
International Journal of Mechanical Sciences 209 (2021) 106698 

Contents lists available at ScienceDirect 

International Journal of Mechanical Sciences 

journal homepage: www.elsevier.com/locate/ijmecsci 

Machine Learning Classifiers for Surface Crack Detection in Fracture 

Experiments 

Adrien Müller, Nikos Karathanasopoulos ∗ , Christian C. Roth, Dirk Mohr 

Chair of Computational Modeling of Materials in Manufacturing, Department of Mechanical and Process Engineering, ETH Zurich, Switzerland 

a r t i c l e i n f o 

Keywords: 

Ductile Fracture 

Uniaxial Tension 

Plane Strain Tension 

Classification 

Haralicks 

Machine learning 

a b s t r a c t 

Correctly determining the onset of fracture is crucial when performing mechanical experiments. Commonly car- 

ried out by visual inspection, here an image-based machine learning approach is proposed to classify cracked 

and un-cracked specimens. It yields the potential to objectify and automate crack detection, thereby removing 

sources of uncertainty and error from the post-processing of experiments. More than 30’000 speckle-pattern im- 

ages obtained from 77 experiments on three specimen geometries are evaluated. They comprise uniaxial tension, 

notched tension as well as axisymmetric V-bending experiments. Statistical texture features are extracted from all 

images. They include both first-order (variance, skewness, kurtosis) and higher-order statistical texture features, 

i.e. Haralick features. The discriminatory power of the texture information is evaluated based on the Fisher’s 

Discriminant Ratio and feature correlations are identified and quantified. Image texture feature subsets of high 

discriminatory power are used to parse neural network architectures of different complexities from simple per- 

ceptron to feed-forward and cascade neural networks. It is found that a small subset of the investigated texture 

features is highly significant for all experiments. Using this feature subset in conjunction with multi-layer, non- 

linear and low complexity feed-forward network architectures classification accuracies in the order of 99% are 

obtained. At the same time, it is shown that linear classifiers are not sufficient to robustly distinguish the state of 

the specimens, even when high discriminatory power features are used. 

Graphical Abstract: 
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. Introduction 

Correctly determining the instant of onset of fracture in material
haracterization experiments is of utmost importance when assessing
 material’s ductility. Especially when calibrating modern ductile frac-
ure models [5 , 6 , 28] based on a minimal number of experiments only,
ny measurement error might have a significant impact on the final
odel predictions. In-plane and out-of-plane experiments are commonly
sed to investigate the fracture response of sheet metal. Examples are
niaxial tensile specimens with or without cut-outs (e.g. [14] ), Nakaz-
ma experiments (e.g. [46] ), tension-torsion of tubes [17 , 24] or cru-
iform specimens [26] . In all these experiments, it is crucial to detect
he onset of fracture to enable the determination of fracture strains di-
ectly through digital image correlation (e.g. [1] ) or through hybrid
xperimental-numerical approaches (e.g. [3] ). 

In most mechanical experiments, the evolution of integral quantities
uch as actuator forces is monitored. It is common practice to assume
 specimen to be crack free up to the load maximum, while a distinct
rop in load is often considered as an indication for the onset of frac-
ure. However, this assumption does not always hold true. For exam-
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le, Beerli et al. [7] found cracks with a length of up to 25% of the
age section width well before observing a change in the nature of the
orce-displacement response, which corresponds to a false negative re-
ult when using the maximum load criterion. Conversely, Noder et al.
2020) [33] reported a drop in force in V-bending experiments due to
punch lift-off” well before fracturing, which correspond to a false pos-
tive result. 

In addition to actuator forces, images of speckle-painted specimen
urfaces have also become an important default recording during me-
hanical experiments. Surface cracks may thus also be detected through
ser inspection of the recorded images. This local inspection approach
s more sensitive as far as the early detection of surface cracks is con-
erned. However, this manual technique brings its own uncertainty due
o possible human error and subjectivity. Several specimen geometries
re usually tested with at least two repetitions and for several material
rientations to assess the effects of stress state, anisotropy and material
roperty variations. With the advent of robot-assisted automated test-
ng methods [19] , the amount of image data to be screened for emerg-
ng cracks has increased substantially, making reliable crack detection a
ime consuming effort in a fracture property characterization campaign.
021 
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Image-based information has been widely used as a basis for the anal-
sis and classification of phenomena in different engineering applica-
ions (e.g. [43] ). The quantitative analysis of the information contained
n the images begins with the computation of first-order feature statistics
uch as the variance and skewness. However, they ignore information re-
ated to the spatial position which is not suitable for pattern recognition
27] . Information on the spatial distribution of the image characteristics
an be captured with the help of higher-order statistics. A first example
re Gabor filters which have been extensively used in the classification
f textures [11] . An even more prominent method for the quantification
f the spatial distribution of image features had been proposed by Har-
lick et al. (1973) [55] based on the so-called Gray-Level Co-occurrence
atrix (GLCM). In many applications, this method has been employed

long with the intuitive interpretation of the computed features. Exam-
les are the analysis of skin [35] , the classification of landscapes [15] or
eaf types [47] , as well as the analysis of ultrasound images or MRI data
n medicine [31] . 

Analogously to Digital Image Correlation (DIC), statistical features
or texture analysis are computed for subparts of images, the so-called
egion of interest (ROI). Image types and sizes play an important role in
etermining a suitable ROI for the feature extraction process [45] . To
btain gray-scale invariance, normalizations with respect to the level
f quantization can be applied thereby effectively removing any depen-
ence of the Haralick features on the number of gray-levels in the im-
ges [27] . In selected applications, features obtained through the com-
utation of so-called Zernike moments have been employed [50] . These
igher-order moments are used to describe image shape features using
rthogonal basis functions (e.g. [22] ). This accurate identification of
atterns of images has many applications, for example the recognition
f alphabet characters and symbols [38] . However, as pointed out by
ahmasbi et al. (2011), the accuracy gained often comes at high com-
utational costs. 

Recently, machine learning techniques have been extensively used
n engineering applications, including, but not limited to, classification
roblems [18] , structural analysis [23] , materials design [30] , microme-
hanics [2] , constitutive modeling [25 , 53] and failure predictions [4 ,
6 , 49] . In material science, a transition from physics-based to more
ata-driven modeling approaches is observed (e.g. [13 , 21 , 34] ). The
ntroduction of artificial intelligence allows design and analysis method-
logies to become more objective, relying less on the subjective judge-
ent of humans (e.g. [9 , 32] ). For example, basic perceptron models

re already sufficient for the proper classification of different material
ypes using ultrasonic data [36] . Artificial neural network models have
een successfully applied to simulate structure-property related func-
ions at different material modeling scales [20 , 29 , 40 , 52] . Image anal-
sis driven approaches such as convolutional neural networks (CNN)
ave also been employed to either identify functional relations [48 , 51 ,
4] or classify structural attributes [42] . 

While image-analysis based, statistical parameters have been shown
o provide a basis for the extraction of important information at dif-
erent application domains [18] , the material-failure characterization
otential of features of the kind has not been yet investigated. As a re-
ult, the quality and potential of image-based statistical information to
ccurately identify material failure upon experimental testing remains
o a great extend unknown. At the same time, the set of features that
re of high significance has not yet been determined. Furthermore, a
ombined image-data and machine learning approach has not yet been
stablished and the complexity of the machine learning formulation re-
uired for highly-accurate material failure characterization remains un-
nown for different experimental-testing cases. 

In the present study, statistical image features are used in combi-
ation with machine learning classifiers to come up with a methodol-
gy for the automatic detection of surface cracks in mechanical experi-
ents. Images obtained from tension and bending fracture experiments

re used to compute first-order and higher-order Haralick texture fea-
ures. A subset of highly significant image features is identified using
2 
isher’s Discriminant Ratio (FDR) along with a correlation matrix for
ach dataset. Different machine learning models are trained and tested
n real data, before recommending the least complex classifier that pro-
ides reliable predictions of the instants of onset of fracture in mechan-
cal experiments. 

. Crack detection method 

A new method is proposed for detecting surface cracks in mechan-
cal experiments. In a first step, the images of the deforming specimen
urface are analyzed to compute statistical image characteristics. Subse-
uently, a neural network based classifier is introduced to discriminate
etween images with and without cracks. 

.1. Statistical feature extraction 

For the unambiguous classification of images acquired during me-
hanical experiments, an extended set of statistical features is selected.
n particular, first-order and higher-order image texture statistics are
omputed for all experimental images. The first-order statistics include
he variance, skewness and kurtosis of the images (e.g. [44] ), while the
igher-order statistics include twenty Haralicks features as defined in
27] . No image normalizations or histogram equalizations are applied
s the gray-level quantization invariant formulation of the Haralick fea-
ures is used. A summary of all statistical features considered is given in
able 1 . The calculation of the Haralick features is based on the square
ray-Level Co-occurrence Matrix (GLCM), calculated by counting the
umber of times that a gray-level value i prevails at a pixel a while the
alue j prevails at a pixel b , whereby the pixels a and b are separated by a
onstant offset (see Fig 1 a). Iterating i and j over all possible gray-levels
 g , a complete [ n g × n g ] GLCM is obtained. 

We consider the image function I ( l, k ): [ l, k ] → g lk that maps the po-
ition of a pixel at a position ( l, m ) for l < N x , k < N y to a gray-level g ,
ith N x and N y denoting the spatial dimensions of the image in hori-

ontal and vertical direction. The GLCM can be written as 

 𝑖𝑗 

(
𝑑 , 𝑖, 𝑗 

)
= 

𝑁 𝑦 ∑
𝑙=0 

𝑁 𝑥 ∑
𝑘 =0 
𝛿( 𝐼 ( 𝑙, 𝑘 ) − 𝑖 ) 𝛿

(
𝐼 
(
𝑙 + 𝑑 𝑙 , 𝑘 + 𝑑 𝑘 

)
− 𝑗 

)
... (1)

Herein 𝑑 is the offset vector with the components [ d l , d k ] which de-
cribes the relative position of the pixels a and b . Additionally, the GLCM
atrix of Eq. (1) is normalized such that: 

 𝑖𝑗 = 

𝑃 𝑖𝑗 ∑𝑛 𝑔 
𝑖 =0 

∑𝑛 𝑔 
𝑗=0 𝑃 𝑖𝑗 
... (2)

Eq. (2) describes the joint probability mass function for the occur-
ence of the combination of gray-levels i and j in one image. The offset
ector 𝑑 between the pair of pixels is typically chosen to cover four in-
ependent directions, as schematically shown in Fig. 1 a. Those four in-
ependent directions are used for the computation of the GLCM of each
ub image, corresponding to the offset vectors [1,0], [1,1], [0,1], and
-1,1]. To achieve rotational invariance, the GLCM of the sub images
escribed in Table 1 is obtained as the mean of the four GLCM matrices
orresponding to the previous offset vectors [27] . The mean GLCM is
sed to compute the different Haralick features of Table 1 . The corre-
ponding mathematical definitions of the Haralick features are recalled
n Appendix A . 

The selection of a subset of features with high discriminatory capac-
ty is made using Fisher’s Discriminant Ratio (FDR) [44] . It incorporates
he mean and variance of the feature attributes shown in Table 1 for the
n-cracked ( 𝜇unc , 𝜎unc ) and cracked images ( 𝜇c , 𝜎c ) [39] , 

 𝐷𝑅 = 

(
𝜇𝑢𝑛𝑐 − 𝜇𝑐 

)2 
𝜎2 𝑢𝑛𝑐 + 𝜎2 𝑐 

, 𝜇 = 

1 
𝑁 

𝑁 ∑
𝑖 =1 
𝑥 𝑖 , 𝜎 = 

1 
𝑁 − 1 

𝑁 ∑
𝑖 =1 

(
𝑥 𝑖 − 𝜇

)2 
(3)

The FDR values provide a quantitative measure of the potential of
he different features to distinguish between cracked and un-cracked
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Table 1 

Summary of first and higher-order features computed for the set of experiments of Section 3.1 

1 st order Higher order: Haralicks 

Variance 

Skewness 

Kurtosis 

Autocorrelation 

Cluster Prominence 

Cluster Shade 

Contrast 

Correlation 

Diff. Average 

Diff. Entropy 

Diff. Variance 

Dissimilarity 

Energy 

Entropy 

Homogeneity 

Inf. Corr. 1 

Inf. Corr. 2 

Max Corr. 

Max Prob. 

Sum Average 

Sum Entropy 

Sum Sq. Var. 

Sum Variance 

Fig. 1. Feature extraction and significance identification: (a) Determination of 

a Grey-Level Co-occurrence Matrix (GLCM): Illustration a pair of pixels a and 

b (red) containing grey-level values i and j and different offset directions (light 

blue). (b) Illustration of the Fisher Discriminant Ratio on a scatter-plot of the 

Haralick feature “dissimilarity ” against the feature “correlation ” for a set of un- 

cracked and cracked images extracted from the UT dataset. 
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mages. High FDR values are obtained for classes with a substantial dif-
erence in their mean values and low interclass variance. An example
s shown for the Haralick features “dissimilarity ” and “correlation ” in
ig. 1 b. All features are then ranked in descending order according to
he FDR value. It is noteworthy that the ranking methodology based on
q. (3) disregards the correlation among different features. Apart from
he FDR index, the standardized correlation matrix (with a dimension
f 23 × 23) of all Haralick features included in Table 1 is computed for
ach experiment to quantify the correlation. The associated correlation
oefficients are used as an additional selection metric for the identifi-
ation of low-dimensional feature subsets. For the features vector X [N,
3 
], comprising the number of observations N and the number of avail-
ble features q, the correlation matrix C is computed based on Pearson’s
orrelation equation ( “Classical Measures of Correlation, ” [10] ): 

 = 

⎡ ⎢ ⎢ ⎣ 
𝐶 11 ⋯ 𝐶 1 𝑛 

⋱ ⋮ 
Sym 𝐶 nn 

⎤ ⎥ ⎥ ⎦ , 𝐶 ij = 

∑𝑁 
𝑖 =1 

(
𝑋 𝑖 − 𝑋 𝑖 

)(
𝑋 𝑗 − 𝑋 𝑗 

)
√ ∑𝑁 
𝑖 =1 

(
𝑋 𝑖 − 𝑋 𝑖 

)2 
√ ∑𝑁 
𝑖 =1 

(
𝑋 𝑗 − 𝑋 𝑗 

)2 
, 

( 𝑖, 𝑗 ∈ 1 … 𝑛 ) (4) 

The correlation matrix described by Eq. (4) is symmetric, with its
race equal to n, with the correlation coefficients to range in C ij ∈ [ − 1;
]. The marginal values denote a strong correlation between the corre-
ponding features, while near-zero values indicate no relation at all. 

.2. Machine learning classifier 

The machine learning classifier considered in this study can com-
only be interpreted as a simple function 𝑓 ∶ 𝐼 → �̄� mapping an input I

o the output vector �̄� . Herein, classifier models of different complexity
re considered including perceptron (linear model), multi-layer and cas-
ading feed-forward neural networks. The mapping of the input vector
 to the output �̄� of the classifier model is given for the perceptron (P),
ulti-layer feed-forward (FF) and cascade feed-forward (FFC) network

rchitectures as follows [12] : 

�̄� 𝑃 = 𝐻( 𝑊 1 𝐼 + 𝑊 1 0 ) 

�̄� 𝐹𝐹 = 𝑓 𝑛 
(
𝑊 𝑛 𝑓 𝑛 −1 

(
…𝑊 2 𝑓 2 

(
𝑓 1 

(
𝑊 1 𝐼 + 𝑊 1 0 

)
+ 𝑊 2 0 

)
…
)
+ 𝑊 𝑛 0 

)
̄ 𝐶𝐹𝐹 = 𝑓 𝑛 ( 𝑊 𝑛 𝑓 𝑛 −1 ( …𝑊 2 𝑓 2 ( 𝑓 1 

(
𝑊 1 𝐼 + 𝑊 1 0 

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑦 1 

+ 𝑊 2 0 ) …) .. 

+ 𝑊 𝑛 0 + 𝑊 𝑛 1 𝑦 
1 + …+ 𝑊 𝑛 𝑛 𝐼 

)
(5) 

Herein H describes the hard-limit activation function, while f i rep-
esents the activation function of the different layers contained in the
eural network design. The input feature vector is denoted with I , while
he weight matrix and bias vector of layer i are denoted by W 

i and 𝑊 𝑖 0 ,
espectively. The number of hidden layers (n) as well as the number
f neurons per hidden layer (m) are hyper-parameters which need to
e determined in addition to optimizing the weight parameters of the
odels using the backpropagation algorithm (see [37] ). 

A schematic of the different neural network architectures is pro-
ided in Fig. 2 . The simple perceptron is shown in Fig. 2 a, while the
eed-forward neural network architectures are schematically shown in
ig. 2 b. They comprise a minimum of two and a maximum of six hid-
en layers ( Fig. 2 b), which are parsed with a variable number of neurons
er hidden layer ( Fig. 2 b), following a decreasing number of neurons per
idden layer. The outputs of the last layer are fed into a logsig function to
ield its classification result. For the activation of the neurons contained
n the hidden layers, linear, logarithmic sigmoid and hyperbolic tangent
unctions are considered. The mean square error is used as loss during
he training of the networks, with �̄� and y denoting the model predictions
nd the experimental classification labels (0 = uncracked, 1 = cracked) of
he image, respectively, 

𝑆𝐸 = ( 1∕ 𝑁 ) 
∑
𝑁 

( 𝑦 − �̄� ) 2 , �̄� ∈
[
�̄� 𝑝 , �̄� 𝐹𝐹 , �̄� 𝐶𝐹𝐹 

]
(6)
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Fig. 2. Schematic representation of (a) a simple perceptron, hard-limit neural network architecture along with (b) a fully-connected, feed-forward network with a 

total of n hidden layers and variable number of neurons per layer with varying number of input features. A cascaded network architecture is indicated by a dashed 

blue line. 
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Different optimization algorithms are employed for training
Levenberg-Marquardt, Gradient descent, Conjugate Gradient Descent
nd Bayesian regularization). 

The accuracy of the neural network classifier is determined by the
atio of the correctly classified cracked and un-cracked images over the
otal number of tested images. The correctly classified images are de-
oted as true-positive (TP) and true-negative (TN), while false network
lassifications are denoted as false negative (FN) and false positive (FP).
he accuracy, sensitivity and specificity of the classifier are defined as 

Accu racy = 

TP + TN 

TP + TN + FN + FP 
, 

Sens itiv ity = 

TP 

TP + FN 

, 

Spec ific ity = 

TN 

TN + FP 
. (7) 

These three non-dimensional quantities fully characterize the quality
nd robustness of the classifier (e.g. [8] ) with near-unity values describ-
ng the response of reliable models. 

. Experimental data 

Various types of fracture experiments for sheet metal are performed
o create a database for training, testing and validating of the proposed
rack detection method. The experimental procedures are only briefly
escribed as we focus on the exploration of the image data. 

.1. Image data base 

Images acquired during material characterization experiments on
heet metal specimens are employed in this study. They are obtained
rom monotonic experiments on uniaxial tension (UT) and notched ten-
ion (NT) specimens with different cut-out radii (20mm for NT20- and 6
m for NT6-specimens), see Figs. 3 a-c. Images from tension experiments

n 28 UT-, 21 NT20- and 23 NT6-specimens are used. The images were
cquired at a frequency of 2 Hz which resulted in more than 500 images
er experiment. In addition, images recorded at 1 Hz from five AxiSym-
etric Bending (ASB) experiments with out-of-plane loading are also

ncluded in the data base. The engineering materials tested comprise
luminum alloys as well as uncoated advanced high strength steels of
4 
arious grades with different strain hardening and fracture properties.
rior to testing, a random speckle pattern is applied onto all specimens
onsisting of a very thin white background paint with black speckles
f approximately 50μm diameter. This non-uniform optical texture is
equired for Digital Image Correlation (DIC) to measure the surface dis-
lacement field (e.g. Hildt; [41] ). Fig. 4 gives an overview on the speckle
attern’s gray level distribution for different specimens. It reveals that,
ue to the different paint jobs (and lighting conditions), a wide range of
ray level distributions and thus input data is present. 

Fig. 5 shows representative speckle patterns of a UT specimen at dif-
erent stages of the experiment. The dataset creation for the training
f the neural network models follows a three-step process. Initially, the
ull-size images of the different experiments are categorized in cracked
nd un-cracked by visual inspection. To accurately assess the onset of
racture and to include images with short cracks in the training datasets,
racked specimens ( Fig. 5 a) are traced backwards in time, up to the
mage where small cracks first become visible by eye. Subsequently,
uadratic sub images of size 128 × 128 pixel, which corresponds to
pproximately one third of the gage section width, are extracted from
he cracked ( Fig. 5 b) and un-cracked ( Fig. 5 e) specimen pictures. Sub-
mages are obtained from locations shifted to the left and right of the
pecimen length symmetry axis ( Fig. 5 a-c) or the middle radius of the
SB specimens, respectively ( Fig. 5 d). The offsets are chosen such that

he sub-images remain within the region of interest (ROI). In partic-
lar, uncracked sub-images are extracted with a uniform distribution
rom the area in which cracks are expected to occur ( Fig. 5 d-f), whereas
racked sub-images were extracted from manually selected image posi-
ions where a crack was present as illustrated in Figs. 5 a-c. The datasets
re chosen to contain images with both small and large cracks. The im-
ges of the un-cracked ( Figs. 5 e, f) and cracked specimen ( Figs. 5 b, c)
ndicate that a wide range of texture characteristics and gray-level quan-
ization apply to the extracted sub-images, which elucidates the diver-
ity of the patterns encountered in mechanical experiments. 

.2. Training and testing data 

For training and testing of classifier models, sub-images of the NT20-
nd NT6-specimens are grouped into a single dataset, while images of
he UT- and ASB-specimens are treated independently. Table 2 summa-
izes the number of images and experiments used for each case. It pro-
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Fig. 3. Technical drawings of the specimen geometries used: (a) uniaxial tension (UT), notched tension with (b) R = 20mm cut-out (NT20) and (c) R = 6.67mm cut-out 

(NT6) and (d) axisymmetric V-bending. 

Fig. 4. Examples of the gray-level distributions for (a) UT and 

(b) axisymmetric bending specimens. 

5 
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Fig. 5. Images of a uniaxial tensile experiment as used in for the machine learning based crack detection methodology: (a) fully cracked UT sample with area of 

interest (AOI, red box) and two selected locations of sub images (blue box), (b) selected sub images as used for the classification and (c) close-up of a cracked sub 

image. The corresponding images of the un-cracked specimen are shown in (d)-(f). 

Table 2 

Summary of the experimental data employed for the UT, NT6-NT20 and ASB exper- 

imental case. 

Type Nr. Images (cracked/ uncracked) Nr. of Experiments Size (Pixels) 

NT6 & NT20 3644 / 3644 43 128 × 128 

UT 2452 / 2452 28 128 × 128 

ASB 10’955 / 11’692 5 128 × 128 
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ides the number of distinct experiments used to generate the data sets,
he sub-image dimensions in pixels as well as the number of cracked and
n-cracked images in each set. To investigate the accuracy of the pro-
osed crack detection method, data for testing needs to be provided in
ddition to training data. For this, the full data set of one specific spec-
men geometry is divided into training and test sets so that the two sets
re mutually exclusive. This avoids any duplications, ensuring that the
est sets contain only data unknown to the learning algorithm. The com-
lete set of test images for the NT6-/NT20- and for the UT-specimens is
rovided as Supplementary Material. 

. Results 

.1. Texture features 

To identify the most discriminating first-order as well as second-
rder Haralick texture features, Fisher’s Discriminant Ratio (FDR) in-
ex is evaluated. Fig. 6 a summarizes the FDR indices for the ten most
ignificant features for the notched tensile geometries (NT20 and NT6)
long with the corresponding correlation matrix ( Fig. 6 b). All remain-
ng features are omitted due to their low discriminatory power ( FDR <

). It is remarkable that none of the first-order image statistics plays a
ignificant role in separating cracked from un-cracked images for the
T-specimens. Solely higher-order Haralick texture features have FDR
alues with significant discriminatory power. The feature correlation
atrix according to Eq. 4 is used as an additional guide to identify lin-

arly correlated features and to choose a reduced subset of independent
6 
eature attributes ( Fig. 6 b). A threshold of | C ij | > 0.98 is selected and
lotted with an elliptic indicator that changes its contour from circu-
ar to needle-shaped as the correlation changes from fully-independent
o perfectly linear. For the NT specimens, the feature pairs {1-2} and
3-4} ( “Correlation ” - “Inf. Corr. 2 ” and “Difference Average ” - “Dissim-
larity ”) show strong positive linear correlation, while negative linear
orrelation is obtained for the feature pair {6-7} ( “Homogeneity ” - “Con-
rast ”). All linearly correlated feature sets are indicated by a dashed box
n Fig. 6 b. These observations allow for a subsequent removal of any
edundant information from the input vector of the machine learning
lassifier, thereby significantly reducing the computational cost. The se-
ected minimum number of features required for high accuracy classifi-
ation results is detailed in Section 4.2 . 

Fig. 7 a provides the FDR index values for the most significant fea-
ures for the uniaxial tension (UT) training set, with the corresponding
eature correlation matrix shown in Fig. 7 b. Similar to the presenta-
ion of the results from experiments on notched specimens ( Fig. 6 ), ten
ighly significant components are chosen based on their FDR values.
owever, here the previously chosen constraint of FDR > 1 needs to
e slightly relaxed for the feature “Difference Variance ”. Overall, the
ame ten higher-order Haralick features as for notched tension ( Fig. 6 a)
re found to be most significant for the images from UT experiments
 Fig. 7 a), while their feature values and ranking are slightly different.
oreover, the same linear correlation between subsets as for the NT is

bserved: ( “Correlation ” - “Inf. Corr 2 ” {1-2}) and ( “Difference Aver-
ge ” - “Dissimilarity ” {3-4}) show a positive linear correlation, while a
egative linear correlation exists for the feature set ( “Homogeneity ” -
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Fig. 6. Results of the texture feature analysis: (a) Fisher Discriminant Ratio 

(FDR) values for the features with the highest discriminatory power for the 

combined NT20-NT6 dataset, (b) corresponding feature correlation matrix. The 

dashed boxes indicate linearly dependent features. 
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Fig. 7. Results of the texture feature analysis: (a) Fisher Discriminant Ratio 

(FDR) values for the features with the highest discriminatory power for the UT 

dataset, (b) corresponding feature correlation matrix. The dashed boxes indicate 

linearly dependent features. 
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Contrast ” {7-8}). Overall, a maximum of six linearly independent fea-
ures are discerned with an FDR index above unity. 

The same assessment is carried out for the images obtained from
xisymmetric bending experiments. Fig. 8 a shows the most important
eatures with FDR > 1, while Fig. 8 b provides the corresponding feature
orrelation matrix with linearly dependent features marked by dashed
oxes. As for the images from the other experiments, a linear correla-
ion is observed for all six features. However, the variance (a first-order
tatistical feature) for the ASB images also yields FDR values well above
nity and could hence be used for discriminatory purposes. For all ge-
metries assessed, an excellent separation ability is obtained for several
aralick features, e.g. “correlation ”, “dissimilarity ” and “difference in

he entropy ”. These features appear to be equally significant for all type
f experiments considered and well-suited as input variables for classi-
er models. 

.2. Identification of model hyper-parameters 

To identify a reliable neural network model to distinguish between
n-cracked and cracked images, a comparative study is carried out using
hree distinct neural network architectures. A minimum of two and a
7 
aximum of seven linearly independent texture features are selected
s input information. They are chosen by their FDR value according to
he ranking provided in Figs. 6-8 . For example, for a network with two
nputs, the pair of independent texture features with the highest FDR
alue is selected. An overview of the best performing neural networks
or up to five texture features is given in Table 3 . 

The results suggest that poor training and testing scores are obtained
hen using only two significant Haralick features as model input. When
sing the simple perceptron model, it can already be deduced from the
ange of classification scores that these pairs are not necessarily linearly
ndependent. For the feature pair “correlation ” and “dissimilarity ”, the
artial interweaving of the feature values for cracked and un-cracked
mage data is exemplarily shown in Fig. 4 b. When using more than
our significant features as input, accuracy scores ( Eq. (7) ) of the or-
er of 95% are already possible with a simple perceptron. With training
nd testing errors of the order of 1-2%, non-linear feed-forward neu-
al networks allow for significantly more accurate results ( Table 3 ).
ven though a range of network configurations is assessed, all results
f Table 3 correspond to the network designs with the lowest computa-
ional cost with a hyperbolic tangent activation function. The optimal
onfiguration chosen for the feed-forward architecture for all specimen
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Table 3 

Performance of different neural network architectures for up to five linearly in- 

dependent features in descending discriminatory power order ( Figs. 6-8 ). Best 

training results along with the test-set accuracy ( Eq. 7 ) for the complete data set 

for all specimen types. 

Nr. Features Set Perceptron Feed-Forward Cascade Feed-Forward 

2 UT 87.9%/87.0% 98.1%/98.0% 98.5%/98.4% 

NT 90.7%/90.5% 96.5%/93.7% 97.0%/94.3% 

ASL 92.0%/91.0% 96.0%/97.0% 95.8%/96.2% 

3 UT 93.1%/92.5% 99.7%/99.5% 99.4%/99.3% 

NT 92.1%/91.0% 98.5%/95.6% 98.2%/95.2% 

ASL 92.9%/92.7% 97.1%/97.0% 97.0%/97.3% 

4 UT 94.4%/93.5% 99.7%/99.7% 99.5%/99.5% 

NT 93.0%/92.0% 98.5%/96.4% 98.4%/95.3% 

ASL 93.7%/93.3% 98.4%/98.2% 98.5%/98.3% 

5 UT 94.7%/94.3% 99.8%/99.9% 99.5%/99.8% 

NT 94.5%/94.0% 99.2%/98.8% 99.4%/98.7% 

ASL 95.0%/94.7% 98.6%/98.9% 98.7%/98.4% 

Fig. 8. Results of the texture feature analysis: (a) Fisher Discriminant Ratio 

(FDR) values for the features with the highest discriminatory power for the ax- 

isymmetric V-bending dataset, (b) corresponding feature correlation matrix. The 

dashed boxes indicate linearly dependent features. 

g  

a
 

(  

a  

i  

p  

l  

i  

l  

t  

t  

a  

a  

i  

c
 

(  

t  

s  

v  

f  

i  

i  

c  

f  

c  

i  

w  

c  

m
 

t  

s  

a  

c  

t  

u  

i  

t  

c  

a  

h  

m  

a

8 
eometries comprises three hidden layers with a 15 × 9 × 3 node pattern
nd seven input features. 

The required number of training epochs is computationally robust
Levenberg-Marquardt optimization algorithm) and kept below 70 for
ll input sizes and network architectures considered. In spite of the lim-
ted gain in accuracy for more than five input features, all seven inde-
endent input features are included in the training process, as of the
ow additional computational cost. It is noted that a whole training set
s completed on average in under four minutes on a standard four-core
aptop PC (CPU i7-8550U 1.8 GHz). The use of cascade network archi-
ectures does not provide any significant accuracy improvements over
he feed-forward network architectures. Similar training and test scores
re obtained for all testing cases and number of features employed (rel-
tive differences below 1.5% in Table 3 ). The number of misclassified
mages lies within 1% for all cases when either a feed-forward or a cas-
ade feed-forward architecture is used. 

In an attempt to visualize the effect of cracked (blue) and un-cracked
black) sub-images on the significant texture features, spider plots of
he feature values for 100 randomly selected sub-images from all test
ets are shown in Fig 9 . The corresponding confusion matrices are pro-
ided in Figs. 9 d-f. The results in Fig. 9 a-c provide information on the
eature values and on the separability of the cracked and un-cracked
mage classes for the highly significant features in Figs. 6-8 . The weav-
ng of the lines in Figs. 9 a-c indicate that a complete separation of the
racked and un-cracked feature values cannot be obtained for any of the
eatures. More specifically, similar feature values are obtained for the
racked and un-cracked sub-images, which becomes visible in the result-
ng overlap of parts of the spider plot. This observation is in agreement
ith the inability of linear classifiers (i.e. perceptron) to yield high ac-

uracy scores, irrespective of the number of features employed (as sum-
arized in Table 3 ). 

The confusion matrices in Figs. 9 d-f provide more detailed informa-
ion, not only on the accuracy ( Eq. (7) ) of the models, but also on their
ensitivity and specificity. For the UT case ( Fig. 9 d), a 99.9% testing
ccuracy is obtained, with a total of 4736 out of 4740 images correctly
lassified using the multi-layer feed forward model with seven input fea-
ures. We note that the confusion matrices of Figs. 9 d-f test data that are
nseen for the machine learning based algorithm and are not included
n the training process. The specificity and sensitivity of the model leads
o an accuracy error of 0.001. For the NT images, a 98.8% testing ac-
uracy is obtained ( Fig. 9 e), with the number of false positives being
pproximately three times the number of false negatives, a marginally
igher sensitivity than specificity ( Eq. (7) ). In the case of the axisym-
etric bending, the accuracy amounts to 98.9% with similar sensitivity

nd specificity. 
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Fig. 9. Spider plots of the most important feature values for a total of 100 randomly selected cracked (blue) and un-cracked (grey) sub images extracted from the (a) 

NT, (b) UT and (c) ASB test sets. (d) (e) and (f) show the corresponding confusion matrices of the feed-forward neural network architecture with [15, 9, 3] neurons 

for UT and NT, and [15, 10, 5] neurons for ASB. 
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.3. Automated crack detection in uniaxial and notched tension 

xperiments 

The fully-trained multi-layer feed-forward neural network model is
sed to automatically detect the onset of fracture in the test set of pre-
iously unseen images of UT- and NT-experiments. Fig. 10 shows rep-
esentative results for a UT-test of an aluminum alloy carried out with
9 
 crosshead speed of 2.4mm/min. The force-time curves ( Figs. 10 a, b)
how an initial linear segment followed by an elasto-plastic regime in
hich a force maximum ( ∼11.5kN) is reached. After the onset of neck-

ng, the force level decreases monotonically until an abrupt drop in the
orce is observed at 172s and approximately 10kN. This corresponds to
he instant of catastrophic specimen failure and full specimen separa-
ion (blue cross, Fig. 10 a,b). This event is detected by the neural net-
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Fig. 10. Results of the automated NN-based crack-detection in a representative UT experiment of an aluminum alloy: (a) Force-time response, (b) close-up of the 

time interval where fracture occurs, (c) image of the specimen with the positions at which cracks have been detected by the trained NN (blue boxes) and (d) the NN 

output “failure probability ” over time for the interval shown in (b). 
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ork model (green plus, Fig 10 a,b) and in excellent agreement with
he instant of fracture detected through visual inspection (red box).
he location of the onset of fracture is detected correctly by the neu-
al network model ( Fig. 10 c), together with the three corresponding
ub-images. Fig. 10 d depicts the failure probability as a function of the
xperiment time. Being constantly zero for the un-cracked specimen, at
72 s the classifier output jumps to unity (cracked), which correlates
ith the abrupt and catastrophic manner of the fracture process. 

Fig. 11 exemplarily presents the results of an experiment performed
n a NT20-specimen of an advanced high strength steel at a crosshead
peed of 0.5mm/min. Similar to the UT- experiment, a force maximum
 ∼25 kN) is obtained after an elasto-plastic response. This is followed by
 monotonic decrease in force during the necking phase of the specimen.
owever, in contrast to the UT-specimen, initial cracks on the specimen

urface are visually observed (red box) approximately 20 s prior to final
racture (blue cross). The trained neural network with a threshold of 0.5
n the network output detects a crack even earlier than that ( ∼720s,
reen plus Fig 11 b) at the correct location ( Fig. 11 c). Different from
he aluminum alloy, the network output ( Fig. 11 d) does not show any
ump-like change from 0 to 1, but rather a smooth transition, which also
eflects the rather slow tearing of the material after the onset of fracture.
or example, a threshold close to unity would lead to the detection of
m  

10 
he instant of fracture initiation corresponding the result obtained by
ye. 

Overall 43 experiments are assessed and classified correctly. The tex-
ure features-based neural-network model accurately classifies failure,
oth for abrupt fracture as well as for failure with slow crack growth.
or the earlier, a step-type increase in failure probability is observed
 Fig. 10 d), while the latter shows a gradual exponential increase of the
ailure probability ( Fig. 11 d). 

.4. Automated crack detection in axisymmetric bending experiments 

In close analogy with the UT- and NT-experiments, the crack detec-
ion methodology is applied to axisymmetric bending experiments that
reviously have not been used for the training of the network. Fig. 12
hows representative results for an advanced high-strength steel loaded
n an axisymmetric bending device at a crosshead speed of 2 mm/min.
he force-time curve ( Fig. 12 a,b) reveals a monotonic increase of the
orce level through an elastic and a plastic range until an abrupt drop in
orce (blue cross) is observed after the force maximum (136kN). Prior to
hat point (and as already pointed out by Beerli et al. [7] ), the visually
etermined onset of fracture, i.e. the first visual crack, occurs approxi-
ately 15 seconds earlier at 199s (red box). In contrast, the trained neu-
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Fig. 11. Results of the automated NN-based crack-detection in a representative NT20 experiment on an advanced high strength steel: (a) Force-time response, (b) 

close-up of the time interval where fracture occurs, (c) image of the specimen with the positions at which cracks have been detected by the trained NN (blue boxes) 

and (d) the NN output “failure probability ” over time for the interval shown in (b). White arrows indicate the location of the onset of fracture. 

r  

p  

t  

(  

w  

s  

a  

s  

s  

n  

t  

c  

m  

a  

t  

a

5

 

p  

fi  

f  

T  

H  

p  

u  

h  

f  

u  

f  

d
 

t  

t  

a  

t  

a  

n  

i  

b  

c  

e  

s  

w  

e  
al network detects a first crack approximately six images later (green
lus). Its output, the failure probability, is calculated as the average of
he failure probability for all sub images. It yields a constant zero value
un-cracked) for all images prior to the onset of fracture (203s), after
hich it increases to unity (cracked) within two time points. Fig. 12 d

hows the onset of fracture as classified by the neural network model
t time point 203s as well as a subsequent time point 208s. The green
quare marks the location of the first detected crack, while the blue
quares denote other locations where cracks have been detected. It is
oteworthy that already at time step 203, well before any decrease in
he force level is visible, cracks are found on both sides of the disc. They
ontinue to grow as loading progresses which is correctly tracked by the
achine learning classifier (time point 208s), thereby enabling a char-

cterization of the cracking process. The testing datasets of Fig. 12 and
he final neural network model used for the classification are provided
s Supplementary Material. 

. Discussion 

The results demonstrate that the onset of fracture in mechanical ex-
eriments can be successfully detected using a machine learning classi-
er. However, the success relies on the appropriate selection of the input

eatures and the architecture of the underlying neural network model.
11 
he analysis of the experimental data reveals that none of the computed
aralick features is linearly separable, which made it impossible for sim-
le perceptron classifiers to accurately distinguish among cracked and
n-cracked images. A small subset of statistics ( Table 1 ) is found to be
ighly informative, thus rendering a robust classification feasible. Seven
eatures with linearly-independent Fisher Discriminant Ratio (FDR) val-
es of high significance are identified in Figs. 6-8 . The most important
eatures are second-order Haralick features, while first-order statistics
o not provide enough relevant information. 

Already when using the first two most significant image features,
he use of a non-linear feed-forward neural network model allows for
raining and testing accuracies of the order of 97% and 95% for the im-
ges from UT- and NT-experiments, respectively ( Table 3 ). When using
wo features as model input, a cascade network model provides more
ccurate predictions than a standard multi-layer feed-forward neural
etwork, at slightly higher computational cost. However, when employ-
ng more than four linearly-independent features ( Figs. 6-8 ), differences
etween the cascade and feed-forward architectures vanish, with the
lassification accuracy of the neural network approaching and partially
xceeding 99% ( Figs. 9-12 ). It is noteworthy that this high-accuracy clas-
ification is already obtained solely by using image-based information,
hile the time-sequence of the images is not used as an input param-

ter. This shows that neural network designs based on highly informa-
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Fig. 12. Results of the automated NN-based crack-detection in a representative Axisymmetric Bending experiment on an advanced high strength steel: (a) Force- 

time response, (b) close-up of the time interval where fracture occurs, (c) the NN output “failure probability ” over time for the interval shown and (d) images of 

the specimen with the positions at which cracks have been detected by the trained NN (blue boxes) Blue squares denote regions identified as cracked, while a green 

square indicates the location of initial onset of fracture. 
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ive statistical information can robustly classify material failure in im-
ges obtained from material characterization experiments. The devel-
ped methodology automatically detects both the time, as well as the
ocation of the onset of fracture, such that even the simultaneous crack
nitiation at different positions can be processed and crack progression
an be monitored ( Fig. 12 ). 

It should be noted that the proposed method is not based on the
racking of displacement fields in time (e.g. digital image correlation
DIC) techniques), making it insensitive to any loss of correlation issue.
owever, the accuracy and specificity limits of the presented method di-

ectly depend on the quality of the provided image data. In particular,
12 
ut-of-focus images, low-quality or failed speckle patterns can deteri-
rate the algorithm’s performance, leading to an increased number of
isclassified images. Moreover, surface images do not contain any in-

ormation on the material state within the specimen investigated. There-
ore, the elaborated methodology can be used to complement and not
ubstitute, information extracted from specimen-scale, finite element
ased analysis. Only for specimen geometries with proportional loading
istories and onset of fracture on the surface, a hybrid experimental-
umerical analysis might be omitted. 

It is noted that the speckle pattern itself could lead to a false positive
lassification of images. However, the analysis of the dataset ( > 30’000
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Table A1 

Haralick texture features definitions as derived in [27] for all feature compo- 

nents defined in Table 1 . 

Abbreviations Features 
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mages) has revealed that instances of this kind are rare, their frequency
f appearance being smaller than the misclassification of the neural net-
ork model reported. Moreover, a false classification of an image as

racked because of the speckle pattern, usually occurs from the very be-
inning of the experiment. As such, it remains classified as falsely posi-
ive throughout the duration of the test, so that it can be well discerned
rom surface cracks due to fracture at a later loading state. 

. Conclusion 

A machine learning based methodology is developed to automati-
ally detect the onset of fracture in images from material characteri-
ation experiments. Overall more than 30’000 images from uniaxial,
otched tension and axisymmetric bending experiments are assessed.
irst- and second-order (Haralick) image features are considered as in-
ut for the training of perceptron, multi-layer and cascade feedforward
eural network models. It is found that: 

1) A small subset of second-order Haralick features including the cor-
relation, dissimilarity, homogeneity and entropy provide high dis-
criminatory power information for crack detection. 

2) The accuracy of basic perceptron classifiers is not sufficient for de-
tecting the onset of fracture in mechanical experiments. 

3) Computationally-efficient, multi-layer feed-forward neural network
models with a small number of second-order image statistics as in-
put, deliver a classification accuracy of up to 99.9%. 

The obtained classifier model can be employed to detect both the
nitiation and propagation of cracks. Even though the present work fo-
usses on the analysis of ductile fracture images, the proposed method-
logy is readily applicable to brittle fracture problems as well. The ma-
hine learning classifier outperforms existing automated fracture detec-
ion techniques, such as maximum force criteria. It therefore is expected
o become an important element of robot-assisted material testing sys-
ems for fracture analysis. 
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ppendix A 

In Table A1 , the mathematical definitions of the different Haralick
eatures ( Table 2 ) are summarized. More elaborate explanations of the
nderlying physical interpretations can be found in [27] . The mathe-
atical abbreviations needed to compute the Haralick features can be
13 
ound on the left part of Table A1 . The gray-level invariant texture fea-
ures are presented in the right part of the Table. For the abbreviations
nd definitions employed, N denotes the number of gray-levels at which
he image was quantized, while x ( i, j ) represents the non-normalized
orm of the GLCM, which is equivalent to the definition of Eq. (1) . 
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