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A PHYSICAL BASIS FOR THE GENERALIZED GAMMA DISTRIBUTION*
Br JOHN H. LIENHARD anp PAUL L. MEYER (Washinglon State Universily)

Introduction. A number of known familiea of probability distributions can be
derived from requirements that are physical in the sense that they describe the random
behavior of the event under consideration. The Poizsson process iz typical of these: If
X(t) is equal to the number of oceurrences of a specified event in the interval [0, &),
then one can show that X(f) has, for each t, a Poisson distribution, if the probabilistie
behavior of the event satisfies a few very simple physical requirements [1]. The normal
distribution may also be derived from a few physical requirements,

In this note we shall employ a simple model and statistical-mechanical methods to
derive the three-parameter generalized gamma distribution. The history of this family
of distributions was reviewed and further properties were discussed in 1962 by Stacy [2].
Subsequent work on statistical problems associated with the distribution has been done
by Bain and Weeks [3]. Special cases of the generalized gamma distribution include the
Weibull, gamma, Rayleigh, exponential and Maxwell velocity distributions. Another
gpecial case is a distribution recently derived on a statistical-mechanical basis to de-
seribe rainfall run-off from a watershed [4].

The model. We shall consider the following situation: The occurrence of an event,
guch as the failure of a component or system, depends on some variable such as the stress
to which the part has been subjected or the time during which it has been subjected to
a given level of stress or use, This variable (be it stress or time) will be designated by ¢
and the number of oceurrences of the event during the interval [f,_, , £ will be desig-
nated by N, , where {, — {,_, = Af and {, is the arbitrary origin.** The requirements that
we ghall impose upon the N.'s are as follows:

1. The total number of occurrences of the event is fixed:

,‘E::N.=N. : (1)

The Nz and N are assumed to be large numbers.
2. For each choice of 8, the following sum is a positive constant:

> /M = K. @

3. The number of distinguishable ways, g; , in which the event can cceur in the
interval [t;_, , £;) is proportional to a specified power of ¢; . Thus:

g = A (3}
We shall restriet our subsequent considerations to «, 8, and K > 0.

The derivation of the distribution of the number of events will now consist of de-
termining the most probable distribution satisfying these requirements. The derivation,
as it happens, does not differ in prineiple from the derivation of the veloeity distribution
in & degenerate gas, using Boltzmann statistics (see, e.g., [5]).

*Recaived March 1, 1966; revised manuseript received May 19, 1968,

**Without loss of generality, {; can be taken as equal to sero.
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Derivation of the probability density function. We designate as W the number of
ways in which N distinguishable occurrences of the event can take place, if N, of these
occurrences must take place in [;_, , £;) and if the number of ways the event can oceur in
if"‘ , t;) is given by g, . It iz well known [5] that:

W= NI f[ (¥ /N @)

Let us denote by N, , those values of N, which maximize W, subject to the require-
ments (1), (2), and (3) of the previous section. The following two results may now be
established:

(i) The explicit expression for N, is given by

N,  ABEE/a)" "] ,ums a _;_'f]
¥"7 Iem ¢ [_ﬁff )

which, we note, involves a, g, and K, but not the constant of proportionality, A.

(ii) The maximum value of W (corresponding to N; = N,) is very much larger than
the valua of W corresponding to N;'s that are significantly different from the N's,
provided the N,'s and N are large.

The proof of assertion (i) is given in the Appendix. The argument leading to (ii)
iz well known from statistical mechanies and may be found, for example, in [3].

We may thus suppose that the N,/N’s represent the discrete probability distribution
associated with the random variable T, where T is the time or stress at which the first
pecurrence of the event under consideration takes place. Accordingly:

P{:E—IET{:Ii] '—'J.E_f.-"rN- £=1,2 . ()

We shall now approximate this discrete distribution with a continuous probability
density function, f, as follows. From Eq. () we can write:

goN = [ 1o @

In accordance with the mean value theorem, the integral in Eq. (V) becomes Al f(E),
where (I, — Af) < E < {; . Hence, letting Al — 0 and using Eq. (5) for N./N, we obiain:

o0-[a@ w38, 20w

where a, 8, and K should be > 0 =o that f(f) = 0. An easy integration shows
that [ /() dt = 1, for all permissible choices of @, 8, and K.
The introduetion of & = (8K /a)"* into Eq. (8) yields:

10 = [ ]t e (- 0
which is the form in which the distribution was given by Stacy [2].

& of the family of distributions. It is easily verified that the expectation
of T®, E(T*) = [= f(f) dt = K. This is, of course, as it should be in view of the constraint
{2) and it indieates that in the continuous model, as represented by the probability
density function, f, this constraint still holds.
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By making the following change of scale, the three-parameter family of distributions
az given by Eq. (8) may be reduced to a two-parameter family:
Let § = T/KY® and denote by k(s) the probability density function of 8. Tt is easy

to show that:
a o i a—1 o 5
Me) = [r{am} (E) 13 exp [‘ﬁ" ] 2D

Although 8 depends on K, its probability distribution does not. The distribution of S 1s
normalized in the sense that E(8") = 1.

A number of familiar distributions, many of which were noted previously [2, 3], can
be obtained as special cases of Eq. (8) by making certain choices for the paramefers o
and 8. The parameter K will appear in all of the distributions discussed below but it
conld be removed by the normalization suggested above,

8, The Weibull distribution: § = o

o =i 11:
0 = g om [ -]
It is helpful to relate this result to the requirements upon which it is based, Failures of a

system that can fail in A" wayvs at time or stress, f, will be distributed in aceordance
with Weibull'a Law *

h. The hydrograph distribudion: g8 = 2.

16 = [rcffz} (ziff)f]‘ =0 [“3 ﬂ

This distribution was originally formulated to deseribe the distribution of rainfall
run-off from a watershed, as a function of time after a sudden storm. In this case, g; was
the number of ways in which a raindrop could find its way to the gaging station after
time {; . Long slender watersheds and fan-shaped watersheds were characterized by
o = 2 and & = 3, respectively.

e. The gamma disleibulion: 8 = 1.

(o) = [‘”ﬁ%]t exp [—a(t/K)).

d. The Rayleigh distribution: 8 = a = 2.
2 g
it K ! exp [—F/K].
This is a special ease of the Weibull distribution (2), and one of the special cases of
the hydrograph distribution (b), mentioned above.
¢, The Marwell molecular speed distribution: 8 = 2, @ = 3.

*Tt iz wery interesting to note that the Weibull distribution ean also be derived on the basis of a
failure rate which is proportional to {=%, Of eourse the physieal meaning of gy differs considerably from
that of the failure rate,
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This well known law is also one of the speeial cases of distribution (b) mentioned above,

f. The Marwell molecular velocily distribution: 8§ =2, 0 = 1,

fit) = (2/Km)"”* exp [—F/2K].

This diztribution was the first one to be obtained by the statistical-mechanieal pro-
cedure outlined here. The distinction between distributions (e) and (f) is explored in [6).

g, The erponential distribulion: = o = 1.

1) = % exp [ /K).

This is another special case of the Weibull distribution.

Conclusion. The genernlized gamma distribution has been obtained by applying
8 statistical-mechanical method to a physical model. The parameters, K, o, and 3, are
associated with the seale of the distribution, the number of ways in which the event can
oceur, and a moment of the distribution, respectively. By varying the parameters one
can obtain & large rumber of probabilistic models for the deseription of random phe-
nomena, The following considerations should be weighed in selecting the three param-
cters for any application.

(1) The parameter K always establishes the seale of the distribution.

(2) The parameter o reflects the physieal process which leads to the event. It is our
hope that (on the basis of the present model) experimentally determined values of o
might be used to infer details about the occeurrence of the event. Such application might
be especially fruitful in connection with the Weibull distribution,

(3) The choice of # i of secondary importance in terms of the physical model. Thus,
for example, the Weibull distribution (for which g is ehosen equal to &) and the hydro-
graph distribution (for which g is chosen equal to 2) might well be used interchangeably
to represent data.,

AFPENDIX
We maximize W by determining ihe set of N,'s for which In W is maximum. Thus,
after substituting Eq. (3) inte Eq. (4), and using Stirling's approximation we obtain:

dln W= 2 [In A" — In N,] dN, = 0.

i3
The constraints (1) and (2) give, in differential form,
-—.Ej_: pdN; =0 and —21«:“? dN, =0,
where p and « are Langrangian multipliers. Adding these three equations we get:
g [In (A£™"/N) — p — +1i] N, = 0.
The cocfficients of dN; must vanish identically, so:
Ny = (de™”)[1:™" exp (—v#))]
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ars

N e T
-E;'ri= I:gffi 'GRP{—T‘HIJ] LH 1{3-113{—1'"?.1- (@)
The summations in the bracketed coefficient (above) and in the two constraints can be
replaced with definite integrals, ss Al is taken to be small. Accordingly the eoefficient
becomes: [B(y A%)""/At* 7' T («/8)] and elimination of N/Ae™ from the two eonstraints
gives: v = o/AK. If we denote N,'s for which W is maximum as N, , Eq. (9) becomes:

N, a@x,far”’] — a g]
s ‘”[ Ta/8) 1" ‘*’“’['ﬂfc
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