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Abstract: The growing volume of information databases
presents opportunities for advanced data analysis techniq

systems. While there have been demonstrations of knowl-
edge acquired by single ML techniques (e.g., ref. 52), there

frommachine learning (ML) research. Practical applications
of ML are very different from theoretical or empirical stud-
ies, involving organizational and human aspects and various
other constraints. Despite the importance of applied ML, lit-
tle has been discussed in the general ML literature on this
topic. In order to remedy this situation, I studied practical ap-
plications of ML and developed a proposal for a seven-step
process that can guide practical applications of ML in engi-
neering. The process is illustrated by relevant applications of
ML in civil engineering. This illustration shows that the po-
tential of ML has only begun to be explored but also cautions
that in order to be successful, the application process must
carefully address the issues related to the seven-step process.

1 INTRODUCTION

Over the last several decades we have witnessed an explosion
in information generation related to all aspects of life, includ-
ing all engineering disciplines. There has been an increase in
active information collection to be used for solving critical
engineering problems such as infrastructure management.®’
One notable example of data collection is the National Bridge
Inventory in the United States. In most information-collection
cases, information has been accumulated without knowing
how it will be analyzed or used, and to date, no major practical
benefit has been gained from these data-collection endeavors.

Recently, a new set of techniques for knowledge extrac-
tion from data has emerged from machine learning (ML),
which is a branch of artificial intelligence (AI). The original
objective of ML techniques was the automated generation of
knowledge for its incorporation in expert systems. This gen-
eration was expected to alleviate the knowledge-acquisition
bottleneck often associated with the construction of expert

has not been significant practical progress in using single ML
techniques as regular tools by engineers due mainly to two
reasons. First, practical problems are often too complex to be
handled by a single method, and second, the task of applying
ML techniques in engineering practice is much more com-
plex than described in those early studies; it is not simply a
matter of taking a program and applying it to data.

To overcome the limitations of existing learning techniques
with respect to the first reason, ML researchers postulated
that the solution to diversity and complexity in learning situ-
ations requires the use of multiple ML techniques. Such mul-
tistrategy learning>* would enable the variety of information
available for learning to be taken into account.

In general, two levels can be identified within the mul-
tistrategy approach to learning”: the macro and the micro.
The macro level deals with the use of a collection of learn-
ing programs, each addressing a separate learning problem,
even though they interact. It is the nontrivial task of the user
to assemble these techniques and resolve their interactions.
The micro level deals with the development of new learn-
ing programs that employ a variety of fine-grained learning
strategies for solving a specific learning task.

An example of a multistrategy learning program is Bridger,
an experimental system developed to explore the extent to
which ML can aid in the creation of design support
systems.%®7? At the macro level, Bridger’s learning task was
manually decomposed into two subtasks, learning synthesis
knowledge and learning redesign knowledge, with a prede-
fined interaction scheme. Each of these tasks was assigned
to a different learning program: Ecobweb and Eprotos (these
are enhancements of Cobweb?’ and Protos® that,among other
improvements, can handle continuous-valued attributes). At
the micro level, each of these programs used several learning
strategies to accomplish its subtask. Other examples of mul-
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296 Y. Reich

tistrategy systems are MOBAL (micro and macro®’), MLT
(macro*?), and MCS (micro'?).

ML techniques can be viewed not only as knowledge-
generation tools but also more generally as data-analysis
or information-modeling tools similar to traditional statis-
tical techniques. Both statistical and ML techniques can be
viewed as approximating functions. Nevertheless, ML (and
some recent statistical) techniques are nonparametric, mak-
ing fewer assumptions about the data, at the expense of addi-
tional computations that became possible due to the increase
in the power of computers.

One example of using ML techniques for modeling in-
volved the modeling of a decision procedure (DP) for select-
ing among mathematical models that simulate groundwater
contaminant transport processes.®' The modeling employed
two ML programs: CN2?! and IND.'® Training examples for
these programs were generated by simulating the DP. The
programs created different models of the DP that led to its
better understanding, which in turn led to the detection of er-
rors and to the subsequent improvement of the DP. The new
DP was then subjected to the same modeling procedure.

The aforementioned projects, one for the knowledge-acqui-
sition role and one for the information-modeling role, sug-
gest that solutions to practical ML problems require the use
of multiple ML methods for providing different and comple-
mentary functionalities and perspectives. A successful appli-
cation requires matching the scope of applicability of ML

plored (e.g., planning wastewater treatment plant operation®*
and architectural design®).

In many early studies, as well as many contemporary ones,
a single ML technique has been employed. By and large, the
selection of these techniques was based on availability and
not necessarily applicability of the ML technique to the target
problem. Often, the problem representation used was a sim-
plification driven by the limitation of the available ML tech-
nique. There have been exceptions to this practice. In some
cases,new techniques or modifications of existing techniques
were developed to expand the applicability of ML techniques
(e.g., for learning synthesis knowledge in Bridger,”® for ar-
chitectural design in FABEL,” or for monitoring water treat-
ment plants**#%). In other cases, several methods and cre-
ative knowledge representations were used to address differ-
ent variations of learning problems (e.g., modeling material
stress-strain relations®2).

While addressing increasingly complex problems, the ne-
cessity to integrate several ML techniques for solving them
was recognized, and an initial theoretical foundation for such
integration was developed.”> Several subsequent systems that
dealt with large problems employed multiple methods (e.g.,
Bridger, FABEL, and ref. 83). These systems also incorpo-
rated new or significantly adapted ML tools.

The role assigned to ML techniques in civil engineering
applications varied significantly. There have been studies on
knowledge extraction (e.g., feasibility of wind bracing® and

tools to the nature of the application. This matching requi
an intimate understanding of ML techniques and being cre-
ative in their operation.

However, there is more to successful applied ML than us-
ing multiple ML techniques; the whole application process
needs to be studied. This paper addresses this issue in the
context of civil engineering. The state of applied ML in civil
engineering is reviewed (Section 2), and the status of pre-
liminary guidelines for using ML techniques is summarized
(Section 3). A seven-stage process, called contextualized ML
modeling (CMLM), is developed from an earlier version®”
(Section 4). The utility of this process needs to be tested,
and its future improvement depends on using it in develop-
ing practical ML applications. The stages are explained using
the studies reviewed and other ML sources. Section 5 sum-
marizes the key points and presents some future work.

2 STATE OF THE ART OF USING ML IN CIVIL
ENGINEERING

The first uses of ML programs in civil engineering involved
testing different existing tools on simple problems (e.g., see
refs. 6, 50, 74, and 86); gradually, more difficult problems
were addressed (e.g., see refs. 32, 65, and 96); and recently,
the solutions of few complex practical problems have been ex-

1 impact 3%), studies solving com-
plete problems in which learning played a major role (e.g.,
cable-stayed bridge design®® and monitoring water treatment
plants**#3), and studies that employed learning as part of
their operation (e.g., steel bridge design,' highway truck load
monitoring,?’ transmission line towers design,% and archi-
tectural design”).

In addition, there have been studies directed at informa-
tion modeling for creating estimation models (e.g., material
stress-strain  relations® and properties of composite
materials'S) and studies on modeling aimed at improving the
understanding of a phenomenon (e.g., decision procedures®!
and material corrosion behavior®?). The latter studies em-
ployed multiple ML techniques.

There are two issues that put work on ML in civil engi-
neering into perspective. First, studies to date on ML appli-
cations in civil engineering have explored a small number
of ML techniques, most notably supervised concept learn-
ing, with a few exceptions employing unsupervised learning
(e.g., Bridger) or other techniques. This is in contrast to the
potential that many other ML techniques offer.”® Thus the
use of ML in civil engineering is only at its infancy. Second,
many previous studies contained little or no systematic test-
ing and have had little or no follow-up work. This suggests
that many of these studies were preliminary and did not ma-
ture. It also cautions us to critically review the conclusions
of these studies.
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Fig. 1. Key dimensions of learning systems.

3 PRELIMINARY GUIDELINES FOR USING ML
TECHNIQUES

ML techniques and problems can be characterized along
many dimensions that influence the applicability of the tech-
niques and thus should be consulted when selecting between
them. These dimensions include (1) the complexity of rep-
resenting input data and learned knowledge, (2) the mecha-
nisms for learning knowledge (or models) and the functional
form of these models, (3) the mode of learning, whether batch
or incremental, (4) the amount of background knowledge em-
ployed while learning, (5) the ability to handle missing values
or noisy or numeric data, (6) the computational complexity
of the algorithm, and (7) the learner-user interaction.

In addition to these dimensions, I stress two additional di-
mensions because they create clusters that somewhat corre-
spond to three classic approaches to ML (see Fig. 1). These di-
mensions are comprehensibility and timing. The comprehen-
sibility dimension ranges from (1) clear —in systems that cre-
ate clear, comprehensible knowledge (e.g., rule induction) —
to (2) opaque—for example, in black-box systems such as
neural networks. The timing dimension ranges from (1) early
in systems that learn proactively by receiving data and learn-
ing and storing knowledge that subsequently can be used for
problem solving to (2) late in systems that learn reactively by
storing data and subsequently retrieving them, learning from
them (locally), and adapting them to solve problems. Note
that the task of storing the data may involve learning to index
the data efficiently.

Most ML systems learn proactively, except for instance-
based learning (IBL) systems (e.g., see ref. 97) or case-based
reasoning (CBR) systems (e.g., see refs. 9, 43, or 83), which
are reactive learners. On the comprehensibility dimension,
IBL and CBR are placed in the middle, somewhat closer
to symbolic learning, because while their description might
be clear, it might contain irrelevant data and the knowledge
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embedded in them might not be so clear. Decision trees might
be clear or difficult to understand depending on their size and
the nature of the data.

The comprehensibility and timing dimensions create three
clusters of ML approaches shown in Fig. 1. Most studies on
ML in civil engi ing can be classified into one of these
clusters. Particular systems will be placed along these dimen-
sions depending on the specific mechanisms they employ.
For example, Ecobweb mainly learns proactively by creating
a hierarchical classification of designs; this hierarchy is less
comprehensible than rules.

From the previous paragraphs we see the many dimensions
influencing the behavior of ML techniques. To be successful,
the application of ML to engineering practice requires careful
and systematic analysis that identifies appropriate ML tech-
niques for solving the learning tasks we wish to perform. This
requirement has begun to be addressed in various studies, in-
cluding

Developing a method for the contextual use of ML for
solving complex engineering problems 576873

An analysis of the difficulty and importance of various
stages in the process of applying ML in engineering and a
proposal to support these difficulties.**

Developing guidelines for the selection of ML techniques
to match the characteristics of learning problems.*! (I bor-
row some details from this paper in the present study.)
An analysis of the processes, issues, and steps involved in
applying classification techniques in practice.'* (I borrow
some details from this paper in the present study.)
Developing guidelines for using back-propagation neural
networks in applications.>®

The development of a system that selects the best model
among three available for learning classification knowl-
edge in a divide-and-conquer strategy.'?

A comparison among several ML programs recommend-
ing an order for using them on classification problems.”!
A study comparing 23 ML classification programs on 22
data sets to derive various guidelines for their practical
use.> This comparison is significantly different from the
one in the preceding item or from other comparisons in
the literature. It included testing many state-of-the-art pro-
grams, sometimes several from each type; the compari-
son was carried out on many databases rather than one or
several, thus reducing a potential bias in favor of some
programs.

A characterization of classification programs to permit se-
lecting among them for given learning task properties.*®
The process is driven by metalearning from previous test
results, including those from the preceding item.

The development of a consultant expert system to aid prac-
titioners in using the machine learning toolbox (MLT),*?
which includes 10 ML programs integrated together.®®
This system is based on knowledge acquired from ML
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298 Y. Reich

users and experts. The system evolved in a longitudinal
study through several versions used in practice.

In civil engineering there have been other studies that
briefly mentioned a sequence of steps for applying ML tech-
niques (e.g., ref. 45 or 94). Despite all the preceding studies,
the complexity of applying ML techniques to practical prob-
lems is not well appreciated or understood. The following
section discusses the process of applying ML to practical
problems in detail, using examples from studies on applying
ML in civil engineering.

4 USING ML PROGRAMS: CONTEXTUALIZED ML
MODELING

Solutions to many problems follow several steps leading from
problem analysis to solution deployment (see Fig. 2). Some
of these steps (e.g., 1 and 2, or 2, 3, and 4) may be exe-
cuted in parallel or even in reverse order, and the process
may iterate before a successful and acceptable solution is ob-
tained. As in many sequential procedures (even if iterative),
the initial steps are the most influential on the success of the
overall process but the least understood, structured, or appre-
ciated. There are many constraints that may be imposed on
this process, including time, availability of tools or informa-
tion, or a required solution quality. To each practical problem
there may be several candidate solutions satisfying the re-
quirements and the constraints. The application of ML to
solving practical engineering problems follows similar steps
and shares similar characteristics.

Practical experience in solving problems using ML tech-
niques and knowledge about the properties of these tech-
niques can uncover characteristics of problems and their map-
ping to suitable ML techniques. Such a mapping can be used
to select and apply ML techniques in a routine fashion. I
already mentioned several studies directed at creating such
a mapping (e.g., refs. 30, 41, and 85), but in most cases,
a straightforward selection and application will not suffice.
Problems will be simplified to match the capabilities of ML
techniques (e.g., in Bridger as well as in most other stud-
ies), solution methods will be adapted (e.g., in Bridger) or
newly developed (e.g., refs. 38, 43, and 83), and their use
may therefore be termed as innovative or creative.

The following subsections detail seven steps that system-
atically address the critical issues involved in building ML
applications. These steps together constitute a proposed pro-
cedure expected to lead to the development of successful ML
applications.

4.1 Problem analysis

Engineering problems are hard to formulate, and what needs
to be learned often may be unclear or poorly understood.

Although good formulations are very critical to the success
of learning, little has been done to address the problem-
analysis step in the context of using ML or other data-analysis
tools.'*$035 When addressing real-world engineering prob-
lems, the learning task cannot be formulated precisely at the
beginning of a project, since the task must be based on deep
understanding of and involvement in this project. Thus, as
shown in Fig. 2, problem analysis may have to be executed
iteratively and continually. These observations also hold in
research projects ®® but it is rare that the evolution of ideas in
such projects is reviewed. Included in the problem analysis
are the following aspects:

o The data and domain knowledge availability. Good data
and domain knowledge are key to successful application
of ML. Often data are unavailable or are in insufficient
quantity. Problem analysis should identify the status of
data. The access to domain experts is critically important
to successful ML applications. Domain experts are needed
for assisting developers in better understanding the prob-
lem, in data preparation, and in result interpretation and
evaluation.

Time constraints. This aspect influences the availability of
experts and data and the number of iterations through the
steps in Fig. 2 possible in a particular project.

The human and organizational aspects. This aspect is crit-
ically important because if potential users are not involved
in the application development, the proposed solution will
probably fail even if preliminary studies show significant
potential.”* Successful real-world applications of ML were
developed collaboratively by ML researchers and users
(e.g., SKICAT? and MLT).

The status of a project. Part of the problem analysis deals
with classifying the status of the ML application. There can
be several status classifications: (1) Proving of or illustrat-
ing concepts (e.g., see refs. 6, 34, 82, 86, and 96); this
requires a focused effort to yield convincing results that
point to a new research or development direction. (2) Con-
ducting preliminary studies (e.g., Bridger; see refs. 15,29,
32, 38, and 93) that deal with several steps but do not
attempt to build a practical system. (3) Developing prac-
tical systems (e.g., see ref. 83); these projects must fol-
low the seven steps, including user feedback. The status
of a project determines the focus on some aspects of the
problem. Nevertheless, it is important not to make choices
in proof-of-concept or preliminary studies that might pre-
vent them from scaling to deal with the real problems from
which they emerged.

The goal of learning. This goal can be automated knowl-
edge creation or modeling in general. For each of these
types, there can be several variations. A diagnosis prob-
lem will require learning predictive knowledge (e.g., see
refs. 6,38,94,and 95); an evaluation or estimation problem
may require learning a continuous-valued function (e.g.,
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Fig. 2. A model of engineering problem solving.

see refs. 15,29, 32, and 93); and a synthesis problem will
need generative knowledge (e.g., see refs. 37,77, and 79).
While the previous problems require the use of the most
applicable ML technique, modeling problems that focus
on understanding (e.g., refs. 81 and 82) can benefit from
the use of diverse techniques.

The importance of problem analysis cannot be overem-
phasized. Careful problem analysis can lead to addressing
complex problems (e.g., prove the concept of learning de-
sign knowledge®), isolating parts of complex problems that
can be solved by ML (e.g., preliminary study of improving
finite-element mesh*®), and identifying sets of practical prob-
lems that can benefit from ML (e.g., modeling problems*!
damage detection,”**** and estimation problems'*2*32),

In order to benefit from the collective experience of prob-
lem analysis conducted in many studies, it is critical that over
time more longitudinal studies are performed that document
the evolution in problem understanding and proposed solu-
tions. Besides ref. 68, this topic has been neglected in civil
engineering research.

4.2 Collecting data and knowledge

This stage is intertwined with problem analysis. Often the
data improve the problem understanding, and often no reason-
able understanding is possible until data have been collected
and studied. Data can be collected from various sources, in-
cluding

Experts can provide domain knowledge (e.g., see refs. 51
and 58), case data or description language (e.g., see refs. 6,
78, 83, and 94), and can evaluate the results of learning
(e.g., see refs. 6, 22, 58, 81, and 94). Experts also can
assist in interactive learning (e.g., refs. 6, 58, and 86).
Historical records include data available or scattered in old
records or in the literature (e.g., bridge design data,”®"
design failure data®) as well as more recent repositories
of collected information (e.g., plant operation data®> or
accident records™®’). Such data often are incomplete or
inhomogeneous, requiring preprocessing or even the de-
velopment of new ML techniques to handle them.
Published experimental data include tabulated data, usu-
ally created for analysis purposes other than ML (e.g., ma-
terial data’2-82). Similar to historical record data, these data
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300 Y. Reich

often are incomplete. When such data are collected from
multiple sources, they require special treatment.*

Simulations can be used to generate data when ML tech-
niques are used to solve inverse problems such as, for
example, material modeling,‘s error estimation of finite-
element analysis,” debugging finite-element input files,”
signal plan generation** bridge loading identification,”
and damage detection.”*%%3 Simulations also can be used
when ML is used to model analytical or other tools (e.g.,
decision procedures®! or expert systems?’). Data created
by simulating existing systems may leave many missing
values in the data; these values require special treatment.®!

Several important issues influence the data and knowledge
collection.*"* T will illustrate those related to learning clas-
sification models. Large data sets often will lead to better cov-
ering of the domain and thus result in learning more honest
models. However, in classification, not only is the size of the
data set important but also are the distribution of data across
the classes. Failing to obtain well-distributed data or failing
to treat such data appropriately may lead to large errors.>%*
This has been termed the problem of small disjuncts.®® Avail-
able data must be rep ive of the d and should
contain enough contextual information (e.g., include all en-
vironmental conditions in empirical material data®?).

In civil engineering applications, the size of data ranged
from several examples in proof-of-concept studies to sev-
eral thousands when data were created by simulations. Data
from historical records ranged from several tens to several
hundreds. The number of attributes ranged from less than 10
to 70 to 80. The number of classes ranged from 2 to 18. In
one study they were 17 classes, and the problem of small dis-
juncts was manifested.’ If negative examples are unavailable,
closed-world assumption sometimes can be used to generate
them.?

One critical and time-consuming issue is the integration
of multiple sources of information and the processes inte-
grating them, e.g., selecting the sources, reconciling their
terminology, and selecting the information that can best aid
learning.® Creating terminology for use in data and knowl-
edge descriptions is a critical and nontrivial task.'® In order
that ML users turn past cases into useful sources of informa-
tion, these cases have to be described meaningfully relative
to the present problem and the knowledge associated with
it. Even when this is done, descriptions are always from the
point of view of those recording them and tend to incorporate
only a partial understanding of or partial information about
the overall problem.*? This may require iterating to complete
the data and expert assistance in data preprocessing. Few
studies have recognized the terminology problem and have
designed the learning approach to handle such diversity by
processing subterms,* by interactively creating high-level
terms, % or by planning to use natural language processing to
create terminologic structures for data preprocessing.*°

As shown in Fig. 2, step 2, the data-collection process may
reveal that the problem analysis was imperfect, thus requiring
iterations through the problem-analysis stage.

4.3 Creating representations for the problem, data, and
knowledge

Once cases are collected from various sources, a schema for
representing them must be devised. The schema determines
much of the learning bias that significantly affects learning.
Learning bias defines the search space for models that could
fit the data. Incorrect bias leaves the models that best explain
the data or the more “natural” knowledge structure outside
the search boundaries. Through the collection of experience
in applied ML and intimate problem understanding, recent
ML research has attempted to gather heuristics for selecting
appropriate learning bias.>

The dimensionality of data as reflected by the number of
attributes and classes highly influences the ability to learn.
Preprocessing of the data can reduce its dimensionality. In
one study, a complex real domain described by 38 attributes
was transformed into a representation of 11 attributes that in-
cluded numeric attributes discretized by experts and few other
discrete attributes.** Preliminary results of this study suggest
that this preprocessing captured sufficient information for
learning. In another study, data described by 20 original at-
tributes were transformed into a description of 12 attributes
where all the numeric attributes were discretized.® The large
error rates (i.e., 63% to 78%) suggest that this preprocessing
might have lost information that otherwise could have been
useful for learning, that the original data were insufficient, or
that the ML program employed was not the best for the task.

Preprocessing also can change the “nature” of the data. Di-
mensional analysis can lead to learning from information that
is less dependent on the particular data measurements but that
captures more of the “internal structure” of the data and may
lead to better models.>* Normalization of data that otherwise
employ different scales can make the data more “homoge-
neous” and improve the ability to learn from them.? Some-
times, domain knowledge (and not dimensional or other anal-
yses) can suggest that the ratios between attributes provide ad-
ditional information that is useful for learning, thus leading to
the construction of new ratio attributes.>7*-% In cases when
the number of attributes representing data is large, feature ex-
traction can extract attributes more meaningful for learning
(e.g., using techniques borrowed from computer vision®®).

The choice of attributes is very important for learning. At-
tributes create an a-dimensional space, where a is the number
of attributes describing examples. For IBL or CBR, deter-
mining a metric on this space is critical to operation. The
euclidean metric is not always the optimal one. Neural net-
works can be viewed as creating a metric on this space.®
A wrong choice of the type of attributes can contribute to
poor performance (e.g., if using continuous instead of binary
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attributes®!). Also, the discretization of continuous attributes
and class values®® may result in coarse models or introduce
noise due to imperfect discretization boundaries.

Good representations are key to problem solving in gen-
eral and certainly for learning. Problems that do not seem to
be easily solvable can become such if clever representations
are devised that capture the essence of the data with mini-
mal schema complexity (e.g., description of processes*”-# or
path-dependent data*?). In modeling path- or time-dependent
data, if regular propositional attribute-value representation is
used, the representation can become specific to the topol-
ogy of the particular problem* and not as general as it could
be.?

‘When learning synthesis knowledge, an n-to-m mapping
needs to be created between n specification attributes and m
design description attributes. Concept formation is suitable
for this purpose because it creates one structure that captures
the interaction between the attributes.”” In learning bridge
synthesis knowledge, concept formation has been used.*7*
In another study on learning bridge synthesis knowledge, m
separate k-to-1 mappings were created, where k ranged from
nton-+m—1.2° The first n-to-1 mapping predicted one design
description attribute that was, in turn, used as input in the next
n + 1-to-1 mapping. This scheme introduced ordering on
the design decisions but also could capture some interaction
between the design description attributes.

So far I mentioned propositional attribute-value represen-
tations. However, this is not a good representation for many
problems that require relational or first-order logic (FOL)
representations. For example, bridges are better described
in a structured representation; however, in studies on learn-
ing bridge synthesis knowledge (e.g., Bridger™), the prob-
lem was simplified into propositional attribute-value repre-
sentation. This transformation lost some information. Very
few civil engineering learning problems were actually rep-
resented with relational (e.g., see refs. 47 and 86) or FOL
representations (e.g., see ref. 22).

As shown in Fig. 2, step 3, if no good representation can
be found, the process must reiterate. The reasons underlying
the failure might be that the problem is misunderstood, that
the data and domain knowledge are insufficient, or that the
problem does not fit available representations, in which case
it needs to be coerced to fit the most applicable represen-
tation.

4.4 Selecting solution methods and/or ML programs

The selection of solution methods or learning programs
should be based on the properties of the learning problem for-
mulated in previous steps. I have already mentioned studies
that attempted to give guidelines for such selection through
conducting cross-validation (CV) testing of different tech-
niques®! (see further in Subsection 4.6), by metalearning
from previous comparative testing,*->° by building an expert
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system,* or by describing selection guidelines.*! In Sub-
section 3 I mentioned characteristics of learning systems that
determine their capabilities and applicability. I now elaborate
on them.

e The complexity of representing input data and learned
knowledge. This dimension ranges from propositional
attribute-value representation in most ML applications,
structured or relational in some applications (e.g., see
refs. 47,49, and 86), to first-order logic (e.g., see ref. 22).
Rules, decision trees, hierarchical classifications, or mem-
ories of IBL are all propositional attribute-value represen-
tations. Memories of cases in CBR can be complex (e.g.,
relational in FABEL), but not always are they manipulated
by the learning mechanisms. Complex representations al-
low one to handle complex domains more naturally and
might be able to handle background domain knowledge
better. In contrast, complex representations complicate the
learning process.

The mechanisms for learning knowledge (or models) and
the functional form of these models. There are many such
mechanisms, including various greedy search techniques
as in recursive partitioning tree building, beam search as
in CN2 or AQ, or hill climbing as in Ecobweb. The type of
search determines the size of problem that can be addressed
by the approach and the ability to approximate the globally
optimal model. Viewed as mappings, learned models can
be linear or nonlinear; they can map a description of an
entity onto one attribute as in classification or map »n input
attributes onto m output attributes as would be required in
synthesis.””

The mode of learning,whether batch or incr I. When
dealing with small data sets this dimension is unimportant.
However, when dealing with large practical data sets, and
especially those which evolve with time, it is important to
learn incrementally. All rule or decision-tree learning pro-
grams used in civil engineering have been batch learners,
whereas CBR and IBL are naturally incremental. Neural
networks also can learn incrementally, although this has
not been used in civil engineering applications.

The amount of background knowledge employed while
learning. In most ML systems, background knowledge is
implicit in the description language. Some systems allow
one to incorporate constraints on the learned models such
as required attributes (e.g., IILS*®) or precedence between
attributes (e.g.,CN2 as inref. 81) when learning rules. Log-
ical inference systems allow the incorporation of diverse
knowledge (e.g., see refs. 11 and 22). Domain knowledge
can constrain the search of the learning system. In addition,
if learned knowledge is used as background knowledge,
the learning system can be used to mimic an incremental
mode.

The ability to handle missing values or noisy or numeric
data. In all the representations, the type of attributes,
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whether input or output, can be discrete, ordered, struc-
tured, or numeric. It is better to handle different attribute
types without modifications to prevent losing information.
Indeed, there are many techniques that handle such data.
However, in situations where systems are selected based
on availability, these abilities may be lacking, requiring
using defaults for missing values, discretizing numeric
attributes, or ignoring noise. Such modifications to data
may deteriorate learning performance from the level that
might have been attained by learning from the original
data. Another issue is the representation of the “class” at-
tribute when learning classification models. In many cases
this attribute is originally numeric and cannot be handled
by many ML techniques and thus has been discretized
(e.g., see ref. 96). Example techniques that can handle nu-
meric class attributes are IBL or CBR techniques (e.g.,
see ref. 40 or Ecobweb), regression trees (e.g., CART'?),
few decision-tree induction programs (e.g., NewID'?), and
some types of neural networks.

The computational complexity of the algorithm. This di-
mension is tied to the mode dimension. For batch learners,
the complexity issue is more acute because any addition of
data requires restarting the learning process. Approaches
vary considerably along this dimension, often in relation to
the complexity of representing input data and knowledge.
Below are the computational complexities of learning from
a data set of various techniques®2"?’:

— O(a’n) for tree induction with discrete attributes (e.g.,
ASSISTANT'?)

— Approximately O(a’nlogn) for tree induction with
some numeric attributes (e.g.,C4.5 64 IND, and NewID)

— O(ab*nlog, n) for Ecobweb, but each incremental step
costs only O (ab?log, n)

— Roughly O(a?sn?) in CN2 or AQ-type** algorithms

— O(anm) for IBL, but each incremental step costs only
O(am)

— Exponential in the number of states for inducing rela-
tional grammar*’

where a is the number of attributes describing examples, n
is the number of examples, s is the maximum star size for
CN2 or AQ, b is the branching factor of Ecobweb’s classi-
fication hierarchy (usually 3 or 4), and m is the number of
examples retained in IBL memory (which can be as large
as n). For many ML systems, especially those newly devel-
oped in civil engineering research, the complexity figure
is not given, and it is unclear whether these systems can
scale to handle real domains.

The learner-user interaction. In most ML systems, there
is little interaction between the user and the program, al-
though such interaction is critical when addressing real
problems. Itis often necessary to manually guide the search
of the learning system or input new data to guide it (e.g.,
see refs. 6 and 86). Systems that do provide such interac-

Y. Reich

tion often originate from knowledge-acquisition research
but also from ML research (e.g., Pmtos/Eprotos,B MLT,
and IND).

In most applications, ML programs are selected because
of availability and not because they are actually the best
for the particular task with respect to the aforementioned
dimensions.%® Often, the choice between one of the three
clusters of approaches in Fig. 1 is based on researcher’s in-
clination and not applicability. In such cases, the representa-
tion “supposedly natural” to the domain is selected to fit the
learning program of choice.

Even if programs are selected based on steps 1 to 3, it is rare
that the reasons underlying this selection are well articulated
or that their validity is reviewed by testing the learning sys-
tem after its deployment. Of course, there are exceptions to
the preceding practice (e.g., see refs. 9,43, 68, and 83). One
particular example discusses the process of building a learn-
ing system (i.e., Bridger) by going through the evolution of
selecting programs, evaluating them, and finally developing
an approach to handle the complexities discovered in previ-
ous tests. The cycles through problem analysis and system
testing improved the understanding of the learning task. Such
arecord of longitudinal study is necessary to appreciate the
program selection step and its relation to problem analysis.

‘When modeling data with ML, this step may be less crit-
ical. Instead of creating the best-possible model, it is more
important to create different models that can provide different
perspectives on the data.®!

As shown in Fig. 2, step 4, if no good method exists, the
process needs to reiterate. The reasons for this failure might
be that the problem is misunderstood, that the wrong rep-
resentation was selected, or that there is no available ML
technique that is applicable to the problem.

4.5 Selecting program operational parameters or options

The use of most ML programs involves setting up various
parameters or selecting among various options. Different pa-
rameters give rise to different performance levels of these
programs. In a recent study comparing 23 ML programs on
22 data sets, program default parameters were used.>® Other
studies selected tuning parameters according to general rec-
ommendations and attempted to confirm them (e.g., ref. 7
according to ref. 61). However, these examples are excep-
tions to a common practice among researchers who tune op-
erational parameters to obtain the best-possible performance
of their learning program on their demonstration problems.
For neural networks, parameters selection is more critical
because some parameters determine the topology of the net-
work, while others tune the performance. These selections,
together with selecting the learning rule and the activation
function, are aimed at leading to good network convergence
and generalizability of results.
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In general, the selection of parameters does not generalize
to new learning contexts. The reason underlying this unfor-
tunate problem is that different parameters control different
aspects of programs behavior (e.g., the complexity of the
schema, the handling of noisy data, or the amount of search-
ing allowed), and it is not easily discerned which ones con-
tribute to good or bad performance in a particular learning
context. In consequence, the a priori selection of parameters
that will result in good performance in a particular learning
context remains nontrivial.

Some programs such as IND are suites of many techniques
whose behavior can be configured by selecting different op-
tions and not only operational parameters. Selecting among
these options is as difficult as the setting of operational param-
eters. Over the last few years there has been an increase in the
number of studies dealing with selecting between different
options. In particular, studies on decision-tree induction ex-
plored the selection between tree-pruning strategies>® and the
selection between attribute-splitting rules (e.g., see refs. 17,
46, and 57).

A better appreciation of the difficulty of these issues can
be gained by following the evolving understanding of tree-
splitting rules in relevant references, showing a reversal in
the conclusions derived in those studies. The cause of the
reversal was the methodologically wrong use of the option-
selection procedure in the first study (i.e., ref. 57).'7%6 The
inability to verify the origin of the first conclusion was due to
insufficient data about the testing procedure employed in that
study. This example demonstrates that great care should be
exercised in experimental testing of programs if these tests
are expected to lead to some operational conclusions.

Similar to the selection between different programs, the im-
portance of selecting program parameters or options is differ-
entdepending on the role assigned to ML techniques.®! In any
case, an appropriate selection of operational parameters can
be done using various testing procedures that are discussed
in the next section. It is hoped that gradually, experience in
using ML tools in practice will lead to formulating guidelines
for the a priori selection of operational parameters.®

The selection of operational parameters is the first step that
employs quantitative evaluation of learned models. If the goal
of learning is automated knowledge generation, this evalu-
ation is critical. If no parameter combination leads to good
performance of the ML program selected in the preceding
step, there is a mismatch between the data, their representa-
tion, and the ML program. As shown in Fig. 2, step 5, the
process can reiterate by selecting another program, revising
the representation, or collecting additional data and domain
knowledge. If all these fail, the problem might be misunder-
stood or beyond the capabilities of existing ML techniques.

If the goal of learning is modeling for the purpose of under-
standing, the critical evaluation is deferred to the next step.
In this case, better understanding can sometimes be gained
even by using imprecise or inaccurate models.®!¥’

4.6 Testing, evaluating, and interpreting results

This stage is the least ded to by the h e ity,
although it is the foundation of all scientific and practical
work. To illustrate, consider a recent study that detailed min-
imum requirements for evaluating neural networks.?® One
interesting part in this study was an examination of publica-
tions in two leading neural networks journals discovering the
poor evaluation practice they exercised. The status of testing
in civil engineering applications of ML is similar and some-
times worse. In some studies, no report on testing is men-
tioned. Other studies provide one anecdotal example showing
what the technique might be doing in a particular situation.
Even studies that perform some testing may be deficient if
their tests are methodologically wrong or if they do not com-
plete the testing procedure, leaving readers to interpret the
results.

The testing of ML techniques involves assessing the qual-
ity of knowledge or models they create. This assessment is
inherently multidimensional and includes quantitative and
qualitative aspects such as

—

. Quantitative estimation of model accuracy

. Quantitative comparison between the predictive accu-
racy of one ML technique and some baseline perfor-
mance, which may be another ML technique, other
computational tools such as expert systems (e.g.,ref. 39,
although the statistical test in this reference is incorrect),
default rules, or expert judgment

. Qualitative experts’ interpretation of learned knowl-
edge or models (e.g., refs. 20 and 81) or qualitative
comparison with expert-generated rules (e.g., ref. 94)

. Qualitative improvement in understanding the data used
to train the ML technique by experts or users of the
learned models (e.g., ref. 81)

. Practical benefits of the deployed system

IS

w

S

w

I now elaborate on this list.

Quantitative estimation of model accuracy. There are sev-
eral methods that have been used to estimate the performance
of ML techniq They are ized in Table 1. In the
table, the number of internal iterations denotes the number
of times a basic procedure is executed in order to obtain one
estimation 6 of the true accuracy 6. The number of itera-
tions denotes the number of times the complete process is
performed. The two iteration figures influence the computa-
tional cost of the method, although for special cases such as
decision trees there are ways to reduce this cost by dynami-
cally creating only the path in the tree that is needed in each
testing.*®

The method variability reflects the estimated error of the
method when applied to different data sets drawn from the
same distribution of the present data set. Given a sample of
1 independent estimations é,- ,i = 1---1,each calculated in
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Table 1
Properties of performance estimation methods

Size of Size of Number of

Estimation training testing internal Number of ~ Method Method

method set set iterations iterations variability bias

Resubstitution n n 1 1 Very high Very optimistic

Holdout 70-80% n 20-30% n 1 1(0(10)) High Pessimistic

Cross-validation (k = 1)/kn 1/kn k (~10) 1 High Nearly
unbiased

Bootstrap See text See text See text 1 (~200) Low Slightly
optimistic

one iteration, this variability is calculated by

where @ is the average of the estimations. However, as we will
see later, when using any of the methods, the /' estimations
are not independent; thus the preceding formula is incorrect,
and estimating the variability is not trivial.

The estimation bias reflects the difference between the ex-
pected value of the estimation E (6) and the parameter being
estimated 0, that is, bias = E (é) — 0. The bias is important
when estimating the absolute accuracy of an ML technique.
It is less critical when comparing between two techniques,
since both can be assessed by the same biased method. For
such comparison, method variability is more critical.

The common methods used to estimate the performance
of ML techniques are

® Resubstitution. In this method, all the examples in the data
set are used for training as well as for testing the model.
This method produces a very optimistic upper-bound es-
timation of accuracy; i.e., its error estimation is biased
downward. Assuming that the data set is sampled from
a large population, the performance of resubstitution is
highly dependent on this sampling; i.e., it has high vari-
ability.

e Holdout. In this method, the data are randomly divided
into a training (about 70% to 80% of the examples) and a
testing set (remaining 20% to 30%). In order to produce
results with a confidence interval of about 95%, the testing
set should include more than 1000 examples; otherwise,
this method may produce poor results. In smaller data sets,
this method is often repeated several tens of times, but the
results have high variability that is dependent on the initial
random subdivision, in addition to the variability due to the
sampling of the data set from the larger population. Note
that these repetitions are not independent, having used the
same data set. The results of this method may be pes-
simistic because not all available data are used for training.

The majority of studies in civil engineering have used these
inferior performance-estimation techniques even when the
testing data were small.

k-fold cros. lid (CV) or leave t. In order to
remedy the problems in the holdout method, a different
method for using the data for training and testing is em-
ployed. Figure 3 illustrates a k-fold CV method. It has
been common in general ML studies to use a 10-fold
CV method when the number of examples n exceeds 100
or a leave-one-out method (ie., k = n) for small data
sets. 39592 Several civil engineering studies also have used
CV.43.72.79.8182 In order to obtain good results, a stratified
CV method should be used® in which each subset con-
tains examples with the same class distribution as in the
complete set. Similar practice can be used in the holdout
method. CV has high variability with respect to sampling
of the data set. Furthermore, its estimation is significantly
dependent on the subdivision into subsets.

Bootstrap. This estimation method reduces the variability
observed in previous methods and is only slightly
optimistic.>* In the bootstrap, a sample of n examples is
drawn with replacement from the original n examples. On
average, 1 — 1/e = 0.63 of the original examples are drawn
into this sample. The new sample is used for training and
the old sample for testing. The result of this testing pro-
vides a measure of the “optimism” of resubstitution. / such
samples are drawn, and their optimism measure is calcu-
lated. The final estimation is the average of these measures
added to the resubstitution estimation.

In cases where program parameters are optimized for some
database, there is a need to test the accuracy of the method on
an independent test set that was not used to tune the parame-
ters in order to prevent obtaining too optimistic estimations.
Figure 4 illustrates such an estimation procedure that can be
used for tuning operational parameters and options of pro-
grams and, finally, estimating the performance accuracy of
the learned knowledge. In the first step, the data are subdi-
vided into data for model learning and model testing. In the
second step, the data for model learning are used to select the

a 'zl ‘200z '1998L9YL

wouy

s3]o13e 55800y USQ 10} 1d89Xa ‘papIUIIad J0U AFOLIS ST UORNGLISIP PUE 3sN-8y *[2Z0Z/£0/6L] UO ~SaLIeIqr AUSIBAIUN YoaL sexal Ag ‘Wo:



b

Machine Learning Techniques for Civil Engineering Problems 305

Procedure

1. Subdivide the data into k subsets.
2.Perform k folds such that for each fold j:
a.Learn a model from the (k- 1) training
subsets (all but the jth subset).
b. Test the model performance on the jth
subset and record the accuracy.
3. Calculate the average accuracy over the k folds.

Legend
[0 - 1 subsets for
learning the
model k folds
[0 1 subset for
testing the
model

k subsets
LTI
LI T
T
I I
[ T 1T
| -
[ [T T[]
| |
T 1T 11

Fig. 3. Performance accuracy estimation using a k-fold cross-validation method.

Procedure

1. Divide the data into
training and testing subsets.

2.Select the best learner and

its parameters:

a.Test each combination of
learner and/or parameters
with a k- fold CV test.

b. Select the combination
that leads to the best CV
performance.

3. Assessment of best learner:

Data for model Data for
learning testing

LT

k subsets

T T 11 k folds

[T []

[T

|

a. Creat a model from all training data using
the best learner and parameters.
b. Test the model on the testing set.

Fig. 4. Three-stage performance accuracy estimation.

best model (i.e., learning approach) and operational param-
eters. In the third step, a model is created from the complete
model learning set by the best approach and best operational
parameters. This model is tested on the testing set. Obviously,
the final experiment is a holdout estimation method with its
preceding limitations.

Quantitative comparison between the predictive accuracy

of one ML technique and some baseline. In order to conduct
such a comparison, it is useful to develop sets of benchmark
problems. The general ML community collects such prob-
lems in a database repository. One example of such a simple
set was used in refs. 90 and 34, and subsequently in ref. 2,
to compare the performance of different neural networks ap-
proaches and illustrate some modeling issues. Each study
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replicated earlier results to get an appropriate baseline for
its version of the previous approaches: an important activity
that is rarely practiced. Note that such replication is easily
done when dealing with neural networks, since it is easy to
reconstruct and test them. Also note that the particular set of
problems was easy to solve, and thus their use as benchmark

carefully exercising qualitative evaluations of models. With-
out such care, the results might be anecdotal.

Assessment of the practical benefits of the deployed system.
There is no example of an application of ML in civil engineer-
ing that proved successful in practice. In such assessment, as
in ing the introduction of any new technology, care

problems might not reveal the “true” comparative behavior
of the approaches on larger-scale problems.

It has been common to compare different programs by cal-
culating their performance accuracy using CV without per-
forming any statistical analysis. This procedure may lead to
wrong conclusions due to the high variability of CV. Simi-
larly to executing a holdout method several times, one should
consider doing the same for CV with different subdivisions.
This can control the variability due to subdivision but not the
variability due to the sampling of the original data set. Since
differentiterations of holdout or even internal iterations of CV
use almost the same data, they are not independent. There-
fore, common statistical tests for small samples such as the
standard 7 test for testing whether the difference between the
means of two independent distributions is statistically signif-
icant have to be modified to take care of this dependence.?®
One modification is the use of a paired-sample ¢ test. This
requires that all programs use the same training and test-
ing data in parallel. It poses a problem because one cannot
use published results that do not specify how to replicate the
data subdivisions for the purpose of employing this statistical
test.

Moreover, it is even inappropriate to use this modified test
when several ML techniques are comparatively tested on sev-
eral databases®® because there is a chance that some of the
many comparisons will yield unwarranted results. Thus, if no
correction is performed to common tests to account for this
chance, their conclusions may be wrong. This problem has
been termed the multiplicity effect, and it can even be man-
ifested during the internal operation of ML programs (e.g.,
when determining which rules generated in a rule-learning
program are significant®').

Quali l of learned knowledge. This evalu-
ation is subjective and has to be performed with care. It is
critical to exercise multiple comparisons or evaluate models
by several experts to get an intersubjective opinion. If an eval-
uation involves comparing learned models with other rules or
models, a particular setup should be followed in which one
group of experts evaluates the learned models with respect to
abaseline and another group —serving as the control group—
evaluates another arbitrary set of rules (i.e., “placebo” rules)
compared with the same baseline. The experts must not know
to which of the groups they belong. Furthermore, the models
and baseline rules need to be presented to experts in a bal-
anced manner: Some experts will see the learned models first
and others the baseline rules first. It is outside the scope of
this paper to discuss statistical experimental design in depth;
nevertheless, it is important to understand the necessity of

ive e

should be exercised to make sure that the benefits observed
do indeed follow from the deployed system and not from
the “excitement” with the new technology. Often such ex-
citement leads to temporarily paying additional attention to
some work aspects, thus displaying apparent benefits. Such
improvements, however, fade away quickly.

As shown in Fig. 2, step 6, if the evaluation results are
negative, the process needs to reiterate. The reasons for a
failure can be problem misunderstanding, wrong selection of
program, wrong use of representation, or missing data and
domain knowledge.

4.7 Solution deployment

Virtually no practical solutions have been developed using
ML for real civil engineering problems. However, some ex-
perience with fielded applications of ML exist elsewhere, and
also, the assimilation in civil engineering of computer sys-
tems in general provides insight on this issue.”!

As far as the technical details are concerned, it turns out
that many general practical applications of ML used the sim-
plest and most robust ML techniques, namely, tree or rule-
induction programs. The products of the applications ranged
from manual use of learned models for improving under-
standing or for manual execution (e.g., refs. 24 and 81) to the
embedding of the learned models in large software systems
(e.g., SKICAT).* The particular technical details are influ-
enced by the many issues that were outlined in the problem-
analysis step, in particular, the human and organizational as-
pects. These aspects mandate that an infrastructure is built
around the technical product that will address training users,
preparing usable Is,and building mect for main-
taining the product until it matures and later on during its life
cycle.

In some sense, this stage constitutes the real testing of
an application. It validates that the technical solution, be it
learned models or software, is used to the advantage of users
and that the solution deployed addresses the original problem
as formulated in the first step and as may have evolved during
development. A practical application can fail due to any of
the preceding issues and other unnoticed factors. Hence all
issues beyond the technical aspects need to be given utmost
attention. Any failure can trigger iterating through the seven-
step process.
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5 DISCUSSION AND SUMMARY

Building practical applications of ML requires competence
in dealing with the many issues discussed in this paper. They
can be summarized in several key points:

Better understanding of the nature of different learning
problems is critical and can be improved by studying pre-
vious applications and trying to form characterizations of
engineering domains.*® Any characterization must be built
to evolve continually. This requires establishing a repos-
itory of ML programs and civil engineering data sets or
problem definitions similar to the repository established
by the general ML community.

Careful task analyses and clever problem formulations
can transform difficult to manageable problems (e.g., see
refs. 48, 66, and 83).

Intimate understanding of ML techniques can be used to
map problem characteristics into ML techniques that can
address them. This requires that researchers continually
update themselves with state-of-the-art ML research.

In order to perform comparative studies or when the learn-
ing role is modeling, it should be easy to employ several
ML techniques simultaneously on learning problems. This
can be facilitated by building toolboxes (e.g., MLT and
IND). In neural networks applications this has been prac-
ticed due to the relative ease of implementation or the avail-
ability of neural network tools in commercial software such
as MATLAB. Comparative studies can lead to improving
ML techniques (e.g., as in the StatLog Project®®).

I elaborated on the issue of evaluation due to its poor status
yet critical importance. Any evaluation, whether it involves
asingle or several ML techniques, and whether it is quanti-
tative or qualitative, requires careful attention in its design,
analysis, and interpretation. Without such attention, con-
clusions may be anecdotal, caused by random factors, or
simply incorrect.

In order to improve the understanding of the seven-step
CMLM process and evolving it, longitudinal contextual
studies must be performed and documented. The documen-
tation must include the difficulties and failures encountered
and not only the successes. Gradually these data will lead
to creating rules for the “routine” use of ML techniques
and later will provide some insight about “innovative” or
“creative” uses.

In order to succeed in applying ML in practice, there is
a need for an information management system to support
the application process.”* This system must support bal-
anced interaction between users and ML programs and
other utility functions. Such an interaction ability has been
realized in systems such as MOBAL, MLT, and IND to a
small extent.

Most of the studies with ML techniques in civil engineer-

ing have employed supervised concept learning tools. The

same situation has been observed in relation to practical ap-
plications of ML in general.** Given the general potential
of these techniques, we have barely started to use them in
solving problems. The many studies referenced in this paper
point to many opportunities.

Ibelieve that these opportunities could be materialized into

practical systems if the application process is executed care-
fully following the seven-step CMLM process. I also intend
to update this process continuously using feedback from fu-
ture ML applications.
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