CHAPTER 1

The Process

Alter the completion of this chapter, the student should :

. Understand the basic Systems-analysis approach to formulating and solving
engineering problems with mathematical models.

2. Appreciate how labor power, physical, and financial limitations as well as in-
stitutional requirements such as indicated in building and design codes affect
engineering design, planning, and management processes.

3. Understand the advantages and limitations of systems analysis for solving
practical engineering problems.

Systems analysis is a coordinated set of procedures that can be used to address
issues of project planning, engineering design, and management. Systems analysis
IS a decision-making tool. An engineer can use it for determining how resources can
be used most efficiently and most eflfectively to achieve a specified goal or objective,
For successful decision makin & both technological and economic considerations must
be employed in the analysis. The premise is followed throughout this textbook.

Since systems analysis can be applied to a broad range of dccision-muking and
engineering problems. we shall illustrate jts application to problems in structural.
geotechnical, environmental. lransportation, water resources, and construction
L‘nginccring. In each illustration we attempt to show how the principles ul’cnginccring
¢an be combined with the principles of economics to achieve an optimum solution.

In the fields ol economics, mathematics. and business, systems analysis is commonly
referred (o gs operations research. In this textbook. we are concerned with the applica-
tion of these principles to the solution of design, planning. and management problems
In ciyil engineering.

1.1 RESOURCE ALLOCATION AND MATHEMATICAL
MODELs

S,VSlcms analysis is an approach for alloculing resources in an effective manner.

tSourees can be broadly classified as: labor power, money, and materials, Since
fCSources have market value, that is, can be bought and sold, and since money js
Eenerally in short supply, the allocation of resources is extremely important, This IS
“Specially (rye when civil engineers are involved in large-scale public-works proje

Cls
thay Cost millions of dollars.
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The Goal and Objective

T ' we must have a clearly
In order to allocate resources efficiently and eﬂec!l\’e;)’-w o, it el
nluoblishcd goal, or objective. Generally, our goal wn-” .c a societal benefit for the
i?anncr thai will maximize profit for a firm or mammlz'clflflrc Seae O
public. The resources of labor power. nloqc)l(. bindrl:‘"f:(;li fbﬁ L i l‘o‘ T e
' 1ces. Since social benelits a ‘ B
r producing goods and services. i ve and other
Lonl;)tcnd o iognfusc our introductory remarks, we utilize the proh,l m()tlr(fr e
: e ms analysis. For e .
' SASUTES - amental concepts of syste ) ’
simple measures to illustrate fund: : . or monetary benefi
is de : ifference between the revenue |
the profit P is defined as the differe . . g
: . ood or service. The
R received for a good or service and the cost C to prOFIC!C{ the g
following mathematical expression summarizes this definition.

P=R-C

[ the revenue is assumed o be fixed, the greatest profit is ohlaiped by minimizing the
cost of production. Typically, the role of the engineer is to achieve this goal.

Constraints

Finding ways to minimize cost for the purpose of maximizing profit i's casier .s:;ud lhfm
done. Financial, physical, and institutional constraints must be considered. Financial
constraints are brought about, generally, by the limited supply of money and the costs
of borrowing it. This money may be used to obtain resources, such as by buying
material or hiring workers. Physical constraints refer generally to the limitations of
the properties of materials. A material has certain properties that can be measured,
such as strength, elasticity, and other engineering characteristics. Institutional con-
straints are generally rules, laws. or guidelines specified by society, government,

and the engineering profession. The rules as specified in design and building codes are
al constraints that must be considered

examples of institution

Clearly. ifan engineering design satisfies all constraints at the s:
the given objective to maximize profit or minimize cost. the
an optimum solution. The purpose
this end.

by the engineer.
ime time that it satisfies
design can be considered
In this textbook is to discuss the ways of achieving

The Optimum Solution

In systems analysis, a mathe
making process. The mathematical model is an ex
objective, or goal, to be achieved. In
and institutional constraint condit
problem, the optimum solution, s
most efficient and effectjve m

In this textbook we Inve
The goal, or objective,
Jective may be o minim
or choose the best
may be structured

matical model is an Important element of the decision-

act and explicit statement of the
addition, it consists of a set of financial, physical,
lons that must be satisfied The solution (o a

a4 statement of how resources should be used in the
anner.

stigate problems from many
.will vary from problem to prnixl
1Ze the cost of production, minimi
alternatyve design that satisfies
45 Systems-analy

areas ol civil engineering.
em. For example, our ob-
ze the weight of a structure
. a public need. All these problems
SIS problems usig mathematical models. The
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important point to realize is that a s
discipline within civil engineering
formulated using the same approach
presented in a standard mathemat
constraint equations,

ystems-analysis model, regardless of the particular

: mization problems is the subject of the
following chapters of the book. We shall see that there are different algorithms for

solving different types of mathematical models. We shall use graphical methods and

methods of calculus to illustrate basic principles for determining the optimum
solution.

The graphical method js 4 very powerful means of solving
tion problems. Generally, it gives better Insight into un
evaluating alternative solutions than do mathe

graphical methods will be utilized to compl
approaches.

acertain class of optimiza- b
derstanding the problem and

matical algorithms. Whenever possible,

ement the discussion of mathematical (72

Mathematical Models

A typical systems analysis model will consist of
of constraint equations. Models consisting of
cussed in Section 1.4. Our discussion, for the
with a single objective function.

The objective function is assumed to be a function of a set of design, decision. or
control variables, In this textbook, the term “control variable™ is generally used. The
objective function may be expressed as a mathematical relationship.

a single objective function and a set ’
multiple objective functions are dis-
most part, will be restricted to models

= I X Xy 2y X

where x, 7 NS Vzaredesignated as a set of 1 control variables. The co
which m

ntrol variables,
4Y Wypically represent the assignment of the numbe

r of workers. an amount

-
. g ' . ‘
_Of money, and a volume of material. are all nonnegative values; they are introduced
into the mathematjeq| model as
X1 =0 l
) ll C’\
X = 0 ‘5
x, =0 |

n

The financig]
Constraing eq

» Physical. and institutional limitations are represented by

' a set of
Udlions.

@1l Xt h w{=, <, 2}b,

‘I"(\| SN \"){2. < 2}"2

OO0 s e ) (= << =3
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The set { =, <, >} represents the possibility o.f baving an equa: to, lis than or cq}jaj
to, or greater than or equal to constraint condition. Fo_r example, in the gonstrr.u;uon
of a steel building, the right-hand side of the equation set may f:on.swt of: b, =
$10.000, the amount of money that may be cxpcnded. on fabrication; b, = 500 fi.
the number of linear feet of steel available for this project; and by = 20,000 ;.)s.l,.an
allowable stress limitation permitted in structural support members. By utilizing
vector notation, we may simplify the model into a compact form:

z = f(x)

subject to

where
=D m and Y>>0

In vector notation the set of control variables Xy, X3,...,X, Is represented by the
control vector x or

The constraint set may be represented as a vector also. Let

1730800, e, o) e [l (x)]
o) g.:(.\'I. > < e ey X,) _ _q'z(.t)
Lg’,.(-\'p X2 s 0eys Xp) | ;U....(.\')j
and
b,
b2
i
The model becomes
z = f(x)

The function f(x) and the set of functions represented by g(x) may be either linear
or nonlinear set of functions of x.
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control Variables and Vectors

A control var.iable 1S @ term used to des;
design. planning, Or management process.
or continuous vanable. In this textboo
2.5, ml1s generally used to identify the

-

A control variable may be either a discrete

k, th'c letter x;, where the subscript | =
) 1€ particular control variable.
An example of a discrete control variable is the number of workers assigned to a

particular task. Let x; be equal to the number of assigned workers. where Xy =

.2.3,.... Since the number of workers s always a positive number or equal to zero.
it is represented as

=0

We shall see that in most formulations of physical systems the control variables are

nonnegative values. This simple constraint will have an important impact in our
search for an optimum solution.

An example of the use of continuous control variables is illustrated with the use of
Figure 1.1. In this case, the beam length is fixed and the beam width and height are
considered the design variables. Since the length is a constant, it is not designated as a
control variable. We define x, and x, as control variables, where x, is the beam width
band x, is the beam height A. In this case x, and x, are nonnegative values.

x, =20
X, = 0
Utilizing vector notation, this set of variables can be written as

x>0

< [a]-L=bl -

The Objective Function

The objective function f(x) is a sing]c-valucd function of the sc; of control varables
or the control vector x. The objective function is a mulhcmuhcz.nl statement of the
£oal and a measure of how effectively the goal is met. The selection of the measure

where

e /

x, =0

Figure 1.1 Rectangular beam
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> or solution. In some
of effectiveness will have an important effect on the 0:1:30;1:;) o To othier
; . ‘eness :
¢ measure of effective : . N
roblems the selection of th ' l id about measures
filuations the choice may be extremely difficult. More will be sa

3 . . b :
f effectiveness in Section 1.2, A o or example. in a
3 The objective function may either be maximized or minimized. F p

Stesy B
problem to maximize profits P, the objective function, is written
Maximize z = Maximize P = f(x)

The symbol = represents the scalar quantity of the.funcllon)_/(x)ih){rf lrl;:ct;i;;(;‘ ll\h;l
scalar measure of profit P expressed in dollars and is assumed to be a

ol variables x,, x,... .. _
cO:'lhrc objective I‘unlcm;n may also be a minimizutior? of z. for msmmc l:w‘ gO?l L;fr'l
structural designer of aircrafi is (o minimize total weight W, In this L-.l..\(.. ( 1¢ {nmk\' e
of eflectiveness is a fnonmonetary measure in units of pounds. The objective [unction
for this case is

Minimize z = Minimize W — f(x)

Constraint Equations

A constraint equation is a mathematical equation expressing a financial. physical,
or institutional limitation placed upon the problem, Generally, it is derived from
fundamental principles of engineering or tconomics. A constraint equation may be
Stated as an equation with a strict equality condition

glx) = b
with a less than or equal condition

g(x) < b
or a greater than oy equal condition

q(x) = b

For instance. in the Planning of a lWo-room building as shown in Figure 1.2 the
contract states that the total floor area of (he building muys; have
3000 f1? and that ¢ach room of the buildin
3000 and 3000 fi2. respectively,

a4 minimum areg of
E must have g Maximum specified area of
| With these Specifications, it js possible that the opli-
Mmum solution wil| pe 3 single room of 3000 ft%. Let ys State these Specifications as a

set of constraint tquations. Let the control varjables Y1 and x, represent (he Hoor
area of rooms | apd > IS equal to

< respectively. The Constraint set
X1+ x5, > 5000 (Total floor area)

X < S000 (Room 1)
¥2 < 3000 (Room 2)
X, >0
X >0
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m Room 1 Room 2 |

| ——

o —

s — - i
—

Figure 1.2 Floor plan.

The total floor area is equal to Xy + X,. According to specifications, it must be equal
10 or g-rcater than 5000 ft>. The other constraints, called side constraints. limit the
room sizes, | and 2, to be less than or equal to 5000 and 3000 ft2, respectively. Since
the room sizes cannot be negative in value, we state that x, and x, are restricted to be
positive numbers,

Feasible and Optimum Solutions

Any combination of control variables that satisfies the set of constraint conditions is
called a feasible solution. A solution that does not satisly all constraint equation
conditions is called an infeasible solution. An optimum solution is a feasible solution
that satisfies the goal of the objective function as well.

In the floor plan example the goal is to maximize total revenue. Assume that $50/12
and $60/ft* are the unit revenues received for rooms | and 2 respectively. The maxi-
mum total revenue received, R. is a function of the floor area X, and x, and can be
represented by the following objective function and constraint set.

Maximize R = $50x, + $60x,
subject to
» = 5000
5000
x, < 3000
0

P
+
L
o’
I\

A

-
Vv

X2 20

This mathematical model consists of a linear objective function and a set of linear
Constraint equations. A problem with this mul.hcmuuu_ll f(.vrm 1S called a linear
Mathematical model. A model with either a nonlinear objective function or one or
More nonlinear constraint equations is called a nonlinear mathematical model,
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Linear Mathematical Models
Vector and matrix notation offer a convenient way (o reprcs;nt classes of mathe-
matical models. As previously shown, the mathematical model is represented as
z = f(x)
9(x){=, >, <}b

x>

[n this text linear mathematical models are represented in two ways. A model con-
sisting of a set of constraint equations having equality, greater than or equal to, and
less than or equal to constraints may be written in the following manner.

2=JGx): z=cyx 4+ C2Xp + <-4 ¢ 5

g(x){=, <, > 1b: Ay Xy + a3 + - + @,

<
uZI.\.z + (‘22-\-2 + i + “2"-\. [=c g- 2 }1)1

AmiXy + Quy Xy + -+ a, o=, <, >}b,,
EB5di iy
x > 0: \2 > 2
i o

wherccj {7 5 e (‘,,.:Jljd b, = b,, bz- g bm;m(] aj; = a,,, d,
parameters. Using matrix notation, linear mathematica
Ing compact form.

..... a,,. are constant
I models will ha ve the follow-

zZ = Cx
aix{=, < >}p where | = L LS g
x>0

and a;, ¢, and b, are vectors of the elements of (he objective
[he clc_mcms of ¢; and b, are generally called the unit COst
fespectively. The elements of @; are derived from technol

s_ldcmlmns; therefore, they are called technological par
tlon may be represented as ‘ t

and constraint equations.
and resource parameters,
ogical and economic con-
ameters. The objective func-

5

[

L — [Cl (",...(-HJ. '\:2

| .\-',, {
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Likewise. the ith constraint equation may be represented as

.xl. rb‘.
Lai, a; T .\‘-2 =, <. =} b.z
[ X ] b, |

wherei=1,2,....m.

In Chapter 6 the line'flr m_odcl will be written in the so-called standard form. the
second way ol representing linear models:

Minimize z = ¢'x
Ax = b

x=20

All elements of b are positive values. b, = 0, where i = I, 2,...,m. All contraint

equations are strict equality constraints. The constraint set in expanded matrix
form is

- - = e
a;; dizans | X b,
z, Q33" " Az, X2 b,
AX = 0b""Ok < I —
Uy Q2 " A | | X L h,u

where the number of control variables n is equal to or greater than the number of
equations m, n = m. We distinguish between vectors and matrices by reserving lower-
case letters. x. ¢. b. and a,, for vectors and upper-case letters, A, for matrices. All
vectors in this book are column vectors. A row vector is denoted as a transpose of a

column vector. For example.

B
X5
x=1.
\'"J
The row vector of x 1S
x =[x, X3 X,]

EXAMPLE 1.1 A Statically Determinate Minimum-Weight Truss

Consider the truss shown in Figure 1.3a. Formulate a mathematical model to design a simple truss
of minimum weight. The critical buckling and maximum allowable lensile stresses of compression
d 20 ksi. respectively. The truss i1s to be constructed of steel. All

and tension members are 10 ksian |
assumed to have the same cross-sectional area.

compression and tension members are
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30 ft

L—‘ao ft o~

l
40 h——L» —40 ft——

(a)

L

Figure 1.3a

Solution

Control Variables The structural members will be sized according to the type of member
foree, either compression or tension. Thus, the control variables are defined as

Xy = A, = Cross-sectional area of a compression member (in.?)
X3 = A, = Cross-sectional area of a tension member (in.?)
The control vector x is x' = [4, 4,].

Reactions

The support reactions m: 1y be determined from Newton's |

aw of static equilibrium. The free-body
diagram for the reactions is shown in Figure 1.3b.

Y F.=0: H,=0

a

= 0SSPy 00— 0

o

> M, =0: 80V, — 120-100 — 0

Solving this set of reactions results in H,=0 V, =50 Kips, and V. = 150 Kips. (1 kip = 1000
pounds.)

-

100 kips

——— — et

H

ol

\ I

Figure 1.356
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BD
73 100 kips

CcD Figure 1.3¢c

Member Forces and Stresses We next use the method of joints to determine forces in each
member. The free-body diagram for joint D is shown in F igure 1.3c.

YF.=0: —BD+4CD =0
Y F,=0: 3D~ 100 =0

The member forces are CD = 167 Kips (compression) and BD = 125 kips (tension). The stress in
the members will be equal to the member force divided by the cross-sectional area of the member.
In this case, the tension member BD will have a stress Ogp €qual to

125

Opp = —A
2

The compression member CD will have a stress equal to

167
Oap ™= ——
A,
The method of joints was used to determine the forces in members BC, AB, and AC. The member

forces and reactions are summarized in Figure 1.3d. The stress in remaining members AB, AC, and
BC will be equal to

$33 6.7 833

Tan — l . Cuc. = ~——, Cpr = ——

respectively.

B 125 kips(T)

100 kips

A 66.7 kips (C)

V. =50 kips V.= 150 kips

Figure 1.3¢
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Constraint Equations The stresses in each member may be equal to, but must never Fxceed. the
critical buckling stress or allowable tensile stress. Thus, we may express these restrictions by the

set of equations:

Member AB: %’ <20 or A, 2417
2
Y,
Member AC: 6-;— <10 or A, = 6.67
1
83.3
Member BC: T <10 or A, >833
1
125
Member BD: =T < 20 or A, = 625
2
167
Member CD: T < 10 or A, = 16.7
1

Objective Function The weight of cach member is equal to the density of steel times the volume of
cach member. The density of steel is approximately 490 Ib/ft* or 3.40 Ib/ft-in.2. The equation for
weight of the truss is the sum of the weight of each individual member: thus,

z=340[V, 5 + Vic + Ve + Vap + Vip]

where V' = volume of each member or the member length multiplied by the member cross-sectional
area. The objective function is

s = 3.40[50.‘12 -+ 80;‘1, + SOAI + 801‘12 "' 50-4]]
or
z = 6124, + 4424,

Mathematical Model The problem formulation is complete. Summarizing the equations results
in the following mathematical model:

Minimize z = 6124, 4 4424,
subject to the constraints
A, > 4.17
A, = 667
A, > 833

6.25

&
v

A, = 16.7

Remarks

Thc formulation of this problem utilizes basic principles of engineering mechanics and structural
dc§|gn. In most instances, the formulation of the mathematical model will be derived from basic
principles of engineering or economics. All physical laws, such as Newton's law, must be satisfied.
and all rules of good engineering practice must be incorporated in the model.

Syslcms analysis gives usa different perspective insolving engineering problems. In this problem,
lor instance, we have established the limitations on our design with structural engineering principles
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and combined these !imitations ina set of constraint equations with a goal of minimizing the weight
of the truss. The optimum sqlution satisfies the goal and the constraints at the same time. Systems
analysis adds a new dimension to the design process that should lead us to a better design.

PROBLEMS

Problem 1

A contraclor may purchase material from two different sand and gravel pits. The unit cost of
material including delivery from pits 1 and 2 is $5 and $7 per cubic yard, respectively. The con-
tractor requires 100 yd* of mix. The mix must contain a minimum of 30 percent sand. Pit | contains
25 percent sand. and pit 2 contains S0 percent sand.

The objective is to minimize the cost of material.
(a) Dehine the control variables.

(b) Formulate a mathematical model.

Problem 2

An aggregate mix of sand and gravel must contain no less than 20 percent nor more than 30 percent
gravel. The in situ soil contains 40 percent gravel and 60 percent sand. Pure sand may be pur-
chased and shipped 1o site at $5.00/yd" A total mix of 1000 yd? is needed. There is no charge for
using in situ material,

The goal is to minimize cost subject to the mix constraints.
(a) Define the control variables.
(b) Formulate the mathematical model.

Problem 3

There are two suppliers of pipe.

UNIT COST SUPPLY
SOURCE (S/LINEAR FOOT) (LINEAR FOOT)
1 $100 100 ft maximum
2 $125 Unlimited

Nine hundred feet of pipe is required.

The goal 1s to minimize the total cost of pipe.
(1) Define the control variables.
(b) Formulate a mathematical model.

Problem 4
A company requires at least 4.0 Mgal/day more water than it is currently using. A walter-supply
lacility can supply up to 10 Mgal/day of extra supply. \ local stream can supply an additional
2 Mgal,-'day. The company requires that the water pollution conccnquuqn be less than 100 mg/l.
BOD, the biological oxygen demand. The water f[rom the “--._m-r-st'lppl) lacility and from the stream
hias a BOD concentration of 50 mg/l and 200 mg/1, respectively. The cost of water from the water
Supply is S100/Mgal and from the local stream is S50/ Mgal.

The goal 1s 1o minimize the cost of supplying extra water that meets water quality standards,
(@) Define all control variables.
{b)  Formulate a mathematical model.
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lem 5 : et . M
';P;:l:lnil selling price p of an item is $150/unit, thus the total revenue is R = 150g. The production

cost C is a function of output level g, C = 100" ". The maximum output orl; ;:r:; 'f:‘rlm 15 S0 units yr.
The objective is to maximize yearly profit subject to the production co .

(a) Define the control variable.

(b) Formulate a mathematical model.

Problem 6

Determine the maximum volume of a sphere subject to an inlcr'nal pressure of 4000 )hll‘i l(llb‘mi).li
The volume of a sphereis V' = (7/6)d°, where d equals the mean diameter of the tank. The allowa

stress of the material is equal to 20,000 psi. The hoop stress is a function of the tank diameter  and
tank thickness r.

pd
=T

The objective is to maximize tank volume subject to the limitation on stress.
(a) Define the control variable.

(b) Formulate a mathematical model.

G

1.2 THE SYSTEMS-ANALYSIS APPROACH
The systems-analysis approach consists of the following steps.

1. Establish an objective and an appropriate measure of effectiveness.
2. Formulate a mathematical model.
3. Determine the optimum solution.

In this chapter, we implicitly utilized steps 1 and 2 in formulating the mathematical
model for a minimum-weight truss. In some real-world enginee
however, the establishment of the objective and the formulation of the mathematical
models will not be so easy. We shall see in our development of systems analysis that
most of our discussion in this textbook is devoted to steps 2 and 3. It might appear
that step 1 is not as important as the others. But in this section we see that the establish-
ment of a single goal or objective and the establishment of an appropriate measure of
cffectiveness will have a most important bearing upon the solution to a problem.

ring problems,

Multiobjective Problems

Thc types of systems-analysis problems we consider he
Jective. One difficulty in satisfying this restriction is e
with unlike measures of effectiveness, Consider the
people decide which automobile to bu
the attributes or feature
transport
features 1

re are limited to a single ob-
stablishing a mathematical model
purchase of an automobile. Most
y through comparison shopping. We weigh
' Ires olone automobile against the others. All automobiles provide
alilon. but It1s the selling price of the vehicle, its performance. and styling
b mcusnx ;llzis:l}ll:::?[;dy- uts)e'd 'l‘o .d‘clcrn_linc the final selection of the vehicle. W:*
i o l;r o ufc: Oy vehicle price, speed, fuel cconomy, reliability, com-
attributes, it will be ver\fnL:rr\:i]kl!:)l.yllrh"\l'lc (:r::':g;:f:l “Ul(’mobilc h)'.CHCh - Qf i

) ¢ ¢ would be our first choice in every
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category. In other words, the lowest-priced vehicle will rank number one in the price
category. but it is unlikely that it would rank number one in speed. comfon. and
prestige of ownership as well. In order to make a decision, we have to weigh these
attributes. I price is important and prestige of ownership is unimportant, a 8"0‘1_“”
weight will be placed on price than on owner prestige. By this subjective reasoning
process, we can make a choice among the vehicles. It is possible that the vehicle chosen
does not receive a top rating in any one category.

If we use a mathematical model. we shall have to quantify those attributes and place
them in an objective function. Let the control variables X,, X,, ... represent auto-
mobile types 1, 2, ..., and so on.

Here, the control variables are discrete control variables taking on the values of
0 or 1, the automobile type is not selected or is selected for purchase, respectively.
Thus, x; <0or 1, x; =0o0r 1, .... Unlike the subjective reasoning process utilized
in the comparative shopping discussion, here we must explicitly assign numerical
weights or a measure of effectiveness to each attribute. For instance, the purchase price
1s measured in dollars, the speed in miles per hour, and the fuel economy in miles per
gallon. These are objective measures of effectiveness because they have economic value
and performance rating that are distinguishable. The attributes of reliability, comfort,
and prestige of ownership are personal preference items. They are considered sub-
jective measures because they have psychological values that are difficult to quantify.

The objective measures of effectiveness are more desirable to use for engineering
problems than are subjective measures. Even when all measures of effectiveness are
objective measures, they may be unlike measures of effectiveness that are difficult to
combine into a single objective function. For example. if selling price in dollars per
car and fuel economy in miles per gallon are the only two objective measures of
cffectiveness, they cannot be added together nor meaningfully introduced into the
same single objective function, because they do not have the same units. Therefore,
they are considered unlike measures of effectiveness. This problem [ormulation
requires two objective functions: one to minimize the sclling price and the other to
maximize fuel economy.

Obviously, multiobjective problems are important. We suggest that the optimum
solution for each single-value objective be determined independently. Each optimum
solution can then be compared in the context of the original problem. Subjective
reasoning, trade-ofT analysis, and other methods can be used to make the final
decision, The textbook by Giocoechea, et al (see bibliography) is recommended for
further reading.

Establishing an Appropriate Objective Function

Once a single measure of effectiveness has been chosen, extreme care must be used in
establishing an appropriate objective function. For profit-maximization and cost-
minimization problems, money measured in dollars, for example, will be the obvious
choice of the unit of measure. However, consider the total cost of an engineered
Structure. There are design, material, shipping, construction, and labor costs to
consider, In lieu of considering all costs in a minimum-cost model, let us assume that
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: individual cost categor
minimum-cost models are Cfla.blis:):(; z::lcli] is;l:r:?cn;nf;rm c::l; ::g(;g: el maygno);
. The optimum solution U g ,

?:lrl?: ngc opllpmum solution to a minimum-material-cost sr(}l;)l:r?(;,z\&?nl?gl:ﬁ:
the constraints imposed upon the two prqblcms are the sa(;nd. I'calc‘ﬁlruclurc The
minimum-material-cost model may result in a very light and de “ll‘ | :olution . o
cost to construct this structure may be prohibitively expensive. s S

A% tion-cost model may result in easy construction with materials
R d-consteuction del considering all costs, designs,
being wasted. To eliminate these problems. a model co fechiis Stice o
materials, shipping, construction, and labor will probably be most cliective. '".“‘ , '.c
same measure of effectiveness, dollars, is used to measure each .zmrlbulc‘ the objective
function incorporating all attributes can be established by adding them together.

Cash-Flow Problems

Costs and revenues may be affected by time. The cost to construct a system is an initial
cost and may be considered as a one-time capital cost. On the other hand. the cost
to maintain and operate a system must be paid over the life of the project. When
payments are made at different time periods, we cannot simply add them together
as we did in establishing a minimum-total-cost model of an engineered structure.
For instance, the value of a payment made today versus 1() years [rom now is different.
Clearly, the payment that we receive today has more value than one we expect to

receive in the future. Problems of this type are called cash-flow problems and will be
evaluated with time value of money relationships to be discussed in detail in the chapter
On engineering economics.

For illustration, consider two different type
calls for the construction «

of the entire system
staged-construction plan, calls for constructio

s of construction plans. Alternative A
at the present time. Alternative B, a

d- . n ol part of the System now and the
remaining part in year 10. The cash flow ol benefits and COsts are shown in Figure 1.4,

The design life of the Project is 20 years. For Plan A, the capital cos of construction
ISSISM, C, = SI5M. and the monetary annug| benefit and annual Operating costs are
shown to be uniform over the entire life of (he Project. The benefits areB, = B, = .

Bahe ] i 2
=B, =B = $5M/yr, and the annual Operating and maintenance COSts are 4, =
i e U e S3M,v.yr. he subscript refers o the year the payment js made.
The unnual net benefit B — 4 js $2M/yr. For plan B. construction takes place in vears
0 '"‘d :10-’(-.) = $9M and C,, = 38M. The annug| benefits and costs are not uniform
mu} e _O-ycgr life of the project as shown. For the lirst 10 years the:annualing
benefit B — 4 1S $IM/yr, and for the last 10 years B’ — 4/ is S‘M vr

If we study the two cash-fi i , S P AL

; ASh-Tlow diagrams we o i
Plans. Plan B has the advantage of o ¢ S20 Sce different advantages for the two
poas Elan > HIC advantage of lower mial constryction cost; however, plan A

€IS a greater net annual benefit for the first 10 ears. In later « g

Ereater net annyy| benefit These ady e latey Years, plan B offers a
. & < ,.l 2 OPC <=0 % ) 3

Comparisons. Moreo e o I;Sn'l;lbc‘.s are derived by making the same-year

PALDISSOM + M o §170; THie s on shouid oy et 08 of construcion of

i . : S addition s ould not pe cerforme SRS

demcn[S, [akcs pluCc in d”TCI'C p r l'lht.d. bLLdu.\L th

Nt time periods years O and 10. Thus
: S, year: . Thus, we
ning present and luture cash flows.
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Alternative A

.
n =20
bbb HEEETH T
AA/\A/\AAA/\/\AAAAAAAAAAS3M
Y
Co=S15M
(@)
Alternative B
B B B 8B B B B B B B=S6M
B B B B B B B RBZS:,HMﬁAﬁﬁAﬁﬁAﬁﬁ
1,1‘?1?1???& n = 20
B8 888 2%
| 222 ERE R R
Co= SOM A=S2M | A A A" A A A A A A A=S3M
Y
C,o = SBM
(&)

Figure 1.4 Cash-flow diagrams. (a) Alternative A, construction in year 0
(&) Alternative B, construction in year 0 and year 10,

Time of value of money relationships, incorporating factors of time of payment and
value of money. which is measured in terms of an interest rate, will permit the trans-
ferral of a future payment to an equivalent present-worth payment. Now. simple
arithmetic calculations can be performed. Moreover, all present and future benefits
and costs can be combined into new value called the net present-worth value.

.\-Pl{. —_ B|_| —- -"(| e (--n

Where A, By, C,, represent the present worth of all annual costs, all annual benefits.
and all capital costs, respectively. The net present worth of the compeung alternatives
NPWA and NPW"can be compared and the one oflering the greater net present worth
will be selected. If NPW* = NPW?E_ then construction plan A should be sclected. If
not, plan Bis the better one. This is the essence of the net present-worth selection method.
t0 be introduced in Chapter 3. |

Nonmonclary measures of effectiveness are also important. In some Instances. a
physical measure, such as weight. is more important than a monetary measure. In
the aircraft industry, reducing the overall weight of lh.c frumc_ugd other components is
of prime importance. Safety is of prime concern in all civil engineering designs.
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! 1 s of ot
Esthetics. comfort. and the protection of the environment are examples of other
important objectives. | . sl
l'I\)donclarv measures and engineering measures, su;: as w::lgtlimlticingfc ';:;“urc?l
ISSI ures of effectiveness. Theseq
emissions, are called objective meas . ' | i
nd pleasure are ca
' ' ales. Measures of esthetics, comfort, a
in well-established scales. Measur ’ : 3 o i
subjective measure because they are influenced by personal preference. Y.

subjective measures are avoided in engineering design.

Mathematical Model Types
We broadly classify system-analysis problems as

1. Resource allocation problems.
2. Alternative selection problems.

The same three-step procedure is used to solve these problems. Mathematical nmd.cls
consisting of a set of control variables, an objective function. and a set of constraint
equations are called resource allocation models. The solution to this problem rcsu-lls
in finding an optimum combination of resources that satisfies the set of constraint
conditions and achieves a stated objective. Mathematical models consisting of a set
ol mutually exclusive design alternatives are called alternative selection problems.
The net present-worth selection method is a technique for selecting the best design
alternative from competing alternatives.

Now let us consider how resource allocation and alternative selection procedures
can complement one another to achieve the best optimum design solution. There is a
distinction between best design and optimum design. Consider a design of a bridge.
Different technology and design configurations may be used to satisfy the basic
requirement to span a given distance safely. If a steel truss and a concrete beam are
considered the only alternatives. the one with the least combined construction and
maintenance costs is considered the better choice. However. it may not be the best
optimum design ! Only if each design alternative is 2 minimum-cost design will the
use of the alternative selection method lead to the best Optimum design. It is possible
to determine the least-cost designs by formulating separate resource allocation models
for_ lhg steel truss and the concrete beam designs. These models will consist of an
()chcll\"c function to minimize cost subject to a set of constraint ¢quations to ensure
bridge safety and performance. Thus, the methods of solving resource allocation
problems and the alternative selection method are complementary procedures that
can be used to achieve the best optimum design. '

A- major difficulty of utilizing mathematical models 1s that not
easily solved. As a result, the use of combined methods of resou
z.lllernuuvc selection may not be fully realized in the m
Ls‘as]much dnart as an qpplicd science. The best oplti
coﬁt?gﬁ?:ﬁ;?;:::d lrrmlﬂand error. ﬂl_us. sometim

{ Ob resource allocation ang alt

all of them can be
rce allocation and
athematical sense, Engineering
num design may be obtained by
€s 1t is only practical to use the
ernative selection to formulate
eans, by experimentation. or by
cals ““_')’ with the mathematical methods of solution.
with methods of solving resource allocation prob-
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lems. and Chapters 3 and 4 deal with methods of selecting the best design alternative.
Chapter 5 also shows how cash-flow considerations are incorporated in resource
allocation problems.

EXAMPLE 1.2 Bridge Location Study

Establish an objective function and measure of effectiveness to satisfy the goals of the City of
Kingsbury. Owing to industrial growth, the City of Kingsbury is experiencing new demands for
housing. City officials want to encourage the development of new housing in the West End. Since
the economic future looks bright, the city government wants to improve the accessibility of the
West End and find the best location for a new bridge. Two bridge sites have been chosen and are
shown on the map in Figure 1.5.

L——J Scale = 1 Mile 2 W//

S £ Z/ /q

/_/ Shopping
Industrial [
W N / /
O /
Proposed site 1 a2 %/ 3
@O
@“OO \
@i 1
. cha;‘ldl,-mi'al
Georgian Bay R
N
!
\R &5
2 o l@
Proposed residential Sl _,g""\ﬁ (
/// Proposed site 2 4 /

West End

Figure 1.5
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Discuss the use of systems analysis in relation to the following goals:

i | ! tly to construct.
lect a bridge site that will be the least cos . =
:Z; SSZIcct a bridge site that will provide maximum societal benefit to the city

Solution

(@) Minimize Construction Cost Min':mu;;n-sos-l pr:?,:‘?gse a}r{ee :Esr:‘f:cn':;i’l:g’:“:’s'; :;ng"l:'_;{
ineer faces when he designs : , Ry :
r‘:)r:at:: ?‘ol::r::ti:nr:tc:::griczile'.‘ﬁ this case, the measure of cﬂc.cliv’encs will be specified a0 umrts of
money or dollars. Costs associated with the design, the fabrication. and the 00':"“9'_"0“ of the
bridge structure and foundation will be considered. Environmental condltloqs such as Sf)l strength
and fluid flow about the bridge piers will be investigated as part of the design process. The total
cost of design, fabrication, construction. and material is considered an appropriate measure of

cflectiveness. The total cost for each site can be compared, and the least-cost alternative can be
selected.

From a systems-analysis point of view. the selection of the least-cost dcsigq IS slralgl?ll'orward.
Acquiring, estimating, and establishing engineering data and costs will require a detailed study

demanding much effort and time. The cost of this work is generally included in the design cost of
the bridge.

(h) Maximize Societal Benefits F

acility siting is representative of the type of problem that
laces a transportation engineer. The

Issues are much more difficult to establish and quantify as

compared to the least-cost bridge construction problem. A single-valued objective function cannot

be established for this problem: therefore. it is not as amenable to the mathematical model

presented in this text book. More 'mportant, there are other issues that make the mathematical

modeling approach ill-suited for this kind of problem.
Consider the following two Impacts.

I. Accessibility to West End from the City of Kingsbury.
2. Quality of life in the city.
Impact 1  An important issue in evaluating the impacts is 1o IS
population that moves into the West End will re
bridge will provide them with zood
however. If they live in the vICInity ¢
these people will be adversely
neighborhood buildings,
are very diflicult to solve
generally sought,

Now let us discuss different measures of effective
measured in units of travel lime or cost, However, how

measure travel time Or cost between West End
region? How do we weigh reduced traye

alfected. Obviously, the new
CEIve positive benefits, We can
ACCess 1o the city. Some City dwe
ol the bridge ramp,

assume that the new
llers may not be as fortunate,
WE can anticipate that the quality of life for
affected. Traffic congestion, noise and air pollution, demolition of
and the taking of land may result. These problems are

social issues that
in the engineering sense. Politic;

il solutions to this type of problem are

ness of accessibility. Accessibility can be
do we assess the impact on society ? Do we
and the city only, or all points within the study

[ time and COSL L0 one Lroup against increased travel time
and cost 1o another group? Which group is more important? Is the new population of the West

End more Important than the Population of the well-established neighborhoods of the city? There
are no clear-cut answers to these questions.

Impact 2 Quality of life
set of issucs 1o be consid
could interview pe

means diffe

ered. how d
ople, asking the

rent things to differe
O we collect this info
m which bridge site

Nt people. Even if we could decide upon &
rmation and use it elfectively ? Possibly we
they prefer, how the new bridge will affect
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them personally, and how they think it will affect their neighborhood. Obviously, incorporating
this information into a model will be subjective at best.

Clearly. we .hav.e only scrach the surface of this problem. It should be evident that mathe-
matical modeling is not well suited to the solution of this type of problem. Incidently, an environ-

mental impact statement and public hearings are required for most major projects such as the one

being considered in this hypothetical example. Local, state. and federal laws and regulations
spccify this need.

Systems analysis is an important decision-making tool but not a panacea. When suitable, it

provides insight and understanding into optimization problems. Its advantages and shortcomings
must be understood for it to be used effectively.

PROBLEMS

Problem 1

The statistics shown in Table 1.1 have been compiled for cities operating major transit systems.
(a) In your opinion which one measure of effectiveness most appropriately reflects the transit
systems” overall efficiency? Why? Define overall efficiency.

(b) Are there other measures of effectiveness that reflect a transit system's overall efficiency ? List
them.

(¢) In your opinion which one measure of effectivencss most appropriately reflects the transit
systems’ productivity? Why? Define productivity.

(d) Are there other measures of effectiveness that reflect the transit system’s productivity” List
them.

(¢) Prepare a table, and rank the transit systems by city as being eflective and productive. Use
the measure of effectiveness from parts a, b, ¢, and d for the ranking.

(f) Which transit system ranks the best for overall efficiency and productivity ? The worst? Why ?

(g) Trytoestablish a single objective function to reflect overall efficiency utilizing all the measures
of effectiveness listed under overall efficiency. List the problems associated with establishing
this measure.

(h) Repeat step g for productivity.

Problem 2

Consider a cube, a cylinder. and a sphere as shown in Figure 1.6. They are to be used for storage.
For each of the follo'wmg. state the measure ol effectiveness and determine:

(@) Which one has the maximum capacity.

(b) Which one utilizes the most material to construct,

(¢) Which one offers the maximum capacity while utilizing the least building material.

(d) Which one has the maximum useable floor area.

e

N f

\_/ ——l- - -
BRI Pl —L

Cube Cylinder Sphere

Figure 1.6
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Problem 3 .
[dentify five factors that may affect land develo
In other words briefly explain why:
New high-rise buildings are usually constructed in cities.
New fabrication plants tend to be located in suburbs.

Problem 4
Refer to Example 1.2,

(a) for each land classification—residential, shopping, and industrial— determine three different
impacts that may affect the quality of life of the region owing to the construction of the new

bridge.

(b) Discussthe problems associated with formulating a single measure of effectiveness to objective

function that weighs both positive and negative impacts on the region.

Summary
The systems-analysis approach consists of the following steps.

1. State a goal, establish an appropriate measure of effectiveness, and develop an objective

function.
2. Determine the financial, physical, and institutional limitations, and establish a set of constraint
equations.

3. Determine a solution, the so-called optimum solution, that achieves the stated goal and
satisfies all constraint conditions.

The mathematical model can be written as

Minimize or maximize z = f(x) (objective)

~

subject to g(x){=, <. =}b (constraint set)
and x =0

where the constraint set consists of m constraint equations and x consists of a set of » control
vanables, x;, X3, ..., x,. A control variable is a parameter that the engineer is [ree to vary during
the design, planning, or management process.

The primary attribute of systems analysis is that it provides a systematic step-by-step procedure
for formulatine mathematical models and obtaining the optimum solution to these models. In this
textbook, we discuss graphical and mathematical methods for solving various linear and nonlinear
mathematical models. The systems-analysis approach may always be used to formulate problems.
However, it is not a panacea; there is no guaraniee that an optimum solution will be found. In some
cases, the mathematics becomes so complex that a solution cannot be casily determined. For prob-
lems consisting of unlike measures of effectiveness or multiple objectives, the formulation of the
problem as a mathematical model is difficult. In any event, thinking of an engineering problem n
terms of satisfying a goal or objective, subject to a set of ﬁna.nciul. physicnl. and institutional
limitations, does provide a convenienl framework for formulating engineering design, planning,
and management problems.
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