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Machine learningmethods have been successfully applied to many engineering disciplines. Prediction of the concrete compressive
strength (fc) and slump (S) is important in terms of the desirability of concrete and its sustainability.+e goals of this study were (i)
to determine the most successful normalization technique for the datasets, (ii) to select the prime regression method to predict the
fc and S outputs, (iii) to obtain the best subset with the ReliefF feature selection method, and (iv) to compare the regression results
for the original and selected subsets. Experimental results demonstrate that the decimal scaling and min-max normalization
techniques are the most successful methods for predicting the compressive strength and slump outputs, respectively. According to
the evaluation metrics, such as the correlation coefficient, root mean squared error, and mean absolute error, the fuzzy logic
methodmakes better predictions than any other regressionmethod.Moreover, when the input variable was reduced from seven to
four by the ReliefF feature selection method, the predicted accuracy was within the acceptable error rate.

1. Introduction

Concrete is a complex composite material. +e predictability of
concrete properties is extremely low.+erefore, it is challenging
to model the concrete properties according to the effect vari-
ables. +e biggest challenge of experimental designs is a high
number of effect variables affecting the response variables.
Multiple effect variables increase the number of trials. +e
higher amount of uncontrollable variables makes it difficult to
obtain the real response function.

Generally, the one-factor-at-a-time method is used in
experimental designs to determine the concrete properties.
+e major disadvantage of this approach is that it does not
consider the interaction between the factors (interaction
terms). +e higher the number of the controlled and un-
controlled effect variables that influence the concrete
properties, the lesser the predicted accuracy. Despite this, a
few experimental designs have been suggested by consid-
ering the controllable effect variables and interaction terms
between them [1].

Machine learning (ML) is a highly multidisciplinary field
and consists of various methods for obtaining new

information [2]. ML is most often used for prediction.
Predicting the categorical variable values is called classifi-
cation, whereas predicting the numerical variable values is
called regression. Regression is the process of analyzing the
relationship between one or more independent variables and
a dependent variable [3].

In recent years, the MLmethods have become popular as
they allow researchers to improve the prediction accuracy of
concrete properties [4] and are used for various engineering
applications [5, 6]. +e ML methods have been used to
increase the prediction accuracy of concrete properties
[7–15], and the data derived from the literature sources were
used. However, Chopra et al. [16, 17] applied the data
generated under the controlled laboratory conditions.

Regression models tend to be used for the prediction of
the compressive strength of high-strength concrete [18, 19].
+ese models also demonstrate how the concrete com-
pressive strength depends on the mixing ratios [20]. Topçu
and Sarıdemir [21] and Başyiğit et al. [22] developed models
using the neural network (NN) and fuzzy logic (FL) methods
to improve the prediction accuracy of the compressive
strength of the mineral-additive (fly ash) concrete and
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heavy-weight concrete. Both studies concluded that the
compressive strength could be predicted by using the models
that were developed with the NN and FL methods without
any further experiments. NN is more successful than the
data mining methods and does not enhance the prediction
accuracy of the concrete compressive strength [15, 17,
23–26]. Khademi et al. [27] compared the multiple linear
regression, neural network, and adaptive neuro-fuzzy in-
ference system (ANFIS) methods to estimate the concrete
compressive strength for 28 days and reported that the NN
and ANFIS models provide reliable results.

Previous studies evaluated the amount of the concrete
component materials and compared their results to the
published data. In this study, the ML regression methods
were compared to predict the compressive strength and
slump values of the cube samples. +e samples were
prepared by accounting for seven simultaneously con-
trollable effect variables in the laboratory. +e study aimed
to determine the most successful regression method by
comparing the decision tree (DT), random forest (RF),
support vector machine (SVM), partial least squares (PLS),
artificial neural networks (ANN), bootstrap aggregation
(bagging), and FL models for the prediction of the concrete
compressive strength and slump values. +e R, RMSE, and
MAE metrics were used to compare the prediction ac-
curacy of the developed models. Finally, feature reduction
was accomplished by the feature selection method. +en,
the model’s success rates were compared to predict the
compressive strength and slump value using fewer
variables.

2. Materials and Methods

2.1. Experimental Datasets. Datasets used for this study
comprised seven input variables (i.e.,W/C, C, fcc, FA, kk, CA,
and TA) and two output (response) variables (i.e., fc and S)
for two different maximum aggregate sizes Dmax. � 22.4mm
(D224) and Dmax. �11.2mm (D112). +e input variables were
selected considering the simultaneously controllable effect
variables [28–30]. D-optimal design obtained by the aug-
mentation of the fractional factorial design (27-3) was used as
the experimental design. In the D-optimal design, 58 and 56
test results were employed for D112 and D224, respectively.
Each experimental result was calculated as an average of
three sample results that are produced under laboratory
conditions [28–30]. Properties of the constituents are given
in Table 1 [28–30]. Abbreviations of the effect and response
variables and the basic statistic of the datasets are presented
in Table 2.

3. Methods

In this study, the concrete compressive strength and slump
values were predicted using the ML regression models,
namely, the regression tree, RF, support vector machines,
artificial neural network, partial least square, bagging, and
FL. Datasets were randomly split into 70% for the training
set and 30% for the independent test set. +e training data
were used to train the ML model. +e independent test data

were applied for the evaluation of the model’s performance.
+e 10-fold cross-validation procedure helped in the esti-
mation of the ML model skills.

+e ML preprocessing steps were applied to the raw
datasets before they could be utilized for the regression
method training. +e datasets were not normally dis-
tributed according to the Shapiro–Wilk normality test [31]
results. Many normalization methods have been pre-
viously developed to normalize the dataset [32]. In this
study, four different normalization methods (i.e., min-
max, decimal, sigmoid, and z-score) were applied to derive
the most successful normalization method for the raw
dataset. +en, the K-nearest neighbor (KNN) regression
method was applied to the normalized datasets. +e
prediction results were compared to determine the most
suitable normalization method. Later, the raw datasets
were normalized with the determined normalization
technique.

+e ML regression models were trained to predict the
fc and S values. +e correlation coefficient (R), root mean
squared error (RMSE), and mean absolute error (MAE)
metrics were employed to compare the models’ pre-
diction performance. According to these statistical re-
sults, the most successful regression method was
determined to predict the fc and S values. Afterward, the
feature selection method was used to obtain the subset
with fewer features, and the prediction accuracy was
examined. All regression methods and computations
were performed using the R programming language [33].
+e prediction process is illustrated in Figure 1 in the
form of a flow diagram.

3.1. Normalization Methods. Normalization is the pre-
processing step in ML. +e normalization methods are used
where the variation intervals of the variables in the dataset
differ. When the mean and variance of the variables differ
significantly, the variables with a large mean and variance
increase the impact on the other variables.+is may result in
the loss of important variables due to the low variation
intervals. It can also affect the success of the ML models
[34, 35]. +erefore, regression models are normalized by the
numerical data normalization methods to standardize the
effect of each variable on the results. In this study, the dataset
was normalized by the min-max, decimal, sigmoid, and
z-score normalization techniques, and then their perfor-
mances were compared.

3.2. Machine LearningMethods. +e ML regression method
estimates the output value using the input samples of the
dataset. Such a procedure is also termed as the training set.
+e purpose of the regression method is to minimize the
error between the predicted and actual outputs [36]. Herein,
seven different regression methods (i.e., DT, RF, support
vector machine, partial least squares, artificial neural net-
works, bootstrap aggregation (bagging), and FL) were used
to predict the concrete compressive strength and slump
values. Additionally, the K-nearest neighbor method was
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applied to determine the suitable normalization method for
the dataset. +ese methods are briefly described below.

Decision tree (DT) [37] is a supervised ML algorithm. It
can be used for both regression and classification.+e aim of
the DT algorithm is to divide the dataset into smaller,
meaningful pieces, where each input has its own class label
(tag) or value. Different measurements are used for the DT
splitting, such as Gini and information gain. Regression tree
is a type of a DTand a hierarchical model for the supervised
learning. Classification and regression trees (CART), ID3,
and C4.5 methods are the most important learning algo-
rithms mentioned in the literature. In this study, the CART
[38] model is used for the regression.

Random forest (RF) [39] is an ensemble method that
combines many DTs. It can be used for both regression and
classification. Each DT in the forest is created by the se-
lection of different samples from the original dataset by the
bootstrap technique. +ese samples are then trained using a
set of attributes selected by the bagging mechanism. Sub-
sequently, the decisions made by a large number of indi-
vidual trees are subjected to voting. As such, the most voted
class is presented as the class estimate of the community.

Support vector machine (SVM) has been developed by
Vapnik [40]. It is applied both for regression and classifi-
cation. +e SVM method is based on finding an optimal
hyperplane that maximizes the margin between the classes.

Table 1: Properties of the constituents.

Fineness
modulus, k (− )

Particle
density,
ρ (kg/m3)

Water absorption, μ
(kg/kg)

Compressive strength,
fcc (MPa)

Blaine specific surface, σ
(m2/kg)

Aggregate

Basalt

Crushed stone II 10.456 2872 0.0100 — —
Crushed stone I 9.129 2878 0.0130 — —
Crushed stone

sand 5.198 2845 0.0220 — —

Limestone

Crushed stone II 10.181 2600 0.0120
Crushed stone I 7.107 2590 0.0170
Crushed stone

sand 4.791 2550 0.0260 — —

Sand 3.770 2600 0.0140 — —
Binding material

Cement

CEM V/A (S-P)
32.5N — 2990 0.0000 34.4 416.0

SDC 32.5 R — 3160 0.0000 44.75 339.0
CEM I 42.5 R — 3140 0.0000 55.1 379.0

Admixture
Super
plasticizer — — 1100 0.0000 — —

Table 2: Basic statistic of used datasets.

Data Attribute Abbreviation Unit Min Max μ σ σ2

D112

Water/cement W/C % 54.95 59.88 57.38 2.07 4.29
Cement content C Kg 330.00 345.00 337.72 6.31 39.76

Compressive strength of cement fcc MPa 34.40 55.10 44.75 9.09 82.69
Fine aggregate FA % 65.00 68.00 66.47 1.27 1.62
Fineness module kk — 5.60 5.80 5.70 0.07 0.01

Chemical admixture CA % 1.20 1.40 1.30 0.08 0.01
Concrete compressive strength fc MPa 19.86 44.19 33.30 6.91 47.81

Slump value S cm 1.20 23.20 12.35 7.06 49.85
Type of aggregate TA — 0: limestone, 1: basalt

D224

Water/cement W/C % 50.00 54.95 52.60 2.11 4.46
Cement content C kg 330.00 345.0 337.63 6.49 42.14

Compressive strength of cement fcc MPa 34.40 55.10 45.12 9.25 85.56
Fine aggregate FA % 48.00 54.00 51.00 2.36 5.56
Fineness module kk — 6.60 6.80 6.70 0.09 0.01

Chemical admixture CA % 1.20 1.40 1.230 0.09 0.01
Concrete compressive strength fc MPa 26.59 53.87 40.38 8.12 65.92

Slump value S cm 2.60 21.70 13.33 6.56 43.00
Type of aggregate TA — 0: limestone, 1: basalt

μ: mean, σ: standard deviation, and σ2: variance.
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Partial least squares (PLS) [41] regression generalizes
and combines the attributes from the principal component
analysis and multiple regression. +e most important
characteristic of the PLS method is its ability to obtain a

simple model with a few components, even when the var-
iables are highly correlated or linearly independent.

Artificial neural networks (ANN) [42] involve a system
ofmany interconnected neurons.+e neurons are connected

Datasets
(4 datasets: D112_fc, D112_S, D224_fc,

and D224_S)

Preprocessing

Data visualization (box-plot)(i)
Data reduction (mixture proportion features removed)(ii)
Data cleaning (missing value imputation)(iii)
Data transformation (normalization methods applied)

Min-max norm. Decimal norm. Sigmoid norm.

K-NN regression

Comparative analysis (RMSE, MAE)

Normalized datasets

Machine learning regression methods
(8 algorithms in R, 10 CV)

Best normalization method

Z-score
norm.

(iv)

(i) Decision tree (DT)
(ii) Random forest (RF)

(iii)

(i)
(ii)

(iii)

Support vector machine linear (SVMLin)

Correlation coefficient (R2)
Root mean square error (RMSE)
Mean absolute error (MAE)

Best regression method

Regression with best
model

Comparison of the model
results (original datasets

vs selected subsets)

(iv) Support vector machine polynomial (SVMPoly)

Feature selection

Selected subset

(v) Multilayer perceptron (MLP)
(vi) Partial least squares (PLS)

(vii) Bagging
(viii) Fuzzy logic (FL)

Comparative analysis
(3 metrics used)

Figure 1: Flow diagram of the prediction process.
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by the weighted links. +e ANN architecture consists of the
input, hidden, and output layers. +e multilayer perceptron
neural network (MLP) is a fully connected, feedforward type
of network. It is mostly used in network architecture. +e
output of all the neurons in the input layer is scaled by the
related connection weights.+en, the input of the neurons is
feedforwarded to the output layer. Activation functions are
used for the sum of the input neuron signals in the output
layer.

Bootstrap aggregation (bagging) was introduced by
Breiman [43] and can be utilized for both regression and
classification. Bagging is performed by aggregating the
resulting prediction rules using the bootstrap samples from
the training sample.

Fuzzy logic (FL) is anMLmethod and was introduced by
Zadeh [44]. FL is a mathematical-based method used to
analyze the systems in amanner similar to how people do. As
many problems could not be expressed by the exact
mathematical definitions, a new method was developed. In
the classical approach, an element is a member or non-
member of the cluster, making the result equal to zero or
one. However, in the FL, the situation is expressed by the
membership degrees, which indicate the element’s in-
volvement in the cluster. +e membership function is used
to map each element into a continuous interval from zero to
one. In other words, the membership degree of the element
can vary as an infinite number from zero to one. A typical
fuzzy system consists of a rule base, membership functions,
and inference procedure. In this study, Wang and Mendel’s
technique (WM) was employed to generate the fuzzy rule.

K-nearest neighbor (KNN) [45] is an instance-based
algorithm and can be applied for both regression and
classification. +e KNN method searches for the k-data
points closest to the test object and uses the features of these
neighbors to classify the new object. For this, a distance is
measured between each instance in the training dataset and
the test instance. Herein, k� 3, 5, and 7 were chosen. +e
Euclidean distance was deployed as a distance measure. +e
“knn.reg” function was used in the “FNN” package [46]. +e
detailed information regarding the ML regression methods
applied in this study is presented in Table 3.

3.3. Evaluation Metrics. To evaluate the predicted values of
the regression methods, the actual and predicted values were
compared. In this study, the R, RMSE, and MAE metrics
were used to evaluate the prediction accuracy [47]. +e
model parameters were optimized for the highest R, lowest
RMSE, and lowest MAE. All of them were calculated
according to the following equations:

R �
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Here, N is the number of data points.

3.4. Feature Selection. Feature selection (reduction in ir-
relevant variables) is the preprocessing step in ML that
selects the best subset from the original dataset by evaluating
the properties according to the used algorithm [48]. +e
ReliefF algorithm was developed by Kira and Rendell [49]. It
weights the features according to the relationship between
the effect variables. Although this method was successfully
applied to two classes of the datasets, it was not proved
functional for the datasets with multiple classes. To solve this
problem, in 1994, Kononenko developed the ReliefF algo-
rithm that works for the multiclass datasets [50]. +e al-
gorithm determines the weights of the continuous and
discrete attributes based on a distance between the instances.

4. Results and Discussion

+e cross-correlation between the datasets representing the
parameters D112 and D224 is depicted in Figure 2. +e
correlation coefficient provides information on the effect
level and direction of the linear relationship between two
variables. +e Pearson correlation is used when the dataset
has a normal distribution, whereas the Spearman correlation
is applied when the normal distribution cannot be reached.

According to the correlation results of the D112 dataset,
the response variable fc is highly correlated with the effect
variable fcc (0.88). Moreover, the highest correlation is
observed between the response variable S and the effect
variable TA (− 0.57 for basalt and 0.57 for limestone).
According to the correlation results of the D224 dataset, the
response variable fc is highly correlated with the effect
variable fcc (0.91). Besides, the highest correlation is obtained
between the response variable S and the effect variable TA
(− 0.55 for basalt and 0.55 for limestone).

Before the data analysis begins, the data must be checked
in accordance with the normal distribution. In this study, the
normality test was performed using the Shapiro–Wilk
normality test with the Gaussian error [51]. In the
Shapiro–Wilk normality test, when the probability is >0.05,
the data are normally distributed, whereas when the
probability is <0.05, the data demonstrate a nonnormal data
distribution. +e small W value in the Shapiro–Wilk nor-
mality test indicates that the sample is not normally dis-
tributed. +e Shapiro–Wilk normality test results for the
D112 and D224 datasets are presented in Table 4.

According to the Shapiro–Wilk normality test results
(Table 4), the D112 and D224 datasets are not normally
distributed with the probability of the variables <0.05 and
very highW values for both datasets. Furthermore, the box-
plot graphs (Figure 3) prove that the dataset is not normally
distributed. With the box-plot graph, it is possible to ex-
amine both ranges of the value and the numeric variable
distribution.
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In this study, four different normalization techniques,
namely, min-max, decimal, sigmoid, and z-score were ap-
plied to four different datasets. As a result, the most suc-
cessful method was determined. After the normalization of
the datasets by these methods, their success rate was
compared using the KNN regression method. +e KNN
regression method was chosen being distance-based and

rapid in application. In this study, the k-values were selected
at 3, 5, and 7. +e results are provided in Table 5. According
to the KNN regression results, the fc (D112,D224) and S (D112,
D224) values were normalized by the decimal scaling and
min-max normalization methods, respectively.

+e results of the RF, SVM linear, SVM linear (SVMLin),
SVM polynomial (SVMPoly), PLS, Bagging, DT, MLP, and
FLmodels for the prediction of the compressive strength and
the slump value are presented in Table 6.

+e reason for the selection of these regression methods
was the successful employment of those prediction algo-
rithms in published literature. As mentioned earlier, the
datasets were randomly divided into the training (70%) and
individual test sets (30%). Herein, the training and indi-
vidual test sets consisted of 40 and 18 instances for the D112
dataset, respectively, and 39 and 17 instances for the D224
dataset, respectively. Prediction results for the models were
obtained from the 10-fold cross-validation process. +e

Table 3: Hyperparameters of machine learning regression models.

Model Method Required package Tuning parameter
Classification and regression trees (CART) rpart CRAN method� “anova”
Random forest (RF) rf Caret ntree� 100
Support vector machine (SVM) svmLinear, svmPoly Caret gamma� 0.001, cost� 100
Partial least squares (PLS) pls Caret tuneLength� 20
Artificial neural network (ANN) mlp RSNNS size� 5, maxit� 100, learnFuncParams� 0.1

Bootstrap aggregation (bagging) bagging ipred na.action�na.rpart
method.type� “WM”, num.labels� 7

Fuzzy logic (FL) frbs.learn frbs

max.iter� 30
step.size� 0.01,

gradient descent� 00.1
type.implication.func� “ZADEH”

Table 4: Shapiro–Wilk normality test results for datasets.

Variables
D112 dataset D224 dataset

P value W P value W
W/C 1.21 · 10− 07 0.792 9.46E − 08 0.780
C 1.36 ·10− 07 0.794 8.11E − 08 0.777
fcc 2.75 ·10− 08 0.764 2.32E − 08 0.752
FA 7.11 · 10− 08 0.782 3.73E − 07 0.805
kk 3.40 ·10− 07 0.810 6.73E − 08 0.773
CA 9.28 ·10− 08 0.787 4.74E − 08 0.767
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Figure 2: Correlation matrix of D112 (a) and D224 (b) datasets.
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performance of these regression methods was evaluated
according to the R, RMSE, andMAE statistical criteria. Rwas
employed to evaluate the good fit between the predicted and
actual values. A combination of the R, RMSE, and MAE

results was sufficient to reveal any significant differences
between the predicted and actual values.

According to the statistical results of the regression
method (Table 6), the FL regression model delivered the

Raw dataset-D112

Va
lu

e
35

0
30

0
25

0
20

0
15

0
10

0
50

0

Parameters
W/C C FA CAkkfcc

(a)

Normalized dataset-D112

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

Parameters
W/C C FA CAkkfcc

Va
lu

e

(b)

Raw dataset-D224

35
0

30
0

25
0

20
0

15
0

10
0

50
0

Parameters
W/C C FA CAkkfcc

Va
lu

e

(c)

Normalized dataset-D224

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

Parameters
W/C C FA CAkkfcc

Va
lu

e

(d)

Figure 3: Box-plot graphs for the raw and decimal normalized dataset.

Table 5: +e results of the normalization methods.

Regression method Normalization method
D112_fc dataset D112_S dataset D224_fc dataset D224_S dataset
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

3NN

Min-max 5.32 3.96 19.93 18.24 5.51 3.42 27.87 26.34
Decimal 3.13 2.41 25.46 24.79 3.39 2.70 29.09 27.80
Sigmoid 5.21 3.35 26.41 25.21 5.65 3.61 28.13 26.64
Z-norm 5.22 3.62 25.84 24.68 5.60 3.50 28.22 26.69

5NN

Min-max 6.53 5.09 19.70 17.99 5.33 4.64 30.17 28.92
Decimal 2.78 2.32 23.44 22.61 3.46 3.07 34.17 33.12
Sigmoid 6.03 5.24 22.82 21.26 5.50 4.66 30.73 29.56
Z-norm 6.01 5.22 22.81 21.16 5.66 4.87 30.34 29.22

7NN

Min-max 5.51 4.36 20.25 19.09 5.51 4.57 27.61 26.53
Decimal 3.60 2.89 21.97 21.26 3.78 3.12 29.40 28.18
Sigmoid 5.69 4.77 21.65 20.70 5.50 4.25 26.63 25.66
Z-norm 5.63 4.72 21.63 20.67 5.46 4.20 26.63 25.64

Table 6: Metrics results of the different regression methods.

Dataset Metric RF SVMLin SVMPoly PLS Bagging DT ANN FL

D112_fc
R 0.916 0.912 0.920 0.907 0.915 0.857 0.932 0.945

RMSE 2.362 2.518 3.046 2.604 2.419 2.878 2.855 1.090
MAE 1.957 1.837 2.423 2.001 2.117 2.511 2.625 0.933

D112_S
R 0.833 0.758 0.761 0.705 0.705 0.693 0.897 0.947

RMSE 4.748 4.983 5.094 5.380 6.100 5.942 2.686 2.477
MAE 4.302 3.702 3.933 4.476 5.776 5.465 3.409 1.954

D224_fc
R 0.853 0.816 0.816 0.779 0.736 0.408 0.899 0.928

RMSE 2.054 3.285 2.943 3.243 2.689 3.008 2.107 1.442
MAE 1.641 2.678 2.316 2.724 2.192 2.364 2.926 0.995

D224_S
R 0.772 0.654 0.765 0.645 0.730 0.518 0.896 0.977

RMSE 3.778 5.114 4.005 5.015 4.094 5.424 2.534 1.413
MAE 2.428 3.994 2.708 4.050 3.254 4.442 3.842 1.152
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highest prediction accuracy for the prediction of the re-
sponse variables fc and S according to the maximum ag-
gregate sizes (D112 andD224).+e FLmodel achieved the best
prediction accuracy results among all the performance
criteria according to seven benchmark models.

+e prediction results obtained from the FL regression
model and actual results are depicted in Figures 4 and 5. +e
prediction values for the compressive strength and slump are
similar to the actual values.

To reduce the number of the effect variables, the ReliefF
feature selection method was used to determine the high-
level effect variables. As a result, the fcc, kk, C, andW/C effect
variables were selected as they had a high-level effect on fc
and S for the maximum aggregate size. +e results of R,
RMSE, and MAE obtained after applying the FL model to all
the effect variables and reduced effect variables are presented
in Table 7.+is table also indicates that there is no significant
change in the R, RMSE, and MAE results when the number
of features was reduced from seven to four.+erefore, the FL
model with fewer features can still make successful
predictions.

+e effect levels of the simultaneously controllable effect
variables on the response variables exhibit some variations
[28–30]. Considering the selected variation intervals, the fcc,
kk, C, and W/C variables had a significant effect level on the
response variables for the maximum aggregate sizes. Cement
strength (fcc), cement dosage (C), and water/cement (W/C)
ratio tend to have a significant effect on the compressive
strength. Furthermore, the fineness modulus (kk), which
expresses the fineness and distribution of the mixture ag-
gregate, is one of the essential variables that affects the
concrete compactness. Moreover, the concrete compactness
directly affects the compressive strength.

+e workability of concrete is directly influenced by the
cement properties (e.g., cement fineness), aggregate prop-
erties (e.g., roughness of the aggregate surface), and amount
of mixing water. Particularly, it is not expected that the
chemical additive variable does not have a significant effect
on workability. +e variation intervals of the chemical ad-
ditive are negligible and do not show a significant effect on
the workability of concrete. However, the variation intervals
of the other effect variables can be considerable. +erefore,
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Figure 4: Comparison between actual and predicted values of fc and S values using the FL model for the D112 dataset.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

f cc
 (M

Pa
)

Instances

Actual fc
Predicted fc

(a)

Instances

Actual S
Predicted S

0.0

5.0

10.0

15.0

20.0

25.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Sl
um

p 
(c

m
)

(b)

Figure 5: Comparison between actual and predicted values of fc and S values using the FL model for the D224 dataset.
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the predicted accuracy does not decrease due to the FA, CA,
and TA variables, which do not have a significant effect on
response variables in the selected variation intervals.

5. Conclusions

+e goals of this study were (i) to determine the most
successful normalization technique for the datasets, (ii) to
obtain the prime regression method to predict the fc and S
values, (iii) to choose the best subset using the ReliefF feature
selection method, and (iv) to compare the regression results
for the original and selected subsets.

To determine the effect levels of the effect variables on
the response variables (i.e., fc and S) with precision, data
were analyzed for normalization. If the data were not
normally distributed, it was necessary to determine the most
appropriate normalization method. In this study, the
Shapiro–Wilk normality test results demonstrated that the
datasets were not normally distributed. +e most successful
techniques for the determination of the fc (D112, D224) and S
(D112, D224) values were the decimal scaling and min-max
normalization methods, respectively. +erefore, as the
variation ranges of the effect variables influencing the
concrete properties varied substantially, it was necessary to
preprocess the raw data for the estimation of the concrete
properties.

Herein, seven different ML methods, such as DT, RF,
SVM, PLS, ANN, bagging, and FL were experimented with
to predict the fc and S values. According to the R, RMSE, and
MAE statistical results, FL is the best regression method for
the maximum aggregate size. Generally, the similarity be-
tween the actual and predicted values is high for the
compressive strength (Figures 4 and 5). A minimal differ-
ence between the actual and predicted slump values in-
dicates that the slump values are more sensitive to the
experimental error, simultaneously uncontrollable effect
variables, and variation intervals of the effect variables. +e
flexibility of the computational structure of the FL ap-
proximated the results instead of providing the exact results.
In particular, the uncertainties in the problem-solving and
decision-making processes can be clarified by the applica-
tion of the FL. +us, complicated problems can be solved,
making the FL more functional than any other ML method.

In experimental designs, where the number of the si-
multaneously uncontrollable effect variables is high, it is
crucial to reduce the number of the experiments to save costs
and time. +erefore, the predicted values close to the actual
values need to be obtained with the minimum number of the
experiments. In this study, seven simultaneously control-
lable effect variables were reduced to four effect variables
(i.e., fcc, kk, C, and W/C) using the RelifF feature selection
method. +e metric results obtained by the FL regression
were similar for four and seven effect variables (Table 7).
+erefore, the experimental designs with fewer effect vari-
ables are sufficient for estimating the concrete properties.

Data Availability

Previously reported “compressive strength and slump of
concrete” data were used to support this study and are
available in the author’s PhD thesis, report, and article.+ese
prior studies (and datasets) are cited at relevant places within
the text as references [28–30].
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Özelliklerinin Kontrol Edilebilir Değişkenlere Göre Tepki
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Turkey, 2012.
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