CE 3354 Engineering Hydrology

Lecture 20: Reservoir Storage and Discharge

Outline

• Elevation-Discharge Concepts

• Elevation-Discharge Tables

- Elevation-Discharge
 Determine pool area at different elevations
 - Use hydraulic outlet features to estimate discharge

- Elevation-Discharge
 - Determine pool area at different elevations
 - Use hydraulic outlet features to estimate discharge

- Elevation-Discharge
 Determine pool area at different elevations
 - Use hydraulic outlet features to estimate discharge

- Elevation-Discharge
 - Determine pool area at different elevations
 - Use hydraulic outlet features to estimate discharge

Elevation Determination

- Use map (or design drawings
- Reservoir:
 - Bottom = 2065 ft.
- Riser:
 - Invert= 2075 ft.
 - Soffit = 2077 ft.
- Spillway
 - Invert = 2087 ft.
 - Width = 100 ft.
- Dam Crest
 - Invert = 2090 ft.
 - Width = 2500 ft

• Riser:

- Build an elevation-discharge table
 - From elevation 2065 to 2067 ft. use Manning's equation in a circular conduit (2 ft. diameter)
 - We are assuming the riser is a horizontal culvert
 - From 2067 to 2090 feet deep use orifice equation (neglecting frictional losses)
- Save the table in a spreadsheet for building composite elevation-discharge table for all hydraulic elements

• Modify Manning's Calculator

$$Q = \frac{1.49}{n} A R^{2/3} S^{1/2}$$

Circle

	CMM	pg 162
--	-----	--------

	A	B	С	D	E
1	Circular Pipe Flow Computations				
2	US Customary Units Version				
3	INPUT DATA				
4	Manning's n	0.013			
5	Invert Elev.	2065	<=Feet		
6	Soffit Elev.	2067	<=Feet		
7	Pool Elev.	2065.001	<=Feet		
8	Depth	0.001	<=Feet		
9	Diameter	2	<=Feet		
10	Slope	0.003	<=Dimensionless		
11	INTERMEDIATE	RMEDIATE COMPUTATIONS			
12	Angle	0.0447251	<=Radians		
13	Area	5.962E-05	<=Feet Squared		
14	Perimeter	0.0894502	<=Feet		
15	Radius	0.0006665	<=Feet		
16	DISCHARGE AN	ID VELOCITY	,		
17	Discharge	2.856E-06	<=Cubic Feet per Second		
18	Velocity	0.0479007	<=Feet per Second		
10					

 Modify Manning's Calculator

$$Q = \frac{1.49}{n} A R^{2/3} S^{1/2}$$

Circle

CMM pg 162

	A	B	С	D	E
1	Circular Pipe Flow Computations				
2	US Customary Units Version				
3	INPUT DATA				
4	Manning's n	0.013			
5	Invert Elev.	2065	<=Feet		
6	Soffit Elev.	2067	<=Feet		
7	Pool Elev.	2065.5	<=Feet		
8	Depth	0.5	0.5 <=Feet		
9	Diameter	2	2 <=Feet		
10	Slope	0.003	0.003 <=Dimensionless		
11	INTERMEDIATE		FIONS		
12	Angle	1.0471976	<=Radians		
13	Area	0.6141848	<=Feet Squared		
, 14	Perimeter	2.0943951	<=Feet		
15	Radius	0.2932517	<=Feet		
16	DISCHARGE AN	ID VELOCITY	,		
17	Discharge	1.7018827	1.7018827 <=Cubic Feet per Second		
18	Velocity	2.7709618 <=Feet per Second			

Modify Manning's Calculator

$$Q = \frac{1.49}{n} A R^{2/3} S^{1/2}$$

Circle

CMM pg 162

t	B1/ ↓ S C (Jx =(1.49/B4)^B13^B15^(2/3)^B10^(1/2)				
	Α	B C D E			
1	Circular Pipe Flow Computations				
2	US Customary	Units Version	on		
3	INPUT DATA				
4	Manning's n	0.013			
5	Invert Elev.	2065	<=Feet		
6	Soffit Elev.	2067	<=Feet		
7	Pool Elev.	2067	<=Feet		
8	Depth	2	<=Feet		
9	Diameter	2	<=Feet		
10	Slope	0.003	<=Dimensionless		
11	INTERMEDIATE	COMPUTA	FIONS		
12	Angle	3.1415927	<=Radians		
13	Area	3.1415927	<=Feet Squared		
14	Perimeter	6.2831853	<=Feet		
15	Radius	0.5	<=Feet		
16	DISCHARGE AN	ID VELOCITY	,		
17	Discharge	12.424152	<=Cubic Feet per Second		
18	Velocity	3.9547304	<=Feet per Second		

 Now Switch to Modified Orifice Equation Calculator

$$Q = C_d A \sqrt{2gh}$$

This can be simplified by making the following assumptions: (1) the pressure at both points is atmospheric, therefore $p_1 = p_2$; (2) the surface area of the pool A₁ is very large relative to the

	Α	В	С	D
1	Horizontal Orifice Discharge Calculator I	US Custo	omary Units	
2				
3	INPUT VALUES			
4	Invert Elev.	2075	FT	
5	Soffit Elev.	2077	FT	
6	Pool Elev.	2078	FT	
7	Orifice Diameter	2	FT	
8	Depth above top of Orifice	0.5	FT	
9	Orifice Coefficient	0.5	Dimensionless	
10	-	_		
11	▽1			
12		+		
13	Depth above top of orifice			
14				
15	-	<u> </u>	-	
16	Orifice diameter	T V₂	0	
17		×		
18			- 1. C	
19				
20	COMPUTED VALUES			
21	Depth to Orifice centerline	1.5	FT	
22	Orifice Circular Area	3.142	FT^2	
23	Discharge	15.44	CFS	
24				
25				
26				
	1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	A Horizontal Orifice Discharge Calculator 1 A Horizontal Orifice Discharge Calculator 1 A Invert Elev. Soffit Elev. Pool Elev. Orifice Diameter Depth above top of Orifice Orifice Coefficient Depth above top of orifice Depth above top of orifice Orifice diameter Orifice diameter Orifice Circular Area Discharge O Contact Circular Area Discharge	A B Horizontal Orifice Discharge Calculator US Custor Invert Elev. 2075 Soffit Elev. 2077 Pool Elev. 2078 Orifice Diameter 2 Depth above top of Orifice 0.5 Orifice Coefficient 0.5 Orifice Coefficient 0.5 Orifice Coefficient 0.5 Orifice diameter v_2 Depth above top of orifice v_2 Orifice diameter v_2 Depth above top of orifice 1.5 Orifice diameter v_2 Depth to Orifice centerline 1.5 Orifice Circular Area 3.142 Discharge 15.44	A B C Horizontal Orifice Discharge Calculator US Customary Units Invert Elev. 2075 FT Soffit Elev. 2077 FT Pool Elev. 2078 FT Orifice Diameter 2 FT Depth above top of Orifice 0.5 FT Orifice Coefficient 0.5 Dimensionless Office Coefficient 0.5 Dimensionless Office diameter v. Depth above top of orifice 0.5 FT Depth above top of orifice 0.5 FT Orifice diameter V. Depth above top of orifice 0.5 FT Depth 10 Orifice 0.5 FT Depth 10 Orifice 0.5 FT Discharge 15.44 CFS

 Now Switch to Modified Orifice Equation Calculator

$$Q = C_d A \sqrt{2gh}$$

Figure 8.4. Schematic diagram of the flow through an orifice

This can be simplified by making the following assumptions: (1) the pressure at both points is atmospheric, therefore $p_1 = p_2$; (2) the surface area of the pool A_1 is very large relative to the

	B7 🛟 😣 📀 (* fx		=B5-B4			
00			Α	В	С	D
	1	Horizontal Orifice	Discharge Calculator U	US Customai	'y Units	
r	2					
AR^2	3	INPUT VALUES	S			
-AA	4	Invert Elev.		2075.00	FT	
cie	5	Soffit Elev.		2077.00	FT	
	6	Pool Elev.		2086.00	FT	
5	7	Orifice Diameter		2	FT	
100	8	Depth above top	of Orifice	9	FT	
	9	Orifice Coefficien	t	0.5	Dimensionless	
	10	_		_		
	11		1			
00	12		•	†		
ch to	13		Pepth above top of orific	e 📕		
Calcu	14					
1√ 2	15		-			
	16		Orifice diameter	I V₂ ⊚≥		
	17		_	· · · ·		
	18					
01275	19					
001 pi	20	COMPUTED	VALUES			
	21	Depth to Orifice	centerline	10	FT	
	22	Orifice Circular A	rea	3.1415927	FT^2	
	23	Discharge		39.862342	CFS	
Tin	24					

• Now Add Spillway starting at z = 2087+ ft.

• Need to select a spillway equation:

TABLE 8.2.1Spillway discharge equations

Spillway type	Equation	Notation
Uncontrolled over- flow ogee crest	$Q = CLH^{3/2}$	Q = discharge, cfs C = variable coefficient of discharge L = effective length of crest H = total head on the crest including velocity of approach head.

• Now Add Spillway starting at z = 2087+ ft.

• Definitions of weir terms - namely approach depth

Figure 8.5. Schematic diagram of flow over a sharp-crested weir

Now Add Spillway starting at z = 2087+ ft.
Need to select a spillway equation:

TABLE 8.2.1 Spillway discharge equations			
Spillway type	Equation	Notation	
Uncontrolled over- flow ogee crest	$Q = CLH^{3/2}$	 Q = discharge, cfs C = variable coefficient of discharge L = effective length of crest H = total head on the crest including velocity of approach head. 	

Use H = Pool Elev. - Spillway Invert Elev. for the head on the spillway

- Now Add Spillway starting at z = 2087+ ft.
 - Need to select a spillway equation:

FABLE 8.2.1 Spillway discharge equations			
Spillway type	Equation	Notation	
Uncontrolled over- flow ogee crest	$Q = CLH^{3/2}$	Q = discharge, cfs C = variable coefficient of discharge	
Annun and A		L = effective length of crest H = total head on the crest including velocity of approach head.	

 $Q = C LH^{3/2}$

- Use H = Pool Elev. Spillway Invert Elev. for the head on the spillway
- Need a weir coefficient

• Now Add Spillway starting at z = 2087+ ft.

 $Q = 0.49 \cdot \sqrt{2 * 32.2} \cdot LH^{3/2}$

 $\therefore C = 3.93$

• Now build a calculator for the spillway

- Now Add Spillway starting at z = 2087+ ft.
 - Spillway Calculator
 - Supply:
 - Bottom Elev.
 - Spillway Invert Elev.
 - Pool Elev.
 - Length
 - Computes:
 - P
 - P/H
 - C
 - Q

 Now Add Spillway starting at z = 2087+ ft.

- Systematically apply in 0.5 foot intervals (like all the rest) to build the spillway portion of the table.
- Use 2500 foot spillway width for the dam crest with a H = 0.5 feet

Combined Structures

- Elevation-Discharge Table
 - Ready for HEC-HMS or for homebrew level pool routing
 - Use same method for the crossing
 - Multiple culverts (multiply Q by how many culverts
 - Road surface is the spillway

Calibri (Body)					
	<u>∧ ö</u> -				
Edit : Font : Alignment : Num	ber				
Calibri (Body) 🔻 12 💌 🚍 General	•				
Paste B I U Align B I	<u>~</u> ,				
G30 🛟 🛞 ⊘ (• fx	-				
A B C D E	F				
1 Elevation-Discharge					
2					
CFS) S) ()					
v (C L S)					
Flo Flo					
eva billy veri					
7 2066.50 0.0 0 0 0					
8 2067.00 0.0 0 0 [°] 0.0					
9 2067.50 0.0 0 0 0 0.0					
38 2082.00 30.9 0 0 30.9 20 2002.50 22.1					
39 2082.50 32.1 0 0 32.1					
40 2083.00 33.4 0 0 33.4 41 2083.50 34.5 0 0 34.5					
42 2084.00 35.7 0 0 35.7					
43 2084.50 36.8 0 0 36.8					
44 2085.00 37.8 0 0 37.8					
45 2085.50 38.9 0 0 38.9					
46 2086.00 39.9 0 0 39.9					
47 2086.50 40.8 0 0 40.8					
48 2087.00 41.8 0 0 41.8 40 2007.50 43.7 400.005057					
49 2087.50 42.7 139.025357 0° 181.8					
51 2088 50 44 6 722 396048 0 767 0					
52 2089.00 45.5 1112.20286 0 1157.7					
53 2089.50 46.3 1554.35075 0 1600.7					
54 2090.00 47.2 2043.24712 0 2090.4					
55 2090.50 48.0 2574.78565 3475.63393 6098.4					
56					

Next Time

- Elevation-Discharge Functions
- HEC-HMS Workshop (if needed)