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Abstract: This work shows the application of machine learning (ML) methods to the modeling of water demand for the first time.
Classification and regression trees (CART) and random forest (RF), a multivariate, spatially nonstationary and nonlinear ML approach,
were used to build a predictive model of water demand in the city of Seville, Spain, at the census tract level. Regression trees (RT) allowed
estimation of water demand with an error of 22 L=day=inhabitant and determination of the main driving variables. RF allowed estimation
of water demand with error values ranging from 18.89 to 26.91 L=day=inhabitant. The RF method provided better predictions; however, the
RT model facilitated better understanding of water demand. This research shows an alternative to the hitherto applied cluster and linear
regression approaches for modeling water demand and paves the way for a new set of further scientific investigations based on ML methods.
DOI: 10.1061/(ASCE)WR.1943-5452.0001067. © 2019 American Society of Civil Engineers.
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Introduction

Water is a finite resource (Odlare 2014), and water scarcity as a
result of overconsumption may affect both the environment and
economics (EEA 2015). About 97% of water is in oceans and
only 1% of the total amount is available for human consumption
(Corcoran et al. 2010), of which 0.7% is used for farming and 0.3%
for urban and industrial use (EC 2003). Economic development and
population growth have increased the pressure on hydrological re-
sources in the last several decades (Alcamo et al. 2007; Oki et al.
2003; Oki and Kanae 2006; Shiklomanov 2000; Vörösmarty et al.
2000). Mounting water demand has been largely satisfied through
the execution of large civil engineering projects for the canalization
of watercourses or the creation of dams to store rainwater. These
projects prioritized technical and economic needs against environ-
mental criteria (De Nicolás et al. 2014). However, a changed under-
standing of the relationships between society and nature and of
the management of natural resources has also affected water resour-
ces, bringing about a change in the traditional hydraulic paradigm
(Giansante et al. 2002; Lopez-Gunn 2009). The new management
model, called Integrated Water Resources Management (IWRM),
incorporates new policy frameworks for administration and deci-
sion making. Planners and water managers have forecast water de-
mand and estimated water savings for many conservation programs
and measures (Suero et al. 2012). This has resulted in general con-
trol and storage water principles ensuring quality water supply to
the population and, on the other hand, the environmental sustain-
ability of water systems (EC 2000). With regard to the management
of water demand for domestic use, a deep knowledge of the users’
behavior relating to water consumption is essential for politicians
and public water services managers (Romano et al. 2014). The first
initiatives aimed at the study of urban domestic water demand from
the perspective of economy, especially in the US, emerge from the

1960s (Conley 1967; Gottlieb 1963; Hanke and Flack 1968; Howe
and Linaweaver 1967; Larson and Hudson 1951). These studies
analyzed water demand elasticity on the basis of its price. Sub-
sequently, a growing number of studies were developed with more
diverse approaches, in which other variables related to weather
features (temperature and precipitation) and sociodemographic
features (the number of inhabitants per household) were included
(Agthe and Billings 1980, 2002; Arbués et al. 2004; Campbell et al.
2004; Dalhuisen et al. 2002; Martinez-Espiñeira 2002; Martínez-
Espiñeira and Nauges 2004). Most recently, the range of sociode-
mographic variables used in this type of study was extended
(Villarín 2019). Among the selected variables are those linked to
the population age distribution (average age of the population, per-
centages of both children and teenagers, and even percentage of the
elderly, also called the aging ratio) (Fielding et al. 2012; Shandas
and Parandvash 2010), building type features (compact or urban
sprawl) (March and Saurí 2010), and ethnic features (Inman and
Jeffrey 2006; Murdock et al. 1991; Poyer et al. 1997). Hence, in
addition to economic factors, territorial, climatic, and technological
factors are increasingly present and have become essential factors
for planning. In many of these studies the domestic use of water
is analyzed at the level of microcomponent per dwelling. Most
recently, besides the detailed analysis of water consumption per
dwelling, new information supports have been incorporated into
the census tract (Ouyang et al. 2014), which allow a more detailed
analysis of a given study area. This has resulted in a dramatic
increase in information volume and the complexity of water con-
sumption modeling. From this new multiproxy approach, the need
has arisen to apply a new generation of computational tools able to
extract as much information as possible from increasingly more
exhaustive and complex databases.

From a methodological perspective, the modeling of domes-
tic water demand has been carried out through the application
of multivariate regression methods such as logistic analysis, linear
regression analysis, and hierarchical segmentation analysis (CHAID
method), in some cases using factor and cluster analysis (Campbell
et al. 1999; Domene and Saurí 2006; Loh 2003; Mayer et al. 1999).
On the other hand, in research areas outside the water framework,
new algorithms called machine learning (ML) have grown in im-
portance, given the lower restriction in their application and their
greater robustness. There are two methods of data modeling: one
is based on data stochastic modeling, which has been profusely
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applied in the modeling of water demand; the other is ML, which
uses algorithms to generate mechanistic models from learning algo-
rithms (Breiman 2001). The latter comprises inductive knowledge
methods with the common denominator of learning patterns from
data (data-driven methods). ML has been applied with promising
results in other disciplines related to environmental sciences, such
as remote sensing (Rodriguez-Galiano et al. 2012a, b), water pol-
lution (Dixon 2009; Rodriguez-Galiano et al. 2014a), and ecology
(Archibald et al. 2009; Darling et al. 2012), but the potential for
modeling water consumption is still to be explored.

ML is still a relatively new area of science under active develop-
ment. In the last few decades a great number of methods have
emerged. Among the most used are decision trees (Breiman et al.
1984; Leibovici et al. 2011; Qi and Zhu 2011), artificial neural net-
works (Baykan and Yilmaz 2010; Bue and Stepinski 2006; Canty
2009; Dubois et al. 2007; Mas and Flores 2008; Pavel et al. 2011),
support vector machines (Lima et al. 2013; Mountrakis et al. 2011;
Petropoulos et al. 2012; Qader et al. 2016; Yu et al. 2012; Zuo and
Carranza 2011), and ensembles (Breiman 1996; Rodriguez-Galiano
et al. 2014b, 2016), just to mention a few. These methods have
different conceptual bases, although they present a series of shared
advantages: (1) their capacity to learn complex patterns, taking into
account nonlinear relations among the explanatory and dependent
variables; (2) high generalization capacity, being robust against
incomplete or noisy databases; (3) the possibility of incorporating
information a priori; and (4) integration of different types of data
in the analysis due to the absence of assumptions about data stat-
istical distributions (for example, normality) (Benediktsson and
Sveinsson 1997; Rogan et al. 2003). There are nonetheless trade-
offs. Some of the ML methods (for example, artificial neural net-
works and support vector machines) behave as black boxes. This
means that they can be applied to predict the value of a target
variable on the basis of data, but the implicit rules or patterns
within the model cannot be interpreted (Coimbra et al. 2014;
Tiwari and Adamowski 2015; Yan and Minsker 2011). Within
the environmental or social sciences, ML techniques can be very
useful for their possibility to be applied on different data types
(quantitative variables, ordinal variables, and categorical variables
with different distributions). However, it is of key importance to
take into account that the final user may not be an ML expert
and must be able to interpret results. In this sense, a group of
ML algorithms called decision trees provide an alternative to
black boxes, by means of the graphical representation of the rules
(explanatory variables together with their critical values) that best
discriminate subpopulations with different behaviors in the target
variable (i.e., water consumption). Recently, ML algorithms based
on trees have evolved toward the generation of ensembles, in
which prediction is the result of the integration of multiple models
(Breiman 1996). Random forest (RF) (Breiman 2001), is probably
the greatest expression of this type of algorithm and has been ap-
plied to different types of problems successfully (Friedl et al. 1999;
Gislason et al. 2006; Rodriguez-Galiano et al. 2015; Sesnie et al.
2008; Steele 2000).

This paper assesses the potential for the application of classifi-
cation and regression trees (CART) and RF for the modeling of
water demand, with the aim of obtaining new information about
the potential relationships and interactions between the sociodemo-
graphic and urban building characteristics, which might not be
identified by more traditional stochastic models. The specific aims
were the following:
1. To assess the effectiveness of decision tree algorithms (CART

and random forest) for water demand prediction from high-
dimensional data;

2. To identify the drivers of water demand in the city of Seville,
Spain, and to generate a conceptual graphical model for the
different consumption levels at the census tract level; and

3. To develop a feature selection process to eliminate those vari-
ables that are not relevant in the modeling of water consumption.

Study Area

The province of Seville, of about 14,036.5 km2, is located in
the region of Andalusia (southern Spain). It is made up of 105
municipalities (IECA 2016). The provincial capital, Seville, is of
special importance. The municipality of Seville, hereafter called
Seville, has an extension of about 141.3 km2 (INE 2016). Since
2006, Seville is divided into 11 districts and 522 census sections
(AS 2016) (Fig. 1). The River Guadalquivir, the most important
river in southern Spain, 640 km in length, crosses the city from
north to south (Bhat and Blomquist 2004). The Guadalquivir
watershed is 57,527 km2 in area and runs through 12 provinces
belonging to four different regions: Andalusia (90.22%), Castilla-
La Mancha (7.13%), Extremadura (2.45%), and Murcia (0.20%)
(CHG 2016).

The study area is characterized by a Mediterranean climate, de-
fined by mild temperatures throughout the year and rainfall concen-
trated during autumn and spring (Appendix S1 in Supplemental
Data). The geographical position of the Guadalquivir valley with its
low altitude contrasts with its north limit with Sierra Morena-Los
Pedroches, and its southeast-northeast limit with the Baetic Moun-
tains. The aperture of the Guadalquivir valley to the Atlantic Ocean
makes it possible for west directional component squalls to pen-
etrate, conditioning rainfall distribution with a southeast-northeast
direction.

Currently, the company for fresh water supply and wastewater
collection of Seville (EMASESA) directly manages fresh water
supply and is responsible for public sewerage and water treatment
services of the municipality of Seville (EMASESA 2016). The
municipality of Seville is supplied by four dams: Aracena (capacity
128.70 hm3), Zufre (capacity 175.30 hm3), La Minilla (capacity
57.80 hm3), and Gergal (capacity 35.00 hm3) (CHG 2016). In
2016, the Melonares Dam began to operate (capacity 185.6 hm3).
It supplies the municipality of Seville and its metropolitan area with
water for human consumption. Considering the data of the volume
reached for every dam from October 1999 until September 2016,
it is noticeable that the registered volume has fluctuated from
20%–30% in 2000 up to 90%–100% in 2011 (CHG 2016). This
shows the strong climate dependence of the volume of water stored
and hence the vulnerability of the domestic water supply.

The population in the municipality of Seville for 2009 was
703,206 inhabitants, consisting of 335,097 men and 368,109
women. The average age of both is estimated at 41.4 years (IECA
2016). The percentages of the population over 65 years and under
14 years are 16.35% and 14.87%, respectively. A characteristic spa-
tial pattern for population age distribution can be observed, with the
youngest population concentrated in newly built areas and the old-
est population in the oldest areas. However, in the central part of the
area recuperation and rehabilitation has led to replacing old rental
houses with houses that are accessible only to an influx of more
affluent inhabitants, a process known as gentrification. Addition-
ally, the number of registered foreign citizens is 71,993 (IECA
2016), mainly from the countries of origin Romania, Morocco,
Bolivia, Colombia, and Ecuador. Nationalities from similar geo-
graphical environments tend to concentrate in the same areas of
the city, which creates similar cultural behaviors regarding water
consumption (OECD 1999).
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Data

The selected variables for modeling water demand were acquired
from several institutions. The mapping base was obtained from
2008 census sections, from the geographical information collection
of Andalusian Spatial Data for Intermediate Scales (DEA100), pro-
duced and issued by the current Statistics and Mapping Institute of
Andalusia (IECA). The original variables, from which the explana-
tory variables were calculated (Table S1 in Supplemental Data),
were represented at various geographic regions or statistical sub-
divisions defined for the census of Seville city (census tracts). The
domestic water consumption (m3), provided by EMASESA, was
computed as the monthly consumption of every client according
to the 2009 census tract. The following sociodemographic variables
were obtained from the IECA: total population (number of inhab-
itants), population per age range (number of inhabitants), foreign
population (number of inhabitants) and population average age
(number of years). The total area (ha) of each census tract was cal-
culated from its polygonal extension, obtained from the DEA100
mapping collection. The surface of the built land (ha), the cadastral
surface (m2), the building height per building (number of floors
above ground), the dwellings per building (number of apartments)
and the cadastral value per building (€) were obtained from the
General Directorate of Cadastre (GDC). Therefore, the total number
of final variables introduced in the model amounted to 16, including
the domestic water consumption variable. Table 1 provides the basic
statistics on these variables, along with their measurement units.

Water consumption was collected on a census tract level after
identifying the residential buildings that corresponded to each
of its water supply connections. It was therefore possible to relate
the monthly invoiced consumption per water supply connection,
add the consumption for all water supply connections correspond-
ing to their census tract, and with knowledge of the total population
per census tract, calculate the domestic water consumption per
capita.

Sociodemographic variables referring to the total population, the
population by age range, and the population of foreigners were ob-
tained in absolute values for each census tract. The total population
variable was used for subsequent calculation of the population by
age range and by number of foreigners, as this allowed conversion
of absolute values to relative values in percentages. In the case of the
population by age range variable, the principal age ranges were ini-
tially established according to the Sauvy (1966) classification as
children (0–14 years old), adults (15–64 years old), and the elderly
(greater than 65 years old). The adults group (15–64 years old) was
further subdivided to create a new group referred to as young adults
between 15 and 34, which allowed analysis of their significance in
terms of domestic water consumption. In addition to the previously
mentioned sociodemographic variables, the youth index and aging
index were calculated, given their importance in the processes of
population evolution and heir being the main groups of greatest
focus in terms of social benefits, as well as the groups that are
most sensitive to water consumption (Vinuesa Angulo and Zamora
López 1997). The youth and aging indices were calculated as the

Fig. 1. Study area.
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percentage of the population under the age of 15 relative to the
population over the age of 65, and vice versa. The selection of the
foreign population variable was based on the specific relation-
ship that can be established between water consumption and the
origin of the resident population established in some studies
(Inman and Jeffrey 2006; Murdock et al. 1991; Poyer et al. 1997);
and the Organisation for Economic Co-operation and Development
(OECD). According to the OECD, the decrease in average water
consumption is greater for East Asian, Latin American, African, and
Indian citizens—up to one-third less than the consumption in
Western countries (OECD 1999). Even though this relationship
cannot be analyzed in depth on the census tract level, the percentage
of foreigners could be considered. The average age of popula-
tion variable was obtained directly on a census tract level from
the IECA.

Dwelling-related variables were obtained from the General
Directorate of the Cadastre based on information referring to the
cadastral plots of real-estate stock in Seville for 2009. Each cadas-
tral plot classified for residential use was selected per census tract.
Thus, the following information was obtained from each census
tract and cadastral plot: total area per census tract, residential sur-
face area per census tract, cadastral area per dwelling, building
height of each property within each census tract, and the number
of dwellings per residential property and their respective cadastral
values.

On the basis of the data obtained, the weighted average height
(WAH) variable per residential property was calculated

WAH ¼
P

n
i¼1 XiWiP
n
i¼1 Wi

ð1Þ

where X = number of residential buildings; andW = height in floors
per residential building.

The increased importance of the number of residential properties
was emphasized through the calculation of the weighted average
height. Thus, an average value was obtained in the case of mixed
census tracts containing a mix of single-family and multifamily
dwellings, and a result skewed in favor of taller buildings according
to the number of floors was avoided.

The average cadastral value (ACV) variable was calculated
on the basis of the average cadastral value per dwelling in each
census tract

ACV ¼
P

n
i¼1 Vi

N
ð2Þ

where V = cadastral building value; and N = total number of build-
ings per census tract.

The average built surface area (ABSA) variable per dwelling
was obtained on the basis of the cadastral surface area variable per
census tract and the number of dwellings

ABSA ¼
P

n
i¼1 Si
N

ð3Þ

where S = residential cadastral surface area; and N = total number
of buildings per census tract.

The average gross density (AGD) was obtained as a result of the
relationship between the total surface area and total population per
census tract

AGD ¼ pt

A
ð4Þ

where Pt = total population; and A = surface area by census
tract (ha).

The average net density (AND) variable was calculated using
the quotient of the residential build surface area and the total num-
ber of inhabitants per census tract

AND ¼ pt
P

n
i¼1 Si

ð5Þ

where Pt = number of inhabitants; and S = residential built surface
area by census tract.

Average household size (HS) was obtained using the quotient of
the total number of inhabitants and the number of dwellings per
census tract

HS ¼ Pt

N
ð6Þ

where Pt = number of inhabitants; andN = total number of building
per census tract.

The residential density (RD) variable was calculated using the
quotient of the average number of inhabitants per household and
the average cadastral surface area

Table 1. Basic statistics of the explanatory variables

Variable
Arithmetic
average

Standard
deviation

Coefficient of
variation Minimum Maximum

Domestic water consumption (DC) (L/day/inhabitant) 125.38 28.14 0.22 (22%) 14.00 241.73
Population under 15 (P < 15) (%) 14.07 4.71 0.33 (33%) 6.94 33.33
Population between 15 and 34 (P1534) (%) 27.27 4.47 0.16 (16%) 16.17 45.59
Population between 35 and 64 (P3564) (%) 40.79 3.91 0.09 (9%) 28.15 50.78
Population over 65 (P > 65) (%) 17.91 7.34 0.40 (40%) 1.68 38.85
Youth index (YI) (%) 41.09 4.47 0.10 (10%) 26.10 52.30
Aging index (AI) (%) 5.11 4.34 0.84 (84%) 0.07 38.83
Foreign citizens (FRG) (%) 127.81 187.09 1.46 (146%) 18.47 1,988.89
Average age of population (AAP) (years) 148.23 85.10 0.57 (57%) 5.03 541.30
Average cadastral value (ACV) (€) 4.94 2.10 0.42 (42%) 1.21 11.55
Average built surface area (ABSA) (m2) 37,453.26 22,708.74 0.60 (60%) 5,150.26 160,078.46
Weighted average height (WAH) (number of floors) 107.52 35.78 0.33 (33%) 42.60 418.59
Average gross density (AGD) (inhabitants=m2) 256.85 154.23 0.60 (60%) 1.07 974.14
Average net density (AND) [inhabitants=m2 (constructed)] 65.43 68.59 1.04 (104%) 1.16 653.84
Household size (HS) (inhabitants/household) 2.43 1.28 0.52 (52%) 0.94 28.42
Residential density (RD) [ðinhabitants=householdÞ × 100 m2] 2.44 1.02 0.41 (41%) 0.69 14.90
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RD ¼ Pt
P

n
i¼1 Si

× 100 ð7Þ

where Pt = number of inhabitants; and S = residential cadastral
surface area per census tract estimated per every 100 m2.

Methods

Domestic water demand modeling is a complicated task that can
have many different drivers that might not be the same within a
given study area. Therefore, assembling a single global model for
predicting the water demand of an entire city can be a very con-
fusing and not very realistic goal. Additionally, the drivers or pre-
dictive variables for water demand may interact in complicated,
nonlinear ways, which can undermine the potential of ordinary stat-
istical techniques. An alternative approach to classical multivariate
regression is to subdivide, or partition, the data space into smaller
data sets in which the interactions are more manageable. Regres-
sion trees (RT) are an alternative to traditional regression (global
single predictive models), allowing for multiple nonlinear regres-
sions using recursive partitioning.

The choice to use RT algorithms is usually associated with their
simplicity and interpretability, their low computational cost, and
the possibility of graphically representing them. Hence, the main
benefit of using a hierarchical tree structure to perform regression
is that this structure can be viewed as a white box, which in com-
parison with other machine learning techniques is easier to interpret
for understanding the relations between the dependent and indepen-
dent variable. There exist numerous RT techniques, such as ID3
(Quinlan 1986), C4.5 (Quinlan 1993), CART (Breiman et al. 1984),
and others. More recent RT techniques, such us RF (Breiman
2001), have been developed to build ensembles of multiple RTs by
repeatedly resampling training data with replacement, and aggre-
gating the trees for a consensus prediction. CART trees and RF
have been applied in this study due to their higher performance,
interpretability, and availability of implementations in R software.

CART

A decision tree model describes the logical structure of the deci-
sions, uncertainties, and potential outcomes (Khader et al. 2013).
CART is composed of a root node, a set of interior nodes, and ter-
minal nodes called leaf nodes. The root node and interior nodes,
referred to collectively as nonterminal nodes, are linked into deci-
sion stages. The terminal nodes represent the final estimates. Hence,
a RT represents a set of restrictions or conditions that are hierarchi-
cally organized, which are successively applied from a root to a ter-
minal node or leaf of the tree (Breiman et al. 1984). In order to
induce the RT, recursive partitioning and multiple regressions are
carried out from the database. From the root node, the data splitting
process in each internal node of a rule of the tree is repeated until a
previously specified stop condition is reached. Various parameters
can be established, such as the minimum number of observations
per node, the minimum number of observations in a leaf, and the
complexity parameter. Each of the terminal nodes, or leaves, has
attached a simple regression model that applies in that node only.

As described by Breiman et al. (1984), the induction of the
CART involves first selecting optimal splitting measurement vec-
tors. The process starts by splitting the dependent variable, or the
parent node (Dalhuisen et al. 2002), into binary pieces, in which the
child nodes are purer than the parent node. Through this process,
the CART searches through all candidate splits to find the optimal
split, s�, that maximizes the purity of the resulting tree, as defined
by the largest decrease in the impurity

Δiðs; tÞ ¼ iðtÞ − pLiðtLÞ − pRiðtRÞ ð8Þ

where s = candidate split at node t. The node t is divided by s
into the left child node tL with a proportion of pL, and the right
child node tR with a proportion of pR. Further, iðtÞ is a measure
of impurity before splitting; iðtLÞ and iðtRÞ are measures of impu-
rity after splitting; and Δiðs; tÞ measures the decrease in impurity
from split s.

There are many approximations for measuring impurity. Some
of the most frequently used are gain-ratio (Quinlan 1993), Gini
Index (Breiman et al. 1984), and Chi-square (Mingers 1989).
CART usually uses the Gini Index as a measure for the best split
selection. The Gini index used in this research measures iðtÞ

IGðtXðxiÞÞ ¼ 1 −Xm

j¼1

fðtXðxiÞ; jÞ2 ð9Þ

where fðtXðxiÞ; jÞ = proportion of samples with the value xi be-
longing to leaf j at node t. The decision tree splitting criterion
is based on choosing the attribute with the lowest Gini impurity
index (IG).

Random Forest

RF combines the performance of numerous RT algorithms to
predict the value of a target variable (Breiman 2001). That is, when
RF receives an input vector, ðxÞ, made up of the values of the dif-
ferent explanatory variables and the water demand values, RF
builds a number K of regression trees and averages the results.
After K such trees fTðxÞgK1 have been grown, the RF regression
predictor is

f̂KrfðxÞ ¼
1

K

XK

k¼1

TðxÞ ð10Þ

To avoid correlation between the different trees, RF increases
the diversity of the trees by making them grow from different
training data subsets created through a procedure called bagging.
Bagging is a technique used for training data creation by resam-
pling randomly the original data set with replacement, i.e., with
no deletion of the data selected from the input sample for generat-
ing the next subset fhðx;ΘkÞ; k ¼ 1; : : : ;Kg, where fΘkg are in-
dependent random vectors with the same distribution. Hence, some
data may be used more than once in the training, whereas others
might never be used. Thus, this process has greater stability, which
makes it more robust when facing slight variations in input data,
and at the same time it increases prediction accuracy (Breiman
2001). On the other hand, when the RF makes a tree grow, it uses
the best feature/split point within a subset of explanatory variables
that has been selected randomly from the overall set of input evi-
dential features.

Additionally, the samples that are not selected for the training of
the kth tree in the bagging process are included as part of another
subset called out-of-bag (oob). These oob elements can be used by
the kth tree to evaluate performance (Peters et al. 2007) and to es-
timate the importance of each explanatory variable in estimating
water demand. In this way RF can compute an unbiased estimate
of the generalization error without using an external text data subset
(Breiman 2001). To assess the importance of each variable (e.g., to-
tal population or cadastral building value), the RF switches one of
the input evidential features while keeping the rest constant, and it
measures the decrease in accuracy that has taken place by means of
the oob error estimation (Breiman 2001).
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Induction of RT Models

The sociodemographic and urban buildings variables (explanatory
variables) and the water consumption values (target variable) were
combined into a set of input feature vectors. At each census tract,
values from each sociodemographic and urban buildings variable
were combined to form a vector. These vectors formed the input to
regression tree and random forest algorithms. Water consumption
was used as the target values for the induction of the models. Data
processing for the induction of the MLA consisted of three stages:
(1) training and parameterization of the algorithms; (2) accuracy
assessment; and (3) postprocessing requiring converting the output
values to a map. All the RT models were created using R 3.2.3
(R-Project) free software. Within this environment, the e1071
library was used for inducting both RT and RF.

For the training of CART it is necessary to set a series of param-
eters, such as the dissimilarity measure, depth of the tree, and mini-
mum number of observations per node. The dissimilarity measure
or heterogeneity influences the way in which the algorithm per-
forms data splits in each node. The depth of the tree and the mini-
mum number of observations are parameters linked to the structural
complexity of trees: the greater are the number of levels and the
smaller the number of minimum observations in nodes, the greater
is the structural complexity of the model. Hence, it is necessary
to set these parameters in order to achieve the highest accuracy
in prediction and to avoid the creation of complex tree structures
that overfit data and lose generality (Pal and Mather 2003). For this
study, CART decision-tree models were used (Breiman et al. 1984).
For the induction of trees, the Gini index was used as the dissimi-
larity measure (Breiman et al. 1984; Quinlan 1993). With the aim of
obtaining robust and generalizable models, all possible decision
trees were assessed, for depth levels of 2 and 3, with a minimum
number of observations per node between 30 and 150.

Unlike most other methods based on machine learning, RF
needs only two parameters to be set for generating a prediction
model: the number of regression trees and the number of evidential
features (m), which are used in each node to make regression trees
grow (Rodriguez-Galiano et al. 2012b). Breiman (1996) demon-
strated that by increasing the number of trees, the generalization
error always converges; hence, overtraining is not a problem. On
the other hand, reducing the value of m brings as a result a reduc-
tion in the correlation among trees, which increases the model’s
accuracy. In order to optimize these parameters, a large number of
experiments were carried out using different number of splits evi-
dential features. The range of the number of trees was set to 2,000,
and the number of splits evidential features to between 1 and 15, at
intervals of 1.

To assess the optimal value of the different parameters of every
method, the predictions derived from all possible parameter com-
binations were evaluated using the root mean square error (MSE)
on the basis of a 10-fold cross-validation procedure. The best model
was the one with the lowest RMSE. Relative error (RE) values for
each census tract were computed and mapped on the basis of the
10-fold predictions. A feature selection approach, based on the abil-
ity of the RF to assess the relative importance of the predictors, was
used to identify the minimum number of features that can better
explain water demand. To assess the importance of each feature,
the RF switched one of the input features while keeping the rest
constant, and it re-evaluated the performance of the model meas-
uring the decrease in node impurity (Breiman 2001). The differen-
ces were averaged over all 2,000 trees. In order to reduce the
number of drivers, the least important feature was removed itera-
tively at different steps. Then, a 10-fold cross-validation was ap-
plied to obtain a stable estimate of the error of the model built

after predictor deletions. Finally, the model with a better trade-
off between number of predictors and error was chosen as the basis
for interpreting the likely drivers of water demand.

Results

Tree-Based Models for Water Consumption

Regression Tree
The most robust RT water consumption model (RMSE and R2

equal to 22.06 L=day=inhabitant and 0.46, respectively) was ob-
tained by considering a minimum of 36 census tracts in each
terminal node and a cost complexity factor of 0.001. This model
can be considered robust, given the complexity of the data. Even
though all the sociodemographic and urbanization variables were
selected as input for the model (mentioned in the section “Data”),
RT used only 5 variables in its construction, the most important of
which were, in order, HS, ACV, RD, P < 15, and AAP (Table 2).
The variables selected for RT showed a significant linear correla-
tion with water consumption in all cases (Table 3). However, the
ranking of variables was different—RD, AAP, ACV, P < 15, AI,
and so forth—considering a linear regression model. The HS
variable, the most important variable in the RT model (Table 3
and Fig. 2), was the variable with the eighth-highest correlation,

Table 2. Variable importance in the RT model

Variable Importance

HS 20
RD 14
AAP 13
YI 11
P > 65 10
ACV 8
P1534 6
P < 15 6
ABSA 5
AI 5
AND 1

Note: Importance is the frequency of variables in the nodes of the tree, as
either the main or the surrogate division variable.

Table 3. Correlation matrix (Pearson correlation coefficient) between
variables and DC

Variable DC

P < 15 −0.398a
P1534 −0.207a
P3564 0.04
P > 65 0.360a

AAP 0.453a

FRG 0.093b

YI −0.287a
AI 0.369a

WAH 0.132a

ACV 0.420a

ABSA 0.197a

AGD 0.02
AND −0.308a
HS −0.329a
RD −0.479a
aStatistically significant at 99% level.
bStatistically significant at 95% level.
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which could be due to a nonlinear relationship between water con-
sumption and HS.

It should be noted that interpretability of the model played an
important role in this research, as it does in many fields of social
science. The goal in the application of RT was not to achieve the
final results provided by the obtained regression tree (i.e., water con-
sumption estimate) but to better understand the synergies between
the remaining variables. The obtained regression tree is shown in
Fig. 2, where each socioeconomic variable is accompanied by
the respective decision threshold value. The average estimated water
consumption is indicated at each terminal node, together with the
percentage of the city area to which the estimated values belong.
The distribution of samples along the decision tree is not arbitrary
but is organized by variables representing different characteristics of
the city and its neighborhoods, and the sociourban complexity of it.

The first node or root node was represented by the HS variable.
A threshold greater than or equal to 2.28 inhabitants per house-
hold was established. When this condition was met, the second
node corresponded with the RD variable, for which the thresh-
old was greater than or equal to 1.49 inhabitants per 100 m2.
Therefore, the census tracts with greater domestic consumption
(156.50 L=day=inhabitant) were related to a greater number of
inhabitants. In this regard, the model followed the patterns detected
in other studies that, considering indoor water use only, established
a directly proportional relationship with the household size vari-
able in single-family dwellings with 3.35 inhabitants and in multi-
family dwellings with 2.19 inhabitants per household (Loh 2003),
although in this case no differences were established with regard to
the building type. In those census tracts in which RD was less than
1.49 inhabitants per 100 m2, the model considered a third node rep-
resented by AAP for which values lower than 41.35 years of age
determined the greatest number of census tracts (n ¼ 151) with in-
creased consumption (139.70 L=day=inhabitant). In the case that
the foregoing condition was not met, the census tracts presented
a lower consumption (117 L=day=inhabitant). The model indicated
that consumption increased in census tracts with a population for
which the average age was less, a relationship that was also evident
in other studies, despite being linked to the fact that children were
present.

In census tracts in which HS was less than 2.28 inhabitants per
household, the second node was represented by ACV with a lower

threshold of €58,800. The cadastral building value was used as a
proxy variable for the household income variable, given that the
latter information could not be obtained on a census tract level
for the year of study. Thus, a greater ACV value signified a greater
household income. In those households in which the cadastral value
was lower than €55,800, domestic water consumption increased to
139 L=day=inhabitant, although the cadastral value of the build-
ings was not a variable that was used in other studies on domestic
water consumption. The household income variable has tradition-
ally been used since the first econometric studies, such as Larson
and Hudson (1951), in which a directly proportional correlation was
established between water consumption and the household income
variables, which varied between 76 and 190 L=day=inhabitant and
$2,000 and $8,000, respectively. This high correlation between in-
come and water consumption was also established in more recent
studies (Arbués et al. 2004; Fan et al. 2014; Martinez-Espiñeira
2002; Ojeda de la Cruz et al. 2017). However, in the model that
was obtained, the cadastral value was limited to only those house-
holds with a HS value of greater than 2.28 inhabitants. It must also
be considered that the census tracts obtained were conditioned by
their household size rather than by their purchasing power. In con-
trast, in those census tracts with an ACVof greater than €58,800, a
third node was included, represented by P < 15 with an established
threshold equal to or greater than 14.87%. In those census tracts
with large number of minors, the recorded consumption was higher
(115 L=day=inhabitant), forming the second-largest group of cen-
sus tracts (n ¼ 138). In census tracts in which the threshold value
for P < 15 was not reached, domestic water consumption was less
(95.01 L=day=inhabitant). In general, less water consumption is
expected in an older population (March et al. 2012) and more con-
sumption in a younger population (Campbell et al. 2004). However,
other factors have also been established that can limit domestic
water consumption, e.g., the existence of water-saving devices or
raised awareness regarding water use (Beal et al. 2013; Mamade
et al. 2014).

The representation of observed water consumption com-
pared to predicted consumption (Fig. 3) was grouped into four
census tract levels in which the observed water consumption
varied from 20 L=day=inhabitant up to 240 L=day=inhabitant.
The predicted water consumption data for the model varied
from 90 L=day=inhabitant up to 160 L=day=inhabitant in a

Fig. 2. Decision tree obtained for the census tract. Each explanatory variable is accompanied by the respective threshold value and the percentage of
samples included (N). Water consumption values are in L/day/inhabitant.
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staggered manner. This may be related to the sensitivity or preci-
sion of the initial water consumption measurements in some census
tracts and to errors in allocating water supply connections to said
tracts. EMASESA, the company in charge of supplying water to
the city of Seville, collected only the customer contract number
associated with each water supply connection on the network,
i.e., each water supply point to dwellings. The water supply con-
nections were not georeferenced or associated with census tracts by
EMASESA. The association between census tract and cadastral
plot was carried out within the framework of this study following
the traces of the company’s water supply connection network.
Therefore, some water supply connections adjacent to various
census tracts may have been located in the wrong census tract.
Although the total municipal consumption was not affected by this
allocation error, it may have affected some of the tracts that share
the supply network.

Random Forest Model
The main drivers of water consumption in the city of Seville were
identified through the application of a feature selection procedure
embedded in the RF method (mentioned in the section “Random
Forest”). Fig. 4 shows the RMSE in the prediction of different mod-
els after removing the least important variable. RMSE error values
ranged from 18.89 L=day=inhabitant to 26.91 L=day=inhabitant.
RF produced more robust models than RT, although they were less
interpretable, obtaining only the most significant variables and not
the rules (gray box). Fig. 5 shows the pseudo-R2 of the models as
well as the relative importance of each explanative variable. RF
water consumption models explained a percentage of the variance
up to 56%. Regarding the relative importance of the drivers, the
same ranking in importance was observed within the different mod-
els, which reflected the stability in the RF importance estimation
and a high reliability of the results. To interpret the main sociode-
mographic drivers of the spatial variation in water, a simplified
model with a reduced number of variables was selected. The model
was composed of 6 variables (pseudo-R2 ¼ 0.54 and RMSE of
18.96 L=day=inhabitant). As in the case of RT, our results sug-
gested that spatial variation in the water consumption of Seville
is driven mainly by HS and RD, assigning it much greater impor-
tance than to the rest of variables. Therefore, water consumption in

Seville is associated mainly with population size. In addition, AAP,
ACV, WAH, and P < 15 were of significant importance in the
model. Fig. 6 shows the relative error box plots for water consump-
tion prediction for all RF models. In all cases, the median relative
error value was around 10%, although the maximum error for some
census tracts could reach values up to 30% (mentioned in the sec-
tion “Induction of RT Models”). Additionally, a linear regression
between predicted values from RF and observed water consump-
tion produced R2 values equal to 0.55 and the RMSE value of
13.55 L=day=inhabitant (Fig. 7). However, the lower and higher
water consumption values were overestimated and underestimated,
respectively.

Spatial Distribution of Modeled Water Consumption

Fig. 8 shows the distribution of predicted and estimated water
consumption according to the RT and RF models. The median pre-
dicted value for the year of the study was 125.8 L=day=inhabitant.
As shown in Fig. 8(a), census tracts with very high values
(>160 L=day=inhabitant) corresponded to the Casco Antiguo dis-
trict (Appendix S2, Fig. S3, and Table S2 in Supplemental Data) in
the following neighborhoods: San Lorenzo, Feria, San Gil, Museo,
Arenal, and Santa Cruz. This also occurred in a specific number of
census tracts in which there was a noticeable presence of single-
family dwellings located in the Palmera-Bellavista district (neigh-
borhood of Heliópolis) and the San Pablo–Santa Justa district
(neighborhood of Santa Clara); in these census tracts the lowest HS
and RD values were recorded. In contrast, census tracts with very
low consumption values (<50 L=day=inhabitant) corresponded to
those census tracts with a high presence of multifamily dwellings in
the Polígono Norte district and to those in which an underestimation
of water consumption may occur due to errors in census tract allo-
cation per water supply connection. Census tracts with an average
consumption (90–130 L=day=inhabitant) were unevenly distributed
and in greater number among the different neighborhoods of the
municipality, except in those neighborhoods located in the Casco
Antiguo district, in which recorded values were above the average.
Census tracts corresponding to lower (50–90 L=day=inhabitant)
and higher (130–160 L=day=inhabitant) values than the median
value also appeared unevenly. In the case of lower values, these were
located in census tracts adjacent to median values, whereas higher
values were located in census tracts closer to other higher values.
As was observed in the case of higher values in the Casco Antiguo

Fig. 3. Observed water consumption compared with RT predictions.
The dashed lines represent an exact 1∶1 relationship (expected fitting),
and the solid lines show a linear regression of these data. The ex-
plained variances (percentage R2) and RMSE values are 46% and
14.01 L=day=inhabitant.

Fig. 4. RMSE of the models fitted as a result of the feature-selection
approach.
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district, these occurred more frequently in the northern area,
whereas very high values were located in the southern area.

Figs. 8(b and c) show the domestic water consumption obtained
via aggregated machine learning models for intervals that corre-
spond to the average and standard deviations for actual consumption.
The RTmodel [Fig. 8(b)] represents census tracts with only two con-
sumption intervals with average values (90–130 L=day=inhabitant)
and high values (130–160 L=day=inhabitant). Consumption pre-
dicted by the model placed a high number of census tracts in the

average consumption interval, which coincided principally with
peripheral areas of the city, whereas neighborhoods with values
above the average were located in the Casco Antiguo district as well
as in areas of higher economic standing, such as the Los Remedios
district (in the neighborhood of the same name), the Nervión district
(neighborhood of Buharia), and the San Pablo–Santa Justa dis-
trict (neighborhoods of Heliópolis and Santa Clara). These last two
neighborhoods were also identified in the case of actual domestic
consumption.

Fig. 5. Relative importance of each independent variable in predicting water consumption in the city of Seville. Different models derived from the
feature-selection approach are represented in each column. The number on each column represents the determination coefficients of the model.

Fig. 6. Relative error of the models fitted as a result of the feature-
selection approach: median (interior horizontal line), mean (interior
square), 1% and 99% quantiles (edge of boxes), and range (extremes).
Relative errors were calculated for a k-fold cross validation test. See
Fig. 5 for the explanatory variables in the models, as shown on the
x-axis.

Fig. 7.Observed water consumption compared with the RF predictions
calculated using a selection of variables (Fig. 2). The dashed lines re-
present an exact 1∶1 relationship (expected fitting), and the solid lines
show a linear regression of these data. The explained variances (per-
centage R2) and RMSE values are 55% and 13.55 L=day=inhabitant.
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Fig. 8(c) shows domestic water consumption according to the
results obtained according to the RF model. Four intervals were
obtained on this occasion. In contrast to actual consumption and the
RT model, very low values (<50 L=day=inhabitant) were not asso-
ciated with any census tract, as can be deduced from the absence
of errors in census tract allocation per water supply connection.
Census tracts with low consumption (50–90 L=day=inhabitant)
were observed in more peripheral areas and corresponded with

neighborhoods of lower economic standing, as is the case in the
Polígono Norte, Polígono Sur, and Valdezorras neighborhoods.
Consumption with average values (90–130 L=day=inhabitant), in
line with the RT model, presented a heterogeneous distribution
in the municipality, although with an increased trend toward periph-
eral areas of the city. The neighborhoods of Heliópolis and Santa
Clara behaved as expected, as the consumption obtained via the
RF model was high (130–160 L=day=inhabitant), precisely as ex-
pected for their predominantly single-family composition and in line
with the RT model. The census tracts for which very high estimated
consumption values were observed (≥160 L=day=inhabitant) were
located in the Los Remedios district (neighborhood of Los Reme-
dios) as well as in the southern area of the Casco Antiguo district.

Spatial Distribution of Prediction Models

Fig. 9 shows the relative prediction errors from RTand RF. Relative
error values with a negative and positive symbol indicated an
underestimation or overestimation of the actual water consumption,
respectively, relative to the observed consumption. In the case of
the relative error in the RT model [Fig. 9(a) and Table 4], a large
number of census tracts were recorded (258, which represents
50.98% of the total) with error values between −10% and 10%.
Twenty-nine census tracts underestimated consumption relative to
actual consumption by more than 40%. Four census tracts with very
low consumption (50 L=day=inhabitant) were obtained in the dis-
tricts of Macarena (neighborhood of Polígono Sur), Sur (neighbor-
hood of Polígono Sur), and Este-Alcosa-Torreblanca (neighborhood
of Palacio de Congresos), possibly due to errors in allocating water
supply connections. Other cases of underestimation of actual con-
sumption occurred, such as in the Los Remedios district (neighbor-
hood of Tablada), with a consumption of 81.93 L=day=inhabitant
and located in a military base, a fact that could make it difficult to
allocate georeferenced water supply connections by EMASESA.
Other census tracts with a significant underestimation of actual do-
mestic consumption were located in the Norte district, in the neigh-
borhoods of la Bachillera (64.37 L=day=inhabitant) and El Gordillo
(52.56 L=day=inhabitant). In both cases, the errors could be the re-
sult of their own historical evolution, given that both increased the
number of dwellings in a manner that was not authorized by the
Administration and therefore lacking in basic supply and sanitation
services. The census tracts that presented an overestimation of actual
water consumption relative to expected consumption in the model
were located further away from the center of the city. Some of these
were observed in the districts of Triana and Los Remedios and reg-
istered very high values (above 160 L=day=inhabitant), in which
a predominantly multifamily composition with low density should
respond to lower actual water consumption. The same specific cir-
cumstances were detected in census tracts in the Sur, Macarena, and
Este-Alcosa-Torreblanca districts, in which there was abnormally
high actual water consumption. However, there were also occasional
cases of underestimation of actual water consumption.

In the case of the RF model [Fig. 9(b)], the majority of census
tracts were concentrated, in line with the RT model, within the
error interval between −10% and 10% (378 census tracts, compris-
ing 74.70% of the total). This signified that, in this last case, the RF
model had a better fit with expected consumption in the census
tracts. Some census tracts that presented overestimated values
coincided with those detected in the RT model, as is the case with
the census tracts located in the neighborhoods of Tablada, La Bach-
illera, and el Gordillo, with the exception of some census tracts
located in the Palmera-Bellavista and Este-Alcosa-Torreblanca dis-
tricts. This supports the error hypothesis in the allocation of water
supply connections. It is of note that in this RF model is the

Fig. 8. Domestic water consumption in the city of Seville: (a) real
observations; (b) RT model; and (c) RF model.
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underestimation (≥20%) that occurred in the case of the San
Pablo–Santa Justa district (neighborhood of Santa Clara), with
an actual consumption greater than 160 L=day=inhabitant and
that corresponded to the single-family dwelling type and low
residential density from which higher actual consumption is
expected. The model in this case attributes a consumption of

129.38 L=day=inhabitant, close to the average of actual consump-
tion predicted, 125 L=day=inhabitant. There is only one case in
which the census tract registered an estimation error of less than
40%: census section 4027, located in the Los Pájaros neighborhood
(Cerro-Amate district), for which actual consumption was above
the consumption estimated by the model.

Fig. 9. Spatial distribution of relative errors: (a) RT model; and (b) RF model.
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Conclusions

The study was intended to evaluate the performance of regression
tree methods for predictive modeling of water consumption in the
city of Seville, Spain, using sociodemographic and urban-building
indices as predictors. This research reveals new insights into the
drivers of water consumption across a city, while at the same time
it establishes a new methodological framework for its predictive
modeling. Specifically, the CART and random forest methods,
two multivariate, spatially nonstationary, and nonlinear machine
learning approaches, were introduced as an alternative to the hith-
erto applied multiple linear regression approaches, paving the
way for further scientific investigation based on machine learning
methods.

Tree-based machine learning methods provide many advantages
in analyzing domestic water consumption: (1) simplicity in terms of
both its application and interpretability of results, (2) the ability to
use complex data from different statistical distributions, and (3) rec-
ognition of nonlinear relationships between variables. Additionally,
the use of feature selection techniques represents an effective tool to
better determine the factors that have the highest influence on water
consumption and provide guidelines to evaluate their role in influ-
encing high consumption levels. Determining which explanatory
variables mainly influence the occurrence of high consumption rep-
resents an important step in managing and ensuring both quality
water supply to the population and the sustainability of water sys-
tems. Our results reveal that multiple sociodemographic and urban-
building drivers explain water consumption in the city of Seville.
The variables selected for RT showed a significant linear correla-
tion with water consumption in all cases, despite the ranking of
variables being different in the linear regression model. RF pro-
duced more robust models than RT, but they were less interpretable
due to the absence of rules (gray box). Both models placed similar
importance on the different variables, which reflects the stability
of the estimate and the high reliability of the results. The HS and
RD variables had the closest relationship with domestic water con-
sumption recorded in both the RT and the RF models.

Regarding the threshold or cutoff values obtained with RT, it is
noteworthy that the census tracts with the greatest domestic con-
sumption (with a maximum of 156.50 L=day=inhabitant) will be
related to a HS value greater than 2.28 and a RD value greater than
1.49. In those tracts for which the RD values were below the es-
tablished threshold, water consumption was determined using the
AAP value. The ACV variable was used as a proxy variable for the
household income variable. Thus, a greater ACV value signified a
greater increase in household incomes. In those dwellings where
the ACV was lower than €55,800, domestic water consumption

increased (values greater than 139 L=day=inhabitant). Finally,
the P < 15 variable, for which the threshold was established for val-
ues at or greater than 14.87%, indicated that recorded consumption
was higher in those census tracts with a larger number of minors
(greater than 115 L=day=inhabitant).

The results of the RF model suggest that domestic water con-
sumption will be determined principally by HS and RD, although
the AAP, ACV, WAH, and P < 15 variables are also of importance
in this case. The HS and RD variables showed their highest values
in tracts located in the periurban area, identified by new construc-
tion and multifamily type dwellings, whereas the lowest values
were recorded in census tracts located in older neighborhoods with
single-family type dwellings. In terms of the AAP variable, higher
values were observed in neighborhoods with less purchasing power
and the oldest districts in the municipality. In contrast, the census
tracts located in new-construction neighborhoods had lower re-
corded AAP values. The ACV variable coincided with census tracts
with lower HS and RD values. Furthermore, it was confirmed that
the lower values recorded for the ACV variable were detected in
areas of the city in which the AAP, RD, and HS variables registered
elevated values identified with new-construction neighborhoods.
The WAH variable showed higher values in census tracts located
in neighborhoods that are not included in the center but are con-
solidated urbanistically. Finally, the P < 15 variable showed its
highest values in census tracts located in areas of new construction
and lower economic value, although not broadly, as values were
also recorded that were similar to those observed in the center of
the municipality and in areas of greater economic standing.

On one hand, predicted water consumption that was very high
(>160 L=day=inhabitant) correspondedwith the CascoAntiguo dis-
trict as well as a specific number of census tracts in which there was a
notable presence of single-family dwellings. In contrast, very low
consumption (<50 L=day=inhabitant) corresponded to census tracts
with a high presence of multifamily dwellings. Census tracts with
an average consumption (90–130 L=day=inhabitant) were unevenly
distributed and in greater number among the different neighbor-
hoods of the municipality. In the case of the RT model, considering
the same intervals as in the case of the predicted consumption, census
tracts were observed that coincided with peripheral areas of the city
in the case of average values (90–130 L=day=inhabitant), as well as
high values (130–160 L=day=inhabitant) belonging to neighbor-
hoods located in the central area with the highest economic value.
In the case of the RFmodel, there were four estimated intervals, with
the exception of very low consumption (<50 L=day=inhabitant),
that were not present in any census tract, as could be inferred
from the lack of error in the allocation of census tracts per
water supply connection. Census tracts with low consumption

Table 4. Relative error for each RT and RF model on the census tract and neighborhood levels

Model Administrative level Size

Relative error (%)

<−40 −40 to −20 −20 to −10 −10 to 10 10 to 20 >20

RT Census tract Na 29 36 66 258 83 34
%b 5.73 7.11 13.04 50.98 16.40 6.71

Neighborhood Nc 1 1 7 95 4 0
%d 0.92 0.92 1.38 87.96 3.70 0

RF Census tract Na 1 15 55 378 53 4
%b 0.19 2.96 10.86 74.70 10.47 0.79

Neighborhood Nc 1 1 2 104 0 0
%d 0.92 0.92 1.85 96.29 0 0

aNumber of census tracts.
bPercentages of total census tracts.
cNumber of neighbourhoods.
dPercentages of total neighbourhoods.
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(50–90 L=day=inhabitant) were observed in the most periph-
eral areas and corresponded to neighborhoods of lower eco-
nomic standing. Average (90–130 L=day=inhabitant) and high
(130–160 L=day=inhabitant) consumption presented an uneven
distribution, as is the case in the RT model. In the case of aver-
age consumption, this trended toward peripheral areas, and in
the case of higher consumption, this was more present in single-
family type dwellings. Census tracts in which very high levels of
estimated consumption were observed (≥160 L=day=inhabitant)
were located principally in tracts in the southern area of the
municipality.

The RF method provides better predictions than RT; however,
the interpretability of the RT model facilitates better understanding
of existing synergies between predictors and domestic water con-
sumption. The design parameters are simple in the case of RF. The
most robust RT water consumption model (RMSE and R2 equal to
22.06 L=day=inhabitant and 0.46, respectively) was obtained from
considering a minimum of 36 census tracts in each terminal node
and a cost complexity factor of 0.001, whereas RF water consump-
tion models explained a variance percentage of up to 56%. The
model selected comprises six variables (pseudo-R2 ¼ 0.54 and
RMSE of 18.96 L=day=inhabitant). In terms of error distribution
by census tract, 50.98% of census tracts estimated by RT comprised
around 10% of relative error. Furthermore, in the case of the RF
model, these tracts represented 74.70% of the total.

Data Availability

The following data, models, or code generated or used during the
study are available from the corresponding author by request: dem-
ographic, socioeconomic, and building variables and scripts for the
application of random forest and CART models.
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