CE 3354 Engineering Hydrology

Lecture 20: Reservoir Storage and Discharge

Outline

- Elevation-Discharge Concepts
- Elevation-Discharge Tables

Elevation Discharge

- ElevationDischarge
- Determine pool area at different elevations
- Use hydraulic outlet features to estimate
 discharge

Elevation Discharge

- ElevationDischarge
- Determine pool area at different elevations
- Use hydraulic outlet features to estimate discharge

Elevation Discharge

- ElevationDischarge
- Determine pool area at different elevations
- Use hydraulic outlet features to estimate
 discharge

Elevation Discharge

- ElevationDischarge
- Determine pool area at different elevations
- Use hydraulic outlet features to estimate discharge

Elevation Determination

- Use map (or design drawings
- Reservoir:
- Bottom = 2065 ft .
- Riser:
- Invert= 2075 ft .
- Soffit = 2077 ft .
- Spillway
- Invert = 2087 ft .
- Width $=100 \mathrm{ft}$.
- Dam Crest
- Invert = 2090 ft.
- Width $=2500 \mathrm{ft}$

Riser (Culvert) Structure

- Riser:
- Build an elevation-discharge table
- From elevation 2065 to 2067 ft. use Manning's equation in a circular conduit (2 ft . diameter)
- We are assuming the riser is a horizontal culvert
- From 2067 to 2090 feet deep use orifice equation (neglecting frictional losses)
- Save the table in a spreadsheet for building composite elevation-discharge table for all hydraulic elements

Riser (Culvert) Structure

- Modify Manning's Calculator

$Q=\frac{1.49}{n} A R^{2 / 3} S^{1 / 2}$

n

CMM pg 162

,	A	B	C	D	E
1	Circular Pipe Flow Computations US Customary Units Version				
2					
3	INPUT DATA				
4	Manning's n	0.013			
5	Invert Elev.	2065	<=Feet		
6	Soffit Elev.	2067	<=Feet		
7	Pool Elev.	2065.001	<=Feet		
8	Depth	0.001	<=Feet		
9	Diameter	2	<=Feet		
10	Slope	0.003	<=Dimensionless		
11	INTERMEDIATE COMPUTATIONS				
12	Angle	0.0447251	<=Radians		
13	Area	5.962E-05	<=Feet Squared		
14	Perimeter	0.0894502	<=Feet		
15	Radius	0.0006665	<=Feet		
16	DISCHARGE AND VELOCITY				
17	Discharge	2.856E-06	<=Cubic Feet per Second		
18	Velocity	0.0479007	<=Feet per Second		

Riser (Culvert) Structure

- Modify Manning's Calculator
$Q=\frac{1.49}{n} A R^{2 / 3} S^{1 / 2}$
n

CMM pg 162

\square	A	B	C	D	E
1	Circular Pipe Flow Computations US Customary Units Version				
2					
3	INPUT DATA				
4	Manning's n	0.013			
5	Invert Elev.	2065	<=Feet		
6	Soffit Elev.	2067	<=Feet		
7	Pool Elev.	2065.5	<=Feet		
8	Depth	0.5	<=Feet		
9	Diameter	2	<=Feet		
10	Slope	0.003	<=Dimensionless		
11	INTERMEDIATE COMPUTATIONS				
12	Angle	1.0471976	<=Radians		
13	Area	0.6141848	<=Feet Squared		
14	Perimeter	2.0943951	<=Feet		
15	Radius	0.2932517	<=Feet		
16	DISCHARGE AND VELOCITY				
17	Discharge	1.7018827	<=Cubic Feet per Second		
18	Velocity	2.7709618	<=Feet per Second		

Riser (Culvert) Structure

- Modify Manning's Calculator
$Q=\frac{1.49}{n} A R^{2 / 3} S^{1 / 2}$
n

$\underline{1}$	A	B	C	D	E
1	Circular Pipe Flow Computations US Customary Units Version				
2					
3	INPUT DATA				
4	Manning's n	0.013			
5	Invert Elev.	2065	<=Feet		
6	Soffit Elev.	2067	<=Feet		
7	Pool Elev.	2067	<=Feet		
8	Depth	2	<=Feet		
9	Diameter	2	<=Feet		
10	Slope	0.003	<=Dimensionless		
11	INTERMEDIATE COMPUTATIONS				
12	Angle	3.1415927	<=Radians		
13	Area	3.1415927	<=Feet Squared		
14	Perimeter	6.2831853	<=Feet		
15	Radius	0.5	<=Feet		
16	DISCHARGE AND VELOCITY				
17	Discharge	12.424152	<=Cubic Feet per Second		
18	Velocity	3.9547304	<=Feet per Second		

Riser (Culvert) Structure

- Now Switch to Modified Orifice Equation Calculator

$Q=C_{d} A \sqrt{2 g h}$

Figure 8.4. Schematic diagram of the flow through an orifice

This can be simplified by making the following assumptions: (1) the pressure at both points is atmospheric, therefore $p_{1}=p_{2}$; (2) the surface area of the pool A_{1} is very large relative to the

FHWA-NHI-02-001 pp. 8-9 - 8-10

Riser (Culvert) Structure

- Now-Switch to Modified Orifice
Equation Calculator

$Q=C_{d} A \sqrt{2 g h}$

gigure 8.4. Schematic diagram of the flow through an orifice

This can be simplified by making the following assumptions: (1) the pressure at both points is atmospheric, therefore $p_{1}=p_{2}$; (2) the surface area of the pool A_{1} is very large relative to the

FHWA-NHI-02-001 pp. 8-9 - 8-10

Spillway Structure

- Now Add Spillway starting at $\mathrm{Z}=2087+\mathrm{ft}$.
- Need to select a spillway equation:

Spillway type	Equation	Notation
Uncontrolled overflow ogee crest	$Q=C L H^{3 / 2}$	$\begin{aligned} Q= & \text { discharge, cfs } \\ C= & \text { variable coefficient of } \\ & \text { discharge } \end{aligned}$
		$L=$ effective length of crest $H=$ total head on the crest including velocity of approach head.

Spillway Types $=$

Spillway Structure

- Now Add Spillway starting at $\mathrm{Z}=2087+\mathrm{ft}$.
- Definitions of weir terms - namely approach depth

Figure 8.5. Schematic diagram of flow over a sharp-crested weir

FHWA-NHI-02-001 pp. 8-9 - 8-10

Spillway Structure

- Now Add Spillway starting at $z=2087+\mathrm{ft}$.
- Need to select a spillway equation:

TABLE 8.2.1 Spillway discharge equations		
Spillway type	Equation	Notation
Uncontrolled overflow ogee crest	$Q=C L H^{3 / 2}$	$\begin{aligned} Q= & \text { discharge }, \text { cfs } \\ C= & \text { variable coefficient of } \\ & \text { discharge } \end{aligned}$
		$L=$ effective length of crest $H=$ total head on the crest including velocity of approach head.

$$
Q=C L H^{3 / 2}
$$

- Use H = Pool Elev. - Spillway Invert Elev. for the head on the spillway

FHWA-NHI-02-001 pp. 8-9-8-10

Spillway Structure

- Now Add Spillway starting at $\mathrm{Z}=2087+\mathrm{ft}$.
- Need to select a spillway equation:

TABLE 8.2.1
Spillway discharge equations

Spillway type	Equation	Notation
Uncontrolled over-	$Q=C L H^{3 / 2}$	$Q=$ discharge, cfs
flow ogee crest		$\overline{C=}=\begin{aligned} & \text { variable coefficient of } \\ & \text { discharge } \end{aligned}$
극		$L=$ effective length of crest
${ }^{-}=$		$H=$ total head on the crest including velocity of approach head.

$$
Q=C L H^{3 / 2}
$$

- Use H = Pool Elev. - Spillway Invert Elev. for the head on the spillway
- Need a weir coefficient

FHWA-NHI-02-001 pp. 8-9 - 8-10

Spillway Structure

- Now Add Spillway starting $\operatorname{at} \mathrm{z}=2087+\mathrm{ft}$.

$$
Q=0.49 \cdot \sqrt{2 * 32.2} \cdot L H^{3 / 2}
$$

$$
\therefore C=3.93
$$

- Now build a calculator for the spillway

FHWA-NHI-02-001 pp. 8-9 - 8-10

spillway Structure

Spillway Structure

- Now Add Spillway starting at Z = 2087+ ft.
- Systematically apply in 0.5 foot intervals (like all the rest) to build the spillway portion of the table.
- Use 2500 foot spillway width for the dam crest with a $\mathrm{H}=0.5$ feet

Combined Structures

- Elevation-Discharge Table
- Ready for HEC-HMS or for homebrew level pool routing
- Use same method for the crossing
- Multiple culverts (multiply Q by how many culverts
- Road surface is the spillway

Next Time

- Elevation-Discharge Functions
- HEC-HMS Workshop (if needed)

