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 THE SEQUENTIAL UNCONSTRAINED

 MINIMIZATION TECHNIQUE (SUMT)

 WITHOUT PARAMETERS

 Anthony V. Fiacco and Garth P. McCormick

 Research Analysis Corporation, McLean, Virginia

 (Received May 10, 1965)

 An unconstrained minimization technique for solving nonlinear program-
 ming problems that involves no parameter selection is presented. The
 algorithm generates a sequence of interior feasible points with decreasing
 objective function values that converge to the optimum.

 W E SHALL consider the problem of determining x that solves:

 (A): minimize f(x)

 subject to i(x) (O . (i=1, 2, * ,m)

 The Sequential Unconstrained Minimization Technique (SUMT) 1,2,3,4'
 for solving (A) is based on minimizing

 P(x, rk) mf(x) +rk Zd l/gs(x)

 in the interior of the feasible region over a monotonic decreasing sequence

 Irk}, where r> 0, all k. A sequence of points {x(rk)}, k=O, 1, 2, ** , are
 thus generated that respectively minimize {P(x, rk) }. It follows that as
 rk-*O (ka-zoo ), x(rk)-X, the solution of (A), under conditions that corre-
 spond precisely to those that will be (required in the present modification

 and) specified in the next section.
 It is reasonable to suppose that numerous variations of the P function

 could be constructed for converting (A) into a sequence of unconstrained
 problems, the solutions of which converge in the limit to x. The class of

 such functions will be narrowed considerably if we insist further that the
 principal advantages of the P function be retained. These, briefly stated,
 are that: (1) P is convex over x satisfying the constraints of (A), if (A) is
 a convex programming problem; (2) a (Wolfe) dual-feasible point, as well
 as a primal-feasible point, is available with each minimization of P(x, r),
 i.e., for each value of the parameter r; (3) a subproblem of (A) is solved
 with each minimization of P; and (4) the objective function f(x) decreases
 monotonically from one minimum of P to the next, i.e., as r-*O.

 This is a fairly imposing list of requirements, but the computational
 efficacy of the P-function technique is due largely to these attributes. It
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 SUMT without Parameters 821

 is difficult to imagine that a 'penalty function' technique will be (computa-

 tionally) competitive without fulfilling at least equations (1), (2), and

 (4).
 The purpose of the present paper is to introduce another function that

 has the desired characteristics as mentioned. It is closely related to the

 P function, but is a nontrivial variant of that function. Furthermore, it

 has at least two features the P function does not possess and hence may

 warrant further development.

 Define the function

 Q(x, xk) ={ 1/rf(xk) -f(X)]} + Z_ [1/gi(x)],

 where x0 is such that gi(x0) >0, all i. The basic idea is to minimize Q(x, x0)
 over {xif(x) <f(x0), gi(x) > 0, all i}, assuming this set has a nonempty in-
 terior. Under suitable conditions, this will yield uniquely the point x'.
 Replacing x0 by x', the process is repeated. A sequence of points {Xk} is
 thus defined, and it follows under conditions analogous to those required
 for the P function, that xk__J as kin oo

 A general statement of a class of techniques, called, "Methods of Cen-

 ters," that proceed in a manner similar to that just stated is contained in
 reference 5.

 The next section lists the required conditions and gives the proof of
 convergence for convex programming problems.

 In the third section, the precise connection between the points {Ix k}
 respectively minimizing {Q(x, xk)}, k=O, 1, 2, *.. , and the points {x(rk)}
 respectively minimizing {P(x, rk)}, is made explicit. It follows that the

 Ixk+l} are a subsequence of the { x (rk) }. Thereafter, of course, all of the
 development pertinent to the P function is directly applicable to the Q

 function.

 The possible advantages of the Q function over the P function are indi-
 cated in the final section. These are that f(x) is decreased monotonically
 from the starting point, whereas in the P function, the initial value of r is
 arbitrary, and hence the objective function may increase substantially
 from the starting point to the point minimizing P. The other advantage
 of the Q function is its independence of parameter adjustment: the process
 is determined in its entirety once the initial point is specified. Again, the
 rate of reduction of r in the P function is quite arbitrary. An algorithm
 based on the Q function has been applied with success, but the method has
 not as yet been fully exploited or adequately tested.

 THE CONVERGENCE THEOREM

 WE DEFINE R {xji(x) >O. -1, * = , m} and Rk ={X~f(x)?f(x))}, l=O,
 1, 2, * The interior of these sets will be denoted respectively by Ro
 and RkW.
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 822 Anthony V. Fiacco and IGarth P. McCormick

 The following conditions will be assumed:

 C1. R07b
 C2. f (x), gq(x), ***, gm(x) are continuously differentiable.
 C3. For every finite k, RnRk is bounded.

 NOTE. Conditions C l-C3 imply the existence of a finite number vo, where vo-
 infx, R f(x) = minx, R f(x).

 C4. f(x) is convex.

 C5. 91(x), - * *, *m(X) are concave.
 NOTE. Conditions C4 and C5 imply the convexity of Q(x, xk) in RonRkO. This is
 the direct result of a fact easily proved that if h(x) is concave, then 1/h(x) is con-
 vex over {xlh(x) >O}.

 The following condition is assumed merely for convenience, to assure

 the uniqueness of any existing minimum of Q(x, xk) in RfnRkl .
 C6. The function Q(x, xk)-{1/[f(xk)-f(x)]}+Zt21 [1/qsx)] is, for

 k-O, I1, 2, ***, strictly convex for xERonARk0.

 NOTE. The strict convexity follows if, for example, f or any -gj(x) is strictly
 convex, or if any set of n independent linear constraints, such as the non negativity
 restrictions, is included in the problem.

 THEOREM 1. If XkERO, then C1-C6 imply that

 (a) if RofnRk0?5, Q(x, xk) is minimized over RonRko at a unique point
 Xk+l where

 VQ(xk l, xk) =O, (1)
 and

 (b) limkjf(xk) minxERf(x) = vo; and
 (c) if RfnRko =4 for some finite k, f(xk) =-nilnxERf(X) vo,

 where

 Vf(Xk) 0. (2)

 Proof. (a) Assume x*ERO nRko and let Q*Q(x*, xk). Define the

 set S- {xlf~x) ,f(xk) _ (1/Q*), and g,(x) ( 1/Q*),i-1, ,m}. It follows
 immediately that infxesQ(x, xk) infXERonRkOQ(x, xk) - vo>o- . But Sfr,
 since x~ES, S contains no boundary points of R, -and S is compact. Also,
 Q(x, xk) is continuous in S by C2.

 Since the greatest lower bound of a continuous function bounded on a
 compact set is attained at a point in that set, at least one minimum xk+l
 exists. The strict convexity of Q(x, xk) in RonRko implies that xkil is the
 unique minimum of Q(XI xk) in RonfRk .

 By condition C2 and the necessity of the vanishing of the first partial
 derivatives of Q(x, xk) at an unconstrained minimum, equation (1) follows
 and part (a) of the theorem is proved.
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 SUMT without Parameters 823

 (b) From part (a), Q(x, xk) is minimized uniquely over RoflRk at
 x k+. Since Rk= -{xlf(x) <f(xk)}, it follows that f(x k+) <f(xk). Since
 part (a) of the theorem can now be applied to xk+ it follows inductively
 that a strictly monotonic decreasing sequence {f(Xk) }, k=O 1, 2, **. , has
 been defined, where the corresponding points {Ik} are all in Rft. Because

 conditions C1-C3 assure that f(x) is bounded below in R by vo, we can con-
 clude that liMkrf(xk) f(x) ? V. We shall assume that f(x) > vo and force
 a contradiction.

 The fact that {f(xk)} decreases to f(x) implies that there exists an N
 such that for k>N O<f(xk) Nf(xk+l) , where a can be made as small
 as desired by appropriate choice of N.

 Since f(x)>f(xk+l)>f(x)>vo, we can assume that f(x) ?vo+2E for
 E> 0 small enough. Also, since f(x) is continuous and R is the closure of
 Ro, it is possible to select x*ER such that f(x*) ?vo+ E. Combining these
 inequalities, it follows thatf(x) -f(x*) > e for E small enough and for suitably
 selected x*ERI. Note that we also have x*eRko.

 Fix E and x* to satisfy the last inequality. It follows that

 Q(X*, xk) = 1/[f(Xk) f(x )I}

 + i Z 1 [ </)I K (1/sE) + Z F/gi(X*)],

 sincef(xk) f(x*) >(x) f(x*) ? E, for all k.
 Select 6 such that

 1/a (1e+ Et- 1 [lgi(X*)].
 From above, there exists an N such that k N implies that <f(xk)

 f(xkl) <6, giving that

 Q (kill Xk)-[,If (XI )-f (Xl )1

 + Ztla [1/gi(xk+)] > (1/a) ? (1/E)+ -1 [1/gi(X*)], so
 Q ( xk, ok) > Q (x*5 Xk )

 Q~~~xk~~l, xk)>Q~~~~~~x*, xk).X Xk
 But since x*ERonRkO, this inequality contradicts the fact that Q(x, xk)

 is minimized over R~lnRk at x . Therefore, the assumption thatf(=) > vo
 is false. Since we must havef(x) ? vo, it follows that we must have equality
 and hence that limk,.f(Xk) =) minxdRf(x) = vo.

 (c) If xkERO and Ro AnRk0= for some finite k, then this means there
 exist no xER] such that f(x) <f(xk). In this case, since f(x) is continuous
 and R is the closure of R0, this immediately implies that

 f(xk) = minxc Rf(x) =vo.

 Equation (2), the vanishing of the gradient of f(x) at Xk, is a necessary
 consequence of C2 and the fact that Xk is an unconstrained minimum of

 f(x).-
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 824 Anthony V. Fiacco and Garth P. McCormick

 RELATION BETWEEN THE P AND Q FUNCTIONS

 As REMARKED in the first section, the function utilized in SUMT is

 P(x, r) Ef(x)+rZ7' [1/gi(x)]. The following theorem gives the ex-
 plicit connection between the P function and the Q function, via their
 minimizing points.

 THEOREM 2. If Cl-C6 hold, and if x minimize Q(x, x ) in RfnRko, then
 X'~4 minimizes P(x, rk) in R, for rk= ak2, where ak -f(Xk)-f(xkil).

 Proof. From Theorem 1, xk+1 is the unique minimum of Q(x, Xk) in
 R~nRk0 and, from equation (1),

 VQ(Xk+l, Xk) ={l/[f(Xk) _f(Xk+l)]2} Vf(xk+l)

 - Z-' [l1/qi2( xk+l ) ]Vgi( xk+l ) 0j
 This gives

 2VQ(X k+l k) Vf(Xk+l) 2Z Zm [I/ g2(Xk+l)]Vg (Xk+l) , (3)

 where ak is defined above.
 Consider now the gradient of the P function,

 Vp(xX rk) _=Vf (x)-rkXi= [llgq 2(X)pgi(X). (4

 It is clear, comparing (3) and (4), that

 VP(xk+l ak a) = ak2VQ(Xk+l, k) 4

 But it follows from results proved in reference 2 that conditions Cl-C6
 also guarantee the strict convexity of P in R, and assure that P(x, r), with
 r>O, be minimized by a unique point x(r) in R?. The convexity of P in
 R is enough to conclude that P is minimized at any point in R where its
 gradient vanishes. The conclusion of the theorem follows.

 Since it was shown in reference 3 that f[x (rk)], where x (rk) minimizes
 P(x, rk) in R, is a monotonic increasing function of rk , it follows a fortiori
 that the sequence { ak2} is likewise monotonic decreasing. It can be shown
 directly that { ak2} is a strictly monotonic decreasing sequence. This re-
 sult is proved in lemma 2, which utilizes the conclusion of the following
 lemma. Conditions Cl-C6 as well as the conclusion of theorems 1 and 2
 are assumed.

 LEMMA 1. SXim [l/gi(xk+l)] < Ei-1 [l/gi(xk+2)].

 Proof. Since {f(Xk) } is a strictly decreasing monotonic sequence, we
 know that f(xk) >f(Xk+l) >f (Xk+2) This gives

 O <f (xk)-f (Xk+l) <f(Xk) _f(Xk+2). (5)

 From the fact that Q(x, xk) is minimized uniquely over R~nRko by
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 x , it follows that Q(xk+l xk) < Q(xk2 k) i.e., that

 1/[f(Xk)-f(xk)]} ? k [1/g (xk+l)]

 <{1/[f(Xk) f(xk?2)]} + E _= [1/g (xk+2)]

 < { 1/[f ( Xk)-f (Xk l)]} + Ei-1 [11g (Xk+2)])

 using the above inequality (5).
 The conclusion of the lemma follows immediately on deleting the com-

 mon first term on both sides of the inequality.

 LEMMA 2. atk=f (Xk) _f (Xk+l) >f (Xk+l) _f (Xk+2) _

 Proof. Since minxR P(x, ak2) P(Xk+l, ak 2) and since the point mini-
 mizing P(x, r) in R for any specified value of r> 0 is unique, it follows from
 the definition of P that,

 f (Xk+l + 2E i=m l/lgi(k+l) k+2) 2E im llg(Xk)
 fx )+ak i=1/g( <f (x )+ak Zi=1 /q( ), and

 f(Xk+2)+ 2a ?iZ= 1/qi(xk+2) <f (Xk +)) 2+ Z? 1/gi(Xk l).

 Combining these two inequalities and rearranging gives

 ( 2_ 2 )[Zi= 1/gi(xk+2) -Zm l/gi(Xk+l)]>O

 From lemma 1, the second factor of this inequality is positive. There-

 fore, we must have ak2> , or ak>akk+1, as asserted.
 The precise relation between the points minimizing the P function and

 the Q function in the feasible region is now clear. P(x, rk) must be mini-

 mized in R for a strictly monotonic decreasing sequence { rk}, where rk> 0,
 all k, and k=O, 1, 2, .... The point x(rk) minimizing P(x, rk) in R co-
 incides with the point x k+ minimizing Q(x, xk) in RonRko, when we take

 rk= ak2- [f(xk)-f(xk~l)]2. From lemma 2 it follows that {fak is a strictly
 monotonic decreasing sequence and, from theorem 1, the sequence decreases

 to 0.

 Since x(rk)-, where {rk} need only be a strictly monotonic sequence
 of positive number decreasing to 0, but is otherwise an arbitrary sequence,
 it follows that { ak2} is a particular realization of such a sequence. In
 short, the sequence of points minimizing P(x, rk) and Q(x, xk) coincide
 when rk= ak,2 all kc.

 Another way of stating the relation is to consider the trajectory of
 minima x(r) of P(x, r), which is well-defined and continuous,141 when r
 is permitted to decrease strictly and continuously to 0. Then, it follows
 that the points minimizing Q(x, xk), k==O, 1, 2, ..., all lie on this trajectory.

 We shall not pursue the analogy further, except to remark that all of the
 theoretical and computational results that apply to the P function tech-
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 826 Anthony V. Fiacco and Garth P. McCormick

 nique, can now be readily translated to apply to the Q function technique..

 The next section points out two advantages of the Q function that may

 warrant further comparative analysis with the P function, particularly with
 regard to computational efficiency.

 POSSIBLE ADVANTAGES OF THE Q FUNCTION

 THE Q FUNCTION iS defined in such a manner that forces a decrease in the

 value of the objective function f(x), from the initial starting point. The

 decrease in f(x) is thereafter monotonic, from one minimizing point to the
 next, a characteristic shared by the P function process. However, in the
 latter technique, the initial value of r is, by and large, arbitrary. If r is
 chosen too small, the minimization problem is usually expensive computa-

 tionally; if too large, then the first minimizing point may be far inside the
 region, where it is quite possible that f(x) be increased substantially over
 its value at the point of departure. The Q function implicitly and with

 no arbitrariness 'sets' the initial value of r in such a manner that the objec-
 tive function must decrease. The remaining question is whether the initial
 minimization problem is 'difficult' computationally, compared with initial
 minimizations typically encountered via the P function and the afore-
 mentioned arbitrariness in selecting r initially. This is not presently
 known.

 In utilizing the P function, a decreasing sequence of values of the param-
 eter r must be specified. Again, the choice is quite arbitrary, although it
 has been found expedient to reduce r by a constant factor in order to realize
 a great simplification in extrapolation. The Q function allows no such
 arbitrariness, since there are no controllable parameters involved in the
 technique utilizing it. Once the initial point is selected, the entire process

 is well determined. Again, it is an open question as to whether the mini-
 mization problems that are defined by the Q function procedure are, in some
 sense, computationally more or less difficult than the sequence of minmmi-
 zation problems typically encountered in utilizing the P function, allowing
 for the arbitrariness in fixing the rate of decrease of r. Another question
 that must be answered is whether an extrapolation technique can be devised
 for the Q function that is as efficient as that developed for the P function,
 where the decrease in r can be accommodated to make the extrapolation
 calculations quite simple.

 In conclusion, it may be of interest to note that a few preliminary
 experiments using an algorithm based on the Q function indicated correct
 convergence to the solution of a convex problem. The algorithm is not
 sufficiently developed, nor is the data adequate to speculate as to the
 comparative efficiency of this approach.
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 828 John M. Danskin, Jr.

 Note on 'The Sequential Maximization Technique'

 John M. Danskin

 Center for Naval Analyses, Arlington, Virginia

 (Received March 29, 1967)

 This note presents a generalization of the main theorem of the sequential
 maximization technique given in Fiacco and McCormick's paper just pre-
 ceding this note.

 T HE present author refereed the preceding paper.['] He pointed out to the
 authors that their Theorem 1 in the second section could be proved under

 much weaker conditions and for wider spaces. They, however, wished to leave

 their exposition intact. It is at their suggestion that the generalization is presented
 here.

 Consider the problem of minimizing f(x) subject to the side conditions

 gj(x) ?O1 (j=1, ..., M) (1)

 Here x ranges on a metric space, on which the conditions (1) define a compact set
 K. We suppose that the interior K' of K is not empty, and that on K' the function

 f(x) assumes values arbitrarily close to the minimum. We suppose concerning

 f(x) and gj(x), j = 1, ** *, tn, only that they are continuous.
 We form the function, for kI ?0.

 Qk(x) = 1/[f(Xk)-f(X) ]+ Z [/9gj(X)] (2)

 defined for xEKO and f(x) <f(Xk) provided there are such points. Here x0 is any
 point of K' and xk?l is defined as a point yielding the minimum to Qk(x) over all
 xeK' with f(x) <f(Xk). It is possible that the set f(x) <f(xk) in K' is empty for
 some k. Then xk is the minimum. Otherwise we have an infinite sequence {xk}.

 The main theorem is the following.
 THEOREM 1. Any subsequence of { Xk } that converges to a limit converges to a minimum

 for f(x) on K.
 Proof. Let c=minmeKf(x). Suppose that the subsequence {Xk I of {Xk}

 converges to a point x . Suppose that f(x*) =c +2p, where p >0. By hypothesis
 there is a point xEK0 at whichf(5) <c?p. Put

 ak=f (Xk)-f (Xfk+l)

 Then ak >0 and ak -O as ken oo. Take ko so large that if k ?ko

 aknE alo so tt 2 <. T, (3)

 and also so that 2tk <p. Then sincef(Xk)_f(tx)>pa

 2a < f (Xk) _f Adz) (4)
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 Comment on 'SUMT without Parameters' 829

 Then

 Qk (Xkfl)-l/[f(Xk)-f(Xlfl)]+ Ej [lgi2(Xkil)]

 -l/alk[1+OakE [llgj(X"+')]]

 > 1lake -(112ae) +(112a ) > 1l [f (X)-f (x) J+ E 1l/gj (x) ]

 where at the next-to-last step we have used (4) and (3). It follows that x'+' does
 not minimize Qk(x) on the set xEI?o, f(x) <f(Xk). This is a contradiction; hence
 f(x*) =c as desired. The theorem is proved.

 IT IS perfectly possible that the whole series (xk* does not converge. But if the
 minimum is unique, the theorem implies that it converges.

 REFERENCE

 1. F. V. FIACCO AND G. P. MCCORMICK, "The Sequential Unconstrained Minimi-

 zation Technique (SUMT) without Parameters," Opns. Res. 15, 820-827
 -(1967).
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