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Probability Conceptualizations

◦ There are two probability conceptualizations
◦ Probability Density Function (PDF)

◦ Measures the relative likelihood of  a RV to take an assumed value
◦ Can be used to compute probability that a RV will fall between two 

values

◦ Cumulative Probability Distribution Function (CDF)
◦ Measures the cumulative probability that a RV has a value equal to or 

lower than a specified value
◦ The Y-axis takes values between 0 and 1

For countably finite discrete variables we can directly plot probability for each value 
of  RV this is called the probability mass function (PMF)



Probability Density Function (PDF)

◦ PDF measures the relative likelihood of  a random 
variable to take a given value
◦ Unlike probability, the Probability density can assume values 

greater than 1
◦ The area under the PDF is ALWAYS equal to 1

◦ PDF is usually denoted as f(x) (lower-case letters)
◦ Probabilities are typically denoted by upper case

Area Under a PDF = 1

There are many theoretical models to define Probability Density Functions – We will explore them later



Probability Density Function Example

◦ Calculate the probability of  a random variable (X) 
which follows a normal distribution with a mean zero 
and standard deviation = 1 between values -1.96 and + 
1.96
◦ A normal distribution with mean = 0 and standard 

deviation = 1 is called the standard normal distribution

◦ We can use the R built in function dnorm and integrate to 
do this calculation

# Integrate standard normal between -1.96 and + 1.96 
P02 <- integrate(dnorm,-1.96,1.96,0,1)     
P02

> 0.9500042 with absolute error < 1e-11

95% of  the values of  the normal distribution 
fall within ± ~2 Standard Deviations



Empirical Representation of  Probability Functions

◦ PDF and CDF can be empirically constructed from sample data

◦ These functions are called empirical PDF and Empirical CDF

◦ They are based on the assumption that the sampled data provides a reasonable estimate of  the 
population

◦ They are mostly used for preliminary analysis and visualization

◦ They are also used to identify appropriate theoretical models
◦ Match theoretical model to observed PDF and CDF
◦ We shall explore this idea in detail later in the class

◦ They are limited in that we have not observed everything from the population
◦ But they provide the best available observed information we have at hand



Empirical Probability 
Representation
◦ The histogram is the basic representation of  

probability
◦ Relative Frequency or density is plotted on the Y-

axis instead of  counts

◦ Each bar of  the histogram depicts the (density) 
or likelihood of  observing values in that bin 
(range)

◦ The product of  the bin size x density gives the 
probability of  the RV being in that range

P (soil moisture ≥ 0.16 and < 0.18) =  0.02 x 7.94 = 0.158

Bin Width Density



Histogram Computations using R

◦ R can be used to plot histogram
◦ Set freq = FALSE to obtain density plot instead of  

counts
◦ Can be used to obtain breaks and density values
◦ Midpoints can be used to plot probability bar plot 

for illustration

# Script to plot histogram and obtain densities
# Written by Venki Uddameri, Ph.D., P.E.

# Set Working Directory
setwd('D:\\Dropbox\\CE5331-Probabilistic Methods- Fall2019')

# Read data
a <- read.csv('soilmoisturedata.csv')

# Extract Junction data from the dataset
JSM <- a$Junction..mm
summary(JSM)
JSM <- JSM/1600  # Divide by 1600 cm (soil column length)

# Plot the histogram with freq-False to get density
sm.hist <- hist(JSM,freq=FALSE,xlab='Soil Moisture (dim)',main='Soil Moisture @ Junction, TX')
box()
grid()

# Extract bin width and densities
sm.bin <- sm.hist$breaks
sm.den <- sm.hist$density
sm.lag <- diff(sm.bin,1)  # Compute the bin width
sm.prob <- sm.lag*sm.den # Compute probabilities
sum(sm.prob) # check to see if  the sum of  probabilities = 1

Note: A bar plot looks like a histogram but it is not!!



Empirical Probability Density Functions
◦ Kernel Density estimation can also be 

used to plot empirical density functions 
from data

◦ Kernel density plot provides a smoother 
representation of  the PDF
◦ Overcomes the jaggedness noted in 

histograms

◦ Kernel density is obtained by pivoting a 
‘Kernel function’ on each point of  the 
data
◦ A Standard Normal distribution (Gaussian 

Kernel) is often used 

Kernel Function Bandwidth

Kernel Density

Datapoint

A Possible value of  RV

Kernel Density is sensitive to the choices of  
Kernel function and the Bandwidth

Choice of  the Kernel function is less 
important than the selection of  bandwidth

Small bandwidth will make the density 
function spikey

Large bandwidth will make the density 
function too smooth

To be meaningful Kernels must be centered at zero (locally)
and integrate to 1



Kernel Density Estimation using R
◦ R provides density function to do Kernel Density Estimation

◦ Default is Gaussian Kernel which can be changed
◦ "epanechnikov", "rectangular", "triangular", "biweight", "cosine", "optcosine“
◦ Some of  these provide more compact bounds than the Gaussian

◦ By default the bandwidth is selected based on normal reference rule

◦ You can either specify the bandwidth or obtain a best-fit using cross-validation
◦ bw = 4 or bw=‘ucv’ (unbiased cross-validation) or bw=‘bcv’ (bias cross-validation estimate)

Kernel Density Estimation involves some art and science
Some trial-and-error experimentation is necessary to get an aesthetically pleasing fit

Need to be even more careful if  the density is to be used in calculations



KDE with different Bandwidths
◦ Construct KDE for soil moisture in Junction, TX using 

Gaussian KDE but with default bandwidth; bandwidth 
= ‘ucv’, bandwidth=‘bcv’ and bandwidth=‘SJ-ste’ and 
bandwidth=‘SJ-dpi’

Method Value Remarks

nrd0 0.0116 default

ucv 0.0127 Unconstrained cross-validation

bcv 0.0143 Biased cross-validation

SJ-ste 0.0125 Sheater-Jones (solve the equation)

SJ-dpi 0.0127 Sheater-Jones (direct plug-in)



Example of  KDE

◦ Plot KDE for Soil Moisture Data in Junction, TX 
using different Kernels and default bandwidth

# Script to plot KDE using various Kernels
# Assumes default bandwidth
# Venki Uddameri, Ph.D. P.E.
# Set working directory
setwd('D:\\Dropbox\\CE5331-Probabilistic Methods- Fall2019')

# Read the data
a <- read.csv('soilmoisturedata.csv')

# Extract soil moisture for Junction station
JSM <- a$Junction..mm
summary(JSM)
# Normalize it to dimensionless soil moisture
JSM <- JSM/1600
summary(JSM)

# KDE with different density estimators
plot(density(JSM),main="KDE estimates for Soil Moisture at Junction, TX",col=1)
lines(density(JSM,kernel = "epanechnikov"),col=2)
lines(density(JSM,kernel='biweight'),col=3)
lines(density(JSM,kernel='rectangular'),col=4)
lines(density(JSM,kernel='triangular'),col=5)
legend('topright',legend=c('Gaussian','Epanechnikov','Biweight','Rectangular','Triangular’)
, col=c(1,2,3,4,5),lty=c(1,1,1,1,1))
grid()

Most functions except ‘Rectangular’ give similar results



KDE - Density
◦ Compute the area under the curve (AUC) for the densities 

obtained using different kernels for Soil Moisture Data in 
Junction, TX

◦ Density gives values of  RV x and corresponding f(x) we can 
numerically integrate using Trapezoidal Rule
◦ Trapezoidal rule divides the curve into a set of  triangles and 

trapezoids and computes the area
◦ There is a package in R called caTools that provides a function 

for trapezoidal rule (trapz)

Method Area under the curve

Gaussian 1.000974

Epanachnikov 1.001093

Biweight 1.000977

Rectangular 0.981428

Triangular 1.000974

# Script to calculate KDE area using various Kernels
# Assumes default bandwidth
# Venki Uddameri, Ph.D., P.E.

# load library (needs to be installed before using it)
library(caTools)

# Set working directory
setwd('D:\\Dropbox\\CE5331-Probabilistic Methods- Fall2019')

# Read the data
a <- read.csv('soilmoisturedata.csv')

# Extract soil moisture for Junction station
JSM <- a$Junction..mm
summary(JSM)
# Normalize it to dimensionless soil moisture
JSM <- JSM/1600

# KDE with different density estimators
JSM.gau <- density(JSM)
JSM.epa <- density(JSM,kernel = "epanechnikov")
JSM.biw <- density(JSM,kernel='biweight')
JSM.rec <- density(JSM,kernel='rectangular')
JSM.tri <- density(JSM,kernel='triangular')

# compute the area under the curve
auc.gau <- trapz(JSM.gau$x,JSM.gau$y)
auc.epa <- trapz(JSM.epa$x,JSM.epa$y)
auc.biw <- trapz(JSM.biw$x,JSM.biw$y)
auc.rec <- trapz(JSM.rec$x,JSM.rec$y)
auc.tri <- trapz(JSM.tri$x,JSM.tri$y)
cat(auc.gau,auc.epa,auc.biw,auc.rec,auc.tri,'\n')



KDE using R packages

◦ There are several packages available in R for computing Kernel Density Function 
◦ A good review is provided by Deng and Wickham (2011) - https://vita.had.co.nz/papers/density-

estimation.pdf
◦ Many packages can fit KDE in multiple dimensions

◦ Can be used to model joint distributions 

◦ The use of  libraries help improve the visual aesthetics of  KDEs

◦ These libraries can also provide better estimates
◦ Follow the rules of  probability better

https://vita.had.co.nz/papers/density-estimation.pdf


SELECT COMMON 
DISTRIBUTIONS



Probability Models

◦ Random variables are characterized using probability 
distributions

◦ A probability distribution specifies a relationship 
between the magnitude of  the random variable and its 
associated probability

◦ There are several hundred probability distribution 
functions specified in the literature

Probability Models are always for population



Normal and lognormal Distributions

◦ The normal distributions is useful to measure 
central tendencies
◦ Defined using two parameters

◦ Mean (µ) and Standard Deviation (σ)

◦ Leads to symmetric distribution
◦ Represents additive processes

◦ The lognormal distribution assumes the log of  
random variable x (i.e., log(x) is randomly 
distributed
◦ Does not work for negative data
◦ Represents multiplicative processes
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The same formulas apply for both normal and lognormal 
distributions.  However, the data is log-transformed first 

for lognormal distribution

Lognormal distribution is appropriate when the data are skewed

Normal and Lognormal Distributions are best suited to represent central tendencies



Poisson Distribution
◦ It is a discrete distribution used to represent the 

number of  independent events within a fixed time
◦ Number of  independent rainfall events within a 

year

◦ Closely related to Exponential Distribution
◦ Continuous distribution for inter-arrival times

◦ Poisson distribution assumes stationarity
◦ Rate at which events occur is constant
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For a discrete distribution we use the term probability mass function (PMF) instead of  pdf
PMF directly gives us the probability instead of  probability density  

Poisson Distribution is used for count data



Exponential Distribution

◦ Often used to model the time between two independent 
events
◦ Time between two rainstorms

◦ Exponential distribution is represented by the parameter (λ)
◦ Reciprocal of  Average inter-event time

◦ Closely related to Poisson Distribution
◦ A discrete distribution for number of  events in a fixed time 
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Binomial Distribution

◦ Used when there are two outcomes
◦ Success and Failure

◦ The probability of  success for each event is denoted by “p”
◦ Often assumed stationary

◦ The PMF calculates the probability of  success of  x out of  N total events

𝑓𝑓 𝑥𝑥 = 𝑝𝑝 𝑥𝑥 = 𝑁𝑁
𝑥𝑥 𝑝𝑝𝑥𝑥 1 − 𝑝𝑝 𝑁𝑁−𝑥𝑥

𝐹𝐹 𝑥𝑥 = �
𝑖𝑖=0

𝑥𝑥
𝑁𝑁
𝑖𝑖 𝑝𝑝𝑖𝑖 1 − 𝑝𝑝 𝑁𝑁−𝑖𝑖

This distribution is very useful for 
risk and reliability calculations

This distribution is the basis for modeling 
discrete binary data



Logistic Distribution

◦ Useful to model Probability of  occurrence of  binary 
data
◦ Provides continuous probability function 
◦ S shaped curve representing growth patterns 



Multinomial 
Distribution
◦ A generalization of  binomial distribution

◦ Used to model nominal or ordinal data
◦ A small set of  discrete choices greater than 

2

◦ Generally used to model sampling of  k 
from a set of  n with replacement



R Statistical Functions
◦ There are built-in functions for several univariate 

distributions

◦ R follows a consistent approach to naming
◦ dfoo  probability density function (pdf)
◦ pfoo  cumulative distribution function (cdf)
◦ qfoo quantile function
◦ rfoo  random number generation

Common Distributions in R

Where foo  is the name of the distribution
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