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1 Unit Hydrographs - Analysis Principles

A unit hydrograph (UH) is the DRH that results from one unit of excess precipitation depth
uniformity applied over the watershed over some specified duration of time. Typically the
depth excess is either 1.0 inches or 1.0 cm. The idea of a unit hydrograph is that if one can
determine an average unit hydro- graph for a watershed then one can predict the DRH for
any rainfall excess pattern over the same unit time by scaling the unit hydrograph response
with the arbitrary excess precipitation depth. For instance, if a UH for a 1.0 cm, 1.0 hr.
excess precipitation depth is available, then the DRH for a 2.0 cm precipitation depth would
look like the UH with the vertical scale multiplied by a factor of 2.0. The method was
originally applied to relatively large watersheds, 3000-4000 square kilometers but seems to
work acceptably for watersheds as small as 100 hectares.

Developing a UH requires several procedural steps. First is to obtain a precipitation time
series and runoff time series for the target watershed. Obviously, if there are no data, then
some other methods must be applied. Assuming a single intensity event can be found then
the hydrograph is separated into base flow and DRH components. The total volume in
the DRH is determined by accumulating the incremental (instantaneous) discharges then
dividing by the watershed area to obtain the cumulative DRH depth. The precipitation
event is scaled by an appropriate method (Loss model) so its cumulative depth is the same
as the DRH cumulative depth. The resulting DRH is a unit hydrograph for the scaled
precipitation depth. Next, the DRH and precipitation are rescaled to a meaningful unit
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precipitation depth , say 1.0 cm.

Multiple peaked storms are treated using a convolution-deconvolution approach (discussed
later).

2 Unit Hydrographs How To Construct from Obser-
vations

Naturally we usually dont know the underlying response functions in advance of an analysis,
and usually have to infer the results from actual data. The classical approach is illustrated
in the following discussion.

Consider the following observed data for some watershed in Figure 1.
The discrete equation of the DRH is expressed as

m<M

Qn - Z PmUn—m+1 (]‘)
n=1

This equation states that the observed discharge at time increment n (Q,,) is a linear com-
bination of all precipitation pulses (P,,) prior to and including the time increment n. The
weights (U) are called the discrete unit hydrograph (analogous to the kernel function). This
equation is exactly analogous to a discrete convolution equation. Using the example data,
we would write 11 equations for the discharge function. Note the equation structure and the
dependence on prior precipitation as depicted in Figure 2

Solution of this system for the unknown weights provides the unitgraph. It is a little easier
to express as a vector-matrix equation (because the solution becomes obvious)

Now the objective is to find solutions to this linear system (of equations). We need to
specify [U] in a fashion that best explains the data. Various methods include simple back-
substitution (can produce negative weights), linear programming, non-linear programming,
least-squares and successive iteration. We will illustrate with back-substitution and least
squares matrix algebra.

2.1 Back-substitution

Straightforward. Solve each equation successively (back substitute) for U .
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Unit Hydrograph (Classical Example)

0.5 11 1.06 428
1 21 1.93| 1923
1.5 3| 1.81| 5297
2 4 9131
2.5 5 10625
3 6 7834
3.5 7 3921
4 8 1846
4.5 9 1402
51 10 830
2.9 11 313

Figure 1: Data for UH application example

U2 = (Q2 — P,U,)/P1 = (1923 — 1.93 % 404)/1.06 = 1079¢f s /in.

Andsoon....

FALL 2008

[lustrated in a spreadsheet environment the arithmetic is relatively simple as in Figure 4.
The spreadsheet in Figure 13 is the result of successive back-substitution. This method
does not always work, as the linear system is over-determined (more equations than un-

knowns).
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0 = HU,

0,= PU, +PBRU,

0,= RU +PRPU, +PRU,

0, = +PU, +PU, +PRU,

O = +RU, +PU, +PU;

O, = +PU, +PU, +PU,

0, = +PU, +PU, +PU,

O = +PU, +PU, +PU,

0, = +PU, +PU; +PU,

O, = +PU, +PU, +PU,
0, = +PU, +RU, +PU,

Figure 2: UH Equation Array (Discrete Convolution)

0.1
-Pl ] [ Ul ] Q2

PZ 1)1 U2 Q3
' Q,

o

Figure 3: UH Equation Array (Vector-Matrix)

2.2 Optimization Approach - Solving the Normal Equations

The least squares solution to the matrix equation is
,[U] = [PT][P]I ' [P7][Q]

Again using a spreadsheet the result is displayed in Figure 5. This method also sometimes
fails, but it can be completely automated (no brains required - unless it fails then a lot of
brains are required to figure out what went wrong).

Three other approaches in common practice are optimization using linear programming
(Danzig’s algorithm) - excess and deficits are summed and minimized; non-linear program-
ming (essentially a variation of the least-squares, but can constrain solution space); and
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AlB] C [ D ] E FI G H] T T3 K L M N [¢) P 1T QR[S T U v
1 |Unit Hydrograph (Back-Substitute)
2 |Observations [P] [U] [Q*] [QI-[Q*]
g g ¢
] S
Es =
geg ¢ ¢
3 [ w o 1 2 3 4 5 6 7 8 9 10 11
4 | 05 1| 1.06] 428 1 1.06 0 0 0 0 0 0 0 0 0 0 | 403.77 428 -0.000228| 403.774]
5 1 2 1.93] 1923 2| 193] 1.06 0 0 0 0 0 0 0 0 0 1079| 1923.02| -0.023434| 1078.98
| 6| 15 3 1.81, 5297 3] 1.81 1.93 1.06] 0 0 0 0 0 0 0 0 2343.1 5297 0] 2343.11
7] 2/ 4 0/ 9131 4 0| 1.81 1.93] 1.06 0 0 0 0 0 0 0 2505 9130.5| 0.5025618| 2505.5
8 25 5 0| 10625 5 0 0 1.81] 1.93] 1.06 0 0 0 0 0 0 1461| 10624.3| 0.6560813| 1461.66
9 3 6 0 7834 6 0 0 0 1.81) 1.93] 1.06 0 0 0 0 0 453| 7833.96 0.04| 453.04
| 10| 3.5 7 0| 3921 7 0 0 0 0 1.81 1.93] 1.06 0 0 0 0 379.5| 3920.97 0.03] 379.53
| 11 | 4 8 0| 1846 8 0 0 0 0 0| 1.81| 1.93| 1.06 0 0 0 276.9| 1845.88 0.121] 277.021
12| 45 9 0] 1402 9 0 0 0 0 0 0] 1.81] 1.93| 1.06 0 0 170.5| 1402.04 -0.042] 170.458
13 5| 10 0 830 10 0 0 0 0 0 0 0] 1.81] 1.93] 1.06 0 -0.47| 829.756 0.2442| -0.2258
14| 5.5 11 0 313 11 0 0 0 0 0 0 0 0] 1.81 1.93 1.06 5.32| 313.337 -0.3371] 4.9829
15
| 16 | |Back substitute (lazy way)
17 (1) Guess U | |
18 (2) Compute Q* |
| 19 | | (3) Compute difference
20 (4) Adjust U one-by-one to get difference small
21 (5) Stop when difference is small percent of actual Q
22 (6) If SOLVER works on machine - can automate - crashes on Mac (Microsoft hates Mac!)
Figure 4: Backsubstitution in a spreadsheet
ATB] C [ D ] E [FITG]TH]ITTJTITJTK]JLIM]INTO P Q R [ s
1 |Unit Hydrograph (Least Squares Example)
2 |Observations I [P] U]
g = ¢ |
“E‘ E ‘; |=MMULT(MINVERSE(MMULT(G18:Q28,G4:Q14)),MMULT(G18:Q28,D4:D14)) |
7] £ Q
5 e g B T~
El g ¢ 2
3 [l W [a) 1 2 3 4 5 6 7 8 9 10
4 0.5 1 1.06 428 1 1.06 0 0 0 0 0 0 0 0 0 0 403.774
5 1 2 1.93] 1923 2 193 1.06 0 0 0 0 0 0 0 0 0 1078.98
6 1.5 3 1.81| 5297 3 1.81 193 1.06 0 0 0 0 0 0 0 0 A 2343.15
7 2| 4 0] 9131 4 0 1.81 1.93 1.06 0 0 0 0 0 0 0 2505.44
8 25 5 0| 10625 5 0 0 1.81 193 1.06 0 0 0 0 0 0 1460.75
9 3] 6 0| 7834 6 0 0 0 1.81 193 1.06 0 0 0 0 0 452.74
10| 3.5 7 0] 3921 7 0 0 0 0 1.81 193 1.06 0 0 0 0 380.425
11 4, 8 0| 1846 8 0 0 0 0 0 1.81 1.93 1.06 0 0 0 275.774
12| 45 9 0| 1402 9 0 0 0 0 0 0 1.81 1.93 1.06 0 0 170.931
13 5| 10 0 830 10 0 0 0 0 0 0 0 1.81 1.93 1.06 0 0.89846
14| 5.5 11 0 313 11 0 0 0 0 0 0 0 0 1.81] 1.93 1.06 1.77518
15
16 [P]-transpose
17
18 1| 1.06 1.93 1.81 0 0 0 0 0 0 0 0
19 2 0 1.06 1.93 1.81 0 0 0 0 0 0 0
20 3 0 0 1.06 193 1.81 0 0 0 0 0 0
21 =TRANSPOSE(G4: 4 0o o0 0 106 193 1.8 0 o0 0 0 0
22 » 0 0 0 0 1.06 193 1.81 0 0 0 0
23 6 0 0 0 0 0 1.06 1.93 1.81 0 0 0
24 7 0 0 0 0 0 0 1.06 1.93 1.81 0 0
25 8 0 0 0 0 0 0 0 1.06 1.93] 1.81 0
26 9 0 0 0 0 0 0 0 0 1.06) 1.93] 1.81
27 10 0 0 0 0 0 0 0 0 0| 1.06| 1.93
28 11 0 0 0 0 0 0 0 0 0 0] 1.06

Figure 5: Least-Squares Minimization (by Normal Equations) in a spreadsheet

pattern searching (also a constrained approach).
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3 Using the UH

Now once the unitgraph is determined any future precipitation signal can be passed through
the system (of equations) to predict the DRH. First, we will pass the original precipitation
signal (the three pulses) through the two unitgraphs to see how they differ in predicting
watershed response. Recall that this rainfall signal was used to generate the unit graph,
thus the response should be close to the observed response.

UH Example - UH by backsubstitute

12000 2.5

10000 15
8000

/V \ I
6000 )
4000 1
5000 / \ \ 0.5

Runoff

N
N
"
/
Rainfall

Time
\—[Q*] = = = =Direct Runoff (cfs) ====Excess Rain (in)

Figure 6: UH Comparison Backsubstitute

UH By least squares

12000 2.5
10000 5
o 8000 ;
2 /\\ 155
o L
£ 6000 £
3 / : +1 8
0 / (-3
a 4000 \
2000 : \ 0>
0 : ‘ : : - 0
0 1 2 3 4 5 6
Time
|------- Direct Runoff (cfs) [Q*] =====Excess Rain (in) |

Figure 7: UH Comparison Least Squares
The markers are the original runoff hydrograph while the lines are the DRH predicted by

the two unitgraphs. In this example the least-squares approach makes a faithful reconstruc-
tion.
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FALL 2008

Just getting the unit graph is meaningless unless we intend to use it. In the present ex-
ample, if we use the unitgraph for different rainfall signals we can predict the direct runoff

hydrograph for these events.

For example suppose we wish to evaluate the DRH for
P=[2.00,3.00,1.00]

P=1[5.00,0.00,0.00]

P=[0.00,0.00,5.00]

Then we simply evaluate the matrix equation [Q]=[P][U] with different [P] matrices. (Results

in figures)

AlB] C [ D ] E

[FITGTHT T T T KIL[M]

N[Oo[P[TQTR]J

S

Unit Hydrograph (Least Squares Example)
Observations IP]

N

[Unit Response from original data___|

Time (increment)
Direct Runoff (cfs|

SRR

I

S

vs W N e o
i ! lin & i Wi | e | Time(hrs)
215 0o/ njo/n s wnin
5000000 0w w N Excess Rain (in)

o

3 IS

4 i

® 3
e
215 0lm/lo/v s winm
o o000 om Wk
o oooooorwnon
oooooorwnoow
50000 wnooos
o oooruwnooooun
o oorwnoooooa
o orwnooooooN

S

()

S

DRH Prediction

<

1

403.774
1078.98
2343.15
2505.44
1460.75

452,74
380.425
275.774
170.931
0.89846
1.77518

807.55]
3369.3
8327,
13119
12781
7793.2
3579.8
2145.6
1549.6
790.36
177.18

Tl
[*[ofe]*

Tl
e

N
o

T
‘\n
5
g

Time

il i S

------- Analysis Event mem———predicted Event - Different Rain ===————Excess Rain - New Event

1 1 1 Y Y R P 6
5

Figure 8: DRH using P=[2.00,3.00,1.00]

3.1 Convolution/De-Convolution

Complicated storms can be analyzed as a sequence of unit precipitation events each event
producing its own unit hydrograph response. These sequences, each displaced in time cor-
responding to the event that produced the response, are summed together to produce the
response for the complex event. This response-summation procedure is called convolution.
(In the classic examples above, the summation of impulses is in fact convolution). The
reverse of the process is called de-convolution (again in the example above, the determi-
nation of the unit weights is de-convolution). It is implicitly assumed that each event in
the sequence has the same duration (time base); it is also assumed that the response can
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AJB] c [ b ] E [FTGTH[TTITKTLIMINITOJPITQIR] s [ T
1_|Unit Hydrograph (Least Squares Example)
2 |Observations . [Pl 1 Q*1
g o &
S < g
£ < 5 [Unit Response from original data___|
1] c
g g & 2
£ < 2 5
e g £ 2
3 EE i =) 1 2 3, 4 5 6 7
4 05 1 5 428 1 5 0 0, 0 0 0 0 403.774| 2018.9]
5 12 0/ 1923 2 0 5. 0 0 0 o o 1078.98| 5394.9
6| 1.5 3 0/ 5297 3 0 0 ) 0 o o 2343.15] 11716
7 2 4 0/ 9131 4 0 0 0 5 0 o o 2505.44 12527
8 25 5 0| 10625 5 0 0 0, 0 5 0 0 1460.75| 7303.8
[ 9 | 3 6 0 7834 6. 0 0 0 0 0 5 0 452.74| 2263.7
[10] 35 7 0/ 3921 7 0 0 o0 o 0 0 5 380.425 1902.1
[11] 4 8 0| 1846 8 0 o o o 0 o o 275.774/ 1378.9
[12] 45 9 0/ 1402 9 0 o o o 0 o o 170.931| 854.65
[[13 | 5 10 0 830 10 0 0 0 0 0 0 0 0.89846, 4.4923|
[14 | 55 11 0 313 11 0 0 0 0 0 0 0 1.77518| 8.8759
|15 |
[16 | DRH Prediction
|17 |
[ 18 | 14000 6
|29 |
20 ] 12000 s
|21
[22] 10000 .
3 o
2] & s000 H
[25] % 3
22 £ 6000 “
22 4000 ?
|28 |
|29 | 2000 1
|30 |
[31] o 0
[32 ] 0 1 2 3 4 5 6
|33 | Time
4
S R R B R et Analysis Event =mmmpredicted Event - Different Rain ===——mExcess Rain - New Event
36
Figure 9: DRH using P=[5.00,0.00,0.00]
AJB] c [ b ] E [FTGTH[TT T KTLIMINJTOJPITQIR] s [ T
1_|Unit Hydrograph (Least Squares Example)
2_|Observations . 3] 1 Q*]
2| &
§ g ¢
£ < 5 [Unit Response from original data___|
1] c
gg & 2
£ < 2 5
e g £ 2
3 (S i =) 1 2 3, 4 5 6 7
4 05 1 0 428 1 0 0 [} 0 0 0 0 403.774 0
5 12 0/ 1923 2 0 0 o0 o 0 o o 1078.98 0
6| 1.5 3 5| 5297 3 5 0 o0 o 0 o o 2343.15 2018.9
7 2 4 0 9131 4 0 5 0, 0 0 0 0 2505.44| 5394.9|
8 25 5 0/ 10625 5 0 0 5 0 0 0 0 1460.75 11716
[ 9 | 3 6 0 7834 6. 0 0 [} 5 0 0 0 452.74| 12527
[10] 35 7 0/ 3921 7 0 0 o0 o0 5 o o 380.425 7303.8
[11] 4 8 0| 1846 8 0 0 o0 o 0 5. 0 275.774 2263.7
[12] 45 9 0| 1402 9 0 o0 o o 0 0 5 170.931) 1902.1
[13 | 5 10 0 830 10 0 0 0 0 0 0 0 0.89846, 1378.9|
[14 | 55 11 0 313 11 0 0 0, 0 0 0 0 1.77518| 856.39
|15 |
[16 | DRH Prediction
|17 |
[ 18 | 14000 6
|29 |
20 ] 12000 s
|21
[22] 10000 .
3 o
2] & s000 H
[25] g 3
2 £ 6000 “
22 4000 2
|28 |
|29 | 2000 1
|30 |
[31] o 0
[32 ] 0 1 2 3 4 5 6
133 Time
4
351 [ Analysis Event mmmpredicted Event - Different Rain ===——Excess Rain - New Event
36

Figure 10: DRH using P=[0.00,0.00,5.00]

be obtained by super-imposing one hydrograph over another (with proper time lag). These
assumptions are an implicit acceptance that the watershed can be approximated by linear
systems theory.

As an illustration, we will repeat the classic analysis, but use functions instead of a linear
combination. The results will be roughly the same, except that a functional representation
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can be used over many time bases.

A simple transfer function used in this example is U(t) = K (%) exp(—%) . The unknown

parameters are K ,N, and T'. The parameter T' is a timing parameter and essentially locates
the peak of the discharge it is analogous in concept to 7}, or T, or 17, depending on how the
equation is constructed. Parameters K is related to the drainage area, and NV is related basin

AlB[ c [ b 3 [FITeTH[ Ty K[ e[M[NTOTPTQIRL s [ T [ U [ V
[1[Unit Hydrograph (Transfer Function) K| 31.931
2] U(t)=K*(/T) AN*exp(-(t/T)) N| 5.7815
= T| 0.3052
4]
5
6_|Observations | (7] w Q%] [QI-[Q*]  |Bias
2 =z 8
g < £
g g ¢
AR 4 ]
£l = @ g
EE § 2
7| E E & 5 1020 3 4 5 6 7 8 9 10 1
8] 05 1 106 428 11060 0 0 0 0 0 0 0 0 0 0 | 107.63 114.084 313.916 0.73345
[o] 1 2 193 1923 2193106 0 0 0 0 0 0 0 0 0 | 1150.7 1427.44 4955613 0.2577
[Z0] 15 3 181 5207 3 1.81) 1,93 1.06. 0 0 0 0 0 0 0 0 | 2331.6 4887.1 409.902  0.07738
1] 2/ 4 0 9131 40/ 181193 1.06 0 0 0 0 0 0 0 | 23912 9117.33 13.67158 0.0015
[12] 25 5 0| 10625 5 o 0 181 193106 0 0 0 0 0 0 | 1688.6 10625 6.73E-11 6.3E-15
[13] 3] 6 o 7834 6 0 0 0 181 193 106 0 0 0 0 0 | 94173 8585.17 -751.1711] -0.0959
[1a] 35 7 0 3921 70 0 0 0 181 193 1.06 0 0 0 0 | 446.27 5346.89 -1425.892 -0.3637)
[a5] 4/ 8 0| 1846 8 0 0 0 0 0 181193106 0 0 0 | 18772 2764.82 -918.8209  -0.4977
[16] 45 9 0 1402 9 0 0 0 0 0 0 181 193 1.06 0 0 | 72088 1246.46 155.5369 0.11094
[27] s/ 10 0 830 10 0 0 0 0 0o 0 0 181 193] 1.06 0| | 25765 506.209 323.7912 0.39011
[18] 55 11 o 313 11, 0 o 0 0 0 0 0 0 181 193 1.06 | 8.6889 189.416 123.5837 0.39484)
9
[20] (1) Guess K,N,T Average Bias 0.09169)
21} (2) Compute Q*
[22] (3) Compute difference
123 | (4) K,N,T to get difference small
|24 (5) Stop when average difference is small percent of actual Q
[25] (6) If SOLVER works on machine - can automate - crashes on Mac (Microsoft hates Mac!)
6
271 UH Example - UH by Transfer Function
ol 12000 25
[ 32| 10000 )
[35] 8000
[36] 15 _
5 &
[37 | 2 6000 5
[ 38| 3 3
{39 | 1
{40 | 4000
[43] 2000 05
a6 0 0
[a7] 0 1 2 3 4 5 6
[ag ] Time
Tg s [Q*] = = = =Direct RUNOFF (cfs) = Excess Rain (in)
[51]

Figure 11: Unit hydrograph as a transfer function

shape, but like timing they cannot be easily be inferred from maps etc. The main difference
here, is that the unit weights are values of the transfer function at different locations in time,
so instead of just 9 unit weights we actually have as many as needed for a given case, and
this information makes changing the time base simpler.

To estimate K,N, and T we simply construct the [Q]=[P][U] model where [U] is given by
the above function at the correct times, then adjust K,N, and T' to minimize the differences
between the observed [Q] and the model [Q]. Figure 11 is an example of the approach. I
choose to minimize the sum of squared differences at the peak as the merit function, but
one could choose others. The process of using a minimization procedure to estimate the
parameters (and ultimately the unit weights) is often called de-convolution. The value of
this approach is when we want to examine different time bases or different rainfall patterns.
As an example three patterns are presented, first the original pattern then two patterns
with the same total depth but different time distributions. Figure 12 is an illustration; the
principal value is that the simulation time now extends for 24 intervals instead of the original
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11, and using transfer functions very complicated storms can be analyzed.

AP C [ o [E[FIG R T T I K[ LI WI N[Ol FTa[RIST T U VIWI X[ VI Z [ A Fal A [ A [ A
T {GricHysrograph Fransfr Funcon) % 3tom
2 U(t)=K*(t/T) ~N*exp(-(t/T)) N 5.7815
=1 T oa0s2
<
6_|Observations. 1G] 0] Q"] (QI-[Q*)
g g ¢
-
o5 8
HE
t § ¢
g & 5 L 2 3 4 s 6 7 8 s s w12 13 w4 15 16 1 s 1 20 2 2 23 2
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Figure 12: Extended time-base using transfer function based unit hydrograph. Shaded
portion is original partition - note extension is everything else.

Once the time base is extended different storm patterns can be studied. As an example a
storm with longer duration, but same depth as the calibration storm is presented in Figure
13.The storms can also be time-shifted. Time-shifting is technically trivial, but it is impor-
tant when comparing many different storms and greatly improves analyst understanding.
Figure 14 is an illustration of the previous storm, occurring slightly later in time.

A8 € [ © JE[F[ 6 [ A T [ I [ K[ L[ M [ N[0 P [ Q[ R[S T U]V]W]X] Y] Z][A[A[AC]ADJAGA A | AH | AT
3
=n
6_|Observations. (P] 0] Q4] (Q[Q*]
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Figure 13: Extended time-base using transfer function based unit hydrograph - new rainfall
pattern, same depth as original

These extended patterns are all based on the same values of K,N, and T. An alternative
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approach using the S-curve hydrograph works with conventional unit hydrographs (this ap-
proach is left as an exercise). With the functional approach (not the S-curve), however,
the pattern can be moved, or even extended over a longer durations and the time changes
need not be integer multiples of the original duration. This transfer function approach is
essentially a technique to infer an ITUH from the data. Complicated storms require far more
difficult computations, but use essentially the same methods.

In this discussion I have ignored changing time bases, which in the classical method involves
quite a bit of manipulation, but is quite easy with transfer functions. Most current hydrology
computer programs use some version of classical methodology and to my knowledge do not
incorporate functional models (at least not directly, but the user could create a tabulation
of the transfer function and use that in the program).
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Figure 14: Extended time-base using transfer function based unit hydrograph - new rainfall
pattern, same depth, but time shifted.
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