WATER RESOURCES MANAGEMENT

LECTURE 5 – LINEAR PROGRAMMING

0

Ó

 \bigcirc

 \cap

INTRODUCTION

• Resource Allocation using Linear Programming

- Setting up an LP model
- Solving LP using R
 - Install Package(s)
 - Load the Library
 - Build the Model

RESOURCE ALLOCATION USING LP

- Linear Programming is a mathematical programming tool to search for optimal solutions to allocation problems that have
 - Linear Objective Function (Objective is a weighted linear combination of the decision variables)
 - Linear Constraint Set
 - Non-negative decision variables

OBJECTIVE FUNCTION

- The objective function (merit function) is the mathematical expression of the benefit, utility, or cost incurred for various decisions. In LP it must be a linear combination of the decision variables.
- Economic cost is a common example: • COST(\mathbf{x}) = $w_1^* x_1 + w_2^* x_2 + ... + w_N^* x_N$

COST COEFFICIENTS

- COST(**x**) = $w_1^* x_1 + w_2^* x_2 + ... + w_N^* x_N$
- The weights $(w_1, w_2, etc.)$ are called the cost (utility, benefit) coefficients
- The variables (x₁,x₂, etc.) are called the decision or allocation variables. They represent how much of something is allocated at some unit cost (the cost coefficient).

For example if x₁ is the volume of water delivered in liters and w₁ is the price \$1.00/liter

• Then the cost of 6.2 liters is $w_1 * x_1 = (1.0)(6.2) = 6.20

CONSTRAINTS

- The amount of a decision variable that is available or can be used is called a constraint.
- Suppose that we only have 100 Liters of water available to deliver, then the constraint would be $x_1 \le 100$; that is, we can deliver anywhere from 0 to 100 liters, but not more (or less)
- The entire set of constraints is called the constraint set. It must be comprised of linear combinations of the decision variables (for an LP solution).

THE LP MODEL

• The combination of the objective function, and the constraint set, along with a directive to either minimize (make small) or maximize (make big) the objective function is the linear program.

EXAMPLE

Construction company contracted to excavate 6-foot and 18-foot wide trenches. Can transport no more than \$10,000 yd³/day of excavation material from the site because of a limited supply of dump trucks. To meet the construction schedule, the company must excavate at least 1,600 yd³/day from the 6-foot trench and at least 3,000 yd³/day from the 18-foot trench.

EXAMPLE

The company has 12 heavy equipment operators that can operate either a Backhoe Type 1 or Backhoe Type 2. The company has a total of 12 of each type of backhoe available – unused machines can be assigned to another job.

Backhoe Type 1 can excavate 200 yd³/day from a 6-foot trench at a cost of \$394 per machine day. Backhoe Type 2 can excavate 1,000 yd³/day from an 18-foot trench at a cost of \$1,110 per machine day

CONSTRUCTION MANAGEMENT EXAMPLE

What is the best allocation of operators (machines) to minimize daily cost and meet scheduling requirements?

- As with all allocation problems (regardless of linearity) we need a goal.
- In this example the goal is to minimize the daily machine cost, so the cost (objective) function is expressed as
 COST(x) = \$394x₁ + \$1110x₂
- Where,
- x_1 is the number of operators assigned to a Type 1 machine x_2 is the number of operators assigned to a Type 2 machine.

• Next we need to explicitly state the constraint set.

 The first constraint is on the total amount of material that can be transported off the site as a function of machine count – in this case

 $200 x_1 + 1000 x_2 \le 10,000$ (Dump Trucks)

• The next constraint is on minimum trenching requirements for each trench width

200 x_1 >= 1,600 (6-foot trench) 1000 x_2 >= 3,000 (18-foot trench)

 The next constraint is on the total number of operators and supply of machines available

 $\begin{array}{ll} \mathbf{x}_{1} + & \mathbf{x}_{2} <= 12 \mbox{(Operators)} \\ \mathbf{x}_{1} & <= 12 \mbox{(Type 1 Available)} \\ & \mathbf{x}_{2} <= 12 \mbox{(Type 2 Available)} \end{array}$

• The last constraint is non-negativity

 $x_1 >= 0$ $x_2 >= 0$

CONSTRUCTION MANAGEMENT LINEAR PROGRAM

- Lastly we need to decide if we are minimizing or maximizing the objective function – in this example, it is minimization.
- Next we will write the entire model at once, the result is the linear programming problem

	CONSTRUCTION MANAGEMENT LINEAR PROGRA					
J	Min COST(x)) = \$394x ₁ + \$111	0x ₂	6		
)	Subject to					
	$200 x_1 + 10$	$000 x_2 <= 10,000$	(Dump Trucks)			
	200 x ₁	>= 1,600	(6-foot trench)			
)	10	$000 x_2 >= 3,000$	(18-foot trench)			
2	x ₁ -	+ $x_2 <= 12$	(Operators)	Ŷ		
	x ₁	<= 12	(Type 1 Available)			
	<u></u>	x ₂ <= 12	(Type 2 Available)			

CONSTRUCTION MANAGEMENT LINEAR PROGRAM
 The last two constraints are redundant (in this example!), so the LP is
 Min COST(x) = \$394x₁ + \$1110x₂

 $200 x_{1} + 1000 x_{2} \le 10,000 \quad (Dump Trucks)$ $200 x_{1} >= 1,600 \quad (6-foot trench)$ $1000 x_{2} \ge 3,000 \quad (18-foot trench)$ $x_{1} + x_{2} \le 12 \quad (Operators)$

S

Subject to

SOLVING THE LINEAR PROGRAM

- Really simple LP can be solved by inspection; if there are only 2 variables, they can also be solved graphically
- For larger problems usually a variant of the SIMPLEX algorithm (Dantzig's algorithm with lexicographical pivoting) is used. The details of the algorithm are described in the readings.
- Here we will use R as a tool to solve the LP and find the decision variable values and the associated cost of the decision(s).

OBTAIN THE REQUIRED PACKAGES

• We will need the packages:

LpSolve, and
 LpSolveAPI

In R Studio simply run
 the pagakge installer
 and it will get the
 packages from the
 CRAN

RStudio					
🍳 ▾ 🚰 ▾ 🕞 🛱 📥 🗇 Go to file/function 🛛 🕮 ▾ Addins ▾ 🏝 Project: (None) ▾					
MyLP.R * OnstructionManagementProblem.R	¢		Environment History		
🗇 🔿 🔎 🔚 🗸 Source on Save 🔍 🎽 🗸	🗐 🚽 📑 Run 📑 🔂 Sour	ce 🛛 🖃	🕣 🔚 🖙 Import Dataset 👻 🚽		
1 # Construction Management Model p292	🛑 Global Environment 🗸 🔍				
2 - ###################################	£		constr num [1:4, 1:2 💷		
4 # deallocate the workspace			Values constr chr [1:4] "<="		
<pre>5 rm(list=ls()) 6 # load the linear programming library</pre>	,		Oconstr List of 28		
7 library(lpSolve)			HowMan 2L		
8 - ###################################	Install Packages		i 2L		
9 # LP Set-up	install rackages				
10 # Define the Objective Function	Install from: Configuring Repositories		obj.fun num [1:2] 394 1		
11 obj.fun <- c(394, 1110)	Repository (CRAN)		rhs num [1:4] 10000		
12 # Define the constraint set			Files Plots Packages Help V		
13 constr <- matrix(c(200, 1000, 200, 0 14 constr.dir <- c("<=", ">=", ">=", "<	Packages (separate multiple with space or comma):		🚰 New Folder 🝳 Delete 📑 Renar		
14 constr.dir <- c("<=", ">=", ">=", "< 15 rhs <- c(10000, 1600, 3000, 12)	IpSolve IpSolveAPI		Home		
16 - ###################################					
17 # Solve the LP	Install to Library:		A Name		
<pre>18 construction.sol <- lp("min", obj.fu</pre>	/Users/theodore/Library/R/3.1/library [Default]		.Rhistory		
19 #accessing to R output	() Install demondension		Applications		
20 # Get some constants to make readabl	✓ Install dependencies		Applications (Parallels)		
21 HowManyDecision <- length(constructi			🗆 🧰 Desktop		
<pre>22 message("Daily Operation Cost = \$",c 23 * for (i in 1:HowManyDecision) {</pre>	Install		Documents		
	re, , = , construction.solasolution[1]		 Downloads 		
25 }	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
26 - ###################################	*##		C C Library		
27			Movies		
24:39 😅 (Untitled) 🌻		R Script ≑	🗆 🧰 Music		
Console ~/ 🔗			Parallels		
> Source(~/ Desktop/constructionmanagementer	Ē Pictures				
Daily Operation Cost = \$6482	Public				
Workers Assigned to Backhoe $1 = 8$					
Workers Assigned to Backhoe 2 = 3					
>					

• **IpSolve** has a particular syntax; for small problems we can type the parts directly.

• Larger problems write script to generate the LP from an input file

• First, clear the R workspace and load the library

- 1 # Construction Management Model
- 3 # R script set-up
- 4 # deallocate the workspace
- 5 rm(list=ls())
- 6 # load the linear programming library
- 7 library(lpSolve)

Then construct the objective function

 In the example the cost coefficient for Backhoe 1 is \$394 per ... and Backhoe 2 is \$1110 per These weights are supplied to the objective function as a vector.

- **10** # Define the Objective Function
- 11 obj.fun <- c(394, 1110)

ρ

• Then construct the constraint set – the constraint coefficient matrix, inequalities, and right-hand-side are entered as separate objects

 $200x_1 + 1000x_2 \le 10,000$ $200x_1 + 0x_2 \ge 1,600$

 $0x_1 + 1000x_2 \ge 3,000$

 $x_1 +$

12 # Define the constraint set

16

13 constr <- matrix(c(200, 1000, 200, 0 0, 1000, 1, 1), ncol = 2, byrow=TRUE)

 \leq

12

15 rhs <- c(10000, 1600, 3000, 12) 🕨

- Now we can call the solver and have it search for values that satisfy the constraint set and minimize the objective function
- Actually not much to the R script (but there is a lot going on behind the scene).
- 17 # Solve the LP
- 18 construction.sol <- lp("min", obj.fun, constr, constr.dir, rhs, compute.sens = TRUE)</pre>

- Lastly, interrogate the solution object (construction.sol) and generate some meaningful output for the analyst to interpret
- 20 # Generate meaningful output
- 21 # Get some constants to make readable output
- 22 HowManyDecision <- length(construction.sol\$solution)</pre>
- 23 message("Daily Operation Cost = \$",construction.sol\$objval) #objective function value
- 24 for (i in 1:HowManyDecision) {
- 25 message("Workers Assigned to Backhoe ",i," = ",construction.sol\$solution[i])

26

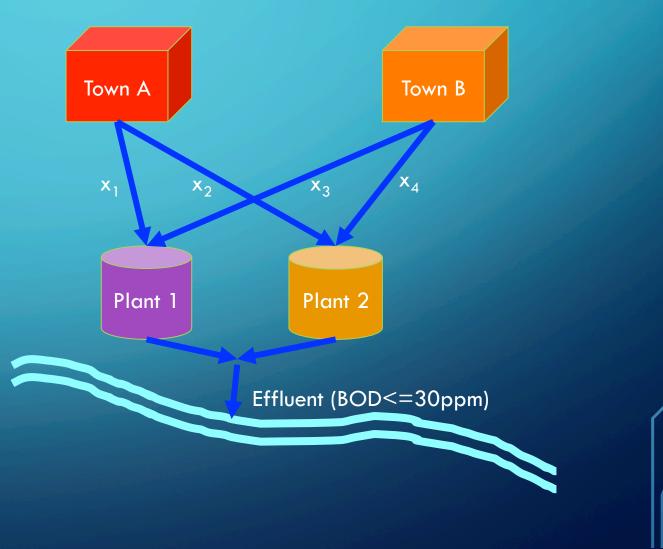
> LP SOLUTION TO THE CONSTRUCTION MANAGEMENT EXAMPLE

Run the R script, and examine the results!

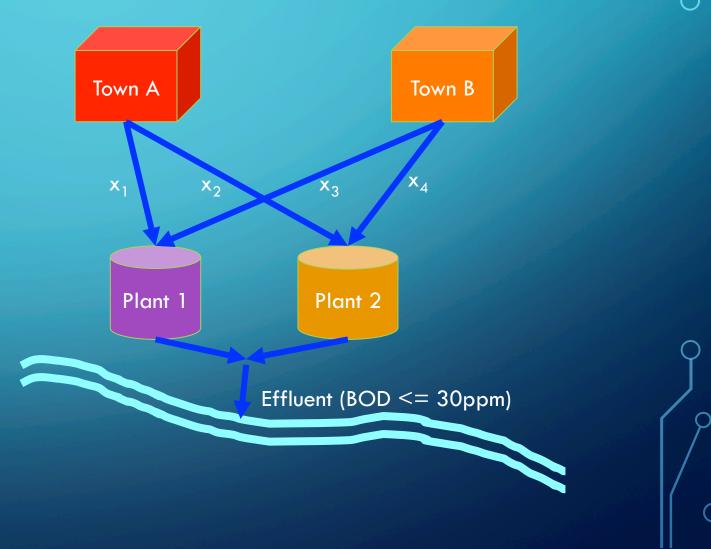
	RStudio					
	🕶 🕣 📼 🔝 🔚 🚔 🕼 🌈 Go to file/function 💦 🔚 👻 Addins 👻					
d	MyLP.R × OnstructionManagementProblem.R ×					
	Þ 🖒 🔎 🕞 🖓 Source on Save 🔍 🎽 📲 💷 📼 📑 Run					
	1 # Construction Management Model					
	2 - ###################################					
	3 # R script set-up					
	4 # deallocate the workspace					
	5 rm(list=ls())					
	6 # load the linear programming library					
	7 library(lpSolve)					
	22:53 🗮 (Untitled) 🌲					
	<pre>Console ~/ imes > source('~/Desktop/ConstructionManagementProblem.R')</pre>					
	Daily Operation Cost = \$6482					
	Workers Assigned to Backhoe $1 = 8$					
	Workers Assigned to Backhoe $2 = 3$					

 The construction management example illustrates how to set up a LP model – it could have been solved graphically – now we examine an example that cannot not be solved graphically (using 2D-paper)

- Town A produces 3 MGD of BOD=200ppm wastewater per day
- Town B produces 2 MGD of BOD=200ppm wastewater per Pday



- Plant 1 can treat 3 MGD and remove 90% of incoming BOD
- Plant 2 can treat 4 MGD and remove 80% of incoming BOD

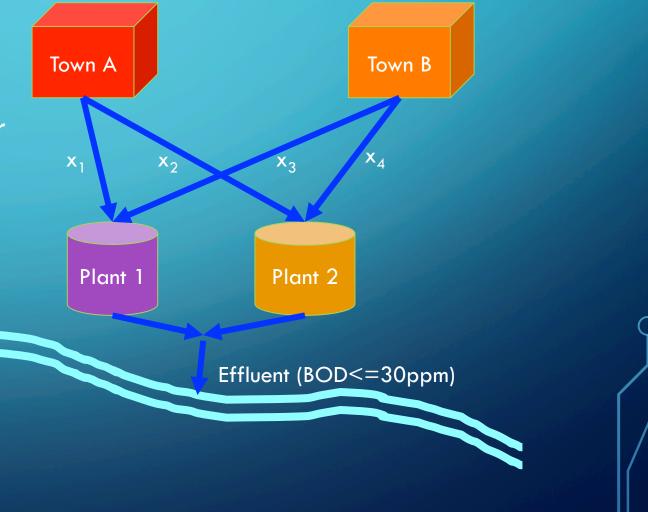


- The regional treatment operator can allocate wastewater flows from either town to either plant
- Unit Costs for each pipeline $(x_1...x_4)$

 \bigcirc

are:

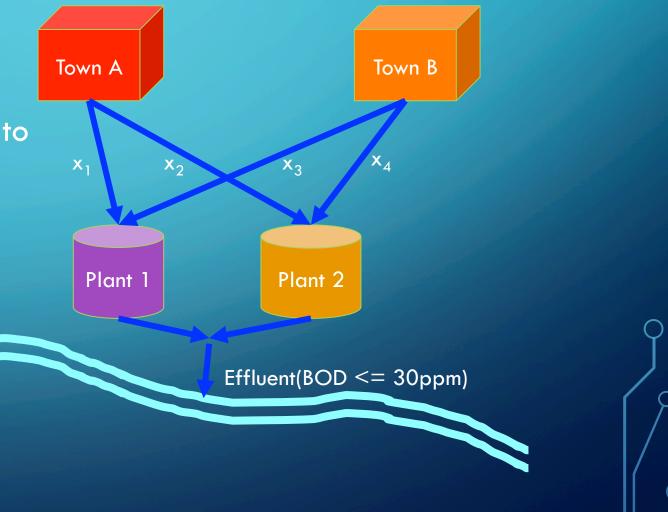
Pipeline	\$1000/MGD-yea
1	\$46
2	\$50
3	\$55
4	\$40



• What allocation minimizes the treatment and pumping costs subject to the requirement that the effluent concentration not exceed 30 ppm

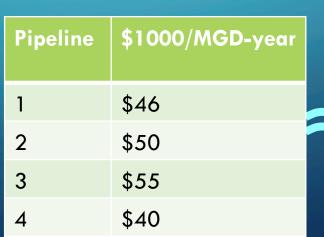
BOD? Pi

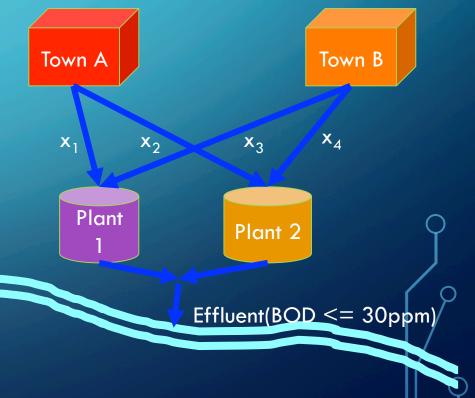
Pipeline	\$1000/MGD-year
1	\$46
2	\$50
3	\$55
4	\$40



• Write the objective function

$$C(x) = 46x_1 + 50x_2 + 55x_3 + 40x_4$$





• Write the objective function

$$C(x) = 46x_1 + 50x_2 + 55x_3 + 40x_4$$

• Water quality constraint

$$20x_1 + 40x_2 + 20x_3 + 40x_4 \le 150$$
(BOD*FLOW after treatment)

[©] WASTEWATER TREATMENT PLANT ALLOCATION

Write the objective function

$$C(x) = 46x_1 + 50x_2 + 55x_3 + 40x_4$$

• Water quality constraint

 $20x_1 + 40x_2 + 20x_3 + 40x_4 \le 150$ (BOD*FLOW after treatment)

Treatment Plant Capacity

$$1x_1 + 0x_2 + 1x_3 + 0x_4 \le 3$$
$$0x_1 + 1x_2 + 0x_3 + 1x_4 \le 4$$

Write the objective function

$$C(x) = 46x_1 + 50x_2 + 55x_3 + 40x_4$$

• Water quality constraint

$$20x_1 + 40x_2 + 20x_3 + 40x_4 \le 150$$

(BOD*FLOW after treatment)

Treatment Plant Capacity

$$1x_1 + 0x_2 + 1x_3 + 0x_4 \le 3$$
$$0x_1 + 1x_2 + 0x_3 + 1x_4 \le 4$$

• All water must be treated

$$1x_1 + 1x_2 + 0x_3 + 0x_4 \ge 3$$
$$0x_1 + 0x_2 + 1x_3 + 1x_4 \ge 2$$

 The next step is to translate the Linear Program model into R Script

• First the objective function

- 1 # Wastewater Treatment Plant Allocation
- 3 # R script set-up
- 4 # deallocate the workspace
- 5 rm(list=ls())
- 6 # load the linear programming library
- 7 library(lpSolve)
- 9 # LP Set-up
- **10** # Define the Objective Function
- 11 obj.fun <- c(46,50,55,40)

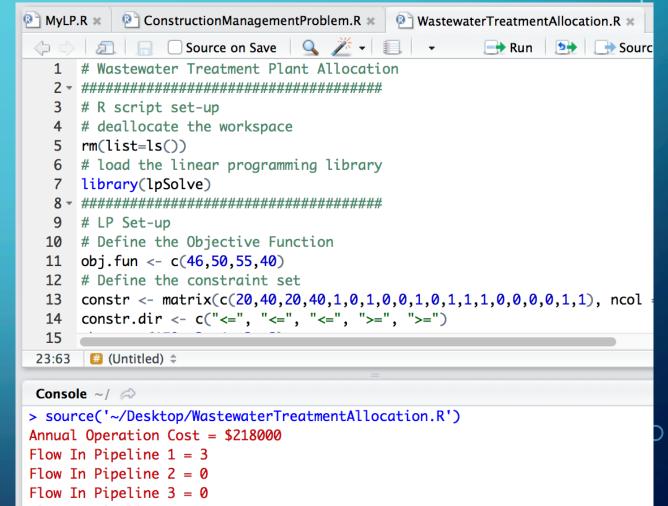
• The constraint set

Solve the LP and write results

- 17 # Solve the LP
- 18 wastewater.sol <- lp("min", obj.fun, constr, constr.dir, rhs, compute.sens = TRUE)</pre>
- 20 # Generate meaningful output
- 21 # Get some constants to make readable output
- 22 HowManyDecision <- length(wastewater.sol\$solution)</pre>
- 23 message("Daily Operation Cost = \$",wastewater.sol\$objval) #objective function value
- 24 for (i in 1:HowManyDecision) {
- 25 message("Flow In Pipeline ",i," = ",wastewater.sol\$solution[i])
- 26

 \bigcirc

• Run the script



Flow In Pipeline 4 = 2

SUMMARY

- Linear Programming as a tool to allocate resources (make decisions)
- Structure of an LP
- Simple Examples
- Solved using R and LpSolve package