CE 3354 Engineering Hydrology

Lecture 17: Hydrograph Routing

Outline

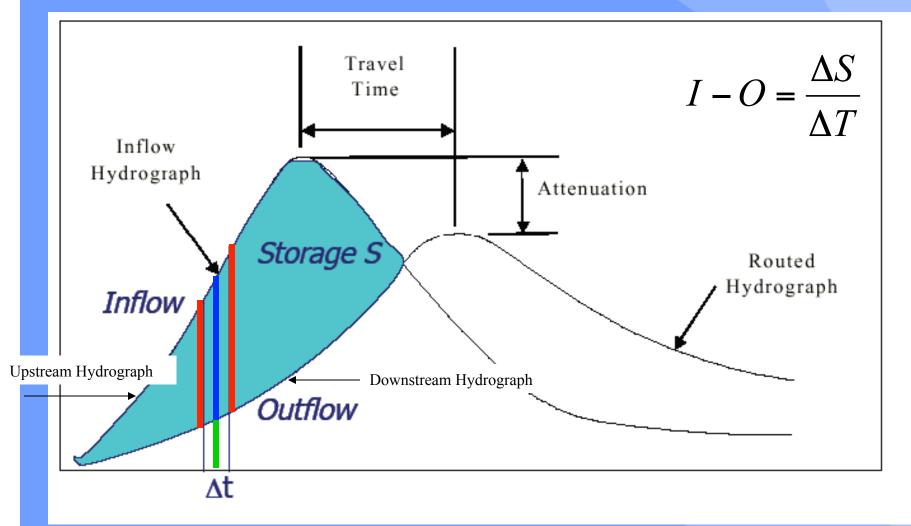
- Routing Hydrographs
 - Background
 - Hydraulic Routing
 - Hydrologic Routing
- HEC-HMS Representations

Routing

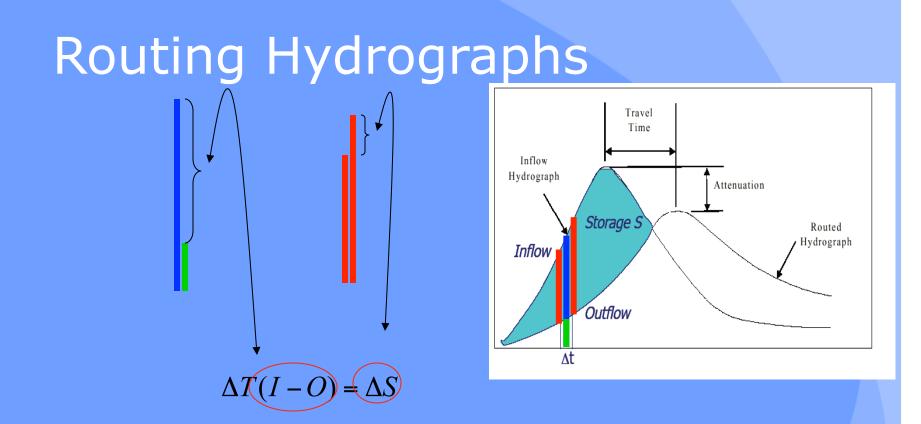
- Routing simulates movement of a discharge signal (flood wave) through reaches
 - Accounts for storage in the reach and flow resistance.
 - Allows modeling of a basin comprised of interconnected sub-basins
 - Hydraulic routing uses continuity and momentum (St. Venant Equations)
 - Hydrologic routing uses continuity equation

Routing-Hydrologic and Hydraulic

- Problem:
 - you have a hydrograph at one location (I)
 - you have reach characteristics (S = f(I,O))

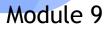

Need:

a hydrograph at different location (O)


This is a "routing" situation.
The "reach" can be a reservoir or some similar feature

Routing Hydrographs

Module 9



• These "bar-heights" related by the routing table

Hydrologic Routing

- Hydrologic routing techniques use the equation of continuity and some linear or curvilinear relation between storage and discharge within the river.
- Methods include:
 - Lag Routing (no attenuation)
 - Modified Puls (level pool routing)
 - Muskingum-Cunge (almost a hydraulic model)

- Technique to approximate the outflow hydrograph passing through a reservoir with the pool (water surface) always level.
- Uses a reach (reservoir) mass balance equation, and

$$Q_{\rm in} - Q_{\rm out} = \frac{\Delta S}{\Delta t}$$

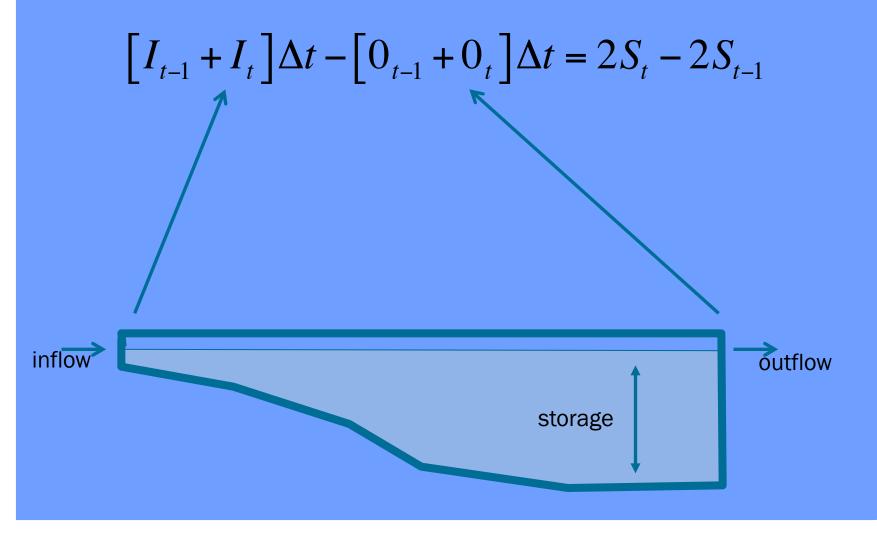
• a storage-outflow relationship.

$$Q_{\rm out} = f(S)$$

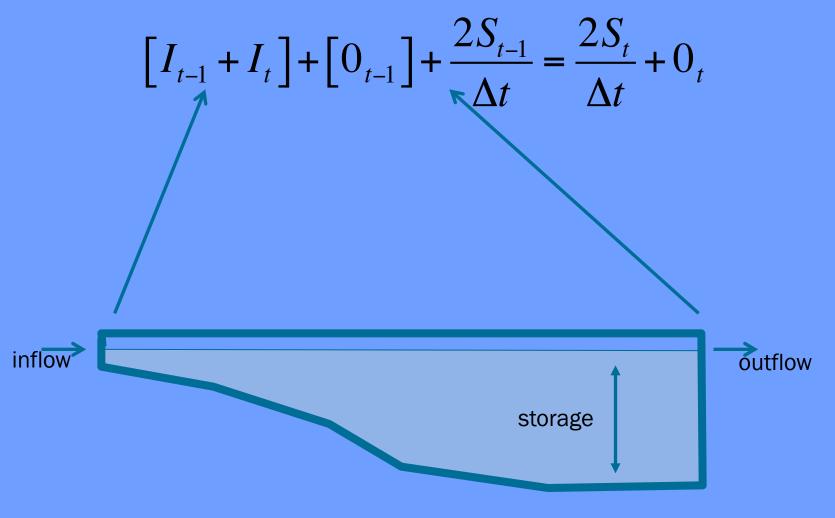
• Variable names are typically changed:

$$Q_{\rm in} => I_t$$

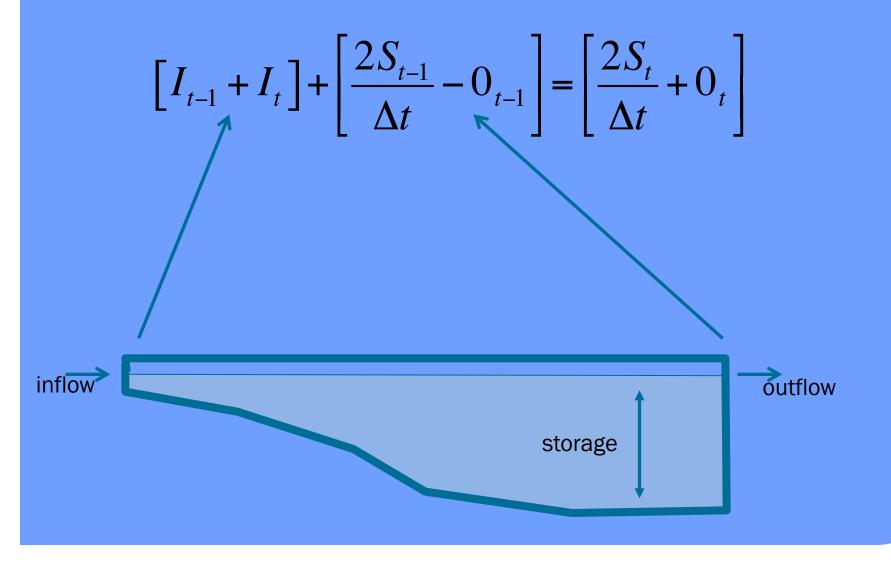
$$Q_{out} \Rightarrow O_t$$


• So the reach mass balance is

$$\overline{I} - \overline{O} = \frac{\Delta S}{\Delta t}$$

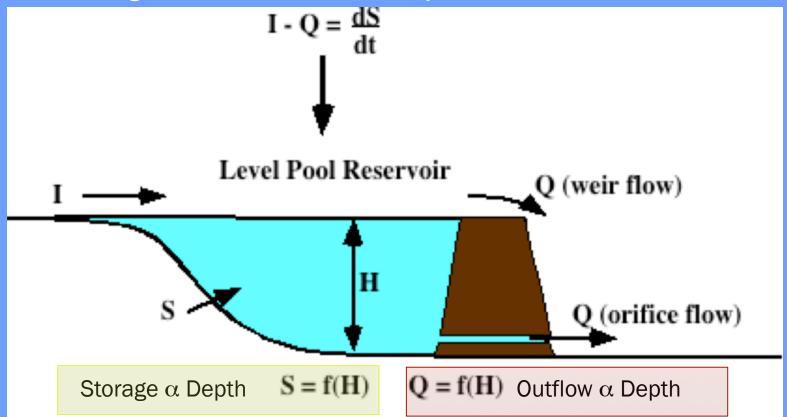

- The time averaged values are taken at the beginning and end of the time interval, and the first-order difference quotient is used to approximate the rate of change in storage.
- The reach mass balance is then

$$\frac{I_t + I_{t-\Delta t}}{2} - \frac{O_t + O_{t-\Delta t}}{2} = \frac{S_t - S_{t-\Delta t}}{\Delta t}$$


• Then rearrange the reach mass balance to isolate the storage and outflow at the end of the time step

• Then rearrange the reach mass balance to isolate the storage and outflow at the end of the time step

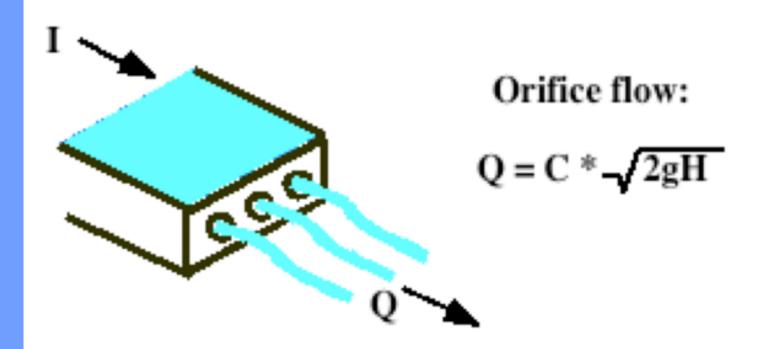
• A bit more algebra and we get Eqn 8.2.3 in CMM (pg. 246)



• The equation has two unknowns, so need another relationship. That's where the Storage-Outflow function comes into play

$$\begin{bmatrix} I_{t-1} + I_t \end{bmatrix} + \begin{bmatrix} \frac{2S_{t-1}}{\Delta t} - 0_{t-1} \end{bmatrix} = \begin{bmatrix} \frac{2S_t}{\Delta t} + 0_t \end{bmatrix}$$
$$O = f(S)$$

Storage-Outflow Concepts


Thus storage and outflow can be related into the Storage-Outflow function

• Outflow over a weir (or spillway, or similar structure)

Weir flow; critical depth model

Outflow through orifice (culvert, or similar structure)

Orifice flow; energy loss model

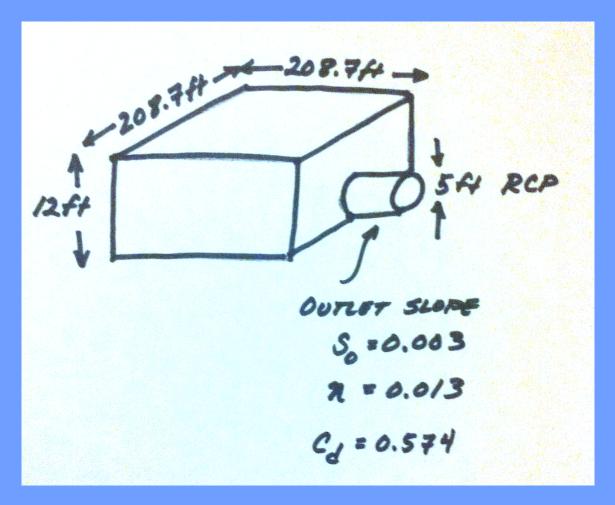
 Use outlet-works hydraulics, and depth-areastorage to build a storage-outflow function

O = f(S)

 Once we have that function, then build an auxiliary function (tabulation) called the storage-indication curve (function)

$$O = g(\frac{2S}{\Delta t} + O)$$

 Once have the storage-indication curve then can use the reach mass balance to estimate the numerical value of :


 $\frac{2S_t}{\Delta t} + O_t$

 Then use the storage-indication curve to find the value of outflow, subtract than from the result above, and now have both the end-ofinterval outflow and storage.

• Example - Similar to CMM 8.2.1 pg 247-252; but

- Show how the storage-indication curve derived using hydraulics
- Illustrate use of spreadsheet programming needed to make the actual computations

- 1-acre detention basin.
 - Vertical walls
 - Drained by a 5foot RCP
 - 12-foot maximum depth

• Tasks:

- Build a depth-storage table
- Build a depth-outflow table
 - From 0 -5 feet deep use Manning's equation in a circular conduit
 - From 5+ to 12 feet deep use Orifice equation (neglecting frictional losses)
- Save a depth-storage-outflow table for use in storage-indication curve
- Build the routing table (apply the reach mass balance)

• Manning's Equation Calculator

$$Q = \frac{1.49}{n} A R^{2/3} S^{1/2}$$

CMM pg 162

OOO CircularChannelMannings-US.xls												
Yearch in Sheet Search in Sheet												
Vero	Verdana • 10 • B I U = = = A0 >>											
1	Home	Layout	Tables Charts		>>	× ☆ -						
_	F12	+ 8	⊘ (• <i>f</i> x			-						
	Α	B	С	D	E	F						
1	Circular Pipe F											
2	US Customary	Units Version	on									
3	INPUT DATA					i						
4	Manning's n	0.013										
5	Depth	5	<=Feet									
6	Diameter	5										
7	Slope	0.003	<=Dimensionless									
8	INTERMEDIATI	E COMPUTA	TIONS									
9	Angle	3.1415927	<=Radians									
10	Area	19.634954	<=Feet Squared									
11	Perimeter	15.707963	<=Feet									
12	Radius	1.25	<=Feet									
13	DISCHARGE AN	ID VELOCITY	,									
14	Discharge	143.03427	<=Cubic Feet per Second			3						
15	Velocity		<=Feet per Second			4						
16			•									
17						X						
18												
10	She	et1 +										
						· · · · · · · · · · · · · · · · · · ·						

• Orifice Equation Calculator

 $Q = C_d A \sqrt{2gh}$

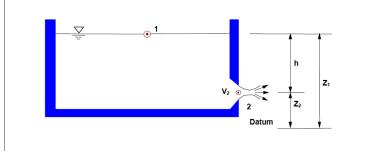


Figure 8.4. Schematic diagram of the flow through an orifice

This can be simplified by making the following assumptions: (1) the pressure at both points is atmospheric, therefore $p_1 = p_2$; (2) the surface area of the pool A_1 is very large relative to the

FHWA-NHI-02-001 pp. 8-9 - 8-10

		O O O O OrificeDichargeCalculatorUSCustomary.xlsx									
🕙 🛅 🗊 🔚 🚔 🔏 🔍 Search in Sheet 🛛 🚿											
Calibri (Body) • 12 • B I U		AO \$	% ≫								
B20 \ddagger \bigotimes \bigcirc fx $=B6*B19*SQRT(2*32.2*B18)$ A B C											
1 Horizontal Orifice Discharge Calculator US		•	D								
2	Jeusie		-								
3 INPUT VALUES											
4 Orifice Diameter	5	FT									
5 Depth above top of Orifice	7	FT									
6 Orifice Coefficient	0.574	4 Dimensionless									
7											
8			_								
9	1		_								
10 Depth above top of orifice											
11			_								
12	4		_								
13 14 Orifice diameter	V ₂	0	_								
	-		_								
16		1.00	_								
17 COMPUTED VALUES											
18 Depth to Orifice centerline	9.5	FT	_								
	19.63										
	278.8 CFS										
, 21											
22)								
23											
Sheet1 +											

Level Pool RoutingDEPTH-STORAGE-OUTFLOW

				ayout in	abies	Unar to	omarcart	i ormulas	Data			-
		H1	8	: 80	(= fx							
		Α	В	С	D	E		F			G	
	3	1-acre	, vertical wa	alls								
	4	5-foot	RCP outlet	(assume shor	t)							
l	5	10-foo	t max deptl	h								
	6											
	7	Metho										
	8						ate Q vs Depth f					
9 Use Orifice equation (e.g. FHWA, TxDOT) for estimate Q vs Depth for 5 to 10 feet												
	10	10 Use Depth*Area to estimate storage in cubic feet										
	11					DELTA T				10	MIN	
	12											
	13											
		DEPTH(FT)	OUTFLOW(CFS)	JONE-HOW	STORAGE(FT^3)	2S/Dt + O(CFS)				REMARKS		
ļ	14		-							2		
	15	0		Mannings	0	0						
	16	0.5		Mannings	21780	75.586243	= 2*D	16/(\$F\$11*60))+B16			
	17	1		Mannings	43560	157.7257						
	18	1.5		Mannings	65340							
	19	2		Mannings	87120	338.6008						
	20	2.5		Mannings	108900							
	21	3		Mannings	130680							
	22	3.5		Mannings	152460							-+
	23	4		Mannings	174240				0.504 611			-+
	24	4.5		Mannings	196020		Recall max flow	v in circular is at 85	-95% fill dep	th		-+
	25	5		Mannings	217800							-+
	26	5	143.0343		217800		Adjust Cd to m	atch flow at 5ft de	ер			-+
	27	5.5	156.6862		239580							$ \longrightarrow $
	28	6	169.2404		261360							
	29	6.5	180.9256		283140					_		
	30	7	191.9006		304920					_		
	31	7.5	202.281	Orifice	326700	1291.281						

 Copy the depth-storage-outflow to the routing table (we are going to build) - we need it as a tabulation so we can use INDEX and MATCH to get values from the table for interpolation (Eq. at bottom CMM pg 249)

$$y = y_1 + \frac{(y_2 - y_1)}{(x_2 - x_1)}(x - x_1)$$

Copy of Outflow, 2S/DT+O and Storage Tabulations

		• •										
	A	B	С									
1	STORAGE-INDICATION-CURVE											
	O (CFS)	2S/Dt + O	STORAGE									
2		(CFS)	(FT^3)									
3	0	0	0									
4	2.98624343	75.5862434	21780									
5	12.5256993	157.725699	43560									
6	28.0105714	245.810571	65340									
7	48.2007997	338.6008	87120									
8	71.5171358	434.517136	108900									
9	96.0961739	531.696174	130680									
10	119.753679	627.953679	152460									
11	139.811264	720.611264	174240									
12	152.445547	805.845547	196020									
13	143.034272	869.034272	217800									
14	156.686194	955.286194	239580									
15	169.240433	1040.44043	261360									
16	180.925633	1124.72563	283140									
17	191.900613	1208.30061	304920									
18	202.281007	1291.28101	326700									
19	212.15411	1373.75411	348480									
20	221.587741	1455.78774	370260									
21	230.635833	1537.43583	392040									
22	239.342115	1618.74212	413820									
23	247.742626	1699.74263	435600									
24	255.867484	1780.46748	457380									
25	263.742165	1860.94217	479160									
26	271.388449	1941.18845	500940									
27	278.825126	2021.22513	522720									
28												

Routing Table

• Left side are "known" values

	E9	\$ ⊗	💿 (• fx						
	A	В	С	D	E	F	G	Н	
29									
30	ROUTING-TA	BLE							
31									TABLE LOOKUP
32	INDEX	TIME(MIN)	TIME(SEC)	INFLOW(CFS	l_t + l_t-Dt	DT (MIN)	2S/DT-O	2S/DT+O	2S/DT+O_low
33	1	0	0	0	0	10	0		
34	2	10	600	60	60	10	55.2590684	60	0
35	3	20	1200	120	180	10	1 <mark>82.947727</mark>	235.259068	157.7256993
36	4	30	1800	180	300	10	315.414811	482.947727	434.5171358
37	5	40	2400	240	420	10	<mark>4</mark> 51.403622	735.414811	720.6112637
38	6	50	3000	300	540	10	667.381692	991.403622	955.2861942
39	7	60	3600	360	660	10	914.176235	1327.38169	1291.281007
40	8	70	4200	320	680	10	1120.75304	1594.17624	1537.435833
41	9	80	4800	280	600	10	1221.03844	1720.75304	1699.742626
42	10	90	5400	240	520	10	1237.24044	1741.03844	1699.742626
43	11	100	6000	200	440	10	1186.42257	1677.24044	1618.742115
44	12	110	6600	160	360	10	1083.2263	1546.42257	1537.435833
45	13	120	7200	120	280	10	9 <mark>41.438711</mark>	1363.2263	1291.281007
46	14	130	7800	80	200	10	775.197957	1141.43871	1124.725633
47	15	140	8400	40	120	10	6 <mark>00.847057</mark>	895.197957	869.0342717
48	16	150	9000	0	40	10	395.757641	640.847057	627.9536787

• Routing Table

• Middle and right part is table lookup and calculations

	F	G	Н	I	J	K	L	M	N	0	Р	
29												
30												
31				TABLE LOOKUP						INTERPOLATI	FROM TABLE	
32	DT (MIN)	2S/DT-O	2S/DT+O	2S/DT+O_low	O_low	S_low	2S/DT + O_hi	O_hi	S_hi	O_interpolate	S_interpolate	
33	10	0								0	0	
34	10	55.2590684	60	0	0	0	75.58624343	2.986243427	21780	2.370465808	17288.86026	
35	10	182.947727	235.259068	157.7256993	12.52569929	43560	245.8105714	28.01057136	65340	26.15567085	62731.01926	
36	10	315.414811	482.947727	434.5171358	71.51713583	108900	531.6961739	96.09617392	130680	83.76645791	119754.3806	
37	10	451.403622	735.414811	720.6112637	139.8112637	174240	805.8455468	152.4455468	196020	142.0055944	178022.7649	
38	10	667.381692	991.403622	955.2861942	156.6861942	239580	1040.440433	169.2404326	261360	162.010965	248817.7971	
39	10	914.176235	1327.38169	1291.281007	202.2810069	326700	1373.75411	212.1541099	348480	206.6027284	336233.6891	
40	10	1120.75304	1594.17624	1537.435833	230.6358331	392040	1618.742115	239.3421151	413820	236.7115991	407239.3909	
41	10	1221.03844	1720.75304	1699.742626	247.7426258	435600	1780.467484	255.8674837	457380	249.8572979	441268.7218	
42	10	1237.24044	1741.03844	1699.742626	247.7426258	435600	1780.467484	255.8674837	457380	251.898999	446741.8327	
43	10	1186.42257	1677.24044	1618.742115	239.3421151	413820	1699.742626	247.7426258	435600	245.408939	429549.4513	
44	10	1083.2263	1546.42257	1537.435833	230.6358331	392040	1618.742115	239.3421151	413820	231.5981329	394447.3297	
45	10	941.438711	1363.2263	1291.281007	202.2810069	326700	1373.75411	212.1541099	348480	210.8937941	345699.7516	
46	10	775.197957	1141.43871	1124.725633	180.9256328	283140	1208.300613	191.9006128	304920	183.120377	287495.5003	
47	10	600.847057	895.197957	869.0342717	143.0342717	217800	955.2861942	156.6861942	239580	147.1754502	224406.7521	
48	10	395.757641	640.847057	627.9536787	119.7536787	152460	720.6112637	139.8112637	174240	122.5447079	155490.7047	
49	10	271 567488	395 757641	338 6007997	48 2007997	87120	434 5171358	71 51713583	108900	62 09507651	100098.7694	

		D		6										
		B		С										
1	STORAGE-IND								Гас	л Га				
-	O (CFS)	2S/Dt + (5	STORAGE					$ 2S_{t-1} $	$\left - \right ^{2}$	$2S_{t}$			
2		(CFS)		(FT^3)	ר			$\left[I_{t-1}+I_t\right]$	+	$ 0_{t-1} = -$	$\frac{1}{\Lambda t} + 0_t$			
3	0		0	0						JL	Δl			
4	2.98624343			21780						L.,				
5	12.5256993			43560	-									
6	28.0105714	245.8105	71	65340										
7	48.2007997	338.60	08	87120										
8	71.5171358	434.5171	36	1.08900										
9	96.0961739	531.6961	74	1,2680										
10	119.753679	627.9536	79	152460										
11	139.811264	720.6112	64	1742 10										
12	152.445547	805.8455	47	196020					/					
13	143.034272	869.0342	72	217800										
14	156.686194			239580										
15	169.240433	1040.440	43	261360										
16	180.925633			283140		0	V (C)	x						
17	191.900613			304920			Н		J	K	L	М		N
18	202.281007			326700										
19	212.15411			348480										
20	221.587741			370260			2S/DT+O	TABLE JOOKUP 2S/D7+O_low	O_lov	S_low	2S/DT + O_h	ni O_ni	S_hi	
21	230.635833			392040		0	· ·	23/D7+0_10W		3_10w	23/01 + 0_1		3_m	
22	239.342115			413820		0684	60	0		0	0 75.586243	343 2.98624342	7	21780
23	247.742626			435600			235.259068		12.5256992	9 435				65340
24	255.867484			457380		1811	482.947727	434.5171358	71.5171358	3 1089	00 531.69617	739 96.0961739	2	130680
25	263.742165			479160		3622	735.414811	720.6112637	139.811263		40 805.84554	152.445546	8	196020
26	271.388449			500940			991.403622		156.6861942				_	261360
27	278.825126			522720			1327.38169		202.281006				_	348480
28	270.025120	2021.225	13	522720			1594.17624		230.635833				_	413820
20		4	2	10 12	27.2		1720.75304 1741.03844		247.742625				_	457380 457380
		4					1677.24044							435600
		4					1546.42257		230.635833					413820
		4	_	10 94					202.281006				_	348480
		4					1141.43871		180.925632				_	304920
		4	7	10 60	0.84	7057	895.197957		143.034271					239580
		4	8				640.847057		119.753678	7 1524			7	174240
		4	9	10 27	1 56	7488	395 757641	338 6007997	48 200799	7 871	20 434 51713	358 71 5171358	3	108900

<u>v – v.</u> ±	$\frac{(y_2 - y_1)}{(x - x_1)}$
$y - y_1 +$	$\frac{(y_2 - y_1)}{(x_2 - x_1)}(x - x_1)$

L

Μ

Ρ

0

Ν

JX

T

J

Κ

Н

		TABLE LOOKUP						INTERPOLATE FROM TABLE		
	2S/DT+O	2S/DT+O_low	O_low	S_low	2S/DT + O_hi	O_hi	S_hi	O_interpolate	S_interpolate	
0								0	0	
684	60	0	0	0	75.58624343	2.986243427	21780	2.370465808	17288.86026	
27	235.259068	157.7256993	12.52569929	43560	245.8105714	28.01057136	65340	26.15567085	62731,01926	
811	482.947727	434.5171358	71.51713583	108900	531.6961739	96.09617392	130680	83.76645791	119754.3806	
522	735.414811	720.6112637	139.8112637	174240	805.8455468	152.4455468	196020	142.0055944	178072.7649	
592	991.403622	955.2861942	156.6861942	239580	1040.440433	169.2404326	261360	162.010965	248317.7971	
35	1327.38169	1291.281007	202.2810069	326700	1373.75411	212.1541099	348480	206.6027284	336233.6891	
804	1594.17624	1537.435833	230.6358331	392040	1618.742115	239.3421151	413820	236.7115991	407239.3909	
844	1720.75304	1699.742626	247.7426258	435600	1780.467484	255.8674837	457380	249.8572979	441268.7218	
044	1741.03844	1699.742626	247.7426258	435600	1780.467484	255.8674837	457380	251.898999	446741.8327	
257	1677.24044	1618.742115	239.3421151	413820	1699.742626	247.7426258	435600	245.408939	429549.4513	
.63	1546.42257	1537.435833	230.6358331	392040	1618.742115	239.3421151	413820	231.5981329	394447.3297	
11	1363.2263	1291.281007	202.2810069	326700	1373.75411	212.1541099	348480	210.8937941	345699.7516	
957	1141.43871	1124.725633	180.9256328	283140	1208.300613	191.9006128	304920	183.120377	287495.5003	
)57	895.197957	869.0342717	143.0342717	217800	955.2861942	156.6861942	239580	147.1754502	224406.7521	
641	640.847057	627.9536787	119.7536787	152460	720.6112637	139.8112637	174240	122.5447079	155490.7047	
188	395 757641	338 6007997	48 2007997	87120	434 5171358	71 51713583	108900	62.09507651	100098 7694	

- The full spreadsheet, with the interpolation function as an Excel 94 macro sheet (you could code in place, will have a few more columns) is on server as Routing Example.
- Such computations are a lot easier to perform in HEC-HMS because it handles (1) building the routing table and (2) selecting a decent time step
- Can also use level pool routing for a stream reach (next meeting).

Reservoir Concepts

Reservoir

- A pond, lake, or basin, either natural or artificial, for the storage, regulation, and control of water.
 - Regulated reservoir
 - Outflow controlled by moveable gates and valves.
 - Head, and valve settings determine outflow.
 - Unregulated reservoir.
 - Outflow controlled by fixed weirs and orifices.
 - Head and constructed weir height determine outflow.

Reservoir Storage

Storage Representations

- Storage vs. Discharge
- Storage vs. Elevation
- Surface Area vs. Elevation
- **Discharge Representations**
- Spillways, Weirs
- Orifices, Sluice gates
- Pumps
- Dam Breach

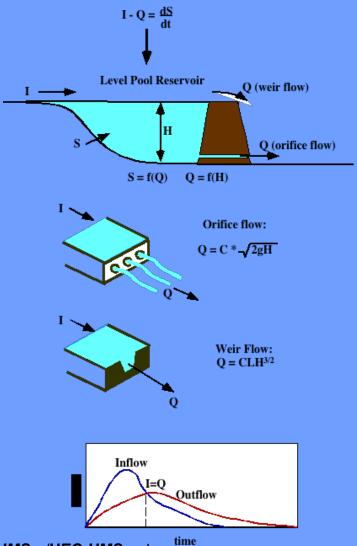
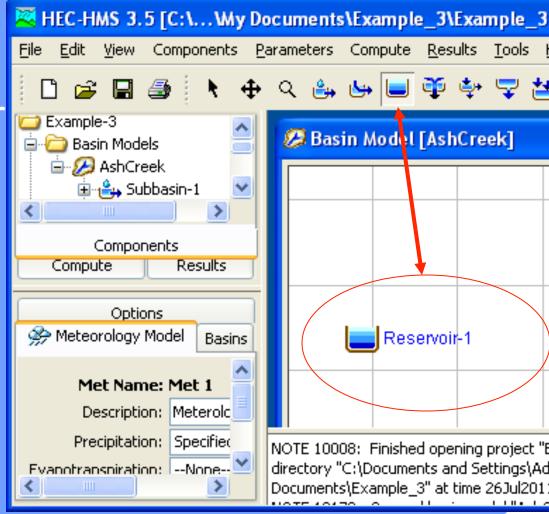
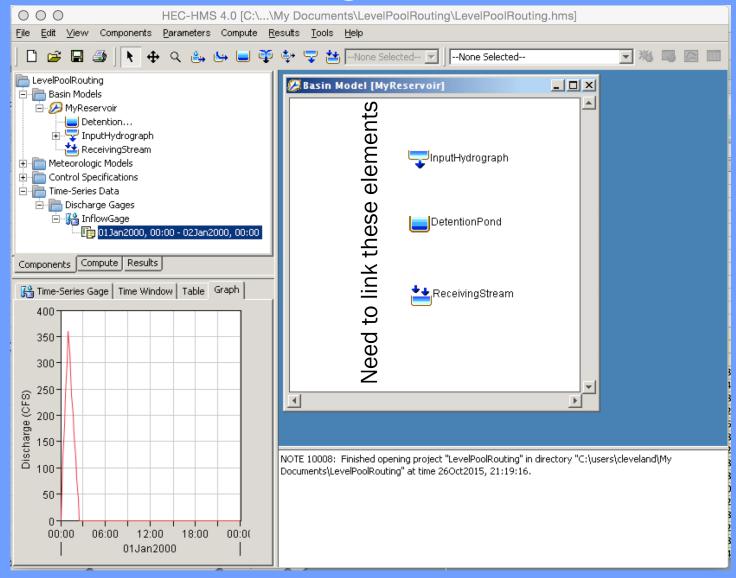
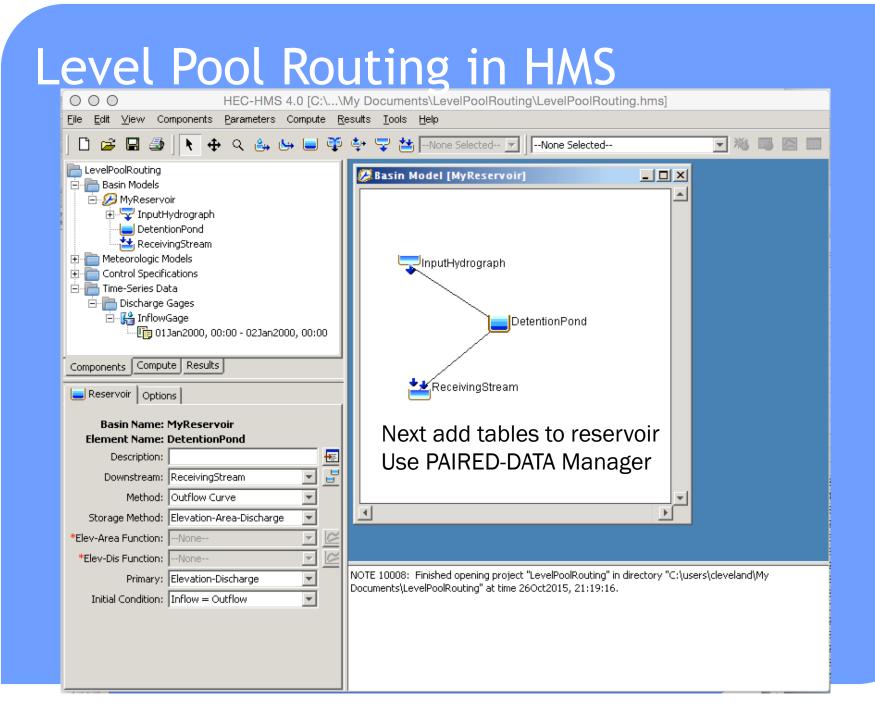



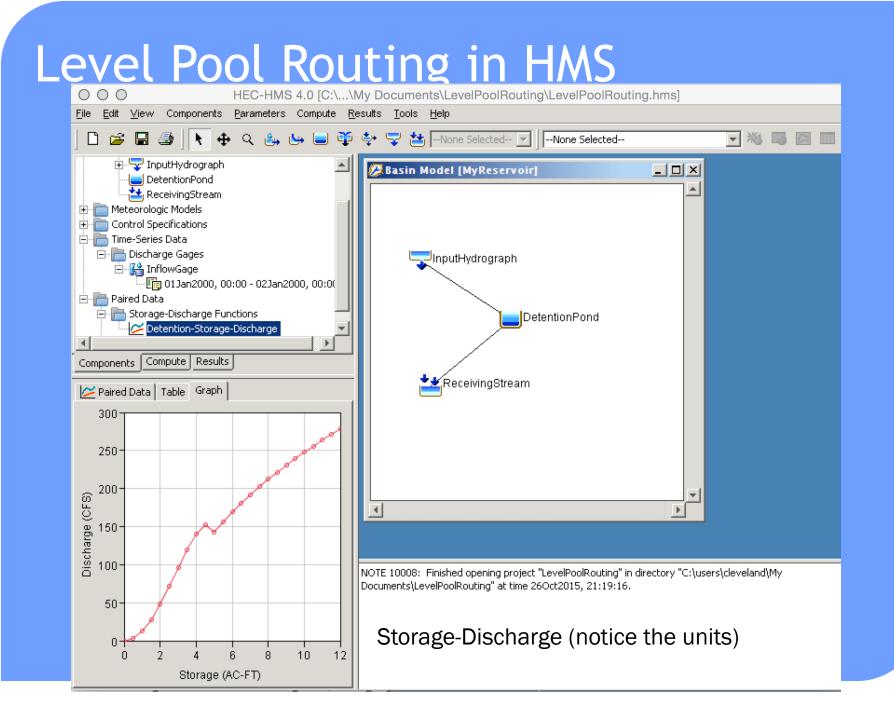
Image from *ftp://ftp.crwr.utexas.edu/pub/outgoing/Robayo/HECHMS.../HEC-HMS.ppt*

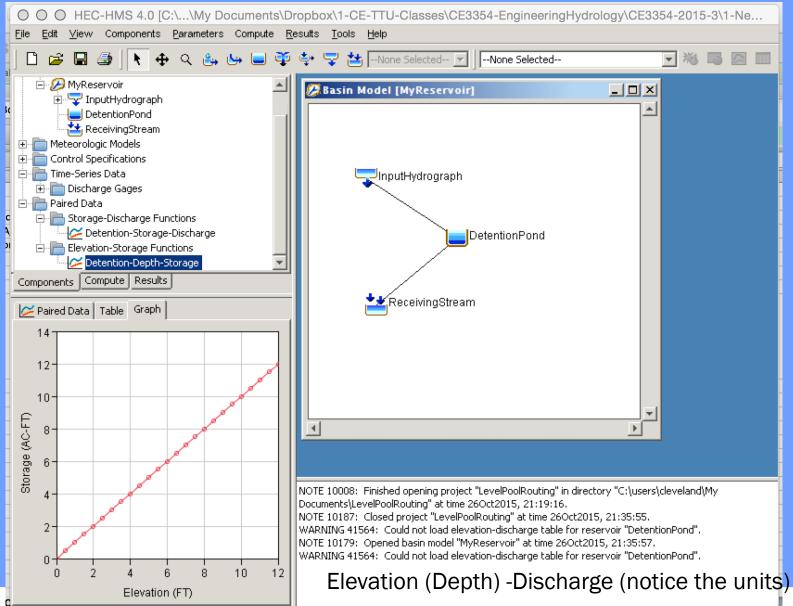
Reservoir Storage

 In HEC-HMS reservoirs (and detention basins) ar treated as a hydrologic element in the basin model

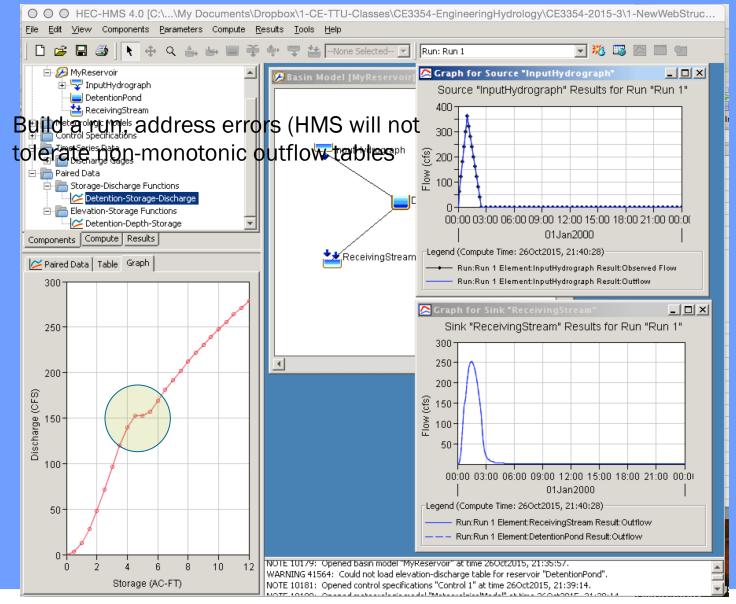


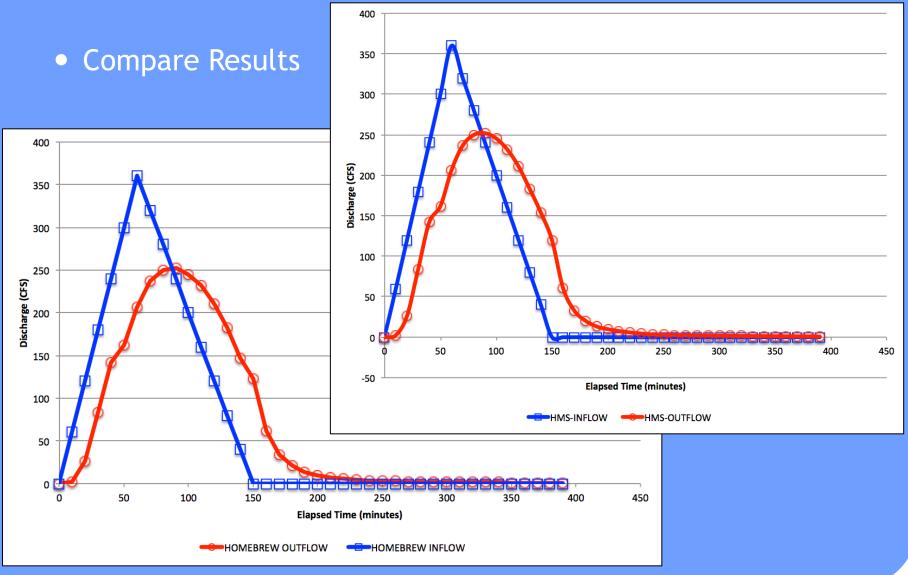

Reservoir Storage


- Accounts for storage
- Flows are "routed" through a resrvoir
 - Level pool routing
 - Orifice flow
 - Weir flow


🔀 НЕС-НМЅ 3.5 [С	:\\My Doci	uments\E>	ample_3	3\Examp	le_3.hms]
File Edit View Com	iponents Para	meters Co	mpute Re	esults To	ools Help
🗋 😂 🖬 🎒	₩ ⊕ ⊂	λ 🚑 🔄	• 🔲 🗳	i 🤹 🤤	2 📥 🏁 📖
AshCreek	ir-1 idels			<	Basin Mod
Reservoir Option:	5				
Basin Name: / Element Name: I Description:					R(
Downstream:	None		~		NOTE 10008:
	Outflow Curve		*		Finished opening
Storage Method:		Discharge	~		project "Example-3 in directory
	None		~	R	"C:\Documents and
*Elev-Dis Function:			~	6	Settings\Administra or\My
	Elevation-Disch	-	*		Documents\Exampl
Initial Condition:	Inflow = Outflo	w	~	·	_3" at time 26Jul2011, 13:32:21.

- Repeat the example (we have done the hard work of building the storage-indication tables) in HMS
- Tasks:
 - Build an HMS Model use Source, Reservoir, and Sink to capture the various inflow and outflow computations.
 - Time Series Manager to build a discharge gage for inflow
 - All the heavy lifting is in the reservoir specification
 - Met model is required, but type is -NONE—
 - Set time step to 10 minutes (to be same as example)





○ ○ HEC-HMS 4.0 [C:\...\My Documents\Dropbox\1-CE-TTU-Classes\CE3354-EngineeringHydrology\CE3354-2015-3\1-Ne... File Edit View Components Parameters Compute Results Tools Help 🕂 🔍 💩 🍉 🔲 🍄 🦆 😴 📩 --None Selected-- 🔽 --None Selected-- 🛛 🖓 -🖻 💋 MyReservoir 💯 Basin Model [MyReservoir] - 🗆 🗆 🗄 🖵 InputHydrograph DetentionPond 📥 ReceivingStream 📄 Meteorologic Models +... Control Specifications 🖻 🔚 Time-Series Data InputHydrograph 🗄 📄 Discharge Gages 🕯 🗄 🔚 Paired Data 🗄 🔚 Storage-Discharge Functions 🕼 Detention-Storage-Discharge DetentionPond E- Elevation-Storage Functions 🜽 Detention-Depth-Storage Components Compute Results ReceivingStream E Reservoir Options Basin Name: MyReservoir Element Name: DetentionPond Description: Downstream: ReceivingStream Method: Outflow Curve Storage Method: Elevation-Storage-Discharge *Stor-Dis Function: Detention-Storage-Discharge *Elev-Stor Function: Detention-Depth-Storage NOTE 10008; Finished opening project "LevelPoolRouting" in directory "C:\users\cleveland\My Primary: Storage-Discharge Ŧ Documents\LevelPoolRouting" at time 26Oct2015, 21:19:16. Initial Condition: Storage Ŧ NOTE 10187: Closed project "LevelPoolRouting" at time 26Oct2015, 21:35:55. WARNING 41564: Could not load elevation-discharge table for reservoir "DetentionPond". *Initial Storage (AC-FT) 0 NOTE 10179: Opened basin model "MyReservoir" at time 26Oct2015, 21:35:57. WARNING 41564: Could not load elevation-discharge table for reservoir "DetentionPond".

Routing-channel and reservoir

- Reservoir routing
 - Account for storage in a reservoir
 - Unique storage-discharge relationship
- Channel routing
 - Account for storage in channel as well as travel time
 - Storage-discharge relation in channel is non-unique
 - Can treat channel as a series of reservoirs to mitigate looped effect.

Next Time

- Level Pool Routing applied to a stream reach
 - Example
- Muskingum Routing Background
 - CMM pp. 257-260
- Muskingum-Cunge Routing applied to a stream reach
 - CMM pp. 302-304