time of travel of the floog Wave through the channel reach. For hydrologic

r"fl’t;"’g~ the values of k¥ ang X are assumed to be specified and constant throughout the range
of flow,

Wedge Storage
)

Prism
storage = KQ

Fi zure I i\ ‘
£ wt, m ar > S ages |
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The values of storage at time j and j + 1 can be written, respectively, as
S; = K[XI; + (1 - X)Qj] (9.3.3)
Si+1 =K[XLi1+(1-X)Qj+1] (9.3.4)
Using equations (9.3.3) and (9.3.4), the change in storage over time interval Af is
Si+1—8 = K{[X[is1+ (1 -X)Qj1] — X, + (1 - X)Q/]} (9.3.5)

The change in storage can also be expressed using equation (9.2.1). Combining equations (9.3.5) and
(9.2.1) and simplifying gives

Qj+1=Cilj11+Cli + C30; (9.3.6)
which is the routing equation for the Muskingum method, where

At —2KX

i 9.3.7

Gy 2K(1 —X) + At ( )
At+2KX

11 i 9.3.8

C = ka—X) + 4 it

S (9.3.9)

~2K(1-X)+ At

Note that C; +C,+C;3 = 1.
The routing procedure can be repeated for several sub-reaches (Nyp,) 5o that the total travel time

through the reach is K. To insure that the method is computationally stable and accurate, the U.S.
Army Corps of Engineers (1990) uses the following criterion to determine the number of routing

reaches:
1 K 1
< B
2(1—-X) 7 NgepsAl — 2X

IA

(9.3.10)

If observed inflow and outflow hydrographs are available for a river reach, the values of K and X
can be determined. Assuming various values of X and using known values of the inflow and outflow,
successive values of the numerator and denominator of the following expression for K, derived from

equations (9.3.5) and (9.2.1), can be computed using

_05A (L1 +0) = Q41+ Q)] (9.3.11)

X1 —L)+(1-X)(Q+1 - Q)

The computed values of the numerator (storage) and dcn(.)minut(‘wr (weighted discharges) are
plotted for each time interval, with the numerator on the vertical axis and the denominator on the
horizontal axis. This usually produces a graph in the form of a loop, as shown in Figure 9.3.2.
The value of X that produces a loop closest to a single line is taken to be the correct value for the
reach, and K, according to equation (9.3.11), is equal to the slope of the line. Since X is the time
required for the incremental flood wave to traverse the reach, its value may also be estimated as

the observed time of travel of peak flow through the reach.
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EXAMPLE 9.3.1
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Figure 932 Typical valley Storage curyeg (after Cudworth (1989)).
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EXAMPLE 9.3.2
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9 Reservoir and Stream Flow Routing

Route the inflow hydrograph below using the Muskingum method: A7 -

lhr, X =02 k =(.7hr.
5 7
Time (hr) 0 1 2 3 4 5 6
Inflow (cfs) 0 800 2000 4200 5200 4400 3200 2500
Time (hr) 8 9 10 11 12 13
Inflow (cfs) 2000 1500 1000 700 400 0
1.0 - 2(0.7)(0.2)
T 0T o—— = 0.3396
H 2(0.7)(1-0.2)+1.0
1.0+2(O.7)(O.2)
2 = 0T o—— = 0.6038
= 2(0.7)(1 - 0.2)+1.0
2(0.7)(1 - 02)-1.0
= 20— ——— = 0.0566
G 2(0.7)(1-0.2)+1.0
(Adapted from Masch (1984).)
Check to see if C1 + G, +C3 = 1:
0.3396 + 0.6038 + 0.0566 = 1
Using equation (9.3.6) with 7, = Ocfs, 1, = 800 cfs, and 0, = 0 cfs, compute Q, at t = 1 hr:
O = Cilh + G + G0,
= (0.3396)(800) +0.6038(0) +0.0566(0)
= 272 cfs (7.7 m3/s)
Next compute Qsatr =2k -
0 = C15+ GI, +G30,
= (().3396)(2000) + 0.6038(800) B 0.0566(272)
= 1,178 cfs (33 m"/s)
The remaining computations resylt jn
Time (hr) 0 1 2 3 4 5 6 79
Q (cfs) 0 272 1178 2701 4455 4886 4020 300
Time (hr) 8 9 10 11 12 13 14 13
Q (cfs) 2359 1851 1350 918 610 276 16 '

(DISTRIBUTED) ROUTING

Distributed routing or hydraylic routing, also referred to a5 unsteady flow routing, is based upon [ﬁe
one-dimensiona] unsteady flow €quations referreq to as the Sains- V(;II(IIII e(/uu{iurn.\'. The hydrologic
river routing and the hydrologic TeServoir routing procedyres presented previously are lump‘?‘?
procedures and Compute flow rate as a function of time alope at a downstream location. Hydmlm%
(distributed) flow routings aflow Computatiop of the flow rate and water surface elevation (or depth) &
a function of both space (location) and time. The Saint-V;
in both the 1'0/0('1'{\'-(/(’/)!/1 (noncons, vation) form and t
The mome i

mome

ehant equations are presented in Table 94!
he discharge-areq (conservation) form. |
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Table 9.4.1 Summary of the Saint-Venant Equations*

Continuity equation

s 0Q 0A
Conservation form =H==0
Oox Ot

Nonconservation form —+—4+==0

Momentum equation

Conservation form

100 13 (Q¥) oy ,
”LQ‘*’ ; <Q—>+.&'a—'\\‘*£’(5\)-5/'ll()

A0t Adx\ A
Local Convective Pressure Gravity Friction
acceleration acceleration force force force
term term term term term

Nonconservation form (unit with element)

ov oV Oy

+ +8-——8(S0—5)=0
ot Ox Ox 3
| Kinematic wave
| Diffusion wave
| Dynamic wave

*Neglecting lateral inflow, wind shear, and eddy losses, and assuming 3 = 1.
x = longitudinal distance along the channel or river, f = time, A = cross-sectional area of flow, A water surface
elevation, Sy = friction slope, So = channel bottom slope, g = acceleration due to gravity, V = velocity of flow, and

depth of flow.

proportional to the change in the water depth along the channel, the gravity force term, proportional
to the bed slope S, and the friction force term, proportional to the friction slope Sy The local and
convective acceleration terms represent the effect of inertial forces on the flow.

Alternative distributed flow routing models are produced by using the full continuity equation
while eliminating some terms of the momentum equation (refer to Table 9.4.1). The simplest
distributed model is the kinematic wave model, which neglects the local acceleration, convective
acceleration, and pressure terms in the momentum equation; that is, it assumes that Sy = S; and the
friction and gravity forces balance each other. The diffusion wave model neglects the local and
convective acceleration terms but incorporates the pressure term. The dynamic wave model
considers all the acceleration and pressure terms in the momentum equation.

The momentum equation can also be written in forms that take into account whether the flow is
steady or unsteady, and uniform or nonuniform, as illustrated in Table 9.4.1. In the continuity
equation, 0A/0t = 0 for a steady flow, and the lateral inflow ¢ is zero for a uniform flow.

.1 Unsteady Flow Equations: Continuity Equation

8 b . p LY. . s.de 1ty W nio . N - 5 (oo s
The continuity equation for an unsteady variable-density flow through a control volume can be

written as in equation (3.3.1):

0= jl‘ l p(l'\" T [ p\ p d‘\ (94' )
dt
v CS
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(c) Cross-section.
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where 0Q/0x is the rate of change of channel flow with distance. The volume of the channel element
is Adx, where A is the average cross-sectional area, so the rate of change of mass stored within the
control volume is

d 0(pAdx)
~ |pdV.=———2 9.4.4
dt Jp ot ( )
cv
where the partial derivative is used because the control volume is defined to be fixed in size (though
the water level may vary within it). The net outflow of mass from the control volume is found by
substituting equations (9.4.2)-(9.4.4) into (9.4.1):
0(pAdx) Gl0)
—(—p—)—p(Q+c/¢l.\')+p<Q t _\*Lt/.\') ED (94.5)
dt Ox
Assuming the fluid density p is constant, equation (9.4.5) is simplified by dividing through by pdx
and rearranging to produce the conservation form of the continuity equation,

30 oA
AR TERTRE (9.4.6
IR Rk 2

which is applicable at a channel cross-section. This equation is valid for a prismatic or a non-
prismatic channel; a prismatic channel is one in which the cross-sectional shape does not vary along
the channel and the bed slope is constant.

For some methods of solving the Saint-Venant equations, the nonconservation form of the
continuity equation is used, in which the average flow velocity V'is a dependent variable, instead of
Q. This form of the continuity equation can be derived for a unit width of flow within the channel,
neglecting lateral inflow, as follows. For a unit width of flow, A =y x 1 =yand Q = VA = Vy.

Substituting into equation (9.4.6) yields

A v Av
oWy o _ (9.4.7)
ox ot
or
At ‘\v “«
vii +y— + i—\ =0 (9.4.8)
cx : 143 ot

942 Momentum Equation
Newton’s second law is written in the form of Reynolds transport theorem as in equation (3.5.5):

d 4
S E=2 [ Veav+ S vpv-da i ot
dt . 43
cv
This states that the sum of the forces applied is equal to the rate of change of momentum stored
within the control volume plus the net outflow of momentum across the control surface. This
equation, in the form Y F = 0, was applied to steady uniform flow in an open channel in Chapter 5.
Here, unsteady nonuniform flow is considered.

= 2t B : “t1 > S o) N
Forces. There are five forces acting on the control volume

Z I: — I"’Q . I:Y + I:( + I:/, ‘94|())

where F, is the gravity force along the channel due to the weight of the water in the control volume.
Fis the friction force along the bottom and sides of the control volume, F, is the contraction/
APITT: :
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expansion force produced by abrupt changes in the channel cross-section.
pressure force (see Figure 9.4.1). Each of these four forces is ev

Gravity. The volume of fluid in the control volume is Adx
angle of channel inclination 8, So ~ sin 0 and the gravity fo

and F, is the unbalanced
aluated in the following paragraphs,
and its weight is pgAdx. For a small
rce is given by

Fy = pgAdx sin 0 ~ PgASydx (94.11)
where the channel bottom slope S, equals — 0z/0x.

Friction. Frictional forces created by the shear stress along the bottom and sides of the control

volume are given by — 1Pdx, where % = YRSy = pg(A/P)S; is the bed shear stress and P is the
wetted perimeter. Hence the friction force is written as

=i PgAS;dx (94.12)

Fe= —pgAS,dx (48
where S, is the eddy loss slope

2
5, - Kedo/a) (9414
2g  ox
in which K, is the nondimensiona] expansion or ¢
expansion (where G(Q/A)Z/ax i$ negative) and

Pressure. Referring to Figure 9.4.1, the unbalanced pressure force js the resultant of the

herosFatic force on the each side of the control volume. Chow et al. (1988) provide a detailed
derivation of the pressure force F, as simply

ontraction coefficient, negative for channel
positive for channe] contractions.

Fp = pgA @d,\- (9.4.15)
Ox

The sum of the forces in €quation (9.4 10) ca ituti i 1),
4. n be expressed, after subs tions (9.4.
(9.4.12), (94.13), and 9.4.15) a0 pressed, after substituting equa

Z F= PASydx — PEAS;dx — PEAS,dx — pgA ?dx ('9.4.16)
ox

Net momentym outflow,

The mass inflow rate to th ' 942) 8
>quation (9.4
—P(O + gdx), Iepresenting both st i LEE e et
is computed by multiplying t
correction factor

ream infi

: i m
OW and lateral infioy, The corresponding momentu
he two masg infi

. . ] m
OWw rates by thejr Tespective velocity and a momentu

JVdeA: -p

(BVQ + By, gax) (9.417)
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direction. The term 3 is known as the momentum coefficient or Bouss inesq coefficient; it accounts for
the nonuniform distribution of velocity at a channel cross-section in computing the momentum. The
value of B is given by

v2dA (9.4.18)

P=va
where v is the velocity through a small element of area dA in the channel cross-section. The value of
ranges from 1.01 for straight prismatic channels to 1.33 for river valleys with floodplains (Chow,
1959; Henderson, 1966).

The momentum leaving the control volume is

o(BVO) | |
(l[? ¢ dx (9.4.19)
0x

[va dA=p [ng }

()KIIIC[

The net outflow of momentum across the control surface is the sum of equations (9.4.17) and
(9:4.19):

3(BVQ) J(BVQ)
[VdeA: _p(ﬁVQ+B1'\(/([\‘)Ap[BVQ 4 l_ \( (/\} —p ‘hir,z/ 3 'l(_ \v“ ]1/\ (9.4.20)
ox .

cs

Momentum storage. The time rate of change of momentum stored in the control volume is found by
using the fact that the volume of the elemental channel is Adx, so its momentum is pAdxV, or pQdx,

and then
d ( o0
— IV;)(/T = p-,g“—(/\' (9.4.21)
at ox
CV
After substituting the force terms from equation (9.4.16) and the momentum terms from equations
(9.4.20) and (9.4.21) into the momentum equation (9.4.9), it reads

dy o(pvo)| 00
pgASodx — pgASydx — PgAS.dx — pgA Z-dx = - p[Bw Tox | tPgdx (94.22)

Dividing through by pdx, replacing V with Q/A, and rearranging produces the conservation form of

the momentum equation:

00  oBO"/4) +gA(§f -SH‘.y‘Ax) Bgv. = 0 9.4.23)
cx

ot ot
The depth y in equation (9.4.23) can be replaced by the water surface elevation /, using

h=y+:z 9.4.24)

where z is the elevation of the channel bottom above a datum such as mean sea level. The derivative
ation (9.4.24) with respect to the longitudinal distance x along the channel is
a 4.2

of equ
oh Oy Qz {
3t Ta: it A 9.4.25)
CX OoX ox

but 0z/0x = — So, SO
oh Oy i
Ae T Ay D0 9.4.26)
Ox Ox




346 Chapter 9 Reservoir and Stream Flow Routing

The momentum €quation can now be expressed in terms of 4 by using equation (9.4.26)in (9.4.23)

0, B/, . (C_” +s, +5,) ~Bgve = 0 (9427
ot Ox o \0x

The Saint-Venant equations, (9.4.6) for continuity and (9.4.27) for momcn{um. are the govemlqg
equations for one-dimensional, unsteady flow in an open channel. The use of the terms A le}l]d Se lln
equation (9.4.27), which represent the rate of energy loss as the flow P;l\.\c_\- throlugh the.c'anne.
illustrates the close relationship between energy and momentum considerations in d(?scrlblng the
flow. Strelkoff (1 969) showed that the momentum equation for the Saint-Venant equations can also

be derived from energy principles, rather than by using Newton's second law as presented here

: : deols s ficis the
The nonconservation form of the momentum €quation can be derived in a similar manner to

ifs : : ; SEELY fect, and
nonconservation form of the continuity equation. Neglecnng eddy losses, wind shear effect

as presented. This is an implicill
I that is used in the KINEROS model, This section presents a generd

accelerate appreciably.

Fora kinematic wave, the energy grade i

and uniform (Sy = S¢) within the diffi
and water surface elevation are not paralle]
9.5.1 Kinematic Wave Equations

A waveisa variation in

i 1 wave
a flow, such ag 5 change in flow rate or water surface elevation, and the
celerity is the velocity with which thig variati

; on
On travels along the channel. The celerity depends :
the type of waye being considered ang

the study of moy;
these quantities are includeq,
The kinematic way

€ model is defineq by the following €quations.

Continuity:

0 M (95-1)

ox T3 =dlx, 1)
Momentum:

§.2)
So = §; 2

where g(x, 1) is the net Jate
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The momentum equation can also be expressed in the form
A = oQP (9.5.3)
For example, Manning’s equation written with Sy = Sy and R = A/P is

1.495)2

513 1
3 9.5.4
np%3 (9:5.4)

Q:

which can be solved for A as

2. (L ; \-Q‘ 5 (9
- \1.495,) * 1k
so ot = [nP*3/(1.49+/55)]>¢ and B = 0.6 in this case.

Equation (9.5.1) contains two dependent variables, A and Q, but A can be eliminated by
differentiating equation (9.5.3):

w
n

0A 00
T—UBQ I(TL> (9.5.6)
ot ot
and substituting for 0A /0t in equation (9.5.1) to give
(Q _1(9Q i
BQB ]( ,) 9 (9.5.7)
Alternatively, the momentum equation could be expressed as
0= aAB (9.5.8)
where g and B are defined using Manning’s equation. Using
0Q dQOoA
Zitpgrigye 9.5.9
Ox dAox (9.3.9)
the governing equation is
0A dQod A
At A T (9.5.10
ot " dAox ! ( 10)
where dQ/dA is determined by differentiating equation (9.5.8):
0
((' = aBAB~! (9.5.11)
dA
and substituting in equation (9.5.10):
0A 0A
— +aBA" " ==¢ (9.5.12)
ot Ox

The kinematic wave equation (9.5.7) has Q as the dependent variable and the kinematic wave
equation (9.5.12) has A as the dependent variable. First consider equation (9.5.7), by taking the

logarithm of (9.5.3):
InA=Ina+BInQ (9.5.13)

and differentiating

10 /AN
‘5— B(f ) (9.5.14)




e

348 Chapter 9

Reservoir and Stream Flow Routing

This defines the relationshi
so that the discharge estim
variable instead of 0.

Next consider equation (9.5.12); by taking the logarithm of

p between relative errors dA /Aand dQ/
ation error would be magnified by the

InQ=Ina+BlnA

dA £4141d0O
ey

or

952 US. Army Corps of Engineers Kinematic Wave Model for Overland
Flow and Channel Routing

Q. ForManning’s equation f<1,
ratio 1/B if A were the dependent

(9.5.8):

(9.5.15)

(9.5.16)

) Where an explicit finite difference form is used (refer to Figures 9.5.1
and 8.9.2):
J+1 J
aA_A,H AL (9.5.17)
ot At
J J
0A _AL -4 (9.5.18)
Ox Ax
and
J /
A A +A (9.5.19)
2
J+1 4
q i1 +q'¢+l (9520J
2

| | (®)
Figure 9.5.1 Finite difference f.

“standarq form;” (5) HEC.]

i+1

“conservation form.
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Substituting these finite-difference approximations into equation (9.5.12) gives

1

: B-1 :
J AJ j Jj j+1 j
i A2 =AY A=A _Git1+%is
At

)+aB £ JAES L N (9.5.21)

A.f+ 133 Af
( 2 Ax 2

i+1 i+1

The only unknown in equation (9.5.21) is A7 : SO

Ar\ (4] 1+A: 113 j i1 j At L
_UB(Zv "T (A,.l'Al,/)—- ’(/.'-I 4 (/f-l' (9.5.
X

o
o

A./+l :Af

i+1 i+1

After computing Af:: at each grid along a time line going from upstream to downstream (see
Figure 8.9.2), compute the flow using equation (9.5.8):

+ 4 B 3

0l =a(Al)) (9.5.23)

The HEC-1 model uses the above kinematic wave model as long as a stability factor R < 1 (Alley
and Smith, 1987), defined by

a AB \2]
R:—[( At+A]) - (4]) | forg>0 (9.5.24a)
(IA_\‘ 1 ( )J 1
Ar
R = aB(A))" 'A—[t()rq -0 (9.5.24b)
X

Otherwise the form of equation (9.5.1) is used, where (see Figure 9.5.1)

A j+1 _ Aj+1
o0 _eili-of! i
Ox Ax
A j4+1 14/
(—\; 1 A, n AI |‘)H§‘l(w
ot I
SO
j+1 j+1 j+1 i
Q'—'—_—;—Q‘— +- f‘—’——A—i i 131 q (9.5.27)
Ax A
gy i :
Solving for the only unknown Q' yields
j j Ax : ; 1111
0it1 =0t +ahx- (4" - 4) (9.5.28)
i+ 1 ! b 2 g
Then solve for Aﬁil using equation (9.5.23):
| 1/B
A/‘: — (,Q’:) (9.5.29)
3 13t

The initial condition (values of A and Q at time 0 along the grid, referring to Figure 8.9.2) are

computed assuming uniform flow or nonuniform flow for an initial discharge. The wpstream
dsS 5

boundary is the inflow hydrograph from which Q is obtained.

The k'inematic wave schemes used in the HEC-1 (HEC-HMS) model are very simplified. Chow,
et al. (1988) presented both linear and nonlinear kmcmuhc wave .\‘chcmcs based upon lhg equation
ation. An example of a more desirable kinematic wave formulation is that by

(9.5.7) formul ' :
Woolhiser et al. (1990) presented in the next subsection.
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9.5.3 KINEROS Channel Flow Routing Model
The KINEROS channe] routing model

uses the equ
equation (Woolhiser et al., 1990):

ation (9.5.10) form of the kinematic wave
0A  dQoA 3
b q(x, 1) (9.5.10)
Ot dAOx

where g(x, 7) is the net lateral inflow per unit length of ch

annel. The derivatives are approximated
using an implicit scheme in which the spatial and temporal derivatives are, respectively,

04 Altl_ g+

‘ A A
=0 +(1-9) i+ % 9.5.30)
Ox GA\\_ (1-9) 1e (
dQ oA do\’*! A/:"I—A/'l 10\’ *1 /47 A
——=0== i+1 ‘ £ 3 i 143155y 14
dA Ox <(/A> Bk el adt GJ((“ T (9.5.31)
and
0A 1 A7+ _ 4 ‘4/4:‘4/1
3= [ SESwa kS BERT Y | 9.5.32)
o z[A\, i (
or
0A A’:"'+A-’”'-A-LA" ;
=¥t Rt e 8 T CTRLTTY 533
o TRATTTTTT o

Suhsliluling equations (9.5.31) and (9.5.33) into (9.5.10), we have
Al AL+ A

; (IQ)’”" ATy 10\ /A —A"-')”
A T T—+delf e i+1 i dQ _Sit1 33 3¢
2A1 {K(m (T)J*“‘e)[(ﬁ) ( Ax

S @il gl g

The only unknown in this equ
iterative scheme such ;

(9.5.34)
ation is A% which must be solved for numerically by use of an

endix A).

(9.5.35)
thrc/\’isth‘l']' ic tadine » J |
© hydraulic radiyg anq & =1.4951/2 ), and m = 5/3 for Manning’s equation.

Kinematic waves result from ch

aneges 1 2% 4 A :
anges in Q. Ap Increment in flow dQ can be written

as
0 00 3
dQ = x4 —dt 3961
x ot
Dividing through by 4y and rearranging Produces:

(;(:) L dtdQ do

Rkl 9.5.37)
Ox ' dx o dx (

9.6 MUSKIN
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Equations (9.5.7) and (9.5.37) are identical if
dQ

$Eg (9.5.38)
and
dx 1
EZE—BQTI- (9.5.39)
Differentiating equation (9.5.3) and rearranging gives
((g:&ﬁQle (9.5.40)

and by comparing equations (9.5.39) and (9.5.40), it can be seen that

dx dQ

s dB 8L 9.5.4
a A 19330

or

e 3idl
Ck = d—\ = a9 (9.5.42)

dt dA

where ¢, is the kinematic wave celerity. This implies that an observer moving at a velocity
dx/dt = ¢, with the flow would see the flow rate increasing at a rate of dQ/dx = q.If ¢ = 0, the
observer would see a constant discharge. Equations (9.5.38) and (9.5.42) are the characteristic
equations for a kinematic wave, two ordinary differential equations that are mathematically
equivalent to the governing continuity and momentum equations.

The kinematic wave celerity can also be expressed in terms of the depth y as

1d0
ST 9.543
Ck Bdy (9.5.43)

where dA = Bdy.
Both kinematic and dynamic wave motion are present in natural flood waves. In many cases the

channel slope dominates in the momentum equation; therefore, most of a flood wave moves as
a kinematic wave. Lighthill and Whitham (1955) proved that the velocity of the main part of a
natural flood wave approximates that of a kinematic wave. If the other momentum terms

ov/ot, V(dV/ox) and(l/g)@y/(“‘x) are not negligible, then a dynamic wave front exists that

can propagate both upstream and downstream from the main body of the flood wave.

9.6 MUSKINGUM-CUNGE MODEL

Cunge (1969) proposed a variation of the kinematic wave method based upon the Muskingum
metl;c)d (see Chapter 8). With the grid shown in Figure 9.6.1, the unknown discharge Q‘f ; } can be

expressed using the Muskingum equation (Q;+1 = Cilj+ 1+ Cali 4 C305):
Qi1 =G0 + 001+ G0, (9.6.1)
where Q” =011 Qf‘l —[;+1; Q) = I;; and Q) , = Q). The Muskingum coefficients are
AL il o dE (9.6.2)

lk'(] - X) 4 At
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—Qj+1

Q:'J+1 =Qj+'

i

i +1
Figure 9.6.1 Finite-difference

grid for the Muskingum—Cunge method.

c, - Ar4+2Kx (9.6.3)
* T2k —X)+ Az

(9.64)
2K(1-X)+ Ar

approximate solution of the kin

e
conside

sidered constant, equation (9.6.1) is an
red an approximation of

demonstrated that equation (9.6.1) can be
a4 modified diffusion eq

uation if
K=8_ Ax (9.6.5)
Ck * dQ/dA
and
X:l(l- Q (9.6.6)
2 BerSyAx

where ¢ is the celerity corre
Ax/(dQ/dA) in €quation (9.6.5)
channel reach of length Ay,
basically the same

Spondin

) a
Propagation of a given discharge ak)nf is
stability requires () < x < 1/2. The solution procedure I
as the Kinematic wave,

9.7 IMPLICIT DYNAMIC WAVE MODE],

The conservation form of equations js used
versatility re

131 ides the
because this form provides
ate a wide range of

flows from gradual long-duration flood waves lf:
rivers to abrupt waves similar to those caygeq by a dam failure. The equations are developed fron
equations (9.4.6) and (9.4.25) a5 follows,
Weighted four-pojng fin:

point hmlc—difference approxim

for dynamic routing with the Sainl-Venum equati

are used

ations gjyen by equations (9.7.1 )-(9.7.3) arf u:re
L oh/ox
ons. The Spatial derivatives 0Q/0dx and 0h/0x
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estimated between adjacent time lines:
~ j+1 j+1 j j
9 —0 } =0
A_ngg ;(1,~9)L_';,Lﬁ(,,' (9.7.1)
ox Ax; AXx;
oh  WIi-h"! hl,, ~h
e il IO L e ) (9.7.2)
0x AXx; Ax;
and the time derivatives are:
d(A+4r) (A+A0)t! +(A+A0)]T] - (A+A0), - (A+A0),, 971
= — /
& 287 (9.7.3)
o0 g/ +oiti-0i-0l,, 9.7 4
or 2A¢ 1Y
The nonderivative terms, such as ¢ and A, are estimated between adjacent time lines, using:
j+1 j+1 J /
Fasihididtl, 9i T9i+1 _j+1 j - e
(1:9——2—— -»(I--B)*E'—— =0g." " +(1—-0)g, (9.7.5)
AR ALY Aj+ A7, —j+1 !
1id [;_7';' +(1-9) -w)—’—‘ =04, +(1-0)A,”’ (9.7.6)

where 7; and A; indicate the lateral flow and cross-sectional area averaged over the reach Ax;.
The finite-difference form of the continuity equation is produced by substituting equations
(9.7.1), (9.7.3), and (9.7.5) into (9.4.6):

i+ 1 j+1 j j
Q;.I_Q‘I —j+1 - (_),‘| 'Q, i

- +(1-6 £ 58 ST
e( A.\', 1i ‘ .X.\'] 9

(A+40)it! + (A+A40)] 1] — (A+40)] — (A+A0)],

+ ‘#375,,""“""”

(9.7.7)

Similarly, the momentum equation (9.4.27) is written in finite-difference form as:

Qit' 4o/t -0/-0).,

2At

2 0+ _Bo2/AY ] Pt Ligaeiiig g 1581
_i_e{ﬁﬁgﬁ‘i-_iﬁg;”“i g (FE )+ G <bqr.>ﬁ"}
A.\',‘
2/a\  _(BO%/A) SRl i) SENEEY
o[BI (M M )] <o
X;

(9.7.8)

The four-point finite-difference form of the continuity equation can be further modified by

multiplying equation (9.7.7) by Ax; to obtain
G(Q’.' 1_gi*! _ gl Ax) +(1-8)(Q],, - Q) —7iAxi)

(9.7.9)
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Similarly, the momentum equation can be m

(o

odified by multiplying by Avy; to obtain

A (Bgv, 4 ]A.\'-}

2\ J 2 A il > X - -
+(1—9) B£ -<QQ> #;’Elw/l;_l -h’ + (S Y Ax: 4 (S, V.Ax |[5(/\‘)_\.\,}—()
A i+1 A I »
(9.7.10)
where the average values (marked with an overbar) oy €r a reach are defined as
z_B:+B I (9.7.11)
2 A; +A 1 (9.7.12)
A; = T
E B/ 5% Bl 1 1‘)—’,13:’
Byt rizitl :
:
0. — Qi+ 0 1 (9.7.14)
i1 2
Also,
P T 9.7.15)
R; = 4,/B, At
! . ISREY] e form
for use in Manning’s €quation, Manning’s Lquatmn may be solved for $, and written in the fo
shown below, where the
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Time ¢
l < 3
> 34 145§ :
g(j"'” . Lj+1 i+1,j+1 } -
§ At ] — oM - §
4 ¥ At -
§ 4 i,j i+1,j 3
g " e Ax> : §
=
>
J8 Node ! B
3
2 8 4 Ta=0) i @+ 6+2)  W-3(N-2)W-1) N Distancer
Initial condition time line

Figure 9.7.1 The x-7 solution plane. The finite-difference forms of the Saint-Venant equations are solved
at a discrete number of points (values of the independent variables x and 7) arranged to form the rectangular
grid shown. Lines parallel to the time axis represent locations along the channel, and those parallel to the

distance axis represent times (from Fread

(1974)).

i = N.This yields 2N-2 equations. There are two unknowns at each of the N grid points (Q and /), so
there are 2N unknowns in all. The two additional equations required to complete the solution are
supplied by the upstream and downstream boundary conditions. The upstream boundary condition is

usually specified as a known inflow

hydrograph, while the downstream boundary condition can be

specified as a known stage hydrograph, a known discharge hydrograph, or a known relationship
between stage and discharge, such as a rating curve. The U.S. National Weather Service FLDWAV
model (hsp.nws.noaa.gov/oh/hrl/rvmech) uses the above to describe the implicit dynamic wave

model formulation.

PROBLEMS

9-1-.1 Consider a river segment with the surface area of 5 km?. For
a given flood event, the measured time variation of inflow rate
(called inflow hydrograph) at the upstream section of the river
Ségment and the outflow hydrograph at the downstream section are
shown in Figure P9.1.1. Assume that the initial storage of water in
the river segment is 10 mm in depth.

(a) Determine the time at which the change in storage of the
river segment is increasing, decreasing, and at its
maximum.

(b) Calculate the storage change (in mm) in the river segment
during the time periods of [0, 4 hr], and [6, 8 hr].

(¢) Determine the amount of water (in mm) that is ‘lost’ or
‘gained’ in the river segment over the time period of 12
hours.

(d) Whatis the storage volume (in mm) at the end of the twelfth
hour?

?z J Ionfloﬂ
= = = ~Outfl

BN N AT I ! |

T T U T T ST
ST

2 oY \*““:"

SHEHEIE D B B Iy

Time (hr)

Figure P9.1.1

9.1.2 Consider ariver segment with the surface area of 5 km?. For
a given flood event, the measured time variation of inflow rate
(called inflow hydrograph, in m ¥sec) at the upstream section of
the river segment and the outflow hydrograph at the downstream
section are shown in Figure P9.1.1. Assume that the initial storage
of water in the river segment is 10 mm in depth. k
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(a) Determine the time at which the change in storage of the
river segment is increasing or decreasing, at its maximum.

(b) Calculate the storage change (in mm) in the river segment
during the time periods of [0, 4 hr], and [6, 8 hr].

(¢) Determine the amount of Wwater (in mm) that is “lost” or
“gained” in the river Segment over the time period of 12 hr.

(d) What is the Storage volume (in mm) at the end of the 12th
hour?

9.1.3 There are two reservoirs, A and B, connected in series,
Reservoir A is located upstream and releases its water to reservoir
B. The surface area of reservoir A is half of the surface area of
B. In the past one year, the two reservoirs received the same
amount of rainfall of 100 ¢m and evaporated 30 cm of water,
However, during the same period, reservoir A experienced a
change in storage of 20 cm whereas storage in reservoir B
remained constant, Please clearly state any assumption used in
the calculation.
(a) Determine the outflow volume from reservoir A to B during
the past year,
(b) Determine the outflow volume from reservoir B during the
past year,
(¢) How big is the flow rate from reservoir B a5 compared with
that of reservoir A?

9.2.1 The storage-outflow characteristics for areservoir are gijyen
below. Determine the storage-outflow function 2S/At + Q versus
Q for each of the tabulated values using A7 = 1.0 hr. Plot a graph
of the storage-outflow function.

Storage (10° m?) 70 80 85 100 115

Outflow (m?s) 0 50 150 350 700

9.2.2 Route the inflow hydrograph given below through the
reservoir with the Storage-outflow characteristics givenin problem
9.2.1 using the Jevel pool method. Assume the reservoir p

7.4 as an
Initial storage of 70 x 10° m”,

Time (h) 0 1 2 B + 5 6 7 8
Inflow (m”s) 0 40 60 ;50 200300 250 200 189

Time (h) 9 1026718 110 13 14 5 16
Inflow (m%s) 220 320 400 280 190 150 50 0

9.2.3 Rework problem 922 assuming the TeServoir storage jg
s e - 3 § 5 &
initially 80 x 106 3

9.24 \\'rilc;u‘nmpmcr Program to solve problems 9.2 2 and923
9.2.5 Rework example 9.2.2 using a I.5-acre detention basin

9J > CPY > " 1 -
9.2.6 Rework e Xample 9.2 2 using a triangular infloy, hydrouraph
o

t 120 min and
at 240 min. Use a 3.

that increases linearly from zero toa peak of 9() ¢fs 5
then decreases lmcurly 10 a zero discharge
min routing interval.

9.2.7 Consider a Teservoir with surface area of | km?

- Initially, the
reservoir has a storage volume of 500,000 m> with no

flow Coming

outof it. Suppose it receives. from the beginning, a uniform inflow
of 40 cm/h continuously for 5 hr. During the time instant when the
Teservoir receives the inflow. it starts to release water simulta-
neously. After 10 hr, the reservoir is empty and outflow becomes
zero thereafter. It is also known that the outflow discharge reaches
its peak value at the same time instant when the inflow stops. For
simplicity, assume that the variation in outflow js linear during its
rise as well as during its recessijon.

(a) Determine the peak outflow discharge in m’/s.

(b) Determine the time when the total storage volume (inm’)in
the reservoir is maximum and its corresponding total
storage volume,

(¢) What is the total storage volume (in m®) in the reservoirat
the end of the eighth hour?

928 A rectangular reservoir equipped with an outflow-control
weir has the following characteristics: §=5xhand Q=2 x h,in
which S is the storage (m"'/s-da_v). Q is the outflow discharge (in
m¥s), and h is the water elevation (in m). With an initial water
elevation being 0.25 m, route the following inflow hydrograph to
determine;

(a) the Percentage of reduction in peak discharge by the

reservoir; and
(b) the peak water surface elevation.

Time 6:00 am 9:00 am 12:00 nn 3:00 pm 6:00 pm
Inflow (m¥s) 3¢ 120 450 300 30
Pt

929 A Tectangular detention basin is equipped with an quel'
The basin storage-elevation relationship and outﬁow-clevfillon
relationship can pe described by the following simple equations:

Storage-elevarion relation: § = 10 h;
Outﬂow~elevati()n relation: Q = 2 x ;2

in‘which §is the Storage (in m*/s-hr), Q is the outflow discharge (in
m/s), and 4 is the Water elevation (in m). With an initial water

elevation being 0.25 m, route the following inflow hydrograph (o
determine:

(a) the Percentage of reduction in peak discharge by the
reservoir; and
(b) the peak Water surface elevation.

Time 1:00 pm 2:00 Pm 3:00 pm 4:00 pm 5:00 pm 6:00 pm

Inflow (m¥s) 20 75 50 15 !

9.2.10 To investigate the effectiveness of a flood CO""(?' 1l
Servoir, a 100-year design flood hydrograph is used as an input
in the routing exercise. The reservoir has a surface area of 250
hectares ang its only outlet is an uncontrolled spillway locme.d
5 m above the datum_ The design flood hydrograph is given ”j
the following table ang other physical characteristics of Fh‘
TeServoir are Provided in the Figures P9.2.104 and b. A‘“S”m!n%
that the initial Teservoir level js 4 m above the datum, determine




the effectiveness of the reservoir in terms of the reduction in
inflow peak discharge.
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Problems

9.2.12 The Kowloon Bywash Reservoir (KBR) is located on
the upstream of the Lai Chi Kok area. It is a small reservoir
equipped with a tunnel with a maximum capacity of 2 m%/s

: )
[Tl]l;n;w(:l;13/s) 5% 230 4(6)0 6(9)0 3]()"0 21050 11080 ié delivering reservoir water to thc downstream Tai Pn.Roud
water treatment plant. There is an uncontrolled spillway
with the crest elevation at 115 m. The stage-volume-outflow
10 relationships of KBR are shown in the attached table and
4 o Figure P9.2.12a. Further, the reservoir routing curve, i.e.,
E P 285/At+O'vs. O, for At = 1 hr is shown in the Figure P9.2.12b.
p ]
] =
§ 4 o Elevation Oult}ow Storage ZS/'A! +O0
$ > 7 (mPD) (m’/s) (m”) (m?/s)
; ] 109.73 2.00 531,000 297.0
0 112.78 2.00 679,182 379.3
0 5 10 15 20 25 115.06 2.00 801,442 447.2
Reservoir storage, (10° m’) 115.22 4.02 809,759 4539
(a) 115.37 12.11 818,107 466.6
i ' 115.52 2221 826,488 481.4
3 ; 115.67 36.36 834,901 500.2
14 115.83 51.50 843,347 520.0
250 115.98 69.72 851,824 543.0
2 20 116.13 89.93 860,333 567.9
e I 116.28 114.20 868,874 596.9
o 19055 116.44 136.43 877,447 623.9
100 5 116.59 162.72 886,051 655.0
so EH 116.74 193.03 894,688 690.1
j—j: g 116.89 228.40 903,355 730.3
010 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

2S/dt + O (in 100 cms)

(b)

Figure P9.2.10 (a) Reservoir water level storage curve,
(h) Reservoir routing curve.

9.2.11 To investigate the effectiveness of a flood control resen'f)ir.
a100-year design flood hydrograph is used as input in the routing
exercise. The reservoir has only one flow outlet located on the
spillway crest with the elevation of 104 m. The reservoir has the
elevation~storage-discharge relationship shown in Table 9.2.11(a).
Given the design flood hydrograph as shown in Table 9.2.11(b) and
assuming that the initial reservoir elevation level is at 103 m,
determine the effectiveness of the reservoir in terms of the
feduction in inflow peak discharge. (Note: 1 hectare = 0.01 km®)

Table 9.2.11(a) Reservoir Elevation-Storage-Outflow Relation
e ———
Elevation (m) 100 101 102 103 104 105 106 107

Storage (x10°m®) 50 60 70 80 92 105 120 140
Outflow (m?s) O o 0 O 8 17 271 40
N ————

Table 9.2.11(b) Inflow Hydrograph

Time (hr) 0 12 24 36 48 60 72 84
Inflow m%s) 10 20 30 40 30 25 15 10
unbilals

Consider the inflow hydrograph given in the table below.
Determine the peak outflow discharge from the KBR and the
corresponding water surface elevation and the storage
volume. Assume that the initial storage in the reservoir is
500,000 m>.

Time (hr) 1 2 3 4 5 6 7
Inflow(m®s) 10 80 200 150 100 60 20

250 T

3 e Stage (MPD)

o = = =Outflow (m“/s) .

5 ysrErEEEE '

~ 200

; .

s '

3 150

o '

° .

g EEREREeE

- 100 .

o H

T :

§ % H
I

3 '

“w o h

1.E+04 1.E+05 1.E406

Reservoir storage (m?

(a)
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1000

100

0 (m¥s)

1

400 450 500 550 600

25/dt + O (m¥s)

650 700 750

Figure P9.2.12 (a) Slagc-St()ragc-Outﬁow relationship;
(b) Reservoir routing curve

9.3.1 Rework example 9.3.4 using Az = 2 hr.
9.3.2 Rework example 9.3.4 assuming X = ().3,
9.3.3 Rework €xample 9.3.4 assuming K = 1.4 pr.

9.3.4 Calculate the Muskingum routing K and number of routing
steps for a 1.25-mij long channel. The average cross-section
dimensions for the channel are a base width of 25 ft ang an
average depth of 2.0 ft. Assume the channel is rectangular and hag
a Manning’s n of (0,04 and a slope of 0,009 fu/ft.

9.3.5 Route the following upstream inflow hydrograph through a
downstream flood control channel reach using the Muskingum
method. The channe] reachhasa K = 2.5 by and X = 0.2, Use a
routing interval of | hr.

Time (h) 1 2 3 4 5 6 7

Inflow (cfs) 90 140 208 320 440 550 640
Time (h) 8 9 10 11 12 13 14
Inflow (cfs) 680 69 630 570 470 390 360
Time (h) 15 16 17 18 19 20

Inflow (cfs) 339 250 180 130 100 9p

9.3.6 Use the US. Army Corps of Engineers HEC-HMS com-
puter program to solve Problem 9.3 5.

9.3.7 A city engineer has called You wanting some information
about how you would model a catchment called the Castro Valley
catchment. In particular, he wants to know about how You would
model the channe] modifications. The 2.65-mi-lnng Natural chap-
nel through subcatchment | has an approximate width of 25 ft angd
a Munning's‘ n of 0.04. The slope is 0.0005 fi/ft. He thinks that a
25-ft wide trapezoidal concrete-lined channel (Manning’s ,, —
0.015) would be sufficient to construct through subcatchment 1.So
now you have to put together some information. Obviously y
going to have to tell him something aboy¢ the channe] Touting
procedure and the coefficients needed. He is Particular anq wants
to know the procedure you wijl £0 through to determine these.
including the number of routing steps, The hatural and the concrete
channels can be considered as widc-rcc!nngul;lr channels for your

Ouare

calculations so that the hydraulic radius can be approximated as
the channel depth. At this time you don’t know any peak dis-
charges because you have not done any hydrologic calculations
but yet you still need to approximate the X and X forthe Cy, Cy,and
G and the number of steps for the routing method. You have
decided that the approximate value of X for natural conditions i
about 0.2 and for the modified conditions is about 0.3. Whatis the
value of K and the number of routing steps needed?

9.3.8 Given the following flood hydrograph entering the up-
stream end of a river reach, apply the Muskingum routing
procedure (with K — 20 and X = 0.1) to determine the peak
discharge at the downstream end of the river reach and the time
of its occurrence. Assume that the initial flow rate at the
downstream end is 10 m?s.

Time (hr) i3 6 9 12; | 155 181581
Inflow (m¥s) 19 7 160 210 140 80 30 10

9.3.9 Given the following flood hydrograph entering the i
stream end of a river reach, apply the Muskingum routing
procedure (with x — 6.0 and X = 0.2) to determine the pﬂﬂk
discharge at the downstream end of the river reach and the time
of its occurrence. Assume that the initial flow rate at the
downstream end is 20 m3/s.

Time (hr) 0 3 6 9 12 15 18 2
Inflow (m%s) 209 54 380 580 320 180 80 20

9.3.10 Given the following flood hydrograph entering the up-
stream end of 3 riyer reach, apply the Muskingum routing proce-
dure (with K — 5.0hrand x — 0.2) to determine the peak dischilf'iZe
at the downstream end of the river reach and the time of its
occurrence, Assume that the initial flow rate at the downstream
end is 10 m¥s,

Time (hr) 0 2 4 6 8§ 10 12
Inflow m¥%s) 1, 150 400 350 200 80 10

9.3.11 The table given below lists the inflow hydrograph.

Time (T 56

ime (hr) 2 3 4

l -
Instantaneoyg discharge m¥%s) 5 40 100 75 30 10
T T TR

(a) Determine the Percentage of attenuation in peak discharge
as the hydmgraph travels a distance of 10 km downstream
using the Muskingum methog with X = 0.1 and K = 2.0hr
Assume that the initial outflow rate is 5 m’/s.

(b) Also, it is known that the channel bank-full capacity 10km
downstream is 50 mYs, determine the overflow volume
(in m?) of outflow hydrograph exceeding 50 m’s.

‘tream
9.3.12 Froma storm event, the floog hydrographs at the upstrea i
end and downstream end of a river reach were observed and ar
tabulateq below,




Time (hr) Inflow (m"/s) Outflow (m’/s)

09:00 15 15
12:00 35 30
15:00 63 42
18:00 54 56
21:00 42 45
24:00 36 40

(a) Determine the Muskingum parameters K and X by an
appropriate method of your choice.

(b) Determine the peak discharge for the following inflow
hydrograph as it travels down the river.

Time (hr) (UFRETES - Q:::125715 185121} 24 ; 27
Inflow (m*s) 10 40 80 100 60 50 40 30 20 10

9.3.13 The following table contains observed inflow and outflow
hydrographs for a section of river.

Time (hr) 0 ] 2 3 4 2 6
Inflow (m%‘) 200 400 700 550 400 300 200
Outflow (m “/5) 200 215 290 410 440 420 380

(a) Determine the parameters K and X in the Muskingum
model by the least-squares method.

(b) Based on the K and X obtained in part (a), determine the
outflow peak discharge for the following inflow hydro-
graph. What is the percentage of attenuation (reduction) in
peak discharge?

Time (hr) 0 0.5 1.0 1511120833251 i80
Inflow (m*%s) 100 400 300 200 100 100 100

9.3.14 From a storm event, the flood hydrographs at the upstream
end and downstream end of a river reach are tabulated below.

Outflow (m*/s)

Time (hr) Inflow (m?/s)

09:00 15 15
12:00 35 30
15:00 63 42
18:00 54 56
21:00 42 45

() Determine the Muskingum parameters K and X by the least-
squares method of your choice.

(b) Based on the estimated values of K and X from part (a),
determine the outflow peak discharge at the down-
stream end of the river reach for the following inflow

hydrograph.
Time (hr) 0 D 4 6 8
Flow rate (m?s) 20 70 50 40 30

Problems

9.3.15 Given the following flood hydrograph entering the up-
stream end of a river reach, apply the Muskingum routing proce-
dure (with K = 4.0 hr and X = 0.2) to determine:

(a) the peak discharge at the downstream end of the river reach;

(b) the time of its occurrence; and

(c) the percentage of peak flow attenuation.

Assume that the initial flow rate at the downstream end is
10 m'/s.

Time (hr) 0 2 4 6 8 10 12
Inflow (m*s) 10 250 570 320 180 70 10

9.3.16 Consider the following flood hydrograph entering the
upstream end of a river reach. Apply the Muskingum routing
procedure (with K = 6.0 and X = 0.2) to:
(a) determine the peak discharge at the downstream end of the
river reach; and
(b) find the time to peak at the downstream section.

Assume that the initial flow rate at the downstream end is

50 m’/s.
Time (hr) 0 3 6 9 12 15 18 21
Inflow (m/s) 50 150 300 500 300 150 100 50

9.3.17 The Castro Valley watershed has a total watershed area
of 5.51 mi” and is divided into four subcatchments as shown in
Figure P9.3.17. The following table provides existing character-
istics of the subcatchments.

Outlet

Figure P9.3.17 Castro Valley watershed
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Watershed Length

Subcatchment  Area length to centroid  SCS curve
number (mi®) (L) (mi) (Ley) (mi) number

I 1.52 2.65 1.40 70

2 2417 1.85 0.68 84

3 0.96 1.13 0.60 80

4 0.86 1.49 0.79 70

Parameters for Snyder’s synthetic unit hydrograph for existing
conditions are C, =0.25and C, = 0.38. The Muskingum K —
0.3 hr forarea3 and K — 0.6 hr for area 1. The Muskingum X for
each stream reach is 0.2. The rainfall to be used is the 100-year
return period SCS type I storm pattern with a total rainfall of

10 in. Use the HEC-HMS model to determine the runoff

hydrograph at the outlet of the watershed.

9.3.18 For the watershed described in problem 9.3.17, a resi-
dential development will be considered for area 4. This devel-
opment will increase the impervious area so that the SCS curve
number will be 85. The unit hydrograph Parameters will change
to C, =0.19 and C, = 0.5. The natural channe] through area |
will be modified so that the Muskingum routing parameters wil
be K = 0.4 hr and x = 0.3. Use the HEC-HMS model to
determine the change in the runoff hydrographs for area 4 and
for the entire watershed.

9.3.19 Referto problems 9.3 | 7and9.3.18. A detention basinis to
be constructed at the outlet of area 4 with a low-level outlet and an
overflow spillway (ogee type). The low-level outlet is a 5-ft-
diameter pipe (orifice coefficient 0.71) ata center line elevation
of 391 ft above mean sea level (MSL). The overflow spillway has a
length of 30 ft, crest elevation of 401.8 ft (above MSL), and 2 weir
coefficient of 2.86. The characteristics of the detention basin
given in the following table.

dare

Reservoir capacity (ac-ft) Elevation (ft above MSL)

0 388.5
6 3942
12 398.2
18 400.8
23 401.8
30 405.8

Use the HEC-HMS model to determine the runoff hydro-
graph at the watershed outlet for the dey eloped conditions
with the detention basin. Graphically show a comparison of
the runoff hydrograph for the undey eloped, developed, and
developed conditions with the detention basin.

9.3.20 Use the HEC-HMS model to solve problems 9.3.17,
9.3.18, and 9.3.19 considering the three as plans 1, 2, and 3 and
solve through one simulation.

9.5.1 Determine the 00Q/0x on the time line /+ 1 for the linear
kinematic wave model. Consider a 100-ft-w ide rectangular chan-
nel with a bed slope of 0.015 ft/ft and a Manning’s n = 0.035.
The distance between Cross-sections is 3000 ft and the routing
time interval is 10 min. Q1! = 1000 ofs, Q7 = 800 cfs, and
Q7.1 =700cfs, Use the linear kinematic wave (conservation
form) approach to compute 0Q/0x on time line j+ 1.

9.5.2 Develop a flow chart of the linear kinematic wave (con-
servation form) method.

9.6.1 Determine the 38Q/0A using Q77 "and Q,i.l for, the
Muskingum—Cungc model. Consider a 100-ft-wide rcclimil“]‘_”'
channel with a beq slope of 0.015 ft/ft and a Manning’s n = ().().31
The distance between Cross-sections is 2000 ft and the routing
time interval s 10 min. Given are o ' = 1000,
Q; = 800 cfs, and Q’, 1 = 700 cfs. Next compute K and x and
then the routing coefficients,

9.6.2 Develop a flowchart of the Muskingum—Cunge method.
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