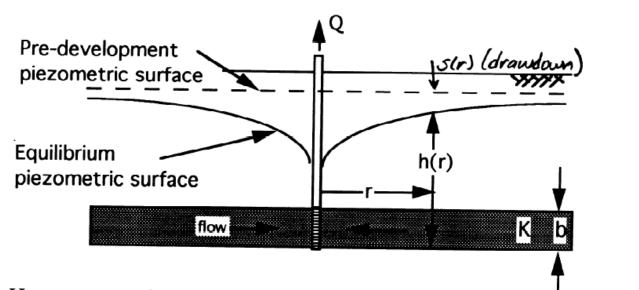
CE 3354 Engineering Hydrology

Lecture 23: Transient (Time-Varying) Well Hydraulics; Superposition


Outline

- Steady flow to well
 - Confined
 - Unconfined
- Superposition to represent
 - Multiple wells
 - Aquifer Boundaries

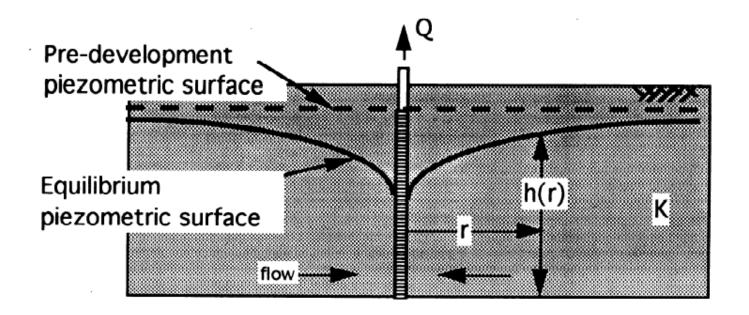
Outline

- Unsteady flow to a well
 - Confined (Theis Solution)
- Superposition
 - Multiple wells
 - Aquifer Boundaries
- Convolution
 - Time-varying pumping rates
- Leaky (Hantush Solution)
- Spreadsheets

Theim solution

Homogeneous, isotropic, confined aquifer. Flow in radial direction only. Steady state. No internal sources/sinks.

$$S(r) = h_0 - h(r) = -\frac{\alpha}{2\pi r} \ln\left(\frac{r}{R}\right) = \frac{\varphi}{2\pi r} \ln\left(\frac{R}{r}\right)$$


Theim solution
 Derivation in attached reading

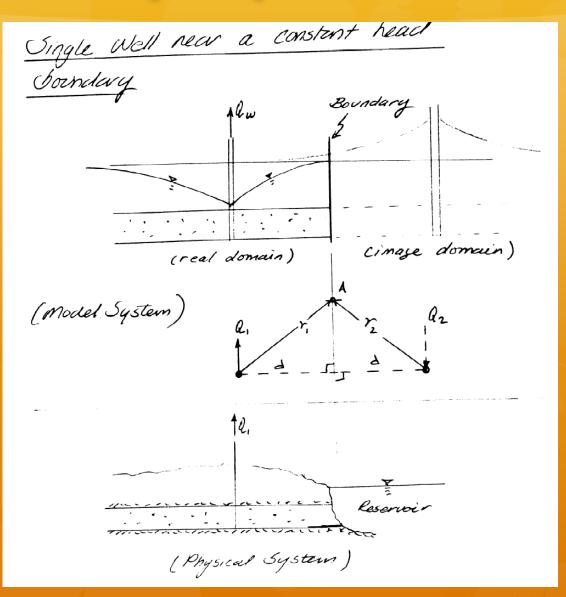
$$s(r)$$
 is a solution to
 $f \frac{d}{dr} \left(r \frac{\partial s}{\partial r} \right) = 0$.

Theim equation $S_1 - S_2 = \frac{Q}{2\pi T} \ln(\frac{T}{T})$ Inter hydraulic properties. Used to

Unconfined Aquifer

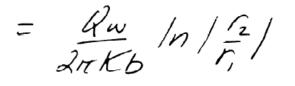
Sketch

Homogeneous, isotropic, confined aquifer. Flow in radial direction only. Steady state. No internal sources/sinks.

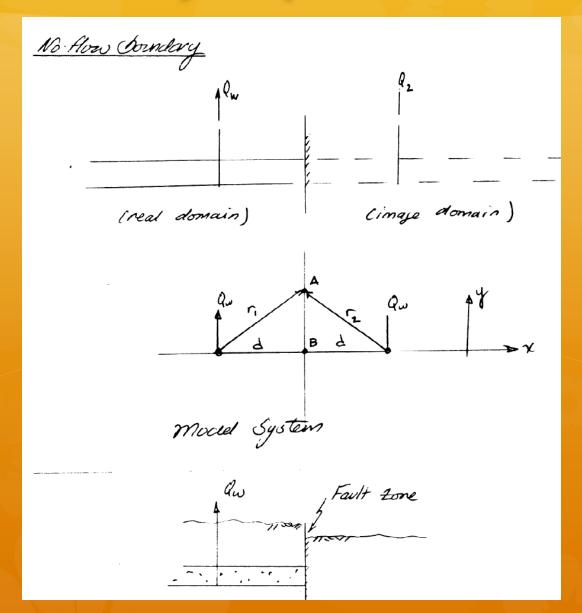

 $h(r) = \frac{Q}{\pi K} \ln \left(\frac{r}{K}\right) + h_{o}^{2}$

Unconfined Aquifer

Several solutions:


treaks online aquiter Corrected drawdown form as if sat. thickness is $b = h_a$ $S(r) = \frac{\mathcal{L}}{2\pi Kh} \ln\left(\frac{R}{r}\right)$ Use this one and $S(r) = h_0 - h(r) = h_0 - \sqrt{h_0^2} + \frac{2}{\pi \kappa} h(\frac{r}{\kappa}) =$ = ho (1-V1+25')

- Linear combination of solutions to model effect of
 - Multiple wells
 - Boundaries



SA = SA (from well #1) + SA (from well #2) But A is a constant head boundary : SA = O $S_{A} = \frac{\alpha_{i}}{2\pi K b} \ln \left(\frac{R}{r_{i}}\right) - \frac{Q_{2}}{2\pi K b} \ln \left(\frac{R}{r_{2}}\right)$ "-" because well #2 is "modeled" as injection to produce zoro drawdown at A (anywhere dong borndary) Rul $|Q_{1}| = |Q_{2}| = |Q_{w}|$

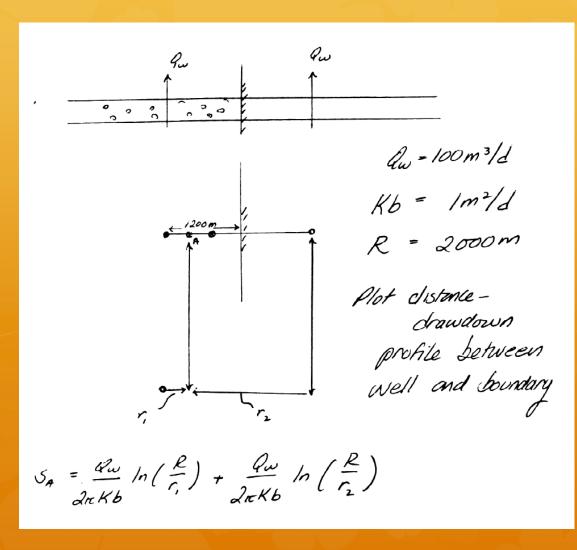
 $S_{A} = \frac{Q_{W}}{2\pi K b} \ln \left| \frac{R}{r} \right| - \frac{Q_{W}}{2\pi K b} \ln \left| \frac{R}{r_{2}} \right|$

Now if Q_2 is located the same distance from the boundary as Q_1 , $\tau_2 = \gamma_1$ => Sa = O (as expected)

 $S_{A} = \frac{Q_{W}}{r} \ln \left(\frac{R}{r} \right) + \frac{Q_{W}}{r} \ln \left(\frac{R}{r_{2}} \right) = \frac{Q_{W}}{Q_{T}} \ln \left(\frac{R^{2}}{r_{1}} \right)$

 $S_{B} = \frac{4\omega}{2\pi kb} \ln\left(\frac{R}{r^{2}}\right)$

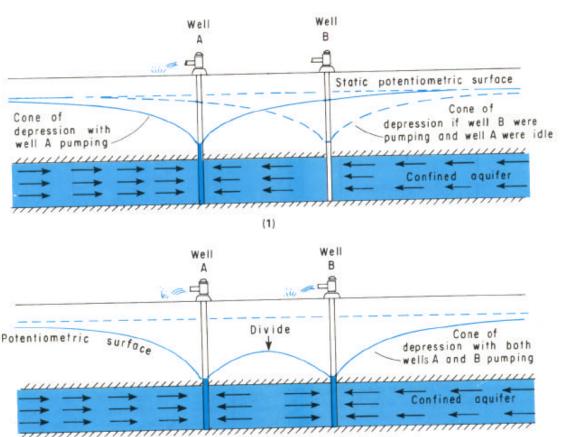
 $\frac{dS_B}{dx} = \frac{\ell\omega}{2\pi K b d} \qquad \frac{dS_B}{dx} = -\frac{\ell\omega}{2\pi K b d}$

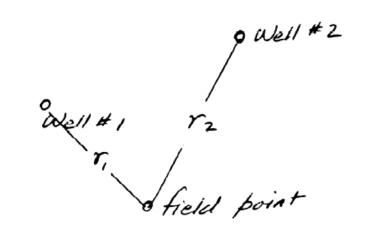

 $\frac{dS_B}{d\kappa} = \frac{q_w}{2\pi K b d} - \frac{q_w}{2\pi K b d} = 0$

(This will be the result for all points along the boundary)

Summary Odrawdown in confined aquifer due to Well (steady flow) $S(r) = \frac{Q_{w}}{2\pi Kb} \ln \left| \frac{R}{r} \right|$ (2) Constant head boundary:

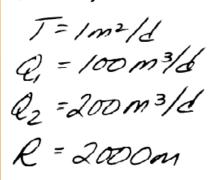
a) locate image well same <u>distance</u> from boundary as real well, opposite sonse on Qu

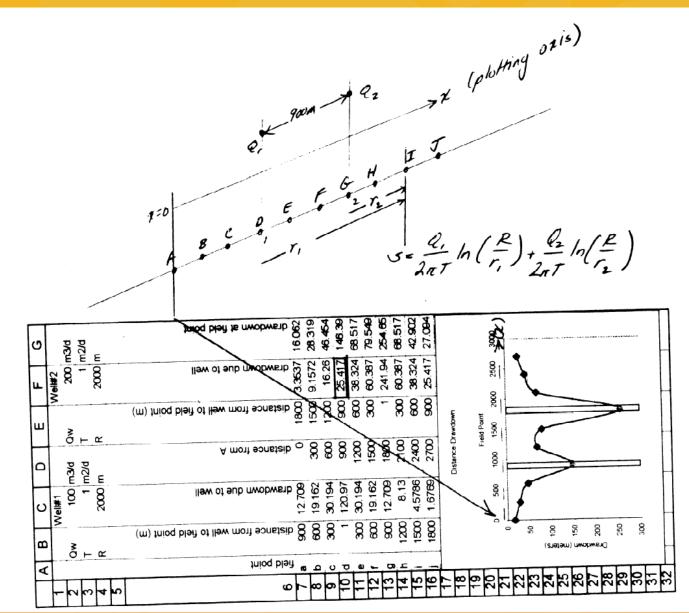

3No How boundary b) locate image well same distance from boundary as real well, same sense on Que

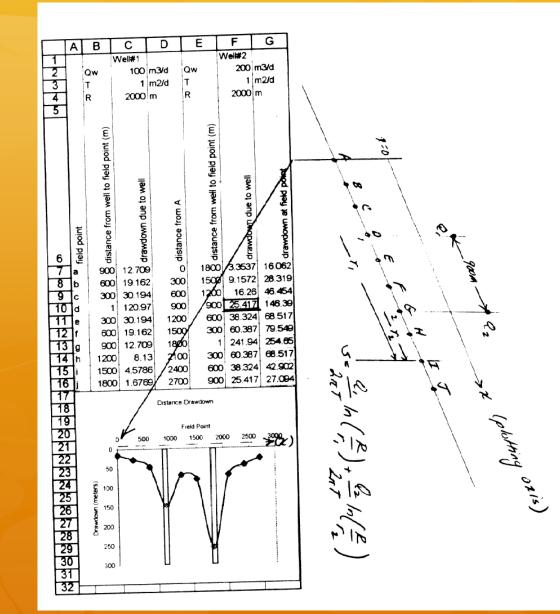

	A		В	С		D	E		F
1	Qw			m3/d					
2	т			m2/d					
3	R		2000	m					
4			real well		1	mage well			
5		distance from well to field point (m)	drawdown due to well		distance from well to field point (m)	drawdown due to well		drawdown at field point	
6			36.64677994	2	200		36.64677		
7			25.61400004		000		25.61499		
8			19.16182232		800	1.676864687	20.838	687	
9		800	14.58321993	1	600	3 551 439921			
10		1000	11.03178001		400	5.67665804			
11		1200	8.130042308	1	200	8.130042308	16.26008	462	
12 13 14 15 16		Distance-Drawdown Plot Distance from Pumping Well							
17 18 19 20 21 22 23 24 25 26 27 28 29 30 30 31	Drawdown (meters)	0		00	60		•	1200	

Two (or more) wells operating near each other produce a combination drawdown that might affect operation of the wells

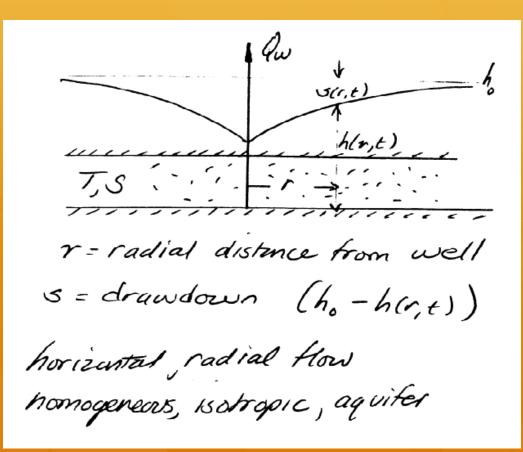
 If the pump impellers are not deep enough, the well may not produce because of drawdown caused by nearby wells


Superposition is used to model such **£**@} situations


Stuld point 2rKb In/R/ + 2rKb In/R/


Superposition is used to model such situations

Ezample



Wells located 900m apart. Show distance-drawdown profile. Determine "Interference" at well #1 due to operation of Well #2

Transient flow to a well (sketch of derivation – more in readings)

Governing PDE and BCs

Oddly enough Drawdown is lower case "s" and storativity is upper case "S" – need to be aware when reading.

 $div(T_{grad}(h)) = 5\frac{2h}{3t}$

S=h-h(r,t) $\frac{ds}{dt} = -\frac{dh}{dt} \qquad \frac{d^3s}{dr^2} = -\frac{d^2h}{dr^2} \qquad \frac{ds}{dr} = -\frac{dh}{dr}$ Storage Coefficient $T\frac{d^2s}{dr^2} + \frac{7}{r}\frac{ds}{dr} + \frac{5}{r}\frac{ds}{dt} = 0$ Drawdown $\frac{d^2s}{dr^2} + \frac{1}{r}\frac{ds}{dr} = \frac{s}{r}\frac{ds}{dr}$

Governing PDE and BCs

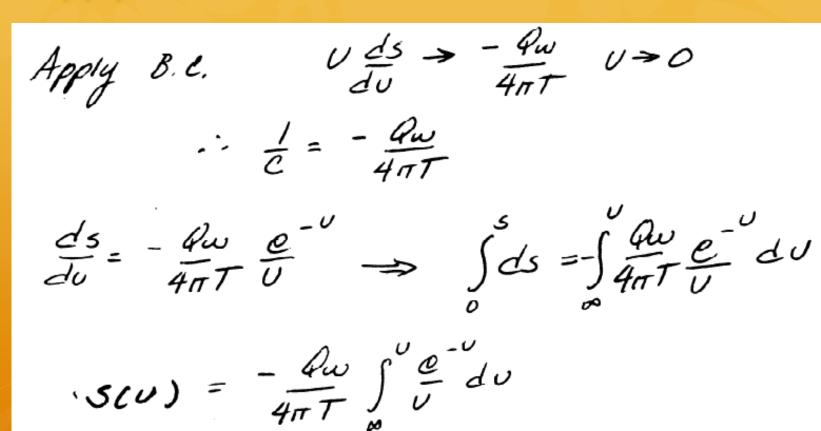
Boundary Conditions $r = \omega$, s = 0; $r \rightarrow 0$, $\lim_{r \to 0} \left| \frac{1}{2r} \right|_{r} = -Q_{\omega}$ Initial Conditions

Solving the PDE – apply a Boltzman Transformation

Obtaining a Solution

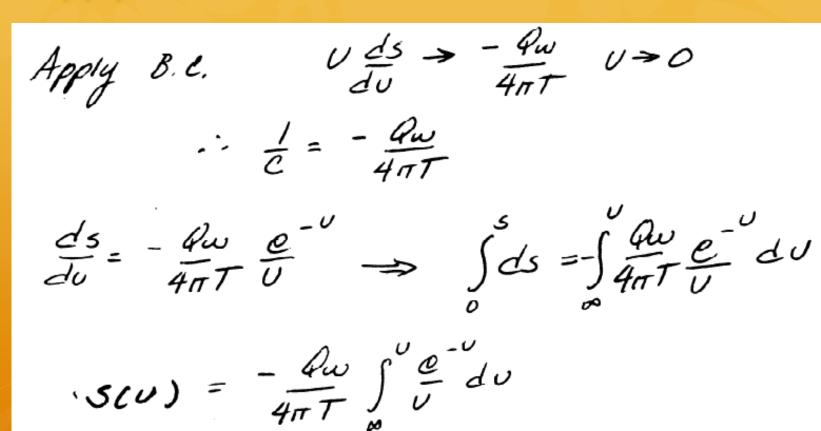
 $\int dt \ U = \frac{r^2 S}{4Tt}$ t >0, 5 > 0 => U>∞ r>0,5-0 => U -> 0

lin res = - Que ro dr 2nT lin nês = lin nês du = lin 2005 = - 400 U=0 ar U=0 du dr U=0 du = 210 T $\frac{1}{100} \frac{1}{20} = -\frac{4}{4\pi}$


Solving the PDE – apply a Boltzman Transformation
 Convert PDE into an ODE

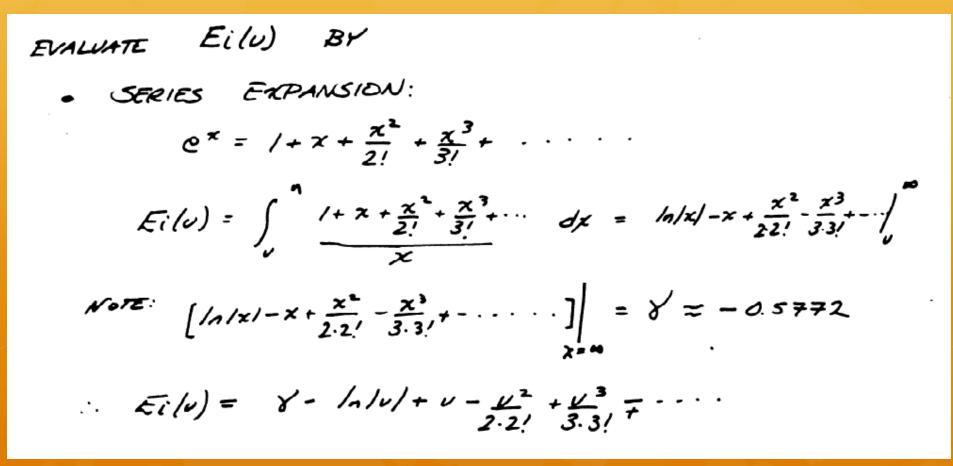
Now transform governing equation into an ODE $\frac{\partial s}{\partial t} = \frac{\partial s}{\partial u} \frac{\partial u}{\partial t} = -\frac{U}{t} \frac{\partial s}{\partial u}$ $\frac{ds}{ds} = \frac{ds}{ds} \frac{dv}{dt} = \frac{2v}{F} \frac{ds}{dv}$ $\frac{\partial^2 S}{\partial r^2} = \frac{2 \cup 2 S}{r^2 \lambda_{11}} + \frac{4 \cup^2 2^2 S}{r^2 \lambda_{11}}$ Substitute into PDE $-\frac{U}{2}\frac{\partial S}{\partial U}\frac{S}{T} = \frac{4U^{2}}{r^{2}}\frac{\partial^{2}S}{\partial U^{2}} + \frac{2U}{r^{2}}\frac{\partial S}{\partial U} + \frac{2U}{r}\frac{\partial S}{\partial U}$

Solving the PDE – Algebra and Calculus


Multiply by 14, divide by U2, rearrange: $\frac{d^{2}s}{du^{2}} + \left(\frac{u+1}{u}\right)\frac{ds}{du} = 0 \quad \text{let } x = \frac{ds}{du}$ $\frac{dx}{du} = -\left(\frac{\upsilon + 1}{\upsilon}\right) X \implies -\int \frac{dx}{x} = \int \frac{\upsilon + 1}{\upsilon} d\upsilon$ $-\ln|x| = \ln|u| + v + \ln|c|$ $U = -\ln|x| - \ln|u| - \ln|c| = -\ln|xuc|$ $e^{-v} = xvc$ but $x = \frac{ds}{dv}$ $\frac{ds}{ds} = \frac{1}{c} \frac{e^{-v}}{v}$

Apply IC and BCs

- Eilu) Caponennial Integral


Apply IC and BCs

- Eilu) Caponennial Integral

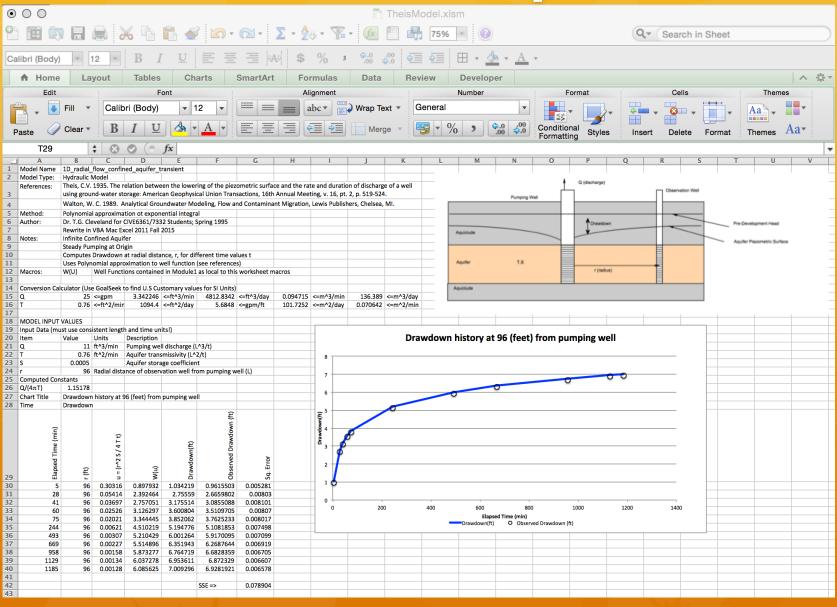
- Now we have a solution, but how to evaluate the integral?
 - Once upon a time you would look up values in a table (readings)
 - Alternatively, you can apply a series expansion of the integrand and find a series solution

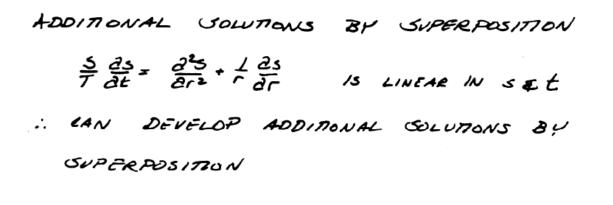
Now we have a solution, but how to evaluate the integral?

Now we have a solution, but how to evaluate the integral?

POLYNOMIAL APPROXIMATION Eilu) ~ - In /u/ + & + a, U + A0 = - 0. 577 215 66 A3 = 0.055 199 68 a, = 0. 999 991 93 a+= -0. 007 760 04 9, = -0. 249 910 55 Q5 = 0.001 078 57 FOR OXUSI $E_{i}(v) \approx \left(\frac{v^{4} + a_{i}v^{3} + a_{2}v^{2} + a_{3}v + a_{4}}{v^{4} + b_{i}v^{3} + b_{i}v^{2} + b_{3}v + b_{4}}\right) \left(\frac{1}{v \exp(v)}\right)$ b,= 9.573 322 345 4 L = 8.573 328 740 1 9. = 18.059 016 9730 b2 = 25.632 956 148 6 9 = 8.634 760 892 5 by = 21.099 653 082 7 0. 0. 267 773 734 3 5 = 3. 958 496 922 8

For 15050

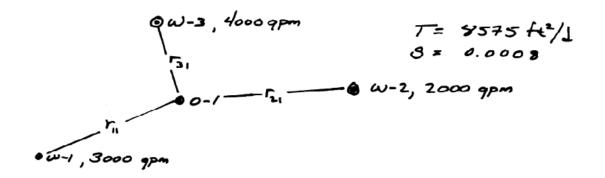

Now we have a solution, but how to evaluate the integral?


POLYNOMIAL APPROXIMATION Eilu) ~ - In /u/ + & + a, U + 40 = - 0. 577 215 66 a3= 0.055 199 68 a, = 0. 999 991 93 a+= -0. 007 760 04 9, = -0. 249 910 55 Q5 = 0.001 078 57 FOR OXUSI $E_{i}(v) \approx \left(\frac{v^{4} + a_{i}v^{3} + a_{2}v^{2} + a_{3}v + a_{4}}{v^{4} + b_{i}v^{3} + b_{i}v^{2} + b_{3}v + b_{4}}\right) \left(\frac{1}{v \exp(v)}\right)$ b,= 9.573 322 345 4 L = 8.573 328 740 1 9. = 18.059 016 9730 b2 = 25.632 956 148 6 9 = 8.634 760 892 5 by = 21.099 653 082 7 0. 0. 267 773 734 3 5 = 3. 958 496 922 8

For 15050

VBA Code (to evaluate the well function)

\bigcirc	O O TheisModel.xlsm - Module1 (Code)
(0	ieneral) W
	Function W(U) As Double
	'Theis Well Function actually the exponential integral
	If U <= 1 Then
	A0 = -0.57721566
	A1 = 0.99999193
	A2 = -0.24991055
	A3 = 0.05519968
	A4 = -0.00976004
	A5 = 0.00107857
	$W = (-Log(U) + A0 + A1 * U + A2 * U ^ 2 + A3 * U ^ 3 + A4 * U ^ 4 + A5 * U ^ 5)$
	Exit Function
	Else
	A1 = 8.5733287401
	A2 = 18.059016973
	A3 = 8.6347608925
	A4 = 0.2677737343
	B1 = 9.5733223454
	B2 = 25.6329561486
	B3 = 21.0996530827
	B4 = 3.9584969228
	$W = ((U \land 4 + A1 * U \land 3 + A2 * U \land 2 + A3 * U + A4) / (U \land 4 + B1 * U \land 3 + B2 * U \land 2 + B3 * U + B4)) / (U * Exp(U))$
	Exit Function End If
	End Function



EXAMPLE

SUPPOSE WELLFIELD BELOW IS PLANNED TO OPERATE AS SHOWN

WHAT IS THE DRAWDOWN AT O-1 AFTER 365 DAYS OF PUMPING?

SOLVTION:

- FIND DRAWDOWN AT O-I FROM EACH PUMPING WELL
- · TOTAL DRAWDOWN IS SIMPLY SUM OF INDIVIDUAL DRAWDOWNS

$$SUPPOSE: r_{1} = 1500ft = 265 day$$

 $r_{21} = 1470 ft$
 $r_{31} = 1000 ft$

COMPUTE:

$$U_{ii} = \frac{\Gamma_{ii}^2 S}{4T t} = 0.000144$$

$$V_{21} = \frac{f_2^2 S}{4T_t} = 0.000138$$

$$U_{31} = \frac{r_{31}^2 g}{4Tt} = 0.000064$$

EVALUATE Eilu)			
Ei(U,,) = 8.270182	į	<i>в (qpm)</i> Заас	Q(Fe ³ /Lay) 577 540
Ei (U21) = 8.310582	;	2000	385027
Ei (U3,) = 9.081032	;	4000	770053

COMPUTE INDIVIDUAL DRAMDOWNS

$$S_{n} = \frac{Q_{1}}{4\pi T} EilV_{n} = \frac{577540}{4\pi (8575)} 8.270182 = 44.325$$

$$S_{2J} = \frac{Q_2}{4\pi T} E_i(v_{2,i}) = 29.694$$

 $S_{3,7} = \frac{Q_3}{4\pi T} E_{c}(U_{3,7}) = 64.895$

$$T_{0}TAL DEALDOWN$$

$$S = \sum_{i=1}^{3} S_{i}$$

$$\Sigma = 139'$$

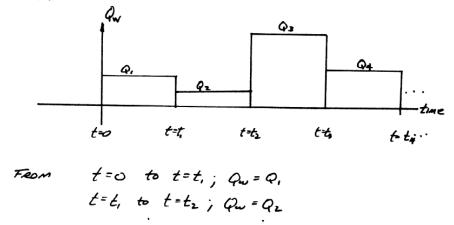
S TOTAL PREDICTED DEANDOUNS AT O-1 FROM THE PUMPING WELL ENSEMBLE IS 139' AFTER 365 DAYS OF PUMPING

GENERAL FORM:

 $S_{j} = \sum_{j=1}^{NW} \frac{4_{i}}{4\pi T} \mathcal{E}_{i} \left(\frac{r_{ij}^{2} S}{4T_{t}} \right)$

rij is RADIUS FROM i-to WELL TO FIELD POINT j

Q. IS PUMPING RATE OF j. th WELL

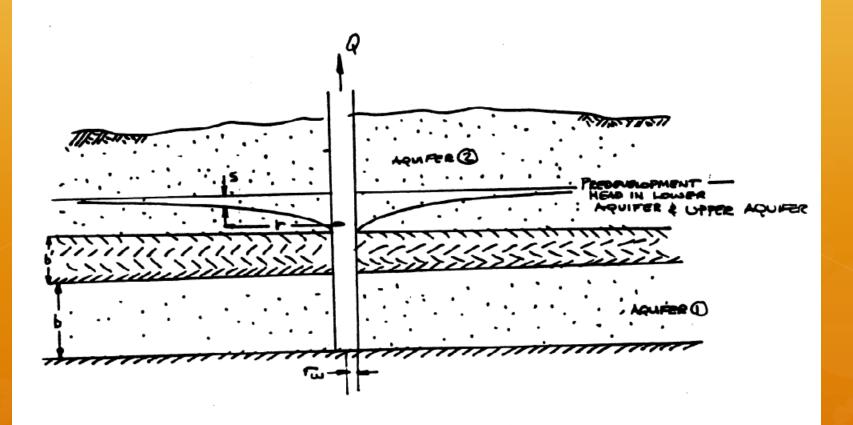

Convolution == Superposition in Time

VARIABLE PUMPING RATES

USE CONVOLUTION IN TIME :

$$s(r,t) = \frac{Q}{4\pi T} E(u); \quad u = \frac{r^2 S}{4Tt}$$

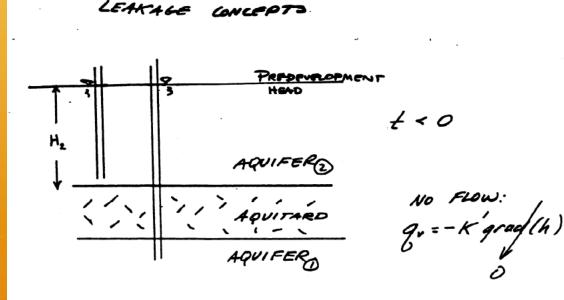
ESTIMATE RESPONSE OVER SEVERAL PLANNING PERIODS (SEQUENTIAL) WITH DIFFERENT PUMP RATES:

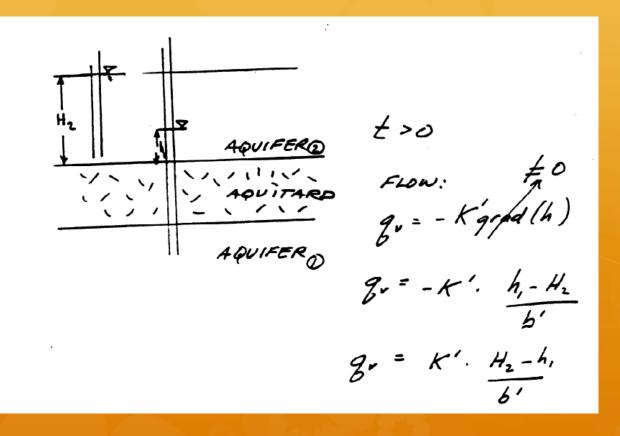


Convolution == Superposition in Time

RESPONSE AT SOME ARBRITARY FILL POINT: $0 \le t \le t$, $j \le = \frac{Q_i}{4\pi T} Ei\left(\frac{r^2 S}{4Tt}\right)$ $t_{i} \leq t \leq t_{2} \quad j \quad s = \frac{Q_{i}}{4\pi T} E_{i} \left(\frac{r^{2} S}{4Tt}\right) + \frac{Q_{2} - Q_{i}}{4\pi T} E_{i} \left(\frac{r^{2} S}{4T(t-t_{i})}\right)$ $t_{2} \leq t \leq t_{3} \quad j \quad s = \frac{Q_{i}}{4\pi T} E_{i} \left(\frac{r^{2} S}{4T^{2}} \right) + \frac{Q_{2} - Q_{i}}{4\pi T} E_{i} \left(\frac{r^{2} S}{4T(t - t_{i})} \right)$ + $\frac{\varphi_3 - \varphi_2}{4\pi\tau} Ei\left(\frac{r^2 S}{4\tau/t - t_1}\right)$ $t_{3} s t s t_{4} ; s = \frac{Q_{1}}{4\pi T} Ei\left(\frac{r^{2}S}{4Tt}\right) + \frac{Q_{2}-Q_{1}}{4\pi T} Ei\left(\frac{r^{2}S}{4T(t-t)}\right) + \frac{Q_{3}-Q_{2}}{4\pi T} Ei\left(\frac{r^{2}S}{4T(t-t)}\right)$

Hantush Model


FULLY PENETRATING WELL IN A LEAKY AQUIFER


Hantush Model

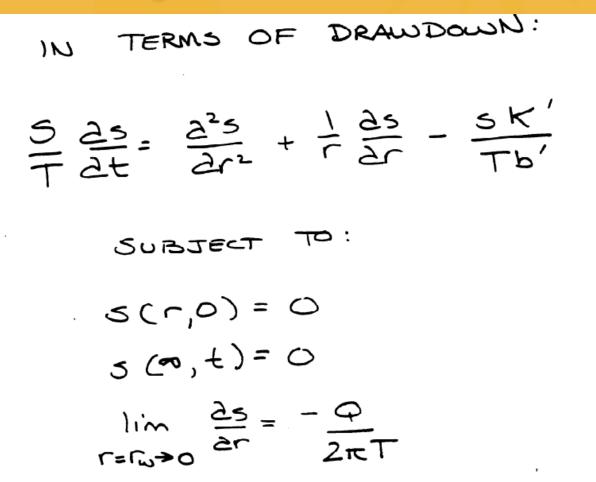
- · WELL DISCHARGES AT CONSTANT RATE Q
- · INFINITESMAL WELL DIAMETER
- · AQUIFER () OUERLAIN BY CONFINING BED (AQUITARD) OF THICKNESS b', HYDRAULIC CONDUCTIVITY K'
- · AQUIFER (2) OVERLIES AQUITARD AND HAS CONSTANT HEAD
- HYDRAULL GRADIENT ACROSS CONFINING BED CHANGES INSTANTLY - NO STORAGE IN AQUITARD
- · AQUIFER FLOW IS ZD HORIZONTAL, AQUITARD FLOW IS VERTICAL

Leakage prior to pumping

Leakage after pumping begins

Leakage – drawdown relationship

NO STORAGE IN AQUITARD > CHANGE IN HEAD
 CAUSES INSTANTANEOUS CHANGE IN FLOW
 H₂ = CONSTANT (ASSUMPTION 4)


Governing PDE and BCs

BASIC EQUATIONS

Sah= div (Tgrad(h)) = sources

OR $S \stackrel{ah}{=} T \stackrel{a^{2}h}{=} T \stackrel{T}{=} \stackrel{ah}{=} - \frac{(H_2 - h)\kappa'}{b'}$

Governing PDE and BCs

Solution(s)

$$S = \frac{Q_{w}}{4\pi T} \int_{u}^{\infty} \frac{e^{-v - \frac{v^{2}}{v}}}{v} du$$

$$U = \frac{r^2 5}{4Tt}$$

$$v^2 = \frac{r^2 K'}{4 T b'}$$

THE

EXPONENTIAL INTEGRAL :

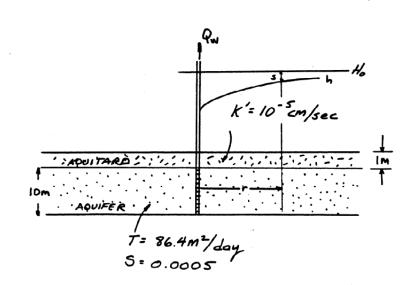
$$\int_{U}^{\infty} \frac{e^{-u-\frac{v^{2}}{u}}}{u} du = L(u,v)$$

Solution(s)

15 CALLED

THE LEAKAGE FACTOR

OBSERVE: W(u, r/B) = L(u, 2v)


Solution(s)

15 CALLED

THE LEAKAGE FACTOR

OBSERVE: W(u, r/B) = L(u, 2v)

Example

AQUIFER IDM THICK IS OVERLAIN BY A IM THICK AQUITARD. STORAGE IN AQUITARD IS ASSUMED NEGLIGIBLE. THE WELL PUMIPS AT SOOM³/DAY. WHAT IS THE DRAWDOWN AT 1,5,10,50,100,500, AND 1000 METERS AFTER ONE DAY OF PUMPING?

Example

() MODEL: $S(r, t) = \frac{Q_w}{4\pi T} L(v, v)$, $\frac{U=r^{2}S}{4Tt}$ $v^2 = \frac{r^2 K'}{4Tb'}$

Qu=500m3/1

Example

2 REDUCE DATA t=1 day K'= 8.64.10-3m/d T= 86.4 m2/d 5=0.0005 5'= 1m

U= r2 (0.0005) : 1.45.10-6-2 4(86.4)(1) $V^{2} = \frac{r^{2} \left(8.64.10^{-3} \right)}{4 \left(86.4 \right) (1)} = 2.5 \cdot 10^{-5} r^{2}$

 $\frac{Q_w}{4\pi T} = \frac{500}{4(\pi)(86.4)} = 0.46$

Example

I	MAK		BLE			
	r	υ	V ²	V	Zv(======)	$W(u, \mathbf{f})$
			2.5.10-5		0.01	9.44
5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.63.10-5	6.25.10-4	2.5.10-2	0.05	6.23
10	M	1.45.10-4	2.5.10-3	5.0.10-2	0.1	4.85
			6.25.10-2		0.5	1.85
100	~	1.45 . 10-2	2.5.10-1	5.0.10-1	1	0.842
		3.63 . 10-1		2.5	5	0.007
1000	~	1.45	25	5.0	10	0.0001
					,	

Table-look up

					r:8			
u	0.001	0.003	0.01	0.03	0.1	0.3	1	3
1 × 10-*	13.0031	11.8153	9.4425	7.2471	4.8541	2.7449	0.8420	0.0695
2 3	12.4240 12.0581	11.6716	a diar	2	^	4	Ą	· A
ა 5	11.5795	11.5098 11.2248	9.4425	1				Ń
5	11.2570	10.9951	9.4413 9.4361	1	1			1
1 × 10 -	10.9109	10.5551	9.4176					· 1
2	10.2301	10.1332	9.2961	7.2471				:
3	9.8288	9.7635	9.1499	7.2470	all sam			
5	9.3213	9.2818	8.8827	7.2450 (all sam	0	
7	8.9863	8.9580	8.6625	7.2371	<u></u>			,
1 × 10 ·	8.6308	8.6109	8.3983	7.2122	(4,75)3	1		
2	7.9390	7.9290	7.8192	7.0685		Į.	all same	all
3 5 ·	7.5340	7.5274	7.4534	6.9068	4.8541	i	all same	
5.	7.0237	7.0197	6.9750	6.6219	4.8530	1		
7	6.6876	6.6848	6.6527	6. 3923	4.8478	di		
1×10^{-3}	6.3313	6.3293	6.3069	6.1202	4.8292	4	2	
2 3 5	5.6393	5.6383	5.6271	5.5314	4.7079	2.7449	(A <) ()	1
3	5.2348	5.2342	5.2267	5.1627	4.5622	2.7448	(1.07)- 3	
5	4.7260	4.7256	4.7212	4.6829	4.2960	2.7428	te i	-
7	4.3916	4.3913	4.3882	4.3609	4.0771	2.7350	ate	
1×10^{-2}	4.0379	4.0377	4.0356	4.0167	3.8150	2.7104	V	
2 3	3.3547 2.9591	3.3546	3.3536	3.3444	3.2442	2.5688	•	
5		2.9590	2.9584	2.9523	2.8873	2.4110	.8420	
5	2.4679 2.1508	2.4679 2.1508	2.4675 2.1506	2.4642	2.4271	2.1371	.8409	
1 × 10-'	1.8229	1.8229	1.8227	2.1483	2.1232	1.9206	.8360	Y-
	1.2226	1.2226	1.2226	1.8213 1.2220	1.8050 1.2155	1.6704	.8190	•
2 3 5	.9057	.9057	.9056	.9053	.9018	1.1602	.7148	.0695
5	.5598	.5598	.5598	.5055	.5581	.8713	.6010	.0694
7	3738	.3738	.3738	.3737	.3729	.5453 .3663	.4210 .2996	.0681
1 × 10"	.2194	.2194	.2194	.2193	.2190	.2161	.1855	.0639 .0534
2	.0489	0489	.0489	.0489	.0488	.0485	.0444	.0534
3	.0130	.0130	.0130	.0130	.0130	.0130	.0122	.0210
5	.0011	.0011	.0011	.0011	.0011	.0011	.0011	.0071
7	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001

Table-look up

APPLY: 5= Que W(0, 5)

5	
r (meters)	S (meters)
1	4.34
· 5	2.87
10	2.23
50	0.85
100	0.39
500	6.003
1000	0.000046

- More Modern Approach:
- VBA Script in Excel to evaluate W(u,r/B)
 - Complex uses:
 - ERFC (complimentary error function)
 - BESSELI (Bessel Function Type I)
 - BESSELJ (Bessel Function Type J)
- Script too complex to display but ultimately it is just a function that can be evaluated just like SQRT(Z).

00	$\circ \circ$								🗎 Hantus		/Model.x	lsm							
_	II 🗊		📄 🁌	64	Ê :	<i>S</i> 🖄	<u>n</u> • 🙃	1- Σ	• 🛃 • '	7.	fx 🔤	75%	Ψ.	Q (8	Bearch in	Sheet			
Cal	ibri (Body)	1	2 -	В	ΙU			-Ao	\$ %	, (00. 0.≓ 0.¢ 00.	₩		A + 1	A .				
	A Home	Lay	out	Tables	s (harts	Sm	artArt	Formula		Data	Review	Develo	oper	_			~	
E	dit :		Font					Alignment				Number		Fo	rmat	Cells		Themes	
0		libri (Bo		▼ 12				<u> </u>	🔜 🕽 Wrap Te		General		-						-
1			uy)	* 12				abe ·	wrap Te		achterar					•	Aa]	·
P٢	aste B	B I	U	🗞 🔻 A	-			⇐ ⇒	Merg	ge 🔻	🧐 🔻 %)) (00.00 0.¢ 0	Condition		Actions	Ther	mes Aa	Ŧ
	B4		: (3)	0 (-	fx									Formattin	g				
1	A	В	C	D	E	F	G	Н		K	L	M	N	0	Р	0	R	S	
1		1D_radial_	flow_leaky_			ntush			. ,		-					4		5	
	Model Type:	Hydraulic I	Model									t º	(discharge)	C Ober	ation Mail				
1	References:	Hantush									Pa	leW prigr							
	Method:									-	surce Bed		Drawdown		50	urce Bed Head			
	Author:		eveland for			nts; Spring	1995				Artie 000				A	uller Plezometric			
			VBA Mac Ex		II 2015					A	pulard	K.br			Sv	rface			
ľ	Notes:		nfined Aquit nping at Ori								uller -			E					
t					r different	time value	s t in leakv a	quifer syster	n	Aq	prod.		r (radius)	E					
		Uses Polyr	omial appro	eximation to	well funct	ion (see re	ferences)				uiclude	E							
	Macros:	W(U),LEAK	Y(U,V)	Well Functi	ons contai	ned in Mod	ule1 as loca	I to this worl	sheet macros	~									
-																			
	Conversion Calc	ulator (Use	GoalSeek to	o find U.S C	ustomarv v	alues for SI	Units)												
	Q	25	<=gpm	3.34225	<=ft^3/mii	4812.83	<=ft^3/day			201 <=m^3									
ľ	Т		<=ft^2/mii					23.0488 <	=m^2/day 0.01	601 <=m^2	2/min								
	Input Data (mus	t uso coz-i	tont longth	and time ::	nitel)										1				
				and time u Description							Drawd	lown histor	y at 96 (f	eet) fror	n pumpi	ng well			
	Q	3.34	ft^3/min	Pumping w	ell discharg						7					-			
			ft^2/min																
1		0.00017 5.7E-06	ft/min	Aquifer sto Aquitard ve			ctivity (1./+)				6		0 0		0				
i		14		Thickness c								0							
	r	96	Radial dista				mping well (L)			5								
	Computed Cons									down (ft)	4 6								
	B r/B	648.55 0.14802								- Mo	8								
	Q/4πT	1.56346								Drawo	3								
	Chart Title		history at 9	96 (feet) fro	m pumping	g well													
											2								
. (÷.				1								
							E E				10								
		ţ,					wn (f				Ť								
		.e (ft)					t) nwobw					00 400	£00	800	1000	1200 14	n		
•		tance (ft)				n (ft)	Drawdown (f					00 400	600 Elapsed 1	800 Time (min)	1000	1200 14	00		
•		Distance (ft)			(B)	łown (ft)	ved Drawdown (f	5				00 400		800 Time (min)	1000	1200 14	00		
1		dial Distance (ft)		~	(u,r/B)	awdown (ft)	served Drawdown (f	ror^2				00 400	Elapsed 1			1200 14	00		
(Elapsed Time (min)	Radial Distance (ft)	2	r/8	W(u,r/B)	Drawdown (ft)	Observed Drawdown (ft)	Error^2					Elapsed 1	īme (min)		1200 14	00		
-	د، Elapsed Time (min)	96	0.44898	0.14802	0.62239	0.97309	0.96	0.00017					Elapsed 1	īme (min)		1200 14	00		
	Elapsed Time (min)		-	0.14802 0.14802	0.62239 1.97392			0.00017 0.04573					Elapsed 1	īme (min)		1200 14	20		
	28 5 1 60 60 60 7 80 7 80 7 80 7 80 80 80 80 80 80 80 80 80 80 80 80 80	96 96 96 96	0.44898 0.08017 0.05475 0.03741	0.14802 0.14802 0.14802 0.14802	0.62239 1.97392 2.30223 2.62436	0.97309 3.08616 3.59945 4.10309	0.96 3.3 3.59 4.08	0.00017 0.04573 8.9E-05 0.00053					Elapsed 1	īme (min)		1200 144	00		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	96 96 96 96 96	0.44898 0.08017 0.05475 0.03741 0.02993	0.14802 0.14802 0.14802 0.14802 0.14802	0.62239 1.97392 2.30223 2.62436 2.80751	0.97309 3.08616 3.59945 4.10309 4.38944	0.96 3.3 3.59 4.08 4.39	0.00017 0.04573 8.9E-05 0.00053 3.2E-07					Elapsed 1	īme (min)		1200 140	00		
	(min) 5 28 41 60 75 244	96 96 96 96 96 96	0.44898 0.08017 0.05475 0.03741 0.02993 0.0092	0.14802 0.14802 0.14802 0.14802 0.14802 0.14802	0.62239 1.97392 2.30223 2.62436 2.80751 3.62976	0.97309 3.08616 3.59945 4.10309 4.38944 5.67499	0.96 3.3 3.59 4.08 4.39 5.47	0.00017 0.04573 8.9E-05 0.00053 3.2E-07 0.04202					Elapsed 1	īme (min)			20		
	(uju) 5 28 41 60 75 244 493	96 96 96 96 96 96 96	0.44898 0.08017 0.05475 0.03741 0.02993 0.0092 0.00455	0.14802 0.14802 0.14802 0.14802 0.14802 0.14802 0.14802	0.62239 1.97392 2.30223 2.62436 2.80751 3.62976 3.92868	0.97309 3.08616 3.59945 4.10309 4.38944 5.67499 6.14234	0.96 3.3 3.59 4.08 4.39 5.47 5.96	0.00017 0.04573 8.9E-05 0.00053 3.2E-07 0.04202 0.03325					Elapsed 1	īme (min)		1200 144			
	(min) 5 28 41 60 75 244	96 96 96 96 96 96	0.44898 0.08017 0.05475 0.03741 0.02993 0.0092	0.14802 0.14802 0.14802 0.14802 0.14802 0.14802	0.62239 1.97392 2.30223 2.62436 2.80751 3.62976	0.97309 3.08616 3.59945 4.10309 4.38944 5.67499	0.96 3.3 3.59 4.08 4.39 5.47	0.00017 0.04573 8.9E-05 0.00053 3.2E-07 0.04202					Elapsed 1	īme (min)		1200 14			
	(ijiiiiiiii) awj.L.passdej 3 5 28 41 5 244 40 75 244 493 669 958 1129	96 96 96 96 96 96 96 96 96 96	0.44898 0.08017 0.05475 0.03741 0.02993 0.0092 0.00455 0.00336 0.00234 0.00199	0.14802 0.14802 0.14802 0.14802 0.14802 0.14802 0.14802 0.14802 0.14802 0.14802 0.14802	0.62239 1.97392 2.30223 2.62436 2.80751 3.62976 3.92868 4.00373 4.055 4.06801	0.97309 3.08616 3.59945 4.10309 4.38944 5.67499 6.14234 6.25968 6.33984 6.36019	0.96 3.3 3.59 4.08 4.39 5.47 5.96 6.11 6.27 6.4	0.00017 0.04573 8.9E-05 0.00053 3.2E-07 0.04202 0.03325 0.0224 0.00488 0.00159					Elapsed 1	īme (min)		1200 144			
	(uju) 5 288 41 600 75 244 493 669 958	96 96 96 96 96 96 96 96 96	0.44898 0.08017 0.05475 0.03741 0.02993 0.0092 0.00455 0.00336 0.00234	0.14802 0.14802 0.14802 0.14802 0.14802 0.14802 0.14802 0.14802 0.14802	0.62239 1.97392 2.30223 2.62436 2.80751 3.62976 3.92868 4.00373 4.055	0.97309 3.08616 3.59945 4.10309 4.38944 5.67499 6.14234 6.25968 6.33984	0.96 3.3 3.59 4.08 4.39 5.47 5.96 6.11 6.27	0.00017 0.04573 8.9E-05 0.00053 3.2E-07 0.04202 0.03325 0.0224 0.00488					Elapsed 1	īme (min)		1200 14			
	(ijiiiiiiii) awj.L.passdej 3 5 28 41 5 244 40 75 244 493 669 958 1129	96 96 96 96 96 96 96 96 96 96	0.44898 0.08017 0.05475 0.03741 0.02993 0.0092 0.00455 0.00336 0.00234 0.00199	0.14802 0.14802 0.14802 0.14802 0.14802 0.14802 0.14802 0.14802 0.14802 0.14802 0.14802	0.62239 1.97392 2.30223 2.62436 2.80751 3.62976 3.92868 4.00373 4.055 4.06801	0.97309 3.08616 3.59945 4.10309 4.38944 5.67499 6.14234 6.25968 6.33984 6.36019	0.96 3.3 3.59 4.08 4.39 5.47 5.96 6.11 6.27 6.4	0.00017 0.04573 8.9E-05 0.00053 3.2E-07 0.04202 0.03325 0.0224 0.00488 0.00159					Elapsed 1	īme (min)		1200 144			

Next Time

- Contaminant Transport Concepts
 - Advection, Dispersion, Retardation, Decay
- Aquifer Numerical Modeling
 - Flow Nets