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Abstract: This work was motivated by the premise that next-generation smart city systems will be enabled by widespread adoption
of sensing and communication technologies deeply embedded within the physical urban domain. These technological advances
(e.g., sensing, processing, and data transmission) are what makes smart city digital twins possible. This paper explores approaches and
challenges in architecting and the operation of smart city digital twins. A smart city digital twin architecture is proposed that supports
semantic knowledge representation and reasoning, working side by side with machine learning formalisms, to provide complementary
and supportive roles in the collection and processing of data, identification of events, and automated decision-making. The semantic
and machine learning sides of the proposed architecture are exercised on a problem involving simplified analysis of energy usage in
buildings located in the Chicago Metropolitan Area. DOI: 10.1061/(ASCE)ME.1943-5479.0000774. © 2020 American Society of Civil

Engineers.
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Introduction

Problem Statement

Rapid urbanization places additional demands on cities that are
constrained to operate with limited resources. Long-term solutions
to this bottleneck are driving sociotechnological transformation of
cities into smart cities, which includes the adoption of new tech-
nologies imitating human intelligence. One of the important out-
comes of advances in computing and communications—the fifth
generation of cellular mobile communications (5G) and Internet
of Things (IoT)—over the past few decades is the way in which
they have opened doors to the replacement of aging urban infra-
structure with new types of urban systems comprising physical net-
works connected to cyber components (data, information, software)
for decision-making (Preuss 2017). Looking forward, these next-
generation urban systems will be defined by superior levels of per-
formance, new forms of functionality, transparency in allocation
of resources, and good economics over long time horizons. While
city dwellers enjoy the benefits that these technological advances
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afford, systems engineers and urban planners are faced with a
multitude of new design challenges. These challenges arise from
the presence of heterogeneous content (multiple disciplines, multi-
ple types of data and information, multiple systems of sensing and
measurement), network structures that are spatial, multilayer, inter-
woven, and dynamic, behaviors and control that are distributed
and concurrent, and interdependencies among coupled urban sub-
systems comprising physical, cyber, organizational, and social
domains (Rinaldi et al. 2001).

Solutions to these challenges are complicated by the need to
address the myriad of questions faced by urban stakeholders, while
at the same time taking into account the unique physical, economic,
social, and cultural characteristics of individual cities. From an
operations standpoint, two basic questions are: (1) What strategies
of day-to-day operation lead to high levels of performance and
(2) How do different cities respond to and recover from human-
caused and natural disasters? The authors believe that high levels
of situational awareness (i.e., understanding how a city is actually
used) are a prerequisite to improving day-to-day operations. Sim-
ilarly, from a long-term planning perspective, accurate estimation
of future demands on limited resources is essential for achieving
healthy and sustainable urban behavior (Ramaswami et al. 2018).
In an improvement on decision-making procedures from a bygone
era, answers to these questions can now be based on data-driven
approaches to measuring urban performance and to identifying
trends and spatiotemporal patterns in city behavior.

The distributed and multidomain nature of urban systems means
that no single decision maker knows all of the information known
to all of the other urban decision makers. In order for the commu-
nication (and dependency) relationships among participating urban
domains to occur in an orderly and predictable way, designers need
to pay attention to the boundaries and interactions connecting urban
domains (Selberg and Austin 2008). This observation suggests that
a system for smart management of urban behaviors will follow an
architecture along the lines illustrated in Fig. 1, with analytical tools
providing strategies for real-time control of multidomain behaviors
and planning of actions in response to events distributed throughout
the urban environment. Formal approaches to spatiotemporal rea-
soning are needed to ensure that actions (the results of decisions)
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Fig. 1. Architecture for multidomain urban behavior modeling and computational support for real-time control of interactions—flows of data,
information, people, goods, and energy—among urban domains. (Adapted from Coelho et al. 2017.)

occur in the right place and at the right time. These approaches
need to operate across multiple spatial and temporal scales. It has
also been observed that, unlike standard cradle-to-grave product
life cycle models, cities evolve in response to economic opportu-
nity and external threats. Formal support is needed for the short-
and long-term managed evolution of these opportunities and
challenges.

Scope and Objectives

This work was motivated by the premise that next-generation urban
systems will be enabled by widespread adoption of sensing and
communication technologies deeply embedded within the physical
urban domain. These technological advances will allow for the de-
velopment of smart city digital twins (Lee et al. 2015; Savisalo et al.
2018). A smart city digital twin is defined here as a cyber com-
ponent that mirrors the physical urban system through real-time
monitoring and synchronization of urban activities. Appropriate
software and algorithms will work to provide superior levels of ur-
ban performance (e.g., in urban mobility, energy efficiency), urban
planning (e.g., zoning), and resilience (e.g., through strategies of
control and risk management).

This paper explores approaches and challenges in architecting
and the operation of smart city digital twins. Realization of this
opportunity is complicated by the reality that within the world
of model-centric engineering, present-day use of artificial intelli-
gence (Al) and machine learning (ML) technologies is fragmented
and at a crossroads. During the past decade engineering researchers
in Al have tended to focus on the comprehensive development of
ontologies for a domain or development activity and their extension
from common core ontologies (e.g., geospatial, time, actors,
events) and higher-level basic formal ontologies (Arp et al. 2015).
Far less attention has been given to the development of rules asso-
ciated with ontologies and consideration of the ways in which
ontologies and rules can work together to respond to events and
support decision-making. At the same time, ML algorithms provide
comprehensive support for the classification, clustering, and iden-
tification of association relationships and anomalies in streams of
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real-world data. Remarkable advances (Cai et al. 2017) in ML al-
gorithms include the ability of a machine to learn the structure of
large-scale graphs and their attributes. And yet, ML techniques
struggle to explain the rationale for decision-making, a task that
multidomain semantic modeling and rule-based reasoning can
complete with ease.

With these challenges in mind, it is proposed here that the best
pathway forward for smart city digital twin design is with architec-
tures that support Al and ML formalisms working side by side as a
team, providing complementary and supportive roles in the collec-
tion and processing of data, identification of events, and automated
decision-making. As illustrated in Fig. 2, the authors envision a so-
called city operating system that provides city stakeholders (resi-
dents, businesses, planners, and engineers) with enhanced levels of
situational awareness and decision-making support for the manage-
ment of urban infrastructure and services embedded in the space-
time domain. The knowledge representation and reasoning (KRR)
component entails domain and meta-domain data, ontologies, and
rules that can dynamically respond to events. KRR encapsulates the
data and represents it with reduced dimensionality, and ML will be
used to classify data into collections and learn about cause-and-effect
relationships embedded in the data. The proposed approach builds
upon the authors’ recent work in semantic modeling for urban system
of systems (Austin et al. 2015; Coelho et al. 2017) and exploration of
a combined semantic and ML approach to the monitoring of energy
consumption in buildings (Delgoshaei et al. 2018).

The remainder of this paper proceeds as follows. First, related
work in the areas of semantic modeling and rule-based reasoning,
ML and data mining techniques, and digital twins is covered. Next,
the proposed smart city digital twin architecture is introduced. This
section describes an architectural template where semantic model-
ing and rule-based reasoning work alongside technologies for ML.
Extensions of this template are then proposed to highly multidis-
ciplinary urban domains, and application of the proposed method-
ology to simplified analysis of energy usage is demonstrated in
buildings located throughout the Chicago Metropolitan area. The
paper closes with a discussion and conclusions.
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Fig. 2. Smart city digital twin architecture and operating system view of smart city behaviors, management of city and urban planning processes and
actions, and restoration of operations in response to disruptions [Downtown Chicago Image: Andrew Horne, under Creative Commons-BY_2.0
license (https://creativecommons.org/licenses/by/2.0/); Map data (c) 2019 Google].

Related Work

This section discusses related work in semantic modeling with
ontologies and rule-based reasoning, supervised and unsupervised
ML, and digital twins.

Semantic Modeling and Rule-Based Reasoning

A long-standing tenet of the authors’ work (Casey and Austin
2002; Austin et al. 2006) has been that methodologies for strategic
approaches to urban design will employ semantic descriptions of
application domains. These approaches use ontologies and rule-
based reasoning to enable validation of requirements and commu-
nication (or mappings) among multiple disciplines. The top section
of Fig. 3 complements Figs. 1 and 2 and pulls together the different
pieces of the proposed architecture for distributed system behavior
modeling with ontologies, rules, mediators, and message-passing
mechanisms. On the left-hand side, the textual requirements are
defined in terms of mathematical and logical rule expressions for
design rule checking. Urban domain models correspond to a multi-
tude of graph structures and composite hierarchy structures for the
system structure and system behavior. Behaviors are associated
with components. Discrete behavior will be modeled with finite
state machines. Continuous behaviors will be represented as the
solution to ordinary and partial differential equations. Ontology
models and rules glue the requirements to the engineering models
and provide a platform for simulating the development of system
structures, adjustments to system structure over time, and system
behavior. The urban building-block level of Fig. 3 shows illustrative
examples of ontologies and rules for the definition of building block
elements (e.g., requirements, networks, sensors) used in larger multi-
domain semantic models. The meta-domain section of Fig. 3 shows
ontologies and rules (e.g., space, time, physical units) that can be
imported into and are fundamental to the representation of concepts
and reasoning across all domains.
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The development of Semantic Web technologies (Berners-Lee
et al. 2001) over the past two decades has resulted in the ability
for machines to access and share information, thereby supporting
automated discovery of new knowledge (Hendler 2001). For the
semantic modeling of multidomain urban settings, the use of Se-
mantic Web technologies for rule checking has several key benefits:
* Rules that represent policies are easily communicated and

understood.

* Rules retain a higher level of independence than logic embedded
in systems.

* Rules separate knowledge from its implementation logic.

* Rules can be changed without changing the source code or the
underlying model.

A rule-based approach to problem solving is particularly ben-
eficial when the application logic is dynamic (i.e., where a change
in a policy needs to be immediately reflected throughout the appli-
cation) and rules are imposed on the system by external entities.
Rules can be developed to resolve situations of conflict or compet-
ing objectives—such strategies use notions of fairness to prevent
deadlocks in the system operation. All three of these conditions
apply to the design and management of urban systems. Together,
the eXtensible Markup Language (XML), resource description
framework (RDF), and Web Ontology Language (OWL) allow for
the implementation of reasoning that can prove whether or not as-
sertions are true or false. These tools need to operate in (almost)
real time, and as such, description logic requires extensions to make
them computationally decidable (Baader et al. 2008). The reader is
referred to Petnga and Austin (2016) for a detailed summary of
description logic concepts. Finally, this work employs Apache Jena
(2016), an open-source Java framework for building Semantic Web
and linked data applications. Jena provides application programming
interfaces (APIs) for developing code that handles RDF, OWL, and
SPARQL (support for query of RDF graphs). The result is a formal
rule-based approach to the processing of incoming events, reasoning,
and adjustment to the structure and properties of semantic graphs.
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Semantic Modeling and Reasoning for Urban Domains
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Fig. 3. Framework for implementation of semantic models using ontologies, rules, and reasoning mechanisms.

A detailed discussion on the use of ontologies in urban develop-
ment projects can be found in Falquet et al. (2005). The scope of
contributions includes the development of ontologies for the geo-
graphic information sector, modeling interconnections (mediators)
among urban models, and describing urban mobility processes.
This work also includes the development of ontologies for the
Geography Markup Language (GML) and CityML, the XML
markup language for cities.

Machine Learning and Data Mining Techniques

Machine learning and data mining techniques learn about a sys-
tem’s structure and behavior, thereby providing insight—sets of
patterns or expectations—into the underlying (raw) data, and sup-
port decision-making and prediction of future system states. These
methods are used to solve complex engineering applications that
entail a large number of independent parameters and nonlinear in-
terdependencies that cannot be easily modeled from first principles.
For the purposes of this paper, understanding the built environment
in large-scale urban areas and spatiotemporal patterns of building
energy consumption are among these applications.

ML algorithms can use supervised or unsupervised learning.
Supervised learning typically encompasses two steps: training and
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prediction. Data sets are divided into training data sets and testing
data sets. The training step allows identification of the decision
model that provides the dependency of the target (predicted vari-
able) on the features (impacting variables). In the next step, the
decision model is applied to the testing data sets, and then the ef-
fectiveness of the prediction performance of the model can be
calculated. Supervised learning, such as the nearest-neighbor algo-
rithm, requires labeled data sets (e.g., the data are labeled with the
correct answer), a process that can be computationally expensive.
This algorithm makes predictions on new data points based on their
proximity to the points in the training set. Supervised ML tech-
niques also include the discovery of binary decision trees.

The goals of unsupervised learning algorithms (e.g., the
k-means clustering algorithm) are to model and identify the under-
lying structure or patterns in a data set when no correct answers
(Iabels) are provided. Semisupervised learning methods fall between
the strategies of supervised and unsupervised learning and employ
combinations of labeled and unlabeled data. First, the unsupervised
method is used to identify patterns, and then supervised learning is
used to make the best predictions for the unlabeled data using the
labels generated by unsupervised learning. The prediction decision
model is then tested on labeled data. This semisupervised technique
can address a wide range of engineering applications, including
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building energy performance and procedures needed for the recovery
of operations after disruptions in an urban environment.

Digital Twins

A digital twin is a cyber (or digital) representation of a system that
mirrors its implementation in the physical world through real-time
monitoring and synchronization of data associated with events. The
associated software and algorithms work to provide superior levels
of performance, strategies for avoiding unnecessary down time, and
support for long-term planning. Digital twins may also avoid the
need to tinker with the physical system itself. The digital twin con-
cept dates back to the 2000-2010 era (Glaessgen and Stargel 2012)
and was initially proposed as a way to support the design and op-
eration of air vehicles for NASA. Since then the range of potential
applications has expanded to include automotive components,
manufacturing processes, power plants, design of networks of wind
turbines, and smart cities (Lee et al. 2015; Mohammadi and Taylor
2018; Negri et al. 2017; Privat et al. 2019; Kaewunruen et al. 2018;
Tahmasebinia et al. 2019). Common key elements for successful
digital twins are cloud computing, IoT, and semantic modeling
(Alam and Saddik 2017; M2M 2015; Nie et al. 2019; Tao et al.
2018). Within the systems engineering community, Siemens now
sees digital twins as the successor to procedures for model-based
systems engineering (Boschert et al. 2018).

Note that the concept of building a digital replica of a physical
object or space is also found in building information modeling
(BIM), parametric three-dimensional (3D) computer-aided design
(CAD) technologies, and processes in the architecture, engineering,
and construction (A/E/C) industry. Like digital twins, BIM became
popular in the early 2000s by providing contractors on large proj-
ects a central point of building reference in a 3D digital, visual, and
quantitative model of buildings. When coupled with the integration
of work practices among architects, engineers, fabricators, and con-
tractors, BIM practice paradigms evolve cumulatively along a tra-
jectory from visualization to coordination to analysis and, finally, to
supply chain integration (Taylor and Bernstein 2009). Adopting
BIM practice can lead to tremendous improvements in project
productivity, such as lowering the risk of projects through a reduc-
tion in errors, better time lines, and budget management (Jin et al.
2017). However, this physical information model is suited for
buildings during concept and design phases, not ones occupied
and utilized daily. Another way of stating this distinction is as fol-
lows: BIM is just a picture of what the real-world object should be,
whereas a digital twin is a digital replica of an existing and opera-
tional asset. As such, the digital twin for a building can provide
insight into the current state of building subsystems and how they
are impacted by occupant behavior and other events.

Proposed Digital Twin Architecture

An idealized implementation of a digital twin consists of a model of
physical objects, data stored with the objects, and a unique one-to-
one correspondence between individual objects and an ability to
monitor and synchronize their state and behavior (Shetty 2017).
For smart city digital twins (Lee et al. 2015; Savisalo et al. 2018)
the path to an implementation is complicated by a multitude of con-
cerns spanning the physical, cyber, social, and natural domains
(Figs. 1 and 3), as well as difficulties in defining semantics and
rules for their interaction. Further challenges arise when knowledge
of the urban structure and behavior is incomplete and considerable
uncertainty exists in the spatial and temporal nature of future urban
events. Looking forward, smart city digital twins will need to deal
with these challenges. The authors propose that one way of doing
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this is to have them iterate on a process of continual learning
that includes progressive refinement of semantic models and data-
driven discovery of cause-and-effect relationships and hidden pat-
terns among elements of the participating domains. The building
block for this work is an architectural template that integrates se-
mantic modeling with ML techniques and defines their roles and
interactions. It is demonstrated how the template might be ex-
panded to include the range of data sources and measures for
assessment found in a real-world city.

Semantic Modeling and Machine Learning Architectural
Template

Fig. 4 shows the proposed architectural template for a combined
multidomain semantic modeling and ML approach to the imple-
mentation of smart city digital twins. Instead of creating a small
number of all-encompassing ontologies and associated rules, the
goal here is to put the development of data, ontologies, and rules
on an equal footing and create architectural templates for a specific
domain or design concern (a convenient name is the data-ontology-
rule footing). This approach to semantic model development forces
developers to think about the chain of dependency relationships
among the data, ontologies, and rules and to provide the data
needed to support decision-making—rules require data and object
properties from the ontologies, which in turn require data from the
data models shown along the right-hand side of Fig. 4. Semantic
graph models will be populated with individuals (i.e., instances of
real-world data) by visiting (a software design pattern) the relevant
data models and gathering the data and object properties relevant to
the application at hand. Rules can be developed for the verification
of semantic properties (e.g., to verify that a specific data property
has been initialized) and for reasoning with data sources and in-
coming events, possibly from a multiplicity of domains. Implemen-
tation of the latter leads to semantic graphs that can dynamically
adapt to incoming events (e.g., weather).

The proposed architectural template also employs ML tech-
niques and three styles of learning to gain insight into the data.
Semantic feature engineering (Zheng and Casari 2018) begins
with raw data and then uses domain knowledge to create features
that are used in ML algorithms, which supports the organization
(and simplification) of rules. Tree-based classification algorithms
involve the identification of binary rules (true/false) and branch-
ing based on numerical and temporal data that maximize the like-
lihood of prediction of a target variable. Clustering algorithms
identify groups of things that belong together. Knowledge of these
groups is useful for architecting ontologies and related data and
object properties in a manner that is consistent with the underlying
data. Association algorithms look for rules that strongly associate
different data attribute values, possibly spanning domains, and
then use this information to develop cross-domain rules for desir-
able behavior. For example, in the smart city application, an as-
sociation rule might uncover the observation that the majority of
office spaces are in a specific area of a city.

Combined Semantic Modeling and Machine Learning
of Urban Domains

Fig. 5 builds upon Figs. 3 and 4 and shows an abbreviated digital
twin architecture for a combined semantic modeling and ML ap-
proach to the monitoring and real-time management of smart city
operations. One key benefit in organizing data, ontologies, and
rules into template structures is that it opens doors to the systematic
assembly of system-level models of urban behavior and properties
through the composition of smaller template models. A fully
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Fig. 4. Simplified architectural template for combined semantic and ML modeling used in digital twins.

implemented smart city digital twin (see the rows of blocks in
Fig. 5) covers the physical and cyber infrastructure, business oper-
ations and supply chains, urban services and land use, and events
generated by external events such as weather. Most of these models
are embedded in spatiotemporal terrain. Domain-specific ontologies
and rules are populated with data from a wide range of sources: ex-
amples include Open Street Map (OSM), GML and CityGML for the
population of urban network ontologies (Falquet et al. 2005; OSM
2019), online weather servers for the population of weather ontol-
ogies, city hall data for the development of urban policies and reg-
ulations, and census data for population demographics. With the
advent of smart devices and network connectivity, urban operations
can now be monitored with data that are crowd-sourced. An early
example of this is the acoustic sensor network currently in develop-
ment in New York (Bello et al. 2019).

The lowermost section of Fig. 5 shows how ontologies are
imported into a semantic graph, rules are loaded into a reasoner,
and semantic graphs are attached to reasoners to process incom-
ing events and potentially trigger transformations in the semantic
graph. It is important to note that support for cross-domain reason-
ing and the inference of new knowledge occurs through the devel-
opment and execution of ontology namespaces from multiple urban
domains, as well as the multidomain ontologies for space and time
shown along the bottom of Fig. 3. The authors believe that this
framework is sufficient for the development of reasoning proce-
dures that can (1) ensure actions taken on an object or urban sub-
system in response to an event occur at the right place and at the
right time, (2) provide insight into the propagation of domain in-
teractions and, in the longer term, the emergence of patterns in city
behavior, and (3) support a validation mechanism that insures the
semantic model is a true representation of the real world.

Case Study Problem

This section presents a case study problem where urban data from
the publicly available Chicago Energy Benchmarking data set
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(Chicago 2019) is analyzed from data mining (ML) and semantic
modeling perspectives. This data set is part of Chicago’s Open Data
Portal, an ongoing effort to make government more responsive,
transparent, and cost-effective (Goldsmith and Crawford 2014).
In 2016, the building sector in the US accounted for approximately
40% of total energy consumption (EIA 2016), suggesting that with
advances in technology over the past few decades, opportunities
exist to tackle energy use and design near zero-energy buildings
(Shrivastava and Chini 2016; Hong et al. 2012; Shrestha and
Kulkarni 2013). The purpose of the case study is twofold. The first
goal is to understand the extent to which the data set supports
(1) the classification of buildings at the neighborhood (or commu-
nity area or zip code) level, and (2) the prediction of building en-
ergy use as a function of data set attributes, allowing for the design
of building ontologies and rules on the semantic side of the prob-
lem. The second purpose is to understand the extent to which the
data set supports (or, conversely, does not support) hypotheses that
an engineer might have. An engineer might wonder, for example,
whether, on average, buildings close to Lake Michigan consume
quantities of energy significantly higher than the average values.
One might also wonder whether buildings north of the city center
consume more energy than those to the south. Knowledge of such
trends, even if they are subject to uncertainty, are useful for stake-
holders concerned with energy consumption (e.g., building manag-
ers, energy companies, city managers). Preliminary insight into
these issues is possible with spreadsheet-like computations. Be-
yond that, the Weka (Witten et al. 2017) tool is used in data mining
experiments and Apache Jena for the construction of semantic
graph models and rules.

Chicago Energy Benchmarking Data Set

The Chicago Energy Benchmarking data set contains 2 years of
self-reported building annual energy consumption data. The build-
ings in this database are commercial (e.g., hotels, retail stores,
office buildings), residential (e.g., multifamily housing units), and
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Fig. 5. Abbreviated digital twin architecture for combined semantic and ML approach to monitoring and real-time management of smart city
operations. Data, ontologies, and rules are placed on equal footing and developed for multiplicity of domains.

civic and municipal buildings (e.g., performing arts, hospitals, li-
braries) with a gross floor area exceeding 4,645 m? (50,000 ft?).

Fig. 6 shows the spatial distribution of buildings and zip codes
in the Chicago Energy Benchmarking data set. The left-hand side
shows a bird’s-eye view of zip codes and the distribution of build-
ings in the area of study. The right-hand side of Fig. 6 focuses on
the downtown area and, in particular, zip code 60616, which will
be used to illustrate the results of learning in the computational
experiments. Each building is defined by 26 attributes; for the
present purposes, the most important are (1) property name
and address, (2) zip code, (3) community area, (4) primary prop-
erty type, (5) gross floor area (ft> = 0.0929 m?), (6) year built,
(7) age, (8) electricity usage (kBtu = 0.293 kWh), (9) natural
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gas usage (kBtu = 0.293 kWh), (10) site energy utilization index
(EUID) (kBtu/ft>=3.14kWh/m?), (11) source EUI (kBtu/ft> =
3.14 kWh/m?), and (12) location (i.e., latitude and longitude).
Two factors that complicate the use of data set attributes are
the codependency between the attributes and lack of precision.
An example of the former is Attributes 6 and 7, which are coupled
by a simple relation.

Preliminary Analysis of Building Energy Consumption

State-of-the-art practice for the assessment of EUI in buildings is
defined by EnergyStar (2018), which provides median scores for
site and source EUI for all types of buildings. The national median
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Fig. 6. Spatial distribution of buildings and zip codes represented in Chicago Energy Benchmarking data set. Left-hand side: bird’s-eye view of 55 zip
code regions and buildings. Right-hand side: focus on downtown area and region for zip code 60616.

data indicate, for example, that hospitals have larger site EUI values
compared to schools. While this framework provides building port-
folio managers with a means to assess how well individual build-
ings are performing relative to their peers, median values are a
single data point and ignore the scatter in data across a spectrum
of buildings of the same type. As a first step toward addressing
this shortcoming, Table 1 is a summary of electricity and gas
usage (kBtu) in various kinds of buildings located in the Chicago
Metropolitan Area. On a per-entity basis, the four most significant
categories of electricity and gas consumption stem from colleges
and universities (4.3% and 5.76%), hospitals (7.59% and 9.16%),
multifamily housing units (26.46% and 48.59%), and office build-
ings (31.09% and 9.25%). Accordingly, from this point on, build-
ing types outside these four areas were removed from the scope of
this case study.

Table 2 shows the distribution of source EUI organized across
five zones for hospitals, multifamily housing, office, and university
buildings (1,788 buildings in total). The buildings are sorted by
source EUI value and then assigned to one of five zones. EUI Zone
1 (0%-20%) covers the interval [12.1, 103.6](kBtu/ft?), [38,325.3]
(kWh/m?); EUI Zone 2 (20%-40%) covers the interval [103.7,
130.3)(kBtu/ft?)[325.6,409.1](kWh/m?); EUI Zone 3 (40%-
60%) covers the interval [130.4,152.7](kBtu/ft*)[409.4,479.4]
(kWh/m?); EUI Zone 4 (60%-80%) covers the interval [152.8,
189.3](kBtu/ft?)[479.8, 576.9] (kWh/m?); and EUI Zone 5 (80%-—
100%) covers the interval [190.2,970](kBtu/ft?)[597.2, 3045.8]
(kWh/m?). Hospitals, university buildings, and offices constitute
25% of the building inventory and are relatively heavy—at least
50% of the buildings are in Zone 5S—consumers of energy. Other-
wise, the building inventory is dominated by (1,331 out of 1,788)
multifamily housing, which has source EUI values that are (roughly
speaking) uniformly distributed across the five zones. Table 3
shows the same statistics for buildings located within zip code
60616. Even within a single zip code, the energy usage of
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multifamily housing units covers a wide range of values, indicating
that mean values of energy usage by themselves provide an incom-
plete picture in the assessment of building energy usage.

Semantic Feature Engineering and Preliminary
Semantic Models

Semantic feature engineering (Fig. 4) is defined here as the process
of using a combination of domain knowledge and inference rules to
infer features that can serve as meaningful input to data mining
algorithms (see arrows pointing downwards from multi-domain se-
mantic modeling to semantic feature engineering) for tree-based
classification, clustering, and extraction of association relation-
ships. Similarly, the arrows pointing upwards from semantic feature
engineering to multi-domain semantic modeling correspond to ML
algorithms providing feedback for the specification and organization
of digital twin ontologies and, potentially, development and simpli-
fication of urban rules. With this framework in place, semantic rules
can extract features from a data set and synthesize new implicit in-
formation. For example, by comparing the latitude and longitude for
a building with geographic profiles of the lake boundary, a simple
semantic rule can create a boolean data property indicating whether
or not (true or false) the building is close to the lake.

For the purposes of this case study, the data parameters will be
mined from a combination of (1) attributes found in the City of
Chicago Building Energy Consumption Benchmarking data set and
(2) classes and data properties found in domain ontologies for build-
ings, land use, and urban planning (Fig. 7). The role of these domains
in the larger urban picture is shown in Fig. 5. The purpose of the
building ontology and associated semantic rules is to provide seman-
tic information and perspective regarding the aspects of building
energy performance and urban planning, in this case a small number
of details about zoning constraints and definitions. Such constraints
can ensure, for example, that an industrial space will not be built next
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Table 1. Summary of analysis results for building energy consumption across Chicago Metropolitan Area in 2016

No electricity Entity use Percentage Natural gas use
Property type (kBtu = 0.293 kWh) (kBtu = 0.293 kWh) Percentage
Adult education 3 28,692,102.0 0.10 18,564,922.6 0.07
Auto dealership 4 27,273,443.2 0.09 21,831,307.5 0.08
Bank branch 3 13,061,369.1 0.05 12,537,212.1 0.04
College/University 87 1,238,968,865.6 4.31 1,642,444,340.9 5.76
Convention center 1 485,705,024.0 1.69 325,947,797.7 1.14
Courthouse 2 66,813,357.5 0.23 63,930,413.0 0.22
Education 3 14,283,524.6 0.05 21,849,218.7 0.08
Enclosed mall 5 212,613,034.3 0.74 136,790,519.6 0.48
Financial office 4 340,885,369.2 1.18 198,475,181.2 0.70
Fitness center 9 81,582,735.1 0.28 84,346,836.6 0.30
Hospital 30 2,184,696,752.3 7.59 2,610,466,870.4 9.16
Hotel 75 1,534,256,336.5 5.33 1,690,997,910.8 5.93
Indoor arena 1 113,634,101.0 0.39 8,970,953.0 0.03
K-12 school 387 1,361,021,876.3 4.73 2,078,021,816.5 7.29
Laboratory 21 468,678,664.8 1.63 23,141,686.6 0.08
Library 8 131,063,388.6 0.46 14,788,482.9 0.05
Lifestyle center 1 4,753,803.1 0.02 1,573,937.3 0.01
Mall 8 80,657,950.2 0.28 26,641,660.2 0.09
Medical office 14 213,490,519.9 0.74 83,535,323.1 0.29
Mixed use property 30 965,741,600.0 3.36 461,484,334.6 1.62
Movie theater 3 22,801,218.9 0.08 10,514,599.8 0.04
Multifamily housing 1331 7,611,278,688.9 26.46 13,849,357,181.9 48.59
Museum 5 165,827,303.5 0.58 211,076,547.7 0.74
Office 340 8,944,429,927.9 31.09 2,635,616,230.5 9.25
Other 14 191,227,680.4 0.66 156,715,974.1 0.55
Performing arts 7 60,193,105.1 0.21 23,661,439.1 0.08
Physical therapy 2 11,318,342.3 0.04 8,709,848.2 0.03
Preschool/daycare 1 4,188,120.8 0.01 2,528,453.8 0.01
Prison 3 209,458,507.1 0.73 488,653,665.4 1.71
Public assembly 6 137,503,177.9 0.48 104,571,594.7 0.37
Public services 1 7,293,259.2 0.03 9,532,365.8 0.03
Recreation 16 42,309,927.6 0.15 134,934,393.5 0.47
Repair services 2 4,447,996.5 0.02 6,073,873.1 0.02
Residence hall 26 168,017,563.5 0.58 156,724,509.6 0.55
Residential 4 20,072,114.7 0.07 34,611,486.1 0.12
Residential care 11 51,846,514.1 0.18 83,011,165.1 0.29
Retail store 56 508,360,390.5 1.77 244,094,970.0 0.86
Senior care 53 166,765,835.1 0.58 306,709,397.2 1.08
Social/meeting hall 2 13,562,048.3 0.05 17,265,782.8 0.06
Specialty hospital 1 8,478,594.8 0.03 13,801,832.7 0.05
Strip mall 26 179,545,110.1 0.62 80,152,943.7 0.28
Supermarket/grocery 45 480,065,598.9 1.67 270,007,557.2 0.95
Wholesale club 8 95,055,846.2 0.33 64,954,953.2 0.23
Worship facility 14 34,068,836.7 0.12 56,200,787.4 0.20
Total percentages — — 100.00 — 100.00

Table 2. Distribution of zones of source EUI for hospitals, multifamily

Table 3. Distribution of zones of source EUI (source energy usage index)
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for hospitals, multifamily housing, office and university buildings located
within zip code 60616

housing, office, and university buildings located within Chicago
Metropolitan Area

Building No. of Building No. of

type buildings Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 type buildings Zone 1 Zone 2 Zone 3 Zone 4 Zone 5
Hospital 30 0 0 0 0 30 Hospital 1 0 0 0 0 1
Multifamily 1,331 334 335 299 244 119 Multifamily 75 14 16 22 17 6
housing housing

Office 340 20 21 44 93 162 Office 3 0 2 0 0 1
University/ 87 3 2 14 21 47 University/ 2 0 0 0 1 1
College 1,788 357 358 357 358 358 College 81 14 18 22 18

Note: Analysis covering Chicago Metropolitan Area (55 zip codes). Note: Focused analysis on zip code 60616.

to a school. DataMade’s 2nd City Zoning (DataMade 2019) specifies
nine zoning classes for Chicago: (1) residential, (2) business,
(3) commercial, (4) downtown, (5) manufacturing, (6) planned
manufacturing, (7) planned development, (8) transportation, and

(9) parks and open space. Each of these classes can be narrowed
down to subclasses. As a case in point, the subcategories for resi-
dential are (1.1) detached, single-family homes (RS); (1.2) two-flats,
townhouses, low-density apartment buildings, single-family homes
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Rules and Associations for Zoning of Residential Buildings

Association 1: Site EUI (kBtu/sq ft)='(-inf-56.55]"
==> Building Type=Multifamily Housing <conf:(0.84)>

Association 2: Community Area=NEAR NORTH SIDE

==> Building Type=Multifamily Housing <conf:(0.8)>

Association 3: Gross Floor Area - Buildings (sq ft)='[150354-513214]"
==> Building Type=Multifamily Housing <conf:(0.83)>

Association 4: Year Built=’(1999.5-inf)’
==> Primary Property Type=Multifamily Housing <conf:(0.85)>

Rule 1:Building(?x), hasFloorAreaRatio(?x,?a), greaterThan(?a,6.6)
isType(?x,?t), equal(?t,"multi-family") -> hasSubCat(?t,"RM6.5")

Rule 2:Building(?x) hasAge(?x,?a)

greaterThan(?a,20) -> isType(?X, "multi-family")

Fig. 8. Urban planning semantic rules associations for residential units as a function of building attribute [EUI (kBtu/ft> = 3.14 kWh/m?), gross

floor area (ft> = 0.092 m?), year built] values.

(RT); and (1.3) medium- to high-density apartment buildings (multi-
family housing), two-flats, townhouses, and single-family homes
(residential multiunit housing). The urban ontology includes all these
classes, their subclasses, and rules to fill in semantic relationships
based on characteristics of attributes in the data.

Fig. 8 highlights the strength of the proposed framework, where
results of feature association mined from the data set work in tandem
with the semantic domain to provide more information regarding the
real world. Using an a priori type of algorithm, four associations be-
tween the building type and site EUI, community area, gross floor
area, and building age were obtained at an 80% confidence level. To
obtain further knowledge about the exact type, Rule 1 narrows down

© ASCE 04020026-10

the type to “RM-6.5,” a definition described in DataMade (2019).
Data to compute floor area ratio, building height, and footprint will
be obtained from OpenStreetMap. It is important to note that the
association rules obtained from ML are consistent with Web-based
zoning maps for the city of Chicago. Moreover, based on Associa-
tion 4, Rule 2 identifies the building type based on age. One can
reasonably expect that as new buildings are constructed in Chicago,
the applicability of this association relationship will evolve over
time. Thus, from both urban and city planning perspectives, the dig-
ital twin can be viewed as a tool that can determine the extent to
which architectural data stored in online databases (e.g., OpenStreet-
Map) are consistent with current zoning models.
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Fig. 9. Results of J48 classification and reduced error pruning for zip code 60616. Experiments A and B reveal features [EUI
(kBtu/ft> = 3.14 kWh/m?), age (years), zip code] that (a) distinguish various types of buildings; and (b) best describe buildings within community

areas.

Data Mining Experiments

Classification analyses are performed with the J48 algorithm (Kaur
and Chhabra 2014) on the complete set of buildings covered in
Table 2. The analysis begins with a divide-and-conquer strategy
to organize the data into a multiattribute tree hierarchy, organized
to maximize information gain at each successive layer of the tree
structure. The second stage of the analysis involves simplification
(i.e., application of a reduced error pruning algorithm) of the de-
cision tree structure to obtain a desirable balance of accuracy versus
compactness. A basic question is whether the Chicago Energy
Benchmarking data set contains features that strongly contribute to
building energy consumption. To investigate this issue, three ex-
periments were conducted.

Experiment A

The first experiment focuses on the identification of attributes
that distinguish the four types of buildings under consideration:
hospitals, multifamily housing, offices, and universities and col-
leges. Potentially good attributes for classification include zip code,
latitude and longitude, EUI value, floor area, and age of building.
Fig. 9(a) shows a sample of the results, focusing on buildings that
are located within zip code 60616. Here, the most important break-
point is clearly EUI value, followed by zip code and lower-level
combinations of building age and refinements to interval ranges
for the EUI value. The classification of 1,788 buildings generates
a binary decision tree that has 138 leaves and correctly classifies the
building instances with 80% accuracy.
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Experiment B

The second experiment [Fig. 9(b)] focuses on the identification of
parameters that best describe buildings within community areas.
Zip code 60616 is home to two community areas, Douglas and
Near South Side. Building instances are classified with an accuracy
of 78% using a decision tree that has 82 leaves spanning the 55 zip
codes and lower-level parameters involving floor area, building
age, and EUI value. This procedure provides insight into the nature
of the buildings within a specific community area that is beyond a
simple spreadsheet analysis. As a case in point, it is possible to now
say that within 60616, the community area Douglas is defined by
two categories of building: (1) 18 buildings constructed during the
period 1933 to 1963 (i.e., 53 < age < 83) and (2) 3 large buildings
with low/medium energy usage, constructed during the 1953-2004
period (i.e., 115,066 < area & & 12 < age <53 & & eui < 130). The
results of this classification illustrate a situation where complex
decision trees are pruned to remove redundant tests before trans-
formation into rules.

Experiment C

The final experiment investigates opportunities for using attributes
within the Chicago Energy Benchmarking data set (property type,
zip code, age, floor area, latitude and longitude) as rules for the
classification of EUI zones. Previous research (EnergyStar 2018)
demonstrated significant variation in energy usage across building
types. The contents of Tables 2 and 3 indicate, however, that sig-
nificant variations in energy usage can also occur within a single
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type of building. Using property type and EUI zone of energy usage
as target features for classification, Weka simply predicts EUI Zone
2. The number of correctly classified building instances are 353,
with an accuracy level of 19.7% and in line with the distribution
of building inventory shown in Table 2. Adding building age and
floor area separately to the set of classification attributes increases
the prediction accuracy to only 27% and 26%, respectively. Similar
computational results occur for the analysis of office buildings and
multifamily buildings alone. Collectively, these results indicate that
floor area and building age are poor predictors of source EUI and,
thus, are unlikely to find a role in the development of semantic rules
governing the energy management of buildings.

Discussion

The case study analyzed the Chicago Energy Benchmarking data
set from data mining (ML) and semantic modeling perspectives,
with an eye to understanding the extent to which the data support
the classification of buildings at the neighborhood (or community
area or zip code) level and the prediction of building energy usage
as a function of the data set attributes or geographical location.
Knowledge of such trends, even if they are subject to uncertainty,
are useful for stakeholders concerned with energy consumption
(e.g., building managers, energy companies, city managers). These
trends also allow designers of digital twin systems to understand
how domain rules should be structured and to identify the details
of interactions among the ML and semantic representations.

The case study procedure began with spreadsheet-like compu-
tations for high-level examination of the data set. This was followed
by use of Apache Jena for the construction of preliminary semantic
graph models and rules (covering building, land use, and urban do-
mains), and Weka (Witten et al. 2017) for the data mining experi-
ments. The key observations from the preliminary study are as
follows. First, it is evident that real-world data sources introduce
a multitude of complexities into the analysis, some of them unfore-
seen. For example, the original idea was that perhaps it would be
possible to look for relationships between community area and
various metrics of energy usage. But it turned out that community
area boundaries were not precisely defined, and this necessitated
removing “community areas” from consideration and working
with zip code regions instead (Fig. 6). Second, it is well known
that certain types of buildings consume more energy than others,
but even within a single category of building (e.g., multifamily
housing) there is considerable scatter in the energy usage data
(Table 3). The magnitude of these variations highlights weak-
nesses in state-of-the-art classification procedures based on
median values alone. They also complicate ML procedures aimed
at resolving questions (e.g., does the Chicago Energy Benchmark-
ing data set contain features that strongly contribute to building
energy consumption?) one might have about the factors affecting
energy usage in buildings.

Conclusions and Future Work

The authors’ long-term vision for smart city digital twins centers
around the development of a so-called city operating system that
provides city stakeholders with enhanced levels of situational
awareness and decision-making support for the management of ur-
ban infrastructure and services embedded in space-time terrain. In a
step toward providing this capability, this paper proposed a digital
twin architecture where knowledge representation and reasoning and
ML formalisms work in tandem, providing complementary and sup-
portive roles in the collection and processing of data. Both sides of
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the proposed architecture rely on streams of urban data/information
corralled into data system hubs. Computations with a priori algo-
rithms resulted in reasonably accurate (80% accuracy) character-
izations of the types of buildings found in various zip codes along
with their energy usage. Decision tree algorithms also identified
with 78% accuracy the roles that building age and floor area play
in describing buildings found in the various community areas.
Both of these analyses provide valuable insight on the correct us-
age of parameters to efficiently characterize the buildings found in
various neighborhoods. However, Weka failed to find a strong
correlation between building energy usage and parameters such
as building age, floor area, and location. This does not mean that
such a relationship does not exist but rather points to a strong
need for expansion of the data set and analyses to include factors
(e.g., type of construction, building geometry) not covered by the
Chicago Benchmark data set.

The development of urban data system hubs, a precursor to
digital twins, is rapidly expanding among the world’s cities. As a
case in point, a data-driven city operations center in Rio de Janeiro,
Brazil, pulls together into a single location real-time data streams
from 30 agencies, including transportation, utility, emergency, and
security services. These data are overseen by a staff of 180 data
operatives, who monitor and react to urban and environmental
processes. City operating systems that completely bypass humans
to manage communication between systems are also being ex-
plored. Projects such as Microsoft’s CityNext, IBM’s Smarter City,
Urbiotica’s City Operating System, and PlanIT’s Urban Operating
System have been working toward this possibility (Kitchin 2015).
Nevertheless, city operating systems face significant challenges in
communication, security, availability, resiliency, energy efficiency,
network bandwidth, focus on citizens, and levels of standardization
(Mora and Larios 2015). Extracting meaningful information from
urban system exchanges is complicated by a variety of factors, in-
cluding heterogeneity of the data and the volume and rate of data
generation. To address these challenges, future work needs to con-
sider the capabilities of ML technologies that extend beyond those
shown at the bottom of Figs. 4 and 5. This work should include the
use of deep learning and node2vec representations to learn the
structure of urban networks (Patterson and Gibson 2017). Signifi-
cant opportunities also exist for improving urban planning proce-
dures through the integration and processing of collected data that
are relevant to decision-making procedures. For example, spatial
distributions of “urban plan area density” can be computed from
geographical attributes and various building metrics and properties
(e.g., latitude, longitude, height, width), but such metrics are not
commonly used in state-of-the-art urban planning procedures.
Looking forward, a significant challenge exists in integrating the
data in these different domains and making relevant deductions
about what they imply.
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