
CE 5331 Machine
Learning for Civil

Engineers
Venki Uddameri, Ph.D. , P.E.

Machine Learning
Unsupervised Learning

Recap
• What is Machine Learning

• How is it useful for Civil Engineers

• Overview of Machine Learning Methods

• Linear Regression
• Bivariate
• Regression interpretation
• Multivariate

• Logistic Regression
• Maximum likelihood estimation
• Regularization (introduction)

• Naïve Bayesian Classifier
• What is it
• What makes it naïve
• Bayes theorem
• Prior, likelihood and posterior

• K-Nearest Neighbor
• How does the algorithm work
• Why is it a lazy learner
• How to do regression and classification

• Introduction to Decision Trees
• Fundamentals
• Information Gain, Entropy and Gini Index
• ID3 algorithm
• Classification and Regression Trees (CART)
• Multi-Adaptive Regression Splines (MARS)

Python – Introduction
Python – Functions
Python - Pandas
Python – np, scipy, statsmodels
Python – Scikit learn – linear, metrics
Python – Matplotlib, seaborn
Python – Mixed_Naive_Bayes
Python – scikit learn neighbors module
Python – scikit learn ensemble voting
Python – scikit learn bagging classifier
Python – scikit learn RandomForestClassifer

R – Classification and Regression Trees
using rpart
R – Drawing trees using rpart.plot
R - Multiadaptive Regression Splines
(MARS) using Earth Algorithm

Unsupervised Classifier

• Ensemble learners
• Introduction

• Their benefits and drawbacks
• Simple (voting) ensemble learners
• Bagging and Pasting
• Generic bagging classifiers
• Random Forest classifiers
• Bagging Classifier

Unsupervised Learners
• Supervised learners map the relationship between inputs and outputs
• In unsupervised learning there are no outputs

• Referred to as labels in Machine Learning literature

• Unsupervised learning can therefore not be used make predictions
but are useful in many other data mining tasks

• Clustering
• Dimensionality Reduction
• Anomaly Detection
• Semi-Supervised Learning
• Density Estimation

Unsupervised learning is a vast area but there is
still a lot to be explored

Clustering

• The task of identifying instances that are similar
and clustering them into groups

• Clustering has a wide range of uses in Civil
Engineering

• Clustering sites with similar characteristics
• Clustering to study correlated load characteristics

• Different types of loads on a structure may have same origins
• Clustering to study freeway operating conditions
• Clustering of hydrologic datasets

• Rainfall, water quality

Clustering can reduce data dimensionality and help with semi-supervised classification

Clustering Algorithms

• There are several clustering algorithms and approaches
• Centroid based clustering

• K-means is a popular algorithm
• Density based clustering

• Dense areas are connected
• Useful for outlier detection as outliers are not connected

• Distribution based clustering
• Gaussian Kernels

• Hierarchical Clustering
• Trees of clusters

K-Means Clustering

• Proposed by Stuart Lloyd at
AT&T Bell Labs in 1957 but
published in 1982. A similar
algorithm was proposed by
Edward Forgy in 1965

• K-means is also called Lloyd-
Forgy algorithm

• Specify the number of clusters
in the dataset (K)

• Identify which instance belongs
to which cluster

Elements belonging to the cluster are closest to the centroid of the cluster to which it belongs
The cluster centers are as far apart as possible

K-means Clustering Algorithm

• Start by placing the centroids randomly
• Randomly pick ‘k’ instances and assign them as randomly

• Place each instance in one of the cluster
• The instance is assigned a cluster based on the proximity to the centroid of

the cluster
• Update the cluster centroid

• Mean of the values of the instances placed within the cluster
• Use the use cluster centroid to reassign labels to each cluster
• Repeat the above two steps till the cluster centroids do not change

• Change between successive steps is below some tolerence

K-Means Clustering

• Clustering is generally quick for most
problems

• May be slow in rare cases

• The computational speed is linear
• Function of number of instances, number of

clusters and number of dimensions

• Implementation is guaranteed to converge
but may not converge to a global optimum

• Stuck in a local optimum
• Can be function of initial random guess

Objective Function to
Minimize

Start with good initial guesses
Run the algorithm several times

and keep the best solution

Inertia

• Inertia is the mean squared distance between each
instance and its closest centroid

• Smaller inertia  better model

Training
instance in
cluster (i)

Cluster
Centroid

Number of instances

Algorithmic Improvements to K-Means

• Better initialization of
centroids

• Select one centroid at
random

• Select other centroids such
that there distances are
further from the chosen
centroids

Distance of instance (i)
from chosen centroid (cj)

Instances further then
cj will have larger

values

This approach called K-means++ was proposed in
Arthur, David, and Sergei Vassilvitskii. k-means++: The
advantages of careful seeding. Stanford, 2006.

Scikit.learn uses this by default

Accelerated K-Means

• K-means involves many distance calculations
• Not all of which are really necessary due to triangle inequality

• The straightline is the shortest distance between two points
• By knowing the upper and lower bounds of distances between instances and

centroids in a cluster many distance calculations can be avoided
• This approach was first proposed by - Elkan, Charles. "Using the triangle

inequality to accelerate k-means." In Proceedings of the 20th international
conference on machine learning (ICML-03), pp. 147-153. 2003.

• Scikit.learn uses this by default

Mini-Batch K-means

• Use of mini-batches of data rather than full dataset at each iteration
• Centroids move only slightly each iteration
• Useful when dealing with big data

• Mini-batch training of K-means is faster than conventional approach
• But the inertia is often worse

• Mini-batch training was proposed in the following paper
• Sculley, David. "Web-scale k-means clustering." In Proceedings of the 19th

international conference on World wide web, pp. 1177-1178. 2010.

• Scikit.learn has a function called MiniBatchKmeans

Optimal Number of Clusters

• Inertia is a not a good performance
metric to pick the number of clusters

• Inertia keeps getting lower with
increasing number of clusters

• The error drops quickly initially and slows
down

• Creating an elbow type graph
• Pick the number of clusters – where the

drop becomes gradual

Optimal
per elbow
method

Scikit-learn computes negative inertia using the ‘score’ metric

Optimal Number of Clusters

• The elbow method is a rather crude
way to identify the number of
clusters

• The silhouette coefficient is one
rigorous approach

• Albeit computationally expensive

• Scikit-learn has a silhouette score
function in the sklearn.metrics
module

Mean distance to
other instances in
the same cluster

Mean distance to
instances in the next

closest cluster

silhouette coefficient varies between -1 and +1 (+1 it is in its own cluster; 0 it is in the cluster boundary and -
1 it is in the wrong cluster)

Illustrative Example
• Predicting damage to culverts in Texas
• Use the ADT and SVCYR to cluster the

data into 5 clusters
• As an exercise find the optimal number

of clusters

Sa
tis

fa
ct

or
y

U
ns

at
isf

ac
to

ry

Implementation
Step 1: Import Libraries
import os
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.cluster import MiniBatchKMeans
from sklearn.metrics import silhouette_score
import seaborn as sns
from matplotlib import pyplot as plt

Step 2: Ccange working directory
dir = 'D:\\Dropbox\\000CE5333Machine Learning\\Week8-
UnsupervisedMethods\\Code'
os.chdir(dir)

Step 3: Read the dataset and add a variable
a = pd.read_csv('TXculvertdata.csv') # read our dataset
features = ['SVCYR','ADT'] # INPUT DATA FEATURES
X = a[features] # DATAFRAME OF INPUT FEATURES
scaler = StandardScaler() # Initialize standardscaler
X_scl = scaler.fit_transform(X)

Step 4: Split into training and testing data
X_train,X_test = train_test_split(X_scl,test_size=0.30,

random_state=10)

Implementation
#Step 5: Make a run with an arbitrary K = 5 clusters
k = 5
kmeans5 = KMeans(n_clusters=k) # Instantiate an object
y_pred = kmeans5.fit_predict(X_train) # Fit the K-means model
kmean5_cent = kmeans5.cluster_centers_ # Get centroids
y_tst = kmeans5.predict(X_test)
kmeans5.inertia_ # Compute inertia
kmeans5.score(X_train) # Score is the reciprocal of inertia
silhouette_score(X_train,kmeans5.labels_)

Step 6: Perform Minibatch processing
minibatchK5 = MiniBatchKMeans(n_clusters=k) # initialize
y_mini = minibatchK5.fit_predict(X_train)
mini_cent = minibatchK5.cluster_centers_
y_tst = minibatchK5.predict(X_test)
minibatchK5.inertia_ # Compute inertia
minibatchK5.score(X_train) # Score is the reciprocal of inertia
silhouette_score(X_train,minibatchK5.labels_)

You should Know

• What is unsupervised classification
• What are its uses
• What is K-means algorithm
• What are its hyperparameters
• How does the K-means algorithm work

• What are its limitations
• What are some enhancements made to overcome its limitations

• Minibatch processing
• Good initial conditions

• How do we find the optimal number of clusters
• Elbow method
• Silhouette Score

	CE 5331 Machine Learning for Civil Engineers	
	Recap
	Unsupervised Learners
	Clustering
	Clustering Algorithms
	K-Means Clustering
	K-means Clustering Algorithm
	K-Means Clustering
	Inertia
	Algorithmic Improvements to K-Means
	Accelerated K-Means
	Mini-Batch K-means
	Optimal Number of Clusters
	Optimal Number of Clusters
	Illustrative Example
	Implementation
	Implementation
	You should Know

