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ABSTRACT E M PI RICAL HYETOG RAPH S Appendix 4-2.1. L-moments of storm depth defined by 6-hour minimum interevent time for hourly rainfall stations in Texas.
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The simulated storms agree well with the other methods for rare
(i.e. 90-th percentile and above) occurrences and lie within the
global maxima envelope. The simulated results are quite
different for common (i.e. 50-th percentile) events.

HARRIS COUNTY RAINGAGE STATIONS
Four (4) stations used in example calculations. Tabular values of
L-moments (and equations) are shown in figure below.

INTENSITY SIMULATION
Asquith and others (2006), analyzed 774 stations in New Mexico,
Oklahoma, and Texas. Generated depth quantiles for each
“storm.” (Half-million in Texas). The computed L-moments for
each station for duration- and depth. Stuided various
distributions, ultimately recommended a Kappa distribution as
most appropriate distribution for depth and duration.

INTENSITY SIMULATION (CONT.)
An example (with the necessary code) is presented here.

Selected 4 stations in Harris County, Texas. Global maxima have been observed in the

region (not these particular stations). RESULTS

Computed empirical percentiles by count fraction above
and below line an ad-hoc model line (labeled as 99% and
50% on the figure. “Design” Equation is from TxDOT
manual, derived from TP-40, HY-35 reports.

INTRODUCTION
The work presented is the result of a question (see
acknowledgements) “How hard can it rain?”  Rainfall intensity
has a variety of practical uses: : BMP design, detention design,
rational runoff rates, and so forth.

Necessary code to compute using R is provided below.

They provided“tools” ‘to
parameterize the empirical-
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# R Code to 2imulate Harris County Intensities (6-hour)

dimensionless-hyetographs.

Papa, 2000, p. 74). The cumulative distribution of storm inter-

tured. The temporal distribution of runoff (outflow rate) from

# Load the L-moment package from CRAN and attach as a library

SHDSE e e library (lmomco) These results are consistent with prior work; are within the
DATA SOURCES: Fix) = 1-¢*" forx2MITandn = 1.2....  (10) | ordinance states that the BMP is to have a 24-hour dawdown # Quantile Functions for Depth and Duration.

The following sources constitute the database discussed in this
poster: Asquith and others (2006), Asquith and others (2004),
Williams-Sether and others (2004), Smith and others (2001),
Barcelo and others (1997), Paulhus (1965), Jennings (1950)
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Page 42 explains how to use Kappa
guantile function and L-moments
to recover storm depth (vertical
axis of dimensionless hyetograph).

Page 43 explains how to use Kappa
quantile function and L-moments
to recover duration (horizontal axis
of the empirical hyetograph).

However, at the time they did not
provide the “code” to access the

where F is the cumulative or nonexceedance probability for
the x interevent time, and MIT is the minimum interevent
time in days. The parameter A is the mean interevent ime in
days. The inclusion of the minimum interevent time adjusts the
expopential distribution because interevent imes less than the
minimum interevent time are not possible. Equation 10 can be
solved in terms of x. The resulting equation is the quantile
function of interevent time and is

x(F) = MITHA-MIT)In(1-F) foc x2MIT. (11)

When mndom numbers between 0 and | are substituted for
F in equation 11 with A equal to 7.60 days and MIT equal to
1 day (24 houss), a random sequence of interevent times is gen-
erated. Five simulations based on a random sequence of five
interevent imes are listed in table 21 (at end of report). The
mean of the simulations is 7.19 days—the mean approaches
7.60 as the number of simulations becomes larger.

It is illustrative to compare the 7.60 days mean interevent
time to the results of Asquith and Roussel (2003, fig, 4).
Asquith and Roussel (2003, fig. 4) shows that the interoccur-
rence of daily minfall (not hourly) of 0.05 inch or more is, on
average about 8 days for the Amarillo area. The two interevent
times are of the same order as expected, but the values should

time; hence an analysis of storms with a 24-hour minimum
interevent time is required. Engineering firm B is questioning
whether a 2-inch design runoff would accommodate the S0th-
percentile storm as reflected by the ordinance or instead would
accommodate approximately the 95th-percentile storm. Thus,
firm B believes that the ordinance might contribute to over-
design of BMPs. The scientific credibility of the ordinance
bence 1s in question: the results of this report can be usad to
evaluate the ordinance. Assume, for the purpose of illustration,
that near the planned BMP is long-term station 4311 Houston
Alief, Tex. (station considered in example 3).

SOLUTION: The first step toward the solution 1s to com-
pute the depth of minfall that produces 2 inches of runoff on the
watershed. A simple runoff model (Adams and Papa, 2000, p.
121, eq. 6.28) usad for illustration is

R = ¢(P-5p). (12

where R is runoff in inches, ¢ is the runoff coefficient, P is
rainfall in inches, and 5, is depression storage or an initial
abstraction in inches. It is widely accepted that a typical nitial
abstraction for the watershed s 0.25 inch and the munoff coeffi
cient is about 0.8, Upon variable substitution, the rainfall pro-
ducing 2 inches of runoff is 2.75 inches.

# Azquith and others, 2006, Eqnz 12, and 14.

q_func<-function(f,pl,p2,p3,pd){(pl+(P2/p3)*(1-((1-f"p4) /p4) "p3))}

# L-moments for each station from Appendix 4, Aaquith and othera, 2006

# Station 0587, 6-hour inter-event arrival time

lmdep<-vec2lmom(c(0.57882, 0.37118, 0.51392, 0.2775 ))
lmdur<-vec2lmom(c(6.3865, 3.1849, 0.43733, 0.2504 ))

# get Kappa parameterz from L-moments
pardep<-lmom2par (lmdep, type="kap")
pardur<-lmom2par (lmdur, type="kap")

# generate 2500 random probabilities
fdep<-runif(2500,0,1); fdur<-runif(2500,0,1)

# generate depths and durations associated with probabilities

dep<-q_func(fdep,pardep$para[1] ,pardep$para [2] ,pardep$para[3] ,pardepbparal4])
dur<-q_func (fdur,pardur$para[1] ,pardur$para[2] ,pardur$para[3] ,pardur$paral4])

# calculate intenaitiea
avg_intensity<-dep/dur

global envelope. There are considerable differences at
higher duration - Texas storms are less intense (than global
maxima) if long. As a practical matter, if used to estimate
intensities, rare (99th-percentile) estimates about the
same.

Median estimates (50th-percentile) quite different.

Biggest assumption is independent depth and duration,
along with the extrapolation to short time intervals.

FUTURE WORK
There is evidence that these variables are highly coupled,
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INTNESITY SIMULATION (DIMENSIONLESS)
Use different portions of dimensionless hyetograph; simulate
many different intensities, then sort and rank.

PROBLEM: The storm interevent time for storms defined
by a 40-hour minimum interevent time in Randall County, Tex.
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