CHAPTER
FOUR

CONDITIONS
OF PROJECT OPTIMALITY

Production Theory

Economic forces act within the private sector of the economy to deter-
mine the supply curves of individual productive units (firms) and integrate
them into a market-supply curve. Production theory attempts to explain
the operation of these forces in ordering private sector production and

thereby determining:

I The total expenditure on inputs (raw material, machinery, labor, etc.)
2 The division of this expenditure among individual inputs

3 The way inputs are combined to produce each type of output

4 The amount of each output produced

a production process. In planning a
manv valuable insights can be

1d act to order production

Water resources development 1s
production process for the public sector,
gained from analyzing how economic forces wou
under ideal conditions.
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¢ the sum of all the individual inputs.
0

The input vector consists
Thus, (4_1)
=g Tt T Em ey .

- ndividual 1nputs.
where X is the total input vector and the xt als i;nt}lle k- concI:‘ete,
oo Aot t’zm tt}'fpesbg?;tyihe required I;roduction

which go into a construction ) :

i:Sitsﬁe’lI‘he othegr type is the nat:rajl lstreamﬂow from which the output
' duced, the required raw material.

5 pr%valuation of (%che input vector is complicated by the fact ‘.chat the
timing and magnitude of future streamflows cannot be predicted 1n
advance and vary over wide ranges. Streamflow may be expressed as a
continuous hydrograph, a running plot of stream discharge throughout
the life of the project, as a probability distribution, or as such distribu-
tion moments as the mean and the standard deviation. Furthermore, one
must keep in mind that all the other input and output vectors also have
probability distributions even though their variance may be much smaller
because one cannot predict any future event with absolute certainty.

The concept of the input vector can be simplified by defining its
ot o voma st products of rsrvois, chansel improve.
crete, and steel. The optimum combinzfticoiiliflél;r?sin lt?mS'Of e&I:th, i
Ing a glven inter diat R ‘(' I‘UCtl.()‘n ltems 111.bu11d-

g 8 intermediate product (say a dam of specified size) is best
tound from an engineering economy study seeking t S
cost. The first phase or the economy Studybdéter;l s e
concrete, and steel should g0 into o dar ¢ N how much earth,

£0 Into a dam of given size. The s¢ d phas
econd phase

or optimality analysis determi; '
) dlySI; 1e8 hO\’V b
and where it should be built. Sahedam shouid e and when

The output vector con
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where YV is the tots (4-2)
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40 THE PRODUCTION FUNCTION Economists have traditionally
expressed the ability of a production process to produce an output vector
from an input vector by a production function. As a simple 1llustration,
one might have a production process in which two outputs are produced
(Fig. 4-1). Engineering analysis may show that the combination of out-
puts represented by point A could physically be produced and the com-
bination of point €' would not be physically possible to produce. Continued
analysis of alternative production possibilities will show which output
vectors can and which output vectors cannot be produced. All those that
can be produced are said to fall in the technologically feasible region. |

Some points in the technologically feasible region are efﬁcient., while
others are inefficient. For example, 1t would be physically PO{SSlblC to
dispose of the input vector without producing anything, but th}s “'OUI_d
be Wasteful and inefficient. The production represented by point A 1is
nefficient because with the same input, the output vector could be
Increased to point B. For an inefficient point, the output V'eCt‘OIi Caf‘l b(f
tambiguously increased without increasing the 11.1put vector 10‘1 tle :LtIEg
OUtput vector can be produced atter an unamblguousﬂ demedsedlilnates
Nput vector. An unambiguous 1ncrease of a vector means g@e Cg Ocrlecl-ease
e Increased without any being decreased. An unam ,lguoiqch The
€ans some coordinates are decreased \\:ithOllt e k})el(l)llgz):llccill\ feasible
ocus of efficient points is the outer limit ol th_e te'cflil re )Dl-csmitattion of
°8lon. The production function is the mathematica .‘de by putting
this line. It is related to the entire input and output vectors and, D,
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but smaller 1n

both the input and output vectors.
U= (X ¥) |
Where n outputs are produced from m inputs,

n m (4-5)

U = z Bjyj e z Ciz;
j=a i=1 . |

where the B; refer to the unit benefits associated with the C(.)rrespondl’ng
coordinates of the output vector, and the C; refer to the unit costs asso-
clated with the corresponding coordinates of the input vector. Con-
ceptually, both benefits and costs may be either measured in monetary
units or defined with respect to some broader based social welfare func-
tion (Sec. 5-2) without affecting the optimality criteria derived below.

.3 THE OBJECTIVE FU
-

S
the production function require

G4)

4-4 COST AND BENEFIT CURVES Economic evaluation of pro-

dgctmn alternatives is based on the variation in total production cost
\T'lth.level of production output (called the total-cost curve) and the varia-
tion in th‘e resulting benefit with leve] of production output (called the
lotal-benefit curve). The total- 1S d \ Ino
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réquired input costs for 3 series of Jeyels f ‘ i
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FIGURE /-2 Representative total-, average-, and marginal-
cost curves.

-benefit curves by dividing the total value by the level of output (IFig.
4-2). Average-cost curves are usually U-shaped. They decrease at first
because of economies of scale, savings 1n production cost per unit stemming
from increases in size of plant and output. Iconomies of scale .l:egurlt
from (1) specialization of labor and (2) advanced technology. SPCT”SZS'
tion of labor may be impossible in a small plant because no SINg e‘a. a, }
requires the full-time effort of any individual worker, but as the.mf al
Plant and production increases, assembly line techniques b‘e Crokr)near\)zl'ifu‘;)(;;
and reduce unit production costs. Advanced technolofgy md:ll elant(.' How-’-
but jts fixed cost may be too large to be W‘dl’m“t?d fOI- tgi Zglgmllje advanced
eVenincrea&aicunqnltspreadsfh«xlcostoverrqqmeunlhh-Oftheft“%lcost
technobgy economical. In reservoir construct‘w'rlll, T uf to pass rare floods,
Stems from providing sediment storage i “C}lﬁcnts. Average cOSt
dCCess roads, and other minimum Struc
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hange in output. Because a t, th
tra unit unless the price exceeds the marglpa.l cost, the
pl'oduc.e an extra ul s e supply curve. It indicates the
ot llnllingl.fhfolzll?(liilc;r;&aﬁ extra unit of production. Because a buyer
i)v?l(l:engscﬁéke}a purchase unless it provides a Vajlue. exceeding the. cost,
the marginal-benefit curve is a demand curve. It indicates the maximum
price that a firm which uses the output produced can afford to spend to
acquire an extra unit.

Total values may be established from marginal curves because the
area under the marginal curve to the left of an abscissa equals the ordinate
of the total curve. The total cost of a group of items equals the sum of
their individual costs. At the low point on the average curve, the marginal
values equals the average value because, otherwise, adding the marginal
increment would change the average, A marginal curve must plot below

a falling average curve to cause average values to drop. Obversely, a
g DYicor e
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resembles a topographic contoyr Map and is ealled
response surface. A necessary condition to shoyw that the
has been proc.iucec.l from these two iflpUtS 1s that the surface slope down-
ward e all leeCtl(_mS- H(?wever, this condition i not sufficient becayse
there might be a higher hilltop on the othey side of a valley. For greater
numbers of inputs the surface is multidimensional, but the prin(t;iple IS
the same.

Proof that a given peak is the maximum may follow one of two lines.
The height of each peak may be computed to show which is highest.
Evidence may be presented to show only one peak exists. A single peak
will in tact be the case if all second derivatives of the objective function
are continuously negative, a situation occurring under conditions of
diminishing marginal utility as supply curves slope continuously upward
and demand curves slope continuously downward to the right. The
second approach is more frequently used in water resources planning.
It needs to be emphasized that the conditions of project optimality to
be developed below are necessary but not sufficient conditions. Proof
of absolute optimality requires evidence that no higher peak exists.

For a water resources project, the goal is to find an alternative
having maximum value of u(X,Y) with the constraint that only alter-
natives contained on the production function f(X,Y) = 0 need be con-
sidered. The conditions necessary to having a maximum value may be
determined by (1) the geometrical approach or (2) the mathematical
approach. The geometrical approach follows immediately, while the
mathematical approach is presented later.

A production or o
maximum output

Geometric Derivation of Basic Rules

A 1 , P ENBERES
46 OPTIMALITY CONDITION 1: COMBIN A TIOi\lf Ol;n[qbimtion
: - : Q48 STLlV C ¢
The optimal production process must use t}}e lethttcopoil example, the
‘ : ; any given level of output. = i
O.f 1iputs able to produce any giver st be selected to achieve
81zes of the two dams to provide flood control mus it B
the desired level of flood reduction at minimum COtb} s Ofi\‘()m(-ll‘m,nt
COmbination of inputs can be found geometrically b}t ] L (lil-Il'lGIl\‘i()n.’\‘ for
lines gy 1socost lines. If the problem 1s Iec{uced}fo :‘;i(;fu'(nlf combina-
? ; o e o 4-3) show ere '
tong of two inputs which can produce equal d'mf) # ;nd L
Isoquants are analogous to indifference curves
‘ o TP C ' :
Cha-racteristics :
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In Fig. 4-3, the isoquant for output y, shows the possible combina-
tions of #; and x, which could be used in its production. The most eflicient
combination depends on the unit prices of the Inputs, just as t]

prices of goods guide spending to maximize consume
3-10).
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E% 77F}2

Budget 7

7'//3/‘,4 4
Input

FIGURE /-4 Isocost lines (lines of equal cost).

Production of a given level of output with the least-cost combination
of resources occurs where an isocost line (slope of P/ s 18 tangentito
the isoquant (slope of MRS, . ). Therefore,

P
M = 4-7
RS-"'Z% P ( )

T9

Figure 4-5 shows a number of isoquants with tangent isocosts. The line
AB joining the points of tangency is called the expansion path and is the
locus of the least-cost combinations of inputs for varying levels of total

output.
An example will clarify the procedure for combining inputs. Suppose

the axes in F 1g. 4-5 represent two single-purpose flood control reservoirs.
We can calculate combinations of storage capacity in the two reservoirs
Providing a fixed level of flood peak reduction (isoquant) and.the storage
combinations that can be constructed with a fixed budget (ISOCOSt‘)- f\S
Many isoquants and isocosts as needed may be cal(.:ula?ed afnd ‘(11‘8::;;18.
Each poing of tangency represents the least-cost combination of reserv

% provide a given level of flood reduction.

LOUTRUTS
/P? OPTIMALITY CONDITION 2: COﬂ[B]N*j1‘TIIO}inglf)pOolwer, total
Vith two outputs, such as municipal water Suppy &(nc‘ 1iyze beneﬁts. One
Productiop must be divided between the two to ma.X“j representing two
May begin the analysis by plotting on




70 MICROECONOMICS AND EFFICIENT RESOURCE ALLOCATION
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1
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FIGURE /-5 Determination of least-cost combina-
tion of inputs.

outputs y, and y; (Fig. 4-6) each of the family of curves showing com-
binations of outputs that can be produced at a given cost. Each curve
indicates all combinations of outputs y, and ¥p» that can be produced for
the indicated sum and is called a product-transformation curve because to
move along it, one output must be increased while the other is reduced.

Y
Isorevenue |ine
Product - transformation curve
s \
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Optimum combination of
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FIGURE /-6 Optimum com-
bination of out-
puts.
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The slope of the product-transformation curv
of transformation.

A family of parallel lines called 1807even
Fig. 4-6. The slopes of these lines are the rat
two outputs.

ue lines may also be drawn in
108 of the market prices of the
shows the different combinations of
€ amount of gross revenue or would

Each isorevenue line
outputs that would sell for the sam
produce a given benefit.

The optimum mix of outputs achieves a given level of benefits at
least cost, or put another way, the maximum Jevel of benefits for a given
level of costs. In Fig. 4-6, the optimum combinations are located a?; the
points of tangency of the isorevenue lines (slope of P, /P,.) and product-
transformation curves (slope of MR Tz,;yb). Therefore,

Py,
I]'./[RTgmyb = Pyb (4:‘8)

Product-transformation curves are concave to the origin (Fig. 4-6)
if the outputs are joint products of the same productive process or if the
production of one 1s facilitated by production of the other. But if the
production of one output hinders production of another, the product-
transformation curves are convex to the origin. In this case, benefits are
maximized by producing only one of the two outputs, a boundary solution
for which Eq. (4-8) does not apply (Fig. 4-7). The product-transformation
curve reaches the highest isorevenue line on the y, axis; therefore, only

Isorevenue line

Product - transformation curve

Output y,

Optimum output
for given level
of benefits

7

——

Output yp
Optimum output for concave prod-
uct-transformation curves.

FIGURE 47
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Moxirnum net
benefits

Total
benefits /

Total
costs

Optimum level
of output y,

Present worth,in dollars

FIGURE /-8 Determination of opti-
Output J, / year mum level of output,

Yo would be produced. Note the isorevenue line is not tangent to the
product-transformation curve at this point.

Optimality condition 2 may be summarized by saying production
should be divided between two outputs so that the marginal benefit of
any input in the production of one equals the marginal benefit of the Input

In production of the other. Otherwise production could be shifted be-
tween the outputs to increase benefits.

4-8 OPTIMALITY CONDITION 3: LEVEL OF OUTPUT Opti-
mality condition 3 determines the optimum leve] of output, on the assump-
tion that conditions 1 and 2 have already been met, It states that benefit
1S maximized if output is increased up to the point where the marginal

Marginal cost curve
\ Average cost curve

Average variable cost curve
/ Marginal benefit cyurye

|
|
I
|

Present worth In dollars

—— Average fixed cost curve

|
l
II Optimum leve| of output y

Output ¥, /year

FIGURE 4-9 Optimum level of output by using margi-
nal-cost and marginal-benefit curves.




tion of opti-
of output.

rent to the

production
| benefit of
of the input
shifted be-

R Optl_
he assump-
that benefit

le marginal

CONDITIONS OF p

ROJECT OPTIA\IAL]T\' -

Jp |
+—
=
Q.
=
O
[ E x
= pansion path
c
q ]
: . Annual benefits
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costs equal the marginal benefits, or in engineering-economy terminology,
ieremental costs equal inecremental benefits. The two marginal values are
equal where the slopes of the total-value curves are equal or where the
distance between them is maximum (see Fig. 4-11).

For the two-input one-output case, optimality condition 1 provides
the basis for calculating the minimum cost of attaining different levels of
output. The results may be plotted in a total-cost curve (Fig. 4-8.) The
total-benefit curve may be plotted by multiplying the unit price of the
output times the quantity of output. Under the conditions of pure com-
petition, the unit price is constant; hence the total-benefit line is straight.
For only one output, optimality condition 2 does not apply, and we can

Present worth of
total benefits

Present worth of
Maximum construction costs
net
benefits

Present worth, in dollars

nd outpuT
, Optimum level of Consfruchon costs d

IV

Construction costs

, of optimuml level of con-

FIGURE 4-11 Determinatiol iy

' 3tS u
struction costs and O
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g0 directly to optimality condition 3. As can be seen from Fig. 4.8 1
benefits are maximized where the slopes of the total-benefit and total-cogt
curves are equal. The same optimum level of output can be expressed o
marginal curves as the point where marginal cost equnl§ marginal benefit
(supply equals demand) as seen 1n Fig. 4-9. For the 0no-1np1.1t two-outpyt
case, only optimality conditions 2 and 3 apply since there 1s no problen
of combining inputs.

The benefits and costs associated with output combinations on the
expansion path (Fig. 4-10) may be plotted (Fig. 4-11) to determine the
optimal level of construction cost. This cost then is divided between
producing outputs y. and y, by referring back to the corresponding point
on the expansion path. For the multiple-input multiple-output case, total-
cost and total-benefit curves must be used as described in the next chapter.

Mathematical Derivation of Basic Rules

The goal of project optimization is to maximize the objective function
u(X,Y) by choosing the best alternative on the production funection
f(X,Y) = 0, where X 1s an m coordinate and Y 1s an n coordinate vector.

4-9 LAGRANGE MULTIPLIERS Differential calculus can be used
to find such a maximum by differentiating the objective function with
respect to each ot the (n + m) vector components, setting each differential
equal to zero, and solving the resulting equations. However, the solution
can only be constrained to alternatives contained on the production func-
tion by including 1t in the equations being solved. This introduces one
more equation than unknown, and the problem becomes overdetermined.
One way out 1s to Introduce an artificial unknown called 2 Lagrange

multiplier' as a coefficient of the production function and add the product
to the objective function. Thus,

e A e (4-9)

where A 1s the Lagrange multiplier and L is the variable to be maximized.
Equation (4-9) 1s based on the principle that if the constraint is satisfied,
the production function will equal zero. By different.iuting with respect 0
A\, setting the differential (which will be the production tunction) equal t0

1 TLagrange multipliers are described in much greater detail in William J. Baumo]

g Rgln Ec . . Theory
and Operations Analysis”’ (Englewood Cliffs, N.J.: Prentice-Hall, Inc. enomie. SHAS

’ 1?’(51) l)[). v;L ’lB(J.
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zero, and 1ncluding it in the set of equations to be solved, one incorporates

the production function into the solution. The approach 1s illustrated by
Ex. 4-1.

EXAMPLE -1

In a constrained maximization problem, the objective function is
Y = 10ad, and the constraint is 5a + b = 200. In other words, we are
seeking the values for a and b which maximize the first expression without
exceeding the upper limit of the second expression. Placed in the format of
Eq. (4-9), the constraint expression 5a + b — 200 = 0 may be added to
the objective function without changing its value, to give

Y = 10ab + A (5a + b — 200)

By partial differentiation with respect to each of the unknowns a, b, and A
and by setting each differential equal to zero,

gt 100150 =0

da

dxr

Y
5—5&‘{"1)—200—0

Solution of the three equations givesa = 20,b = 100, and A = —200.
When these values are substituted in the objective function, the maximum

value 1s found to be Y = 20,000.

The economic significance of A is that if the number on the right-
hand side of the constraint equation had been 201 instead of 200, the
optimum value of Y would have been 20,000 4 X, or 20,200.

Lagrange multipliers permit constrained maximization by introducing
as many artificial unknowns as there are constraints to make the number
of unknowns and equations equal. The problem could be solved without
using Lagrange multipliers by substituting the constraint expression in
the objective function before using the differential calculus approach,
but for many expressions the algebra makes this approach difficult if not
Impossible.

4-10 APPLICATION OF THE LAGRANGE J[('L’/'U’L.Ilfi’h’ In
order to find the maximum, Eq. (4-9) must be differentiated individually
With respect to each coordinate ot the two vectors as well as A; and each
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differential must be set equal to zero. Thus,

Julx Y i B af(*Y.vY) s AR (4-10)
a;vi a.L’i

and

au(X,Y> o SHEN af(zr,}’) J =0 b, i S K}-ll)
dY; AY;

and

6u<£, Y- #(X.Y) (4-12)

By dividing Eq. (4-11) into Eq. (4-10) and pairs of Egs. (4-10) and (4-11)
into each other, one obtains

du(X,Y)/ox: 3f(X,Y)/dz:

4-13
ou(X,Y)/dy; of(X,Y)/dy; | |
(XY 0m; = of( X 1)) oz (4-14)
ou(X,Y)/ox, of(X,Y)/0x, -
(X, Y) /0y, of(X,Y)/0Y. (4-15)

u(X,Y)/dys  of(X,Y)/dys

Since f(X,Y) must equal zero, an increase in one element must be offset
by a decrease in another. Therefore,

Of(X,Y)/dz: _  dy; f
EE oy 9 (4-16)
af<X, Y)/all ok 82:2 |

X)) /dr " Oy (4-17)
af<X7 Y)/a?/a o aljb | :
Af(X,Y) /0y Ya (4-18)

By combining Egs. (4-13) and (4-16), (4-14) and (4-17), and (4-15) and
(4-18), one finally achieves

du(X,Y)/dz; dY; |
u(X,Y)/oy; oz (4-19)
du(X,Y)/0x; 0T |
u(X,Y)/dx: 9z (4-20)
Su(X Y )9y . O |
uX,Y)/3yy  OYa (4-21)

4-11 THREE BASICOPTIMALITY CONDITIONS Analysis of the
meaning of the terms in Eq. (4-19) reveals ou(X,Y)/dz; to equal the
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marginal cost of Input 7, or M(C; ang ou(X,Y) /94 -

; » £ )/ 0Y; to equal the maroina
beneﬁt.from output y, or MB g The term on the]right(-lhand ;52‘1(:? l:}i}
expression, —ay;/ 3.13}‘, 1s what economists eg]] the marginal phi w’caé
product, OT the additional output which can be produced per unit éf ‘i:n ‘

MC: _ MPP..

MB,; 5 (4-22)
where M PP;; 1s read as the.marginal physical productivity of the sth
input when devoted to the jth output.! Similar analysis of Eq. (4-20)
reveals M C; and M C 2. The marginal rate of substitution was defined in
Sec. 4-6 as the marginal rate at which quantities of the second input need

to be substituted for a unit reduction in the first, input while holding the
level of production constant, —dz,/dz,. Thus

MC,
MC,

Equation (4-21) contains M B,, M B,, and the marginal rate of transforma-
tion (Sec. 4-7), or the marginal rate at which production can be shifted
from the second output to the first to effect a unit change in the first
without changing the input. Thus

MB,
M B,

= MRS, (4-23)

== MR Tba (4'24)

412 APPLICATION OF OPTIMALITY CONDITIONS The three
equations of the last section may be used to answer the four questions
fundamental to structuring production. The application may be illustrated
by a water resources project which produces two outputs, flood control
Yo and irrigation y,, from two inputs, reservoir storage ; and channel
Improvement Ts. .

The first fundamental question is: How should the inputs (})‘e com-
bined to produce a given output? The answer 1s fognd In .Eq. {4-“3). Thi
Marginal cost of an input is its unit price. If unit price varleslgll‘)ch cam(])il;?i
Purchased, the marginal price at the input actua!ly US.ed sh(;lu oeuilzfth@
£quation (4-23) says the inputs should be combined in such am 2 (;an .
the ratig of their prices equals the marginal rate at which one 1np

) : - s of the production func-
S-ubstltmed for another with all other components iy

. ; constal
tlop constant. With the other inputs and outputs a9 function of o

a tyn; . - valuate z1 as o
"Ypical production function, one may © in Fig. 4-12. The curve 18

*© obtain the data in Table 4-1 and the curve
MPPzy;-

1 : : -ould be
. ‘hich wou
hig A0tation ig simplified from that previously used, Whic




e O

78 MICROECONOMICS AND EFFICIENT RESOURCE ALLOCATION
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Xy = 5,X2 =2.5

\
2 ~-
j i

LL 1 1 1

O S 10 15 20

FIGURE 4-12 Optimum combination of inputs.

concave toward the origin because of an increasing 1nability to substitute
a second 1nput for the first as one approaches the point where the first
1s not used at all. Our rule says to substitute z, for z; until the marginal
rate of substitution MRS of z, for z, equals the ratio of marginal costs
MC'. This would give the point z; = 9, 2 = 2.5. The total-cost 7C' column
in Table 4-1 and the price line in Fig. 4-12 show how this is also the point,
of minimum total cost.

The second fundamental question is: How should total production
be divided among specific outputs? The answer is found in Eq. (4-24). The
rule says that the outputs should be produced in such amounts that the
ratio of their unit benefits equals the marginal rate at which production
can be shifted from one output to another with all other inputs and outputs

T'ABLE 4-1 Optimum Rate of Substitution
X X2 MRS 1.0

10 1 60
0525
6 2 50
0.5
4 3 50 MC, = $5
2 MEC.i= $10
3 5 65 Optimum MRS,, = 5{, = 0.5
5
2 10 110
10

1 20 205
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FIGURE 4-13 Optimum division of out-
puts.

held constant. For this condition, one may evaluate Yo a8 a function of y,
to obtain the data in Table 4-2 and the curve in Fig. 4-13. The curve
1S concave away from the origin because the first units of additional
output can normally be produced at less marginal cost than later ones.
Our rule says to substitute y; for y, until the marginal rate of transforma-
tion MRT of y, for y, equals the ratio of their marginal benefits M B.
This corresponds to the point y, = 5.5, y» = 7. The total-benefit TB
column in Table 4-2 and the income line in Fig. 4-13 show how this is also
the point of maximum total benefit.

The third fundamental question 1s: How much of a specified input
should be devoted to the production of a specified output? The answer
1S found in Eq. (4-22). The rule says that the input should be utilized
in such amount that the ratio of marginal input cost to marginal output

TABLE /-2 Optimum Rate of Transformation
Ya Yb MRIT 15

10 0 20
3
9 3 2
¢ MB $2
5 31 [B, = $2
; 1 MB, = $3 o
7 6 32 Optimum MRTsa = 24 = 0.67
0.67
4 8 32
0.50
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FIGURE 4-14 Optimum input to use ip Pro-
ducing a specified output,

benefit equals the ratio of marginal physical output to marginal physical
input. For this condition, one may evaluate Yo as a function of z; to obtain
the data in Table 4-3 and the curve in F1g. 4-14. This is only one of four
possible curves of this type for our two-1nput two-output example, one
for each combination of output and input. Our rule says to increase the
amount of x; used in producing v, until the marginal increase in , for
a unit of x; equals the ratio of their marginal unit values. This corre-
sponds to the point y, = 7, 21 = 2. The net-benefit B — ( column In
Table 4-3 and the distance between the two lines in Fig. 4-14 show this to
be also the point of maximum excess of benefits over costs.

The fourth fundamenta] question is: How large should the total
project be? The answer is found by shifting the approach demonstrated
by Fig. 4-14 from coordinate pairs to the total input and output vectors.
However, the analysis requires the selection and evaluation of trial vectors
as no straightforward solution of the type used in answering the first three
questions is possible. A trial output vector is selected. The first rule 1is

TABLE 4-3 Optimum Physical Product

T, Ya VR P IB =i
0 0 0
4
1 o 3
3 MC, =5
2 7 4 MB, = 2
2 Optimum M PP,, = 2.9
3 9 3
1
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Point of tangency equals
opfimum point

Value of output vector ¥

combination of input and
output vectors.

Value of input vector X

applied to determine the optimum input vector for that output vector.
The value of the output vector is determined as the sum of the produects
of the output coordinate magnitudes and the marginal benefits. The value
of the input vector 1s determined as the sum of the products of the input
coordinate magnitudes and the marginal costs. Theoretically, an infinite
number of trial output vectors would produce points covering the entire
area below and to the right of the curve in Fig. 4-15. Because efficient
outputs have the maximum value for a given input value, they lie along
the locus of points bounding the area on the upper left side. These are
also points which meet the conditions of the second and third rules. The
optimum input and output vectors are found by the same rule used to
determine the optimum level of output in Fig. 4-8.

The complexity of design optimization can be appreciated when one
realizes that Eqs. (4-22) to (4-24) only help establish whether a particular
project design is in fact optimum. The development of a trial project
design requires a long series of economy studies seeking the least-cost
means of achieving the desired end, or what economists would call defining
the production function. Project formulation s a trial-and-error process
in which promising designs are tested to determine the resulting net
benefits.

While the rules developed in the preceding sections are not. even
necessary for project optimality 1if the response surfuce peaks ud‘]:u:\cut
to one of the axes (Fig. 4-7) and while they are not in themselves E.Lbhi t()
guarantee project optimality (Sec. 4-5), neither. of thcge 11111\1tut.1‘():.?“1i
likely to be encountered in water resources project design. il v,pl:“()'l)ct‘;_
Dl‘()blelrl of more general 001.1sequenceis hl—{el}i.tO 2?1'1‘81 ;ftlil‘clltlil)d}i;l:m Ithe
mality criteria where intangible values or outbu.le cOnsStIe YT

: LAy g o any of the optima 1ty
Project design. Is there any advantage i} apply e hwhile to devote so
Criteria where all of them cannot be satisfied? Is 1t_ W?T l\\\x'}lliti(* i ioalite
much effort to optimizing water resouRee develi)pll'l 01 )ubliC spending?’
Criteria are ignored in virtually every other sector Otk
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Lipsey and Lancaster have developed a “gene?ral the.or}v' of thevsecond best?”
showing that improvement in one sector will not 1nv {lljl&b.l} producfe St
overall improvement.' Nevertheless, the greater probabll.lty 1S that.pro:]ects
designed more efficiently with respect to as m.a.ny optimality ecriteria gs
can be applied will increase human welfarg in the short run. As. new
techniques are developed and implemented 1n oth.er kinds of pub.llc In-
vestment decisions, the chance for improvement 1s even greater in the
long run.

Market Allocation under Pure Competition

The derived optimality conditions would be automatically achieved by
a market economy under the ideal conditions of pure competition. This

can be shown by analysis of production situations in the very short run,
short run, and long run.

4-13 VERY SHORT RUN ANALYSIS In the very short run, the
output has already been produced and its amount is fixed. Since no free-
dom is left to alter design and production decisions, none of the optimality
criteria for governing such choices applies. The producer tries to sell at the
best price available as long as one can be found in excess of the value of the
output as scrap or in excess of the present worth of the net profit expected
from storage for later sale. However, a price below the marginal production
cost would direct that production be halted as soon as possible.

4-14 SHORT-RUN ANALYSIS In the short run, the firm is free to

vary the level of production in response to market conditions. However,
an individual firm does not have time to vary the capacity of its production

facilities. Industry output can only vary within the capacity of existing
firms.

The Firm A firm producing an output in relatively small quantities
cannot affect the price by changing the supply and hence faces a horizontal
demand curve (Fig. 4-16). The demand curve is the firm’s marginal-
revenue curve since the incremental revenue from each additional unit
of output equals the unit price. Profits are a maximum at the output Y’

1

Richard Lipsey and Kevin Lancaster, The General Theory of the Second Best, Rev. Econ. Studuies,
vol. 24 (December, 1956).

whel
varl:
1S th

COst:
ever
exce
the

whi

mayx

bel
The

lies

r]’h(:
sup
ind:
of t{
are
uni
Sup



SN
ECts

L as
1ew

the

118
n,

11

CONDITIONS oF PROJECT OPTIMALITY 83

DollorS/Y

SAC
demand curve
Unit / ’/
Costs MR
and
revenues AVC

FIGURE /-16 The firm’s short-run unit-revenue and unit-cost
curves

where SMC = MR. Here SMC is the short-run marginal cost, or the
variable cost per marginal unit of production from 2 fixed plant, and MR

If the market price (MR’ in Fig. 4-16) is less than short-run average
costs SAC' at all possible levels of output, the firm will lose money. How-
ever, 1t should continue to operate at a loss as long as the market price
exceeds the average variable costs A VC. This is because revenues exceed
the cost of production and can be used to partially defray fixed costs
which continue regardless of whether the plant shuts down or not,

The profit-maximizing firm should produce the output fox: which
marginal cost equals market price (MC = MR) unless market price falls
below the firm’s average variable costs. In that event it should shut dox.vn.
The firm’s short-run supply curve i1s that part of the SMC curve which

lies above the A VC curve.

The [ ndustry The price faced by the firm is determil}ed by the chpposne
SUpply and demand curves faced by the group of ﬁrx.ns COHIPI‘ISIIIg ?;he
industry. The short-run industry-supply curveis the h()l'lZ().ntal. sum ma‘t'lon‘
of the firmg’ short-run-supply curves as long as.productlon. H;p,(l;t ?ince;
¢ not affected by the industry. If input prices are gff;z}c c.,du:&'
Unit-cost curves will shift and cause some adjustment 1n the 1n y

“Upply curve, O L
Figure 4-17 shows how prices are signaled by the industry to the
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Dollars/y, Dollars/y | Industry X

!
|
I
|
|
!
|
|
|
|
'
|
A

0 7 e Y- Y
Output Qutput

FIGURE /-17 Short-run equilibrium for single firm and
industry

firm. The horizontal axis for the industry is greatly compressed since the
output of the firm is very small compared with the output for the industry
as a whole. The price axes are the same. Suppose we have the industry
demand DD, which 1s the horizontal summation of the consumer-demand
curves, and the industry supply SS, which 1s the horizontal summation
of the firms’ supply curves. The short-run equilibrium market price P is
established by the interaction of DD and SS. This price becomes the
horizontal demand curve for the firm because it can sell as much as it

Dollars/ Y

SAC, SACs

Output y

FIGURE 4-18 Long-run average-cost curves.
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4156 LONG-RUN ANABIGSTS i Tn the long run, no costs are fixed
because the firm can modify its production facilities in whatever way 1s
advantageous. A plant designed to produce any fixed amount of out.put
has a short-run average-cost curye The long-run average-cost LAC curve
is the envelope of the short-run average-cost curves for varying scales of
plant (Fig. 4-18).

The optimum scale of plant is the most eflicient of all possible plant
sizes. It 1s the one whose SA4 ¢ curve establishes the minimum-cost point
of the LAC curve as shown in Fig. 4-19. The SMC and LMC curves must
also pass through this point as they must intersect average-cost curves at
their low point. The long-run proﬁt-—maximizing rule is for a firm to pro-
duce the output for which LM (¢ — LAC = SAC = SMC. Fach firm must
operate an optimum scale of plant at the optimum rate of output. Free
entry and exit of firms will restrict production to those firms which have
their average-cost curves tangent to the demand line DD. Under pure
competition, consumers get products at prices equal to long-run average
costs.

Dollars/ Y
LAC
D
Unit costs
and
Revenues

T, 3 y
Qutput

; ves and determination of
FIGURE 4-19 Long-run cost curves a =
. optimum scale of plant and output.
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Applications

j-16 USE OF SUPPLY AND DEMAND CURVES IN PROJECT

EVALUATION Application of the principles developed in this chapter
to the economic evaluation of engineering projects requires analysis of the
demand for project output and of the cost of project production. Long-
run values should be used to optimize design in project planning, and
short-run values should be used to optimize operation of an existing
facility. The demand may be graphically depicted by a marginal-benefit
curve, and the supply may be depicted by a marginal-cost curve. Potential-
output uses vary greatly in value. Whenever all available output 1s de-
voted to the most beneficial use available, marginal benefit monotonically
decreases with increasing output. Each increment of output 1s put to a
lower-value use than the previous increment as the higher-value uses are
satisfied. Expressed mathematically,

MB = f(Y) (4-25)

or marginal benefit is functionally related to the level of exttput Y.

The marginal revenue which could be realized from sale of additional
output would be less than the marginal benefit. Revenue depends on the
sale price, while benefit is received through use and is thus determined by
the nature of the use. When production increases, the total benefit is
increased by the area added under the marginal-benefit curve. The price
1s reduced by the larger supply. The lower price inflicts a revenue loss
which drops the marginal-revenue curve below the marginal-benefit curve.
FFor example, with an increase in output from di to de (Fig. 4-20), benefits
would 1ncrease from adih to adec, a net gain of hiec. Revenues would
increase from gdih to bdec, an increase of miec partially offset by a decrease
of gbmh. The gain in revenue is thus less than the gain in benefit.

The functional relationship between the marginal-revenue curve and
the marginal-benefit curve may be developed by use of Fig. 4-21. An
incremental increase 1n production would decrease revenue from the items
prevjously produced by area 1, or Y AYf,(Y). The revenue from newly
produced 1tems 1s represented by area 2, or AY f1(Y). The total revenue

difference resulting from change of output AY is the sum of the two areas,
or

AR = AY fi(Y) + Y AY fi(Y) (4-26)

Marginal revenue 1s determined by decreasing AY to differential size to get

dR ;
MR = - = f(Y) + Yfi(Y) (4-27)
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a
MR = (Y )+YF, (Y)

3 MR = marginal receipts
c MC = marginal cost

u : \ N ME = marginal benefits
QJE=— A=
é \\ //MC = fz()/)
8 \
c b Y

: \
13) \

C>, I\

/

E; / : \
= // =\ MB = fq (Y)

= / IR\
= /f/ | \

e\
ad i \
/ e 4

Output in production units, Y

Private monopoly

Public works projects

Goal Maximize net receipts

Optimum point
At optimum point: gross receipts
Production
Price
Production cost
Net receipts (producer's surplus)
Gross benefits
Net benefits
Consumer's surplus

5 MR = MC

gaih

o

hi
kdiy
gk/h =
adih
ak/h <
agh

Maximize net benefits
¢, MB = MC
bdec
oe
ce

kaec
bkc

agadec
akc
abc

FIGURE /-20 Definition of terms in benefit computations.
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FIGURE /-21 Effect of increme

marginal revenue.

AYf,(Y) = The distance times the slope
which is the first derivative

Area 1= YA YY)
Area 2=AY4H(Y)

ntal change in output on
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The first term is defined by Eq. (4-25) as the marginal benefit, ang the
second term is an added quantity. Whenever the demand curve slopes
downward to the right, 1its slope f1(Y) and thus the second term gpe
negative. Thus, the marginal-revenue curve plots, beneath the marging].
benefit curve, an amount equal to the product of the output and the
slope of the marginal-benefit curve. The marginal cost 1s also some fune-
tion of the level of output Y:

The balance of the notation in Fig. 4-20 serves to define the benefit
and cost terms used in project analysis and to illustrate the difference which
would result between planning by a private monopoly seeking to maximize
revenues and planning by a public agency seeking to maximize benefits.
The optimum project for the monopoly would be a point 7 where marginal
revenue equals marginal cost. The optimum project for the public agency
would be at point ¢ where marginal benefit equals marginal cost. At each
optimum point, the optimum production, gross receipts, production cost,
net receipts, producer’s surplus, gross benefits, net benefits, and consumer’s
surplus are defined as shown.

4-17T MARKET ALLOCATION UNDER PURE MONOPOLY Pure
monopoly 1s the market situation where a firm produces the entire supply
of an output for which there are no good substitutes, a rare situation
because most outputs have substitutes. The monopolist has the same cost
curves as the firm in pure competition but faces the entire market-demand
curve. His actions affect price as well as the economic equilibrium achieved
in the short run as well as the long run.

Short Run  The short-run curves are shown in Fig. 4-22. As illustrated by
Fig. 4-20, marginal revenue is less than price. The monopolist will produce
where SMC = MR to maximize profits. He will be able to sell at a price
exceeding his marginal cost. He will produce less than the optimum output
for economic efficiency achieved automatically under pure competition.

Long Run In the long run, the monopolist selects his scale of plant
according to the relationship between the market-demand curve and his
long-run average-cost curve. The optimum scale of plant (at the minimum
of the LAC curve) will be built only if by chance the marginal-revenue
curve cuts the minimum of the LAC curve as shown in Fig. 4-23. The
monopolist will follow the profit-maximizing rule of LMC = MR. Since
SMC = LMC = MR = SAC = LAC at output Y’, the firm is in both
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Dollars/y | p
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FIGURE 4-22 Unit curves for pure monopoly.

short-run and long-run equilibrium. The monopolist’s profit is (p — ¢)Y".
He operates an optimum scale of plant at an optimum rate of output.
However, 1if the market is so large that the monopolist’s marginal-
revenue curve cuts the LAC curve to the right of 1its minimum point, the
monopolist will build a larger-than-optimum scale of plant and operate

Dollars /Y

Unit costs
and Revenues

1

Output
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at a greater-than-optimum rate of output. Ob\'el‘si‘l.\lv If the market ;.
so small that the marginal-revenue curve guts ’(}.1(‘ LAC curve to the left
of its minimum point, the monopolst \\'111. build a loss-t,h:m-(mt.imum
scale of plant and operate at a less-than-optimum rate of output.

Effects of Monopoly As was previously illust,rat(?(‘l. by Fig. 4-20, a mo.
nopoly existing in an industry where pure competition would be possib]e
produces less output at higher prices than would be 't.he case under pure
competition. For the purely competitive firm operating in the long rup,
profits become zero because of free entry of new firms. However, with
entry blocked, a monopolist can enjoy long-run profits. Therefore, ¢on-
sumers pay more for the good than is necessary to induce resources to stay
in the industry. This means that resources that could be used to expand
output of the desired good are being used elsewhere in lower-valued uses.
It 1s also possible in an industry where the market is limited relative
to the optimum scale of plant and rate of output for monopoly to result in
lower costs per unit than under pure competition. An example would be
a large thermoelectric plant in a small country. The unit cost of electricity
produced by a monopoly may be considerably less than that for a number
of firms producing with less than optimum scales of plant and rates of
output.
Either way, monopoly distorts the efficiency equilibrium achieved
automatically under pure competition to the degree the monopolist does
not operate an optimum scale of plant at the optimum rate of output.
A partial monopoly or oligopoly or any other departure from pure com-
petition will produce some distortion from efficiency conditions. Govern-

ment market regulation is often theoretically justified with the goal of
minimizing these distortions.
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PROBLEMS
4-1 The total cost of producing a glven ou

S | tput varies with output in
the manner indicated in the tollowing table:

Total cost  Output Tolal cost  Output

0 0 385 50
200 10 410 60
300 20 460 70
300 30 060 80
379 4() 760 90

a Plot the total-cost curve.

b Plot the average-cost curve.

¢ Plot the marginal-cost curve.

d If under conditions of pure competition the price of the good is
5, what output will the firm produce in the short run?

e What will be the net profit or loss at this price?

f At what price will the firm just break even?

For a particular production enterprise, marginal benefits can be
related to output by the equation B + Y = 20. Marginal costs can
be related to output by the equation €' = 2 + 1.5Y. If the output
were produced in a public works project, what would be the:

a Price e Net receipts (producer’s
b Quantity of output surplus) ‘
produced f Gross benefits

g Net benefits
h Consumer’s surplus

¢ Gross receipts
d Production cost

If the output were produced by a private monopoly, what would be
the values of each of the above eight items?

The marginal cost of water supply 1s eXpreSS.ed 2 Pheoi?lltut)lfcﬁ
OP 4+ 5Q = 30, where P is the cost. and @ ~1s tlkl)er ;111112 : uaiion
duced. The price received for water 1 expressed by 1

SRILE60 =30 ,
a How much water would a pr1
b What is the cost of producing th
¢ How much revenue would result

?
vate monopoly produce.. :
e amount of water in part a!

| i
from selling this much water!
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4 How much water would a public works project produce?

. What is the cost of producing the amount of water in pgrt d?
{ How much revenue would result from selling this much Water?

The demand curve for a particular good 1s expressed by the equatjoy

9P + 3Y = 15, where P is the price and Y 1s the quantity of t}e

good. The curve for another good 1s expressed by the equation

4P + 3Z = 12.

a At what price could two units of the first good be sold?

b What is the elasticity of this good at this price?

¢ At what price is the elasticity of this good equal to 17?

d Plot the aggregate-demand curve for the two goods 1if they are
both market goods.

e Plot the aggregate-demand curve for the two goods 1if they are
both collective goods (Sec. 5-9).

The demand curve for gadgets 1s expressed by the equation
2P + 5G = 20. The number of G available for sale 1s 1.5.

a What will the price be?

b What will the total revenue be?

¢ What will the consumer’s surplus be?

d What will the aggregate value in use be?

Use a Lagrange multiplier to find the maximum value of y =
10xw — 4w? subject to the constraint x + w = 15. What would the
maximum value be were the constraint z + w = 16?

Gambies are used in the production of whoozits. A factory can sell
a whoozit for $10 and buy a gamby for $4. The number of whoozits
produced can be increased by using more gambies as follows:

Whoozits: VELOSS20% 50,4050 160 70" 4R0
Gambies: O Te2a e d TR0 32 64 MEIREEOEG

a What should be the marginal physical product of gambies 1n
producing whoozits? (Fractional answers are legal, and graphical
solution 1s quicker and more accurate for this and the two follow-
ing problems.)

b How many whoozits should the factory produce?

¢ How many gambies should be used in their production?

d What will the profit be?

Xyphos are also used in the production of whoozits. The factory
can buy a xypho for $2. The relationship between gambies and
xyphos 1n producing a fixed number of whoozits is as follows:

Xyphos: g oL Sl S YR |
Gambies: IR A8 millQ 515

/,—
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a What should be the marginal rate of substityt; .
~ phor! VHUoN of gambjeg
b How many gambies should pe used?
¢ How many xyphos should be used?
d What 1s the total cost of gambies

for

and xyphos used in production?
Gambies and xyphos can be used to prodyce whidgits as wel] ,

whoozits. Whidgits can be so]d for $6. The relilti():s]‘]i ) -b;\; ')us
the number of whidgits and the number of whogzits whlich (1\1\1(;;1(l
produced from a fixed input is as follows: <Re
Whidgits: 205210 T S O B0
Whoozits: 0 5 e 17 b SR (R |

a What should be the marginal rate of tr
for whidgits?

b How many whoozits should be produced?

¢ How many whidgits should be produced?

d What 1s the total revenue from sales of whoozits and whidgits?

ansformation of whoozits

The production function for a two-input two-output process is

e 1, —XG 2 XS

a Determine the optimum values for both inputs and both outputs
if MB, = MB, = MC, = MC, = 1.

b Determine the optimum values for both inputs and both outputs
if MB, = MBy = 10 and MC; = MC, = 1.




