

OUTLINE

Unit Hydrographs

Theory

Data Analysis to construct a UH

Chapter 7 CMM

UNIT HYDROGRAPHS

What is a unit hydrograph?

How are they used?

How are they built from data (analysis)?

How are they built when data do not exist (synthesis)?

WHAT IS A UNIT HYDROGRAPH?

•

•

•

Streamflow from Rainfall by Unit-Graph Method

Observed runoff following isolated one-day rainfall forms basis of computation-Method applicable to rainfalls of any intensity or duration

By L. K. Sherman Consulting Engineer, Randolph-Perkins Co., Chicago, Ill.

Y MAKING USE of a single obfall of any duration or degree of intensity.) From the known hydrograph the "unit" graph must be determined, vepresenting 1 in. of runoff from a 24-hour rainfall. The daily ordinates of accordance with the variation in daily precipitation figures so as to show the runoff from a storm of any length.

Following a storm, the hydrograph representing the flow in the mainstream channel shows the runoff increasing to a maximum point and then tubsiding to the value it had before structed for a particular area it may the storm. For a single storm the be used to compute a hydrograph of graph is generally of a triangular shape, runoff for this area for any individual with the falling stage taking never less storm or sequence of storms of any and usually two or more times as long duration or intensity over any period as the rising stage. For the same drain- of time. The principle to use in applyage area, however, there is a definite ing the unit graph is to follow the sumtotal flood period corresponding to a mation process of nature. For example given rainfall, and all one-day rainfalls. consider a case where the unit graph

or 2 in., and the observed graph represents a 2-in. runoff applied in 24 hours. The unit graph for this area, then, is one having the same base but ordinates B served hydrograph, one due to a. storm lasting one day, it is possible served graph. This is the presedure for served graph. This is the procedure for to compute for the same watershed the determining a unit graph for any drainrunoff history corresponding to a rain- age area. The graph is a constant for any particular drainage arca, but drainage areas of different physical characteristics give radically different forms. A topography with steep slopes and few pondage pockets gives a graph with the unit graph can then be combined in a high sharp peak and a short time period. A flat country with large pod-age pockets gives a graph with a flat rounded peak and a long time period.

Application of unit graph

After a unit graph has been con-

OPQ. A continued rain with the same daily depth of runoff produces succes-sively the additional dotted graphs. At the end of the fifth day of such continuous rain, with uniform depths of runoff for each day, the runoff graph ORS will be formed. The peak at R will be

Fig. 1-Simple hydrograph of runoff from a continuous uniform rain, when the uni graph is triangular.

Fig. 2-At Plumfield III on the Big Muddy River, there was a fairly well-isolated rain of 1.42 in. on April 9, 1924, yielding a hydrograph with ordinates proportional to those of the unit graph.

- Used to explain the time re-distribution of excess precipitation on a watershed
- Represents the response of the watershed at the outlet to a unit depth of EXCESS precipitation
 - EXCESS implies some kind of loss model is applied to the raw precipitation
 - Time re-distribution implies some kind of transfer behavior is applied
 - L. K. Sherman 1932 is credited with seminal publication of the concept
 - Read the document in AdditionalReadings

RESPONSE MODEL

RESPONSE MODEL

Response models convert the excess precipitation signal into a direct runoff hydrograph at the point of interest

HYETOGRAPHS

Typically divided into three components

- Initial abstraction
- Loss
- Excess
 - This component becomes direct runoff

UNIT HYDROGRAPH - EXAMPLE

- The example is from CMM
 pp 216-223
- Least-Squares Approach

Unit H	ydrogi	raph (Cl	assical E	xample)
Time		Depth	Flow	
0.5	1	1.06	428	
1	2	1.93	1923	
1.5	3	1.81	5297	
2	4		9131	
2.5	5		10625	
3	6		7834	
3.5	7		3921	
4	8		1846	
4.5	9		1402	
5	10		830	
5.5	11		313	

Figure 7: Data for UH application example

UNIT HYDROGRAPH - EXAMPLE

 Build an equation array using the unknown unit weights and the known EXCESS precipitation depths,

Figure 9: UH Equation Array (Vector-Matrix)

UNIT HYDROGRAPH – EXAMPLE

5.1.1 Back-substitution

Straightforward. Solve each equation successively (back substitute) for U . $U_1 = Q_1/P_1 = 428/1.06 = 404 cfs/in.$ $U2 = (Q2 - P_2 U_1)/P1 = (1923 - 1.93 * 404)/1.06 = 1079 cfs/in.$ And so on

	A	В	С	D	E	F	G	н	I)	К	L	М	N	0	Р	Q	R	S	Т	U	V
1	Unit H	iydrog	raph (B	ack-Sub	stitute)																	
2	Obser	vation	s				[P]											1	[U]	[Q*]	[Q]-[Q*]	
3	Time(hrs)	Time (increment)	Excess Rain (in)	Direct Runoff (cfs)			1	2	3	4	5	6	7	8	9	10	11					
4	0.5	1	1.06	428		1	1.06	0	0	0	0	0	0	0	0	0	0		403.77	428	-0.000228	403.774
5	1	2	1.93	1923		2	1.93	1.06	0	0	0	0	0	0	0	0	0		1079	1923.02	-0.023434	1078.98
6	1.5	3	1.81	5297		3	1.81	1.93	1.06	0	0	0	0	0	0	0	0		2343.1	5297	0	2343.11
7	2	4	0	9131		4	0	1.81	1.93	1.06	0	0	0	0	0	0	0		2505	9130.5	0.5025618	2505.5
8	2.5	5	0	10625		5	0	0	1.81	1.93	1.06	0	0	0	0	0	0		1461	10624.3	0.6560813	1461.66
9	3	6	0	7834		6	0	0	0	1.81	1.93	1.06	0	0	0	0	0		453	7833.96	0.04	453.04
10	3.5	7	0	3921		7	0	0	0	0	1.81	1.93	1.06	0	0	0	0		379.5	3920.97	0.03	379.53
11	4	8	0	1846		8	0	0	0	0	0	1.81	1.93	1.06	0	0	0		276.9	1845.88	0.121	277.021
12	4.5	9	0	1402		9	0	0	0	0	0	0	1.81	1.93	1.06	0	0		170.5	1402.04	-0.042	170.458
13	5	10	0	830		10	0	0	0	0	0	0	0	1.81	1.93	1.06	0		-0.47	829.756	0.2442	-0.2258
14	5.5	11	0	313		11	0	0	0	0	0	0	0	0	1.81	1.93	1.06		5.32	313.337	-0.3371	4.9829
15																						
16										Back s	ubstitu	te (laz	y way)									
17										(1) Gu	ess U											
18										(2) Co	mpute	Q*										
19										(3) Co	mpute	differe	nce									
20										(4) Adj	ust U (one-by	-one to	get d	ifferen	ce sma	11					
21										(5) Sto	p whe	n differ	rence is	s small	percer	nt of ac	tual Q	2				
22									(6) If SOLVER works on machine - can automate - crashes on Mac (Microsoft hates Macl)													

Figure 10: Backsubstitution in a spreadsheet

UNIT HYDROGRAPHS – EXAMPLE

- Observe that if the linear system has full ranked matrix (rows=columns) and non-zero diagonal, one could just solve the resulting linear equation for the unitgraph weights
- Probably better than manual back-substitution which is error prone
 - Many instances the system is over-determined more equations than unknowns and an optimization technique is usually applied

UNIT HYDROGRAPHS – EXAMPLE

5.1.2 Optimization Approach - Solving the Normal Equations

The least squares solution to the matrix equation is , $[\mathbf{U}] = [[\mathbf{P}^T][\mathbf{P}]]^{-1}[\mathbf{P}^T][\mathbf{Q}]$

Again using a spreadsheet the result is displayed in Figure 11. This method also sometimes fails, but it can be completely automated (no brains required - unless it fails then a lot of brains are required to figure out what went wrong).

Three other approaches in common practice are optimization using linear programming (Danzig's algorithm) - excess and deficits are summed and minimized; non-linear programming (essentially a variation of the least-squares, but can constrain solution space); and pattern searching (also a constrained approach).

UNIT HYDROGRAPHS – EXAMPLE

	Α	В	С	D	E	F	G	Н	Ι	J	К	L	Μ	Ν	0	Ρ	Q	R	S
1	Unit H	ydrog	graph (L	east Squ	ares Example)														
2	Observ	/atio	ns				[P]												[U]
	s)	icrement)	(in)	unoff (cfs)	=	1MUL1	r(MINV	ERSE(I	MMULT	(G18:0	28,G4	:Q14))	,MMUL	.T(G18	:Q28,D	4:D14]))		
3	Time(hr	Time (ir	Excess	Direct R			1	2	3	4	5	6	7	8	9	10	11		
4	0.5	1	1.06	428		1	1.06	0	0	0	0	0	0	0	0	0	0		403.774
5	1	2	1.93	1923		2	1.93	1.06	0	0	0	0	0	0	0	0	0		1078.98
6	1.5	3	1.81	5297		3	1.81	1.93	1.06	0	0	0	0	0	0	0	0		2343.15
7	2	4	0	9131		4	0	1.81	1.93	1.06	0	0	0	0	0	0	0		2505.44
8	2.5	5	0	10625		5	0	0	1.81	1.93	1.06	0	0	0	0	0	0		1460.75
9	3	6	0	7834		6	0	0	0	1.81	1.93	1.06	0	0	0	0	0		452.74
10	3.5	7	0	3921		7	0	0	0	0	1.81	1.93	1.06	0	0	0	0		380.425
11	4	8	0	1846		8	0	0	0	0	0	1.81	1.93	1.06	0	0	0		275.774
12	4.5	9	0	1402		9	0	0	0	0	0	0	1.81	1.93	1.06	0	0		170.931
13	5	10	0	830		10	0	0	0	0	0	0	0	1.81	1.93	1.06	0		0.89846
14	5.5	11	0	313		11	0	0	0	0	0	0	0	0	1.81	1.93	1.06		1.77518
15 16 17							[P]-tra	nspose	2										
18						1	1.06	1.93	1.81	0	0	0	0	0	0	0	0		
19						2	0	1.06	1.93	1.81	õ	ő	Ő	ő	Ő	Ő	ŏ		
20						3	Ő	0	1.06	1.93	1.81	Ő	0	Ő	0	Ő	Ő		
21				=TRA	NSPOSE(G4:	4	0	0	0	1.06	1.93	1.81	0	0	0	0	0		
22						- 15	0	0	0	0	1.06	1.93	1.81	0	0	0	0		
23						6	0	0	0	0	0	1.06	1.93	1.81	0	0	0		
24						7	0	0	0	0	0	0	1.06	1.93	1.81	0	0		
25						8	0	0	0	0	0	0	0	1.06	1.93	1.81	0		
26						9	0	0	0	0	0	0	0	0	1.06	1.93	1.81		
27						10	0	0	0	0	0	0	0	0	0	1.06	1.93		
28						11	0	0	0	0	0	0	0	0	0	0	1.06		

Figure 11: Least-Squares Minimization (by Normal Equations) in a spreadsheet ¹⁴

The whole point is to use the unitgraph to predict the response to a different storm (either real or a design storm)

Just getting the unit graph is meaningless unless we intend to use it. In the present example, if we use the unitgraph for different rainfall signals we can predict the direct runoff hydrograph for these events.

For example suppose we wish to evaluate the DRH for

P = [2.00, 3.00, 1.00]

```
P = [5.00, 0.00, 0.00]
```

P=[0.00,0.00,5.00]

Then we simply evaluate the matrix equation [Q]=[P][U] with different [P] matrices. (Results in figures)

	Α	В	С	D	E	F	G	Н	I	J	К	L	М	Ν	0	Р	Q	R	S	Т
1	Unit H	ydro	graph (L	east Squ	ares Example)															
2	Observ	vatio	ns				[P]												[U]	[Q*]
<i>. . .</i>	'ime(hrs)	ime (increment)	Excess Rain (in)	Direct Runoff (cfs				2	3		Jnit Re	sponse	e from	original	data		11			
4	0.5	1	2	428		1	2	2	0		0	0	, 0	0	0	10			403 774	807 55
5	1	2	3	1923		2	3	2	0	0	0	0	0	0	0	0	- V		1078.98	3369.3
6	1.5	3	1	5297		3	1	3	2	0	ő	Ő	0	ő	0	0	ő		2343.15	8327
7	2	4	0	9131		4	0	1	3	2	0	0	0	0	0	0	0		2505.44	13119
8	2.5	5	0	10625		5	0	0	1	3	2	0	0	Ő	0	0	Ő		1460.75	12781
9	3	6	0	7834		6	0	0	0	1	3	2	0	0	0	0	0		452.74	7793.2
10	3.5	7	0	3921		7	0	0	0	0	1	3	2	0	0	0	0		380.425	3579.8
11	4	8	0	1846		8	0	0	0	0	0	1	3	2	0	0	0		275.774	2145.6
12	4.5	9	0	1402		9	0	0	0	0	0	0	1	3	2	0	0		170.931	1549.6
13	5	10	0	830		10	0	0	0	0	0	0	0	1	3	2	0		0.89846	790.36
14	5.5	11	0	313		11	0	0	0	0	0	0	0	0	1	3	2		1.77518	177.18
15																	L			
16										DRH Prec	liction									
17																				
18					14000											3.5				
19										2										
20					12000		Λ		/							13				
21					10000				·	~ \ _						2.5				
22					10000		/ \		1.5	· · ·						2.5				
23					ළී 8000	_/			;							2 =				
24					- Chai			Y /								infi				
26					- S 6000			Λ								- 1.5 ≃				
27					_			X												
28					4000						- \					+ 1				
29					2000		17	_ ∖								0.5				
30					2000									-		0.5				
31																0				
32					0		1		2	3	3	4		5		6				
33										Tir	ne									
34																				
35					Ar	nalysis	Event	P	redicted	Event -	Different	Rain	E	xcess Rai	in - New	Event				
36																				

Figure 14: DRH using P = [2.00, 3.00, 1.00]

	A	В	С	D	E	F	G	н	Ι	J	К	L	М	N	0	Р	Q	R	S	Т
1	Unit H	ydro	graph (L	east Squ	ares Example)															
2	Obser	vatio	ns				[P]												[U]	[Q*]
3	ime(hrs)	ime (increment)	ixcess Rain (in)	birect Runoff (cfs)				2	2	[Jnit Re	sponse	e from	origina	l data		11			
4		-	5	428		1	5	2		4	0	0	, ,	0	9	1.6			403 774	2018 0
5	0.5	2	0	1073			2	5	0	0	0	0	0	0	0	0			1078 98	5304.0
6	15	2	0	5297		2	0	0	5	0	0	0	0	0	0	0	0		2343 15	11716
7	2.5	4	0	9131		4	0	0	0	5	0	0	0	0	0	0	0		2505 44	12527
8	25	5	0	10625		5	0	0	0	0	5	0	0	0	0	0	0		1460.75	7303.8
9	2.3	6	0	7834		6	0	ő	0	0	0	5	0	Ő	0	0	0		452.74	2263.7
10	3.5	7	0	3921		7	0	Ő	0	0	0	0	5	Ő	0	0	Ő		380,425	1902.1
11	4	8	0	1846		8	0	0	0	0	0	0	0	5	0	0	0		275.774	1378.9
12	4.5	9	0	1402		9	0	0	0	0	0	0	0	0	5	0	0		170.931	854.65
13	5	10	0	830		10	0	0	0	0	0	0	0	0	0	5	0	L	0.89846	4.4923
14	5.5	11	0	313		11	0	0	0	0	0	0	0	0	0	0	5		1.77518	8.8759
15																				
16 17									I	DRH Pred	liction									
10					14000											_ °				
20					12000			_	1											
21						- ۱		Γ								+ 5				
22					10000			/	<u> </u>	~`. <u>`</u>						_				
23								/	1	· ·						+ 4				
24					- 2 8000 -				/	۱	` .									
25					che che		\ /	1		\	<u>``</u>					+ 3 <u>F</u>				
26					S 6000			1			``.					- "				
27					4000		Y	1		∖	<u>``</u> ,					+ 2				
28					4000		Λ					`•.								
29					2000		<u> </u>									1				
30													_							
31					o				1		1				•••	o				
32					0		1		2		3	4		5		6				
33										т	ime									
34		Analysis EventPredicted Event - Different Rain																		
35					A	arysis	Event -		rearcted	event -	Unterent		E	ALESS Ka	m - New	event				
36																				

Figure 15: DRH using P = [5.00, 0.00, 0.00]

	A	В	С	D	E	F	G	Н	I	J	К	L	M	N	0	Р	Q	R	S	Т
1	Unit H	ydro	graph (L	east Squ	ares Example)															
2	Obser	vatio	ns				[P]												[U]	[Q*]
3	Time(hrs)	Time (increment)	Excess Rain (in)	Direct Runoff (cfs)			1	2	3	4	Jnit Re	sponse 6	e from	origina	l data		11			
4	0.5	1	0	428		1	0	0	0	0	0	0	0	0	0	0	0		403.774	0
5	1	2	0	1923		2	0	0	0	0	0	0	0	0	0	0) D		1078.98	0
6	1.5	3	5	5297		3	5	0	0	0	0	0	0	0	0	0	0		2343.15	2018.9
7	2	4	0	9131		4	0	5	0	0	0	0	0	0	0	0	0		2505.44	5394.9
8	2.5	5	0	10625		5	0	0	5	0	0	0	0	0	0	0	0		1460.75	11716
9	3	6	0	7834		6	0	0	0	5	0	0	0	0	0	0	0		452.74	12527
10	3.5	7	0	3921		7	0	0	0	0	5	0	0	0	0	0	0		380.425	7303.8
11	4	8	0	1846		8	0	0	0	0	0	5	0	0	0	0	0		275.774	2263.7
12	4.5	9	0	1402		9	0	0	0	0	0	0	5	0	0	0	0		170.931	1902.1
13	5	10	0	830		10	0	0	0	0	0	0	0	5	0	0	0		0.89846	1378.9
14	5.5	11	0	313		11	0	0	0	0	0	0	0	0					1.77518	856.39
15																	L			
16 17					14000				l	DRH Pred	liction					6				
19					14000											0				
20					12000					/	٦									
21								Α.		Γ	\					1 3				
22					10000					<u> </u>	_\ _					-				
23					a			1	1	· · · ·	<u>۱</u>					4				
24					ହୁଁ <u>୫୦୦୦</u>			1 \	: T		· •									
25					5 6000			IA			<u>``</u> `					- 3 Li				
26					8 6000			1			``\					- œ				
27					4000			1	<u> </u>		``,					- 2				
28					1000		ļ	· /	1			·. N								
29					2000				1							1				
30							· 1		1											
31					o						1				•••	- o				
32																				
33	33 0 1 2 3 4 5 6 Time 1 1 1 1 1 1																			
34						-	Event -		we distant	Event	Different	Dala -		Venes De	la Norri	Event				
35		Analysis Event — Predicted Event - Different Rain — Excess Rain - New Eve												event						
36																				

Figure 16: DRH using P = [0.00, 0.00, 5.00]

- Parametric UH are simply functions with parameters (like F=ma) where if we have the parameters the hydrograph can be reconstructed using the function rather than keeping around a bunch of unit response values
- Will illustrate using same example

A simple transfer function used in this example is $U(t) = K \left(\frac{t}{T}\right)^N exp(-\frac{t}{T})$. The unknown parameters are K, N, and T. The parameter T is a timing parameter and essentially locates the peak of the discharge it is analogous in concept to T_p or T_c or T_L depending on how the equation is constructed. Parameters K is related to the drainage area, and N is related basin shape, but like timing they cannot be easily be inferred from maps etc. The main difference here, is that the unit weights are values of the transfer function at different locations in time, so instead of just 9 unit weights we actually have as many as needed for a given case, and this information makes changing the time base simpler.

- Parametric UH are simply functions with parameters (like F=ma) where if we have the parameters the hydrograph can be reconstructed using the function rather than keeping around a bunch of unit response values
- Will illustrate using same example

To estimate K,N, and T we simply construct the [Q]=[P][U] model where [U] is given by the above function at the correct times, then adjust K,N, and T to minimize the differences between the observed [Q] and the model [Q]. Figure 17 is an example of the approach. I choose to minimize the sum of squared differences at the peak as the merit function, but one could choose others. The process of using a minimization procedure to estimate the parameters (and ultimately the unit weights) is often called de-convolution.

	A	В	С	D	E	F	G	н	I	J	к	L	м	N	0	Р	Q	R	S	Т	U	V
1	Unit F	lydro	graph (T	ransfer	Function)													Κ	31.931			
2												U(t)=k	(*(t/T)	^N*ex	p(-(t/T))		Ν	5.7815			
3	1																	Т	0.3052			
4	1																					
5	1																					
6	Obser	vatio	ns				[P]												ru:	[0*]	[0]-[0*]	Bias
-				ju j	4																	
		sut	Ē	<u> </u>																		
		Ĕ		Ť,																		
		ere	air	Ĕ																		
	l si	,Ĕ	8	R																		
	e l) a	SS	ಕ																		
_	3.	3	Ŭ,	ire.							-	-	_						V			
/	H H	F	ш			-	1	2	3	4	5	6	/	8	9	10	11	-				
8	0.5	1	1.06	428		1	1.06	0	0	0	0	0	0	0	0	0	0		107.63	114.084	313.916	0.73345
9	1	2	1.93	1923		2	1.93	1.06	0	0	0	0	0	0	0	0	0		1150.7	1427.44	495.5613	0.2577
10	1.5	3	1.81	5297		3	1.81	1.93	1.06	0	0	0	0	0	0	0	0		2331.6	4887.1	409.902	0.07738
11	2	4	0	9131		4	0	1.81	1.93	1.06	0	0	0	0	0	0	0		2391.2	9117.33	13.67158	0.0015
12	2.5	5	0	10625		5	0	0	1.81	1.93	1.06	0	0	0	0	0	0		1688.6	10625	6.73E-11	6.3E-15
13	3	6	0	7834	-	6	0	0	0	1.81	1.93	1.06	0	0	0	0	0		941.73	8585.17	-751.1711	-0.0959
14	3.5	7	0	3921		7	0	0	0	0	1.81	1.93	1.06	0	0	0	0		446.27	5346.89	-1425.892	-0.3637
15	4	8	0	1846		8	0	0	0	0	0	1.81	1.93	1.06	0	0	0		187.72	2764.82	-918.8209	-0.4977
16	4.5	9	0	1402		9	0	0	0	0	0	0	1.81	1.93	1.06	0	0		72.088	1246.46	155.5369	0.11094
17	5	10	0	830		10	0	0	0	0	0	0	0	1.81	1.93	1.06	0		25.765	506.209	323.7912	0.39011
18	5.5	11	0	313		11	0	0	0	0	0	0	0	0	1.81	1.93	1.06		8.6889	189.416	123.5837	0.39484
19	1																					
20	1						(1) Gu	ess K,	N.T											Average B	ias	0.09169
21	1						(2) Co	mpute	Ó*													
22	1						(3) Co	mpute	differe	nce												
23							(4) KJ	V, T to (get diff	erence	small											
24	1						(5) Sto	op whe	n avera	age dif	erence	e is sm	all per	cent of	actual	0						
25	1						(6) If (SOLVE	R works	s on m	achine	- can a	automa	ate - cr	ashes	on Mac	(Micro	oso	ft hates N	(lac!)		
26	1						,															
27	1											Evene		hu Tune	of a Fu	nation						
28	1										UH	Examp	ie - UH	by Irar	ister Fu	nction						
29	1																					
30	1							12000												2.5		
31																						
32	1							10000					$\boldsymbol{\wedge}$									
33	1							10000		_	_								-	2		
34	1									_ <i>Г</i>				· · ·								
35	1							8000		_/	+											
36	1										· \	/		· \						1.5		
37	1						off			/	\	/								Tall		
38	1						Ĩ	6000		/				`	<u>۱</u>					ain		
39							~ ~		4		- 1	۱.		,						1 ²²		
40								4000				1			````				-			
41								4000			1											
42	1						-				/	1										
43	1						-	2000											-	0.5		
44	1							2000		1		<u>۱</u>										
45	1											<u>۱</u>										
46								0				<u> </u>								+ 0		
47							H		0	1		2		3		4		5	6	5		
48							H							Time						H		
49										*O	1	- Dire	ct Rupp	off (cfc)		Excer	ss Rain	(in)	1			
50	1									1.4	1	Dife	oc num			LAGE	is nam	(III)	<u></u>			
51	1																					

VALUE OF PARAMETRIC UNIT HYDROGRAPHS

- Fewer values to keep track of
- Simple extension of time-base
- If the parameters can be associated with watershed metrics (Slope, MCL, soil properties, shape, etc.) the resulting model is called a synthetic unit hydrograph
 - Called synthetic because response can be synthesized from the metrics rather than from analyzing observations (which we may not have in cases of practical interest)

EXTENDED TIME BASE

	A	В	С	D	E	F	G	н	I	J	к	L	М	N	0	P	Q	R	S	Т	U	V	W	X	Y	Z	AA	AB	AC	AD	AEAI	AG	AH	AI
1	Unit	: Hydro	ograph (Transfer	r Fun	ction)																									K	31.931		
2					_							U(t)=	K*(t/T)^N*e	cp(-(t/	D)															N	5.7815		
3	-				_																										Т	0.3052		
4	-				_																													
5	Ohe	anusti			_		(D)																										[08]	[0] [0*]
0	1005	ervau	, ons	3	n		[1]																									[0]	[Q.]	IQFIQ-1
		ent	3	1 3	5																													
		Ē		- 4	E .																													
		G 5			5																													
		5 5			Ľ																													
		ar ar		8	a																													
7		≞ ⊨	j j	5 2	5		1	2	3	4	4 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24				
8	0.	5 1	1.0	5 42	8	1	1.06	0	0) () (0	() 0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0		107.63	114.084	313.916
9	-	1 2	1.9	3 192	3	2	1.93	1.06	0	0	0 0	0	0	0 0	0	C		0	0 0	0	0	0	0	0	0	0	0	0	0	0		1150.7	1427.44	495.5613
10	1.	5 3	1.8	1 529	7	3	1.81	1.93	1.06	6 0) 0	0	9) 0	0	C		0	0 0	0	0	0	0	0	0	0	0	0	0	0		2331.6	4887.1	409.902
11	-	2 4		0 913	1	4	0	1.81	1.93	1.06		0		0 0	0	0				0	0	0	0	0	0	0	0	0	0	0		2391.2	9117.33	13.67158
12	2	3 5		0 1062	5	5		0	1.81	1.93	1.06	1.06			0					0	0	0	0	0	0	0	0	0	0	0		1688.6	10625	6.73E-11
14	÷ .	5 7	P	0 783	4	7				1.81	1.93	1.00	1.00	. 0						0	0	0	0	0	0	0	0	0	0	0		941.73	5246.00	-/51.1/11
15		4 9	t	0 392	6	200					1.01	1.95	1.00	1 1 1 1						0	0	0	0	0		0	0	0	0	0		187.72	2764.87	-918 8209
16	4	5 9	2	0 140	2	q	ŏ	ŏ	ŏ		ŏŏ	1.01	1.81	1.93	1.06	č		i o		Ő	ő	ŏ	0	ő	ŏ	ő	0	ŏ	ő	0		72.088	1246.46	155,5369
17	1	5 10		0 83	ō	10	iŏ	ő	ŏ	i č	i i	ő		1.81	1.93	1.06		Ö	0 0	Ö	Ő	ő	Ő	ő	ŏ	ŏ	ŏ	ő	Ő	Ő		25,765	506.209	323,7912
18	5	5 11		0 31	3	11	0	0	0	0	0 0	Ö	0	0 0	1.81	1.93	1.06	0	0 0	0	0	0	0	0	0	0	0	0	0	0		8.6889	189.416	123.5837
19		6 12	2	0	0	12	0	0	0	0) 0	0	(0 0	0	1.81	1.93	1.06	6 0	0	0	0	0	0	0	0	0	0	0	0		2.7929	66.3649	-66.36489
20	6	5 13	;	0	0	13	0	0	0	0	0 0	0	(0 0	0	0	1.81	1.93	1.06	0	0	0	0	0	0	0	0	0	0	0		0.8623	22.0313	-22.0313
21		7 14	-	D	0	14	0	0	0	0 0	0 0	0	(0 0	0	0	0	1.81	1.93	1.06	0	0	0	0	0	0	0	0	0	0		0.2572	6.99213	-6.992127
22	7.	5 15	5	0	0	15	0	0	0	0	0 0	0	(0 0	0	0	0	0 0	1.81	1.93	1.06	0	0	0	0	0	0	0	0	0		0.0745	2.13623	-2.136233
23		8 16		0	0	16	0	0	0		0 0	0	0	0 0	0	0		0 0	0 0	1.81	1.93	1.06	0	0	0	0	0	0	0	0		0.021	0.63172	-0.631718
24	8	5 17		0	0	17	0	0	0		0 0	0	0	0 0	0	0		0 0		0	1.81	1.93	1.06	0	0	0	0	0	0	0		0.0058	0.1816	-0.181604
25		5 10		0	0	10	0	0	0			0			0					0	0	1.81	1.93	1.06	1.06	0	0	0	0	0		0.0016	0.05093	-0.050933
20	1	0 20		n	0	20	0	0	0			0	0		0					0	0	0	1.01	1.93	1.00	1.06	0	ő	0	0		0.0004	0.00376	-0.013377
28	10	5 21		Ď	ŏ	21	ŏ	ŏ	Ő) o	ŏ	Č) õ	ŏ	Č		o o		ŏ	ŏ	ŏ	ő	0	1.81	1.93	1.06	ŏ	ŏ	ő		3E-05	0.001	-0.000995
29	1	1 22		0	0	22	Ő	Ő	Ó		0 0	Ő	Ċ) õ	Ő	Ċ) õ	0 0	Ő	0	Ő	Ő	ő	0	1.81	1.93	1.06	Ő	Ő		7E-06	0.00026	-0.000259
30	11.	5 23	1	0	0	23																				0	1.81	1.93	1.06	0		2E-06	6.7E-05	-6.66E-05
31	1	2 24	ł	0	0	24								UH E	ample	- UH by	/ Transf	er Fund	tion							0	0	1.81	1.93	1.06		4E-07	1.7E-05	-1.69E-05
32								12000																	2.5									
33	-	_			_		4	12000																	7 2.5									
34	-	_			_		_																											
35	+							10000			_/																							
30	+						-			\sim	1	N													12	-								
38	-				-		H	0000		רו	1	· .																						
39	1						H	0000				1													1									
40	1						ε				/	· '\													1.5									
41							6	6000	- /	_	-	1													1 1	Í –								
42							ä		1		1	•													1, 6	2								
43	-							4000			1	,	1												1									
44	-				_		4	4000		_			'.												1									
45	-	_			_					-	1		1												0.5	-								
40		_			_			2000		1	1		<u>_</u>												0.5	-								
4/	+						H			/	1			٦.																	\vdash			
49	1	-		-	-		H	0	1					-	-										1.0								<u> </u>	<u> </u>
50	1				-		H	5	0		2		à		6			8		10		12			14									12
51	1								-				-		,		imo	0		10		**											6	13
52													10.11		Discrition	1	afe) -			and an alternation														
53													[Q+] •		Direct i	cunoff (crs)		xcess I	kain (in)	7													
54																																		

EXTENDED TIME BASE – DIFFERENT STORM

	A	В	С	D	E F	G	н	I	J	к	L	М	N	0	P	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	AC	AD	AÉAF	AG	AH	AI
4																																	
5																																	
6	Obser	vation	s			[P]																									[U]	[Q*]	
		£	~	5																													
		je.	E.	Ę																													
		ē	.=	ę																													
	2	2	Ra	n,																													
	<u>5</u>		SS	ť																													
	ΙĔ	Ĕ	g	ē																													
7	Ē	Ē	ŵ	ā		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24				
8	0.5	1	0.1	428		1 0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		107.63	10.7626	
9	1	2	0.2	1923	-	2 0.2	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		1150.7	136.593	
10	1.5	3	0.4	5297	-	3 0.4	0.2	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		2331.6	506.345	
11	2	4	0.8	9131	-	4 0.8	0.4	0.2	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		2391.2	1251.81	
12	2.5	5	1.6	10625		1.6	0.8	0.4	0.2	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		1688.6	26/2.4/	
13	3	0	0.8	7834	-	6 0.8	1.6	0.8	0.4	0.2	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		941.73	5180.81	
14	3.5	/	0.0	1946			0.8	1.6	0.8	0.4	0.2	0.1	0 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		107.72	0220 64	
15	45	0	0.2	1402		0.2	0.0	0.0	1.0	1.6	0.4	0.2	0.1	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		72 099	7231 13	
17	4.5	10	0.1	830	1		0.2	0.0	0.0	1.0	1.6	0.4	0.2	0.1	0.1	0	ő	0	0	0	0	0	0	0	0	0	ŏ	0	0		25 765	5322.8	
18	55	11	0	313	1		0.1	0.2	0.0	0.0	0.8	1.6	0.4	0.2	0.2	0 1	0	0	0	0	0	0	0	0	0	0	0	0	0		8 6880	3376.98	
19	6	12	0	0	1	2 0	0	0	0.1	0.0	0.6	0.8	1.6	0.8	0.4	0.2	0 1	0	0	ő	0	0	0	ő	0	0	ŏ	0	0		2 7929	1869.23	
20	6.5	13	ő	Ő	1	3 0	ő	0	0	0.1	0.2	0.6	0.8	1.6	0.8	0.4	0.2	0.1	ő	ő	Ő	ő	Ő	Ő	Ő	0	ő	Ő	ő		0.8623	915.214	
21	7	14	Ő	0	14	4 0	0	0	0	0	0.1	0.2	0.6	0.8	1.6	0.8	0.4	0.2	0.1	Ő	0	ŏ	Ő	0	0	Ő	Ő	0	Ő		0.2572	403.219	
22	7.5	15	0	0	1	5 0	0	0	0	0	0	0.1	0.2	0.6	0.8	1.6	0.8	0.4	0.2	0.1	0	0	0	0	0	0	0	0	0		0.0745	162.576	
23	8	16	0	0	1	5 0	0	0	0	0	0	0	0.1	0.2	0.6	0.8	1.6	0.8	0.4	0.2	0.1	0	0	0	0	0	0	0	0		0.021	60.8779	
24	8.5	17	0	0	1	7 0	0	0	0	0	0	0	0	0.1	0.2	0.6	0.8	1.6	0.8	0.4	0.2	0.1	0	0	0	0	0	0	0		0.0058	21.4296	
25	9	18	0	0	1	8 O	0	0	0	0	0	0	0	0	0.1	0.2	0.6	0.8	1.6	0.8	0.4	0.2	0.1	0	0	0	0	0	0		0.0016	7.16082	
26	9.5	19	0	0	1	9 0	0	0	0	0	0	0	0	0	0	0.1	0.2	0.6	0.8	1.6	0.8	0.4	0.2	0.1	0	0	0	0	0		0.0004	2.28937	
27	10	20	Ö	Ö	2	0 0	Ö	0	0	Ö	0	Ö	Ö	Ö	Ö	Ö	0.1	0.2	0.6	0.8	1.6	0.8	0.4	0.2	0.1	0	Ö	Ö	0		0.0001	0.70473	
28	10.5	21	0	0	2	1 0	0	0	0	0	0	0	0	0	0	0	0	0.1	0.2	0.6	0.8	1.6	0.8	0.4	0.2	0.1	0	0	0		3E-05	0.20994	
29	11	22	0	0	2	2 0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0.2	0.6	0.8	1.6	0.8	0.4	0.2	0.1	0	0		7E-06	0.06078	
30	11.5	23	0	0	2	3								amala -	IIII ba	Trancfe	r Euroct	ion							0.8	0.4	0.2	0.1	0		2E-06	0.01716	
31	12	24	0	0	2	4							OHEX	ampre -	Unity	rransie	a rund	1011							1.6	0.8	0.4	0.2	0.1		4E-07	0.00474	
32	-				_	- 1	2000 -																	- 1.8									
33	-				_																												
34	-				_																			1.6									
35	-					1	0000 +			- Л														-									
30	-									$i \mathbf{N}$	N													1.4									
38	-				-		0000			i 📘	r.																						
30	-						8000 +				1.	\sim												1.2									
40						-					1.1													1 =									
41						D0	6000		- 1		X		1											, f									
42						2			i	1	Y		· \											0.8 8	2								
43									1				<u>\</u>																				
44							4000 +		-i /															0.6									
45									11					\																			
46										_/		<u>۱</u>												0.4									
47							2000 +	,	/	1		1																					
48					_			1	/				•••											0.2									
49					_			,						•		-								_ 0									
50					_		0			2		4		6			8		10		12)		14									
51					_					-		-			Tie	1.0	-																
52												[O*1 -		Calibra	tion Rur	ne Ioff 💳	E	cess Ra	in (in)													- 2	4
54						+						2.46.3								_													
34						1																											

PARAMETRIC UNIT HYDROGRAPH PROPERTIES

The unit hydrograph (UH) response can be expressed as

$$\frac{Q(t)}{A} = \int_0^T r_{xs}(\tau)u(t-\tau)d\tau \tag{4}$$

where where $\frac{Q(t)}{A}$ is the specific discharge from a basin at time t ("the response", r(t) is an input function that represents excess rainfall (" the excitation"), $u(t - \tau)$ is the kernel function, in this case the unit hydrograph, and T is the duration of the input. Equation 4 assumes that basins respond as linear systems and this assumption is the main criticism of unit hydrograph theory. Despite this criticism, unit hydrographs are used to estimate streamflow from relatively small basins, typically for engineering purposes and often produce reasonable results. With the linearity assumption, the kernel, $u(t - \tau)$, has the same properties as a probability density function specifically, it integrates to unity on the range $(-\infty, \infty)$, and $f(t - \tau) \ge 0$ for any values of $(t - \tau)$.

HYDROGRAPHS

FHWA-NHI-02-001 Highway Hydrology

Chapter 6, Section 6.1

Systems Approach

- Input : Hyetograph
- Transfer : Unit Hydrograph
- Output : Total Runoff Hydrograph

HYDROGRAPHS

Hydrograph Analysis

- Measured rainfall and runoff to infer the transfer function.
- Implies: Have DATA.

Hydrograph Synthesis

- Physical properties of watershed used to postulate the transfer function.
- Actual measurements not required Produces an ESTIMATE

HEC-HMS has several different UH models available (eg. NRCS DUH, Clark, etc.).

These models are described by "parameters"

NRCS (Tp or Tc)

Clark (Tc, R)

Selection of the parameters selects the shape of the UH and the time base (or time to peak).

The analyst can also enter an empirical (user specified) unit hydrograph.

DEVELOPING UNIT HYDROGRAPHS (ANALYSIS)

Follow FHWA methods

Essentially back-substitution or OLS

Use HEC-HMS and parametric UH, adjust values of parameters to fit observed runoff

Less tedious

Use HEC-HMS and user supplied UH, adjust values of UH ordinates (and re-scale to maintain a unit response) to fit observed runoff

Less tedious

PARAMETRIC UNIT HYDROGRAPHS IN HMS

- Present an example that uses
 - NRCS DUH
 - Clark Unit Hydrograph
- Useful parametric models are listed below along with their parameters.
 - NRCS DUH : T_{lag} (Timing only)
 - Clark : T_c, and R (Timing and a storage-delay)
 - Snyder : T_{lag}, C_p (Timing and a peak rate factor)
 - Gamma : (User-Specified) T_c, K (Timing and a shape factor)

SYNTHESIZING UNIT HYDROGRAPHS

- Synthesis does not use rainfall-runoff data.
- Uses measurements on the watershed to postulate parameters of a parametric unit hydrograph.

PURPOSE

- Illustrate using HEC-HMS to develop a unithydrograph
 - Parametric UHs
 - User-specified UHs

LEARNING OBJECTIVES

- Learn how to use HMS to construct a parametric Unit Hydrograph
 - Use trial-and-error to select parameters that fit observations.
- Learn how to supply an arbitrary user-specified Unit Hydrograph to HMS

PROBLEM STATEMENT

- Determine the UH parameters for the precipitation and direct runoff for the watershed of Example 6.2 in FHWA "Highway Hydrology"
 - Use FHWA rainfall and direct runoff values as input and runoff.

BACKGROUND AND DATA

Watershed Properties

- AREA = 0.39mi²
- SLOPE = Unknown
- CN = Unknown
- Precipitation = Given
- Direct Runoff = Given

Example 6.2(CU). Figure 6.7(CU) shows a 1-hour rainfall intensity hyetograph. The total volume of rainfall is:

$$P = \sum_{j=1}^{4} i_j \Delta t = \Delta t \sum_{j=1}^{4} i_j = \frac{15 \text{ min}}{60 \text{ min/h}} (0.24 + 0.47 + 0.51 + 0.12) = 0.335 \text{ in}$$

The total runoff hydrograph is also shown in Figure 6.7(CU).

The first step is to compute the base flow. The convex method of Section 6.1.4.1 will be used. Since the runoff begins to increase at the start of the second interval, the initial slope of the base flow function will equal the slope in the first 15-minute interval: 0.4 ft³/s per 15 minutes. Since the peak of the hydrograph occurs at a storm time of 75 minutes, the initial portion of the base flow function will be extended from a storm time of 15 minutes to a time of 75 minutes. Using the decrease of 0.4 ft³/s per 15 minutes produces the base flow rates shown in column 3 of Table 6.1(CU). Since there is a noticeable change of slope on the falling limb of the total runoff hydrograph at a storm time of 135 minutes, this will be used as the inflection point; direct runoff will end at a time of 135 minutes. Thus, the second leg of the base flow function can be represented by a linear segment between storm times of 75 and 135 minutes with a slope of:

slope =
$$\frac{(7.1 - 2.6) ft^3/s}{(135 - 75) min}$$
 = 0.075 ft³/s per minute

or 1.125 ft³/s per 15-minute interval. Because the inflection point has a higher discharge than the base flow at the time to peak, the slope is positive. This slope is used to compute the base flow function for the interval from 75 to 135 minutes. Beyond the inflection point, all of the total runoff is assumed to be base flow. Values for the base flow are given in column 3 of Table 6.1(CU).

The base flow is subtracted from the total runoff to give the direct-runoff hydrograph (column 4 of Table 6.1(CU)). The volume of direct runoff can be computed using the trapezoidal rule in Equation 6.7:

6-17

$$V = \sum_{i=1}^{n} \Delta t \left(\frac{q_i + q_{i+1}}{2} \right) \tag{6.7}$$

36

BACKGROUND AND DATA

Precipitation

N	Aicrosoft E	xcel - Exar	nple6.	🗖	
8	<u>File E</u> dit	<u>V</u> iew <u>I</u> ns	ert F	<u>o</u> rmat	<u>T</u> ools
Da	ta <u>W</u> indow	<u>H</u> elp			_ 8 ×
	🗃 🖬 🧯	i 🗿 🗿)% -	» •	
	F23	•	fx -		
	A	В	0	2	D
1	Time	Intensity	Depth	1	Runoff
2	0	0.24		0	
3	0.25	0.47		0.06	
4	0.5	0.51	0.	1175	
5	0.75	0.12	0.	1275	
6	1	0		0.03	
7	1.25	0		0	
8	1.5	0		0	
9	1.75	0		0	1
10	2	0		0	
11	2.25	- 0		0	
12	2.5	0		0	
13	2.75	0		0	
14					
15 	▶ N\Sh	eet1/She	a 🖣		14
	AutoShape	s• 🔨 🔌		🕭 -	
				N	JM /

BACKGROUND AND DATA

Direct RunoffBaseflow already separated

N	Aicrosoft E	xcel - Exan	nple6.xls		×
8	<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>I</u> nse	ert F <u>o</u> rmat	<u>T</u> ools <u>D</u> a	ita
<u>W</u> i	ndow <u>H</u> elp			- 6	×
	🖻 🔚 🔮	line 🗿	% 🔻 🏹	*	• *
	F23	•	fx		
	A	В	С	D	
1	Time	Intensity	Depth	Runoff	E
2	0	0.24	0	0	
3	0.25	0.47	0.06	0	
4	0.5	0.51	0.1175	8.6	
5	0.75	0.12	0.1275	22	
6	1	0	0.03	31.3	
7	1.25	0	0	34.1	
8	1.5	0	0	32	
9	1.75	0	0	20.6	
10	2	0	0	9.2	
11	2.25	0	U	0	
12	2.5	0	0	0	
13	2.75	0	0	0	
14					_
H 4	→ M\\Sh	eet1 / She	et2 🚺	•	
Dra	w 🕶 😓 🛛 Au	toShapes 🕶	🔪 🔌 🔮	🕭 - 🗐	» ▼
			N	JM	1/

Actually reasonably straight-forward in HEC-HMS

- Create a single sub-basin watershed.
- Import the rainfall and direct runoff.
- Adjust loss and UH models to fit observations.
- Interpret and report results.

APPROACH – CREATE NEW PROJECT

APPROACH – CREATE BASIN MODEL

🔀 НЕС-НМЅ З.	5 [C:\\My Doc	uments\DES_	606_EX6\D	ES_60	06_EX6.hms]	
File Edit View	Components Para	ameters Comp	te Results	Tools I	Help	
🗋 🖻 🖪	🎒 👌 🕂 🕹	ર 🎒 🖕 હ) 🍑 🐳	😴 👌		
C DES-606-EX6 	:				Basin Model [Basin 1]	
Components Cor	mpute Results					
Basin Model	Basin 1					
Description:				E		
Grid Cell File:						
Local Flow:	No		1	-		
Flow Ratios:	No		*	-		
Replace Missing:	No		1	-	NOTE 10008: Finished opening project "DES-606-EX6" in directory "C:\Dod	cuments and
Unit System:	U.S. Customary			-	Settings\Administrator\My Documents\DES_606_EX6" at time 03Aug2011,	12:55:22.
Sediment:	No		1	4		
Water Quality:	No		1	/		
						4

APPROACH – METEROLOGICAL MODEL

HEC-HMS 3.5 [C:\\Wy Documents\DES_606_EX6\DES_606	_EX 6. hms]	
File Edit View Components Parameters Compute Results Tools H	elp	
📋 🖙 🖬 🎒 💽 💠 🗢 🦀 🏷 🖶 🎒 🐡 😴 🖆	× • • • • • • •	
DES-606-EX6 Basin Models Meteorologic Models Met 1 Specified Hyetograph	Basin Model [Basin 1]	
Components Compute Results Meteorology Model Basins Options Met Name: Met 1		
Basin Model Include Subbasins		
Basin 1 Yes	<	
	NOTE 10008: Finished opening project "DES-606-EX6" in directory "C:\D Settings\Administrator\My Documents\DES_606_EX6" at time 03Aug2011	ocuments and 1, 12:55:22. 42

APPROACH – HYETOGRAPH TIME SERIES

APPROACH – HYDROGRAPH TIME SERIES

$APPROACH - BASIN MODEL AREA = 0.39 MI^{2}$

APPROACH – SET A LAG TIME (30 MIN)

HEC-HMS 3.5 [C:\\My Documents\DES_606_EX6\D	ES_606_EX6.hms]	
Eile Edit View Components Parameters Compute Results	Tools Help	
📋 🖆 🖬 🎒 🖡 🕂 🤹 🎆 🖕 🔲 🍄 🐓		
DES-606-EX6	🔶 🖉 Basin Model [Basin 1]	
ia-r 🌮 Basin 1 ia-r 🏤 Subbasin-1		
Specified Hyetograph		
Control Specifications		
intersection Gages		
□ [] Gage 1 □ [] 01 Jao 2000 - 00:00 - 02 Jao 2000 - 00:00	Subbasin-1	
Components Compute Results		
Subbasin Loss Transform Options		
Basin Name: Basin 1		
Element Name: Subbasin-1 Graph Type: Standard		
*Lag Time (MIN) 30		
	NOTE 10008: Finished opening project "DES-606-EX6" in directory "C:\D	ocuments and
	Settings\Administrator\My Documents\DES_606_EX6" at time 03Aug201: NOTE 10604: 97 missing or invalid values for gage "Gage 1".	1, 12:55:22.
	NOTE 10604: 3 missing or invalid values for gage "Gage 1". NOTE 10604: 3 missing or invalid values for gage "Gage 1".	
	NOTE 10604: 3 missing or invalid values for gage "Gage 1". NOTE 10604: 1 missing or invalid values for gage "Gage 1".	
		46

APPROACH – CONTROL SPECIFICATIONS

Catch the missing warnings, fix, and run

APPROACH – FIRST RUN

First simulation – volumes mismatch, need a loss model

NOTE 10604: 97 missing or invalid values for gage "Gage 1".

APPROACH – PICK A LOSS MODEL

Ia = 0.06 in, CI =0.0

Second run, still volume mismatch. Increase the CI value.

Volumes match adequately.

WARNING 41784: Simulation time interval is greater than 0.29 * lag for subbasin "Subbasin-1"; reduce simulation time interval. NOTE 10185: Finished computing simulation run "Run 1" at time 03Aug2011, 13:19:39.

Several runs adjusting lag time.

Peaks match, times good

WARNING 41784: Simulation time interval is greater than 0.29 * lag for subbasin "Subbasin-1"; reduce simulation time interval. NOTE 10185: Finished computing simulation run "Run 1" at time 03Aug2011, 13:22:35.

APPROACH We have just "fit" the data to an NRCS DUH with $T_{lag} = 45.3$ minutes

NOTE 10185: Finished computing simulation run "Run 1" at time 03Aug2011, 13:22:35.

DIFFERENT LOSS MODEL

We could try a different loss model

• NRCS CN model; Initial Loss = 0.06, initial guess CN=98

NOTE 10185: Finished computing simulation run "Run 1" at time 03Aug2011, 13:31:36.

DIFFERENT UH MODEL

Clark UH

Two parameters, Tc and R

NOTE 10185: Finished computing simulation run "Run 1" at time 03Aug2011, 13:36:56.

Empirical UH

- Prepared externally
- Import using PAIRED data manager

Microsoft Excel - Example6.xls						
8	<u>File E</u> dit	⊻iew <u>I</u> nse	ert F <u>o</u> rmat	<u>T</u> ools <u>D</u> a	ata <u>W</u> indow	/ <u>H</u> elp
- - D		3 0 - I	∑ - A I (100%	- 🤉 »	- ¤ ^
	E20	≥/ -/-	- Z * [- □ - □ 40 * 41		· • •	
	E2U	•	<i>⊺×</i> =E19°1.	2	F	r
1	A	D	Donth	Dunoff	Empirical I	<u></u> _
1	nime O	Intensity 0.24	Оеріп	RUNUN	Empirical-C	
2	0.25	0.24	0 20 0	0	0	
4	0.25	0.47	0.00	86	53 45879	
5	0.75	0.12	0.1275	22	136.755	
6	1	0	0.03	31.3	194.5651	
7	1.25	0	0	34.1	211.9703	
8	1.5	0	0	32	198.9164	
9	1.75	0	0	20.6	128.0525	
10	2	0	0	9.2	57.18847	
11	2.25	0	0	0	0	
12	2.5	0	0	0	0	
13	2.75	0	0	0	0	
14						
15	accumulated runoff (cu.ft.)		142020	882816		
16	drainage ai	rea (sq. mi.) 		0.38	0.38	
17	drainage ai	rea (acres) roo (og #)		243.2 10502702	243.2	
10	accum rur	rea (sq.it.) hoff/prop (ft.	denth)	0.013/06	0.083333	
20	watershed runoff (in-denth)		0.013400	1		
21	Materoneu	ranon (in di	-prity	5. 10001 Z	·	
22						-
H + H Sheet1 / Sheet2 / Sheet3						
Draw 🔹 😓 🛛 AutoShapes 🔹 🔪 🔍 🗆 🔿 🔠 🐗 🎲 🔌 🕶 🚮 🙄						
Ready NUM						

Empirical UH

- Normalized to produce 1-unit (inch) runoff.
- 1 unit excess input will produce the hydrograph.

🖀 HEC-HMS 3.5 [C:\Wy Documents\DES_606_EX6\DES_606_EX6.hms]					
File Edit View Components Parameters Compute Results Tools	Help				
🗅 😹 🖶 🍜 💽 中 ベ ム ム 🖶 🗰 🏺 🕆 荦 🏭 🗱 📾 📾 🥶					
Basin 1 Basin 1 Control Specifications Control Specifications Control 1 Control 2 Control 2	Graph for Subbasin "Subbasin "Sub	basin-1" basin-1" Results for Run "Run 1" Discharge (CF5) 138.70 194.57 211.97 198.92 128.05 57.188 0.0 0.0 0.0 0.0	for Subbasin "Subbasin-1" Project: DES-606-EX6 mulation Run: Run 1 Subbasin-1 an2000, 00:00 Basin Model: Basin 1 an2000, 00:00 Meteorologic Model: Molten Units: IN AC-FT Meteorologic Model: Multiplication Multiplication<		
	NOTE 41743: Initial abstraction ratio WARNING 42404: Storage coefficier NOTE 10185: Finished computing sim	for subbasin "Subbasin-1" is 0.294. t increased to 0.5 time interval (0.125 hr) a ulation run "Run 1" at time 03Aug2011, 13:	p.16 (IN) Discharge : 0.16 (IN) praph at Gage Gage 1 : 34.10 (CFS) :: 34.10 (CFS) Date/Time of Peak Discharge : 01 Jan2000, 01:15 di : 0.65 (CFS) 0.00 (IN) Total Obs Q : 0.16 (IN)		
y start 🛛 🕄 My Computer 🗐 Example66.ppt	🔁 FHWA-Highway-Hydr	🛛 🗮 НЕС-НМЅ 3.5 [С:\\	Microsoft Excel - Exa 3:24 PM		

Empirical UH

Original loss model. 🗮 HEC-HMS 3.5 [C:\...\Wy Documents\DES_606_EX6\DES_606_EX6.hms] _ 17 File Edit View Components Parameters Compute Results Tools Help 이 속 틈 🔲 🔶 수 🚠 📅 🗱 🖾 🖾 🖽 🗋 📂 🔒 🍜 ^ 🛓 💋 Basin 1 🔼 Graph for Subbasin "Subbasin-1" - **-** × 🛓 🔒 Subbasin-1 😑 🗀 Meteorologic Models Subbasin "Subbasin-1" Results for Run "Run 1" 🚊 🔗 Met 1 0.00--- 👌 Specified Hyetograph (ii) 0.04 bth (ii) 0.08 - Control Specifications 🛗 Control 1 🚊 🛅 Time-Series Data 0.08-🚊 🛅 Precipitation Gages 🚊 🚰 Gage 1 0.12 📲 01Jan2000, 00:00 - 02Jan2000, 00:00 🖮 🛅 Discharge Gages 35 🚊 👫 Gage 1 30 🛅 01Jan2000, 00:00 - 02Jan2000, 00:00 25 🗰 Summary Results for Subbasin "Subbasin-1" Components Compute Results 20 Flow (cfs) Project: DES-606-EX6 Subbasin Loss Transform Options 15-Simulation Run: Run 1 Subbasin: Subbasin-1 10 Start of Run: 01Jan2000, 00:00 Basin Model: Basin 1 Basin Name: Basin 1 End of Run: 02Jan2000, 00:00 Meteorologic Model: Met 1 5-Element Name: Subbasin-1 Compute Time: 03Aug2011, 15:34:26 Control Specifications: Control 1 0-*Initial Loss (IN) 0.06 Volume Units: 💿 IN 🚫 AC-FT 00:00 03:00 06:00 09:00 12:00 *Constant Rate (IN/HR) 0.16 01Jan200 Computed Results *Impervious (%) 0.0 Legend (Compute Time: 03Aug2011, 15:34:26) Peak Discharge : 34.0 (CFS) Date/Time of Peak Discharge : 01Jan2000, 01:30 Total Precipitation : 0.33 (IN) Total Direct Runoff : 0.16 (IN) Run:Run 1 Element:SUBBASIN-1 Result:Prec Total Loss : 0.17 (IN) Total Baseflow : 0.00 (IN) Run:RUN 1 Element:SUBBASIN-1 Result:Pred Total Excess : 0.16 (IN) Discharge : 0.16 (IN) Run:RUN 1 Element:SUBBASIN-1 Result:Obs Run:RUN 1 Element:SUBBASIN-1 Result:Outf Observed Hydrograph at Gage Gage 1 ----- Run:RUN 1 Element:SUBBASIN-1 Result:Basi Peak Discharge : 34.10 (CFS) Date/Time of Peak Discharge : 01Jan2000, 01:15 Avg Abs Residual : 0.37 (CFS) Total Residual : 0.00 (IN) Total Obs Q : 0.16 (IN) 58 Percent difference: 2.6

NOTE 40049: Found no parameter problems in basin model "Basin 1". NOTE 10185: Finished computing simulation run "Run 1" at time 03Aug2011, 15:34:26.

How to check that indeed a unit hydrograph?

Add a "design storm" that has total excess of 1-unit (inch).
Verify returns 1-unit (inch) of runoff.

Add a "design storm" that has total excess of 1-unit (inch).

Verify returns 1-unit (inch) of runoff.

Rescale the ordinates and repeat.

PARAMETRIC UH MODEL

Verify returns in same fashion.

COMPARISONS

- The empirical UH and parametric UH are both unit hydrographs.
- Parametric has flexibility if changing time bases considerably, and easier to communicate to other analysts
 - Only need send the parameter set, and not a paired series of unit weights.

Learning Summary

- Configured a single sub-basin model
- Used parametric UH models to simulate responses
 - Adjusted parameters until fit was "good"
- Used an empirical UH model based on the supplied runoff hydrograph
 - Normalized and time-shifted into a UH

Learning Summary

- Verified both models were UH by
 - Apply single 1-inch depth pulse
 - Disable loss model to guarantee 1-inch excess input.
 - Observed that computed watershed runoff depth was 1-inch

Learning Summary

The empirical UH rescaling is how durations could be changed to produce a UH with a different duration.

Empirical UH are entered as PAIRED data.

Closing Remarks

 Example shows how to enter a user-specified hydrograph, thus the Gamma Unit Hydrograph is now a useable tool for HEC-HMS

Learn more

HEC HMS user manual

FHWA-NHI-02-001 Highway Hydrology

SUMMARY

- Unit hydrographs map the excess precipitation signal to the outlet
- Base-flow separation isolates the total discharge from the storm-induced discharge
- Loss models are implicit; the unit hydrograph maps excess to the outlet
 - HEC-HMS Example inferred a UH from data

NEXT TIME

Unit Hydrographs/HMS Workshop

- CMM pp. 201-223
- Bring a laptop if you want to play along!

