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Abstract:Due to the importance of civil structures and infrastructures, structural safety assessment or structural health monitoring has become
a basic necessity for every society. Recent developments of sensing and data acquisition systems enable civil engineers to exploit machine
learning methods based on data-driven strategies for structural safety assessment and damage detection. However, the choice of an appropriate
machine learning method may be problematic, particularly under some challenging issues such as the negative effects of environmental and/or
operational variability (EOV), and the necessity of estimating some influential unknown elements of parametric machine learning methods
called hyperparameters. Accordingly, this article focuses on three main aspects: (1) comparing various machine learning methods, (2) devel-
oping semiparametric algorithms, and (3) proposing automated algorithms for hyperparameter optimization of semiparametric and parametric
machine learning methods. An innovative automated output-only approach is proposed to qualitatively and relatively predict the levels of EOV
in terms of strong or weak variability. The main contributions of this article include comparing various machine learning methods, which will
enable civil engineers to choose the most appropriate technique, and proposing automated approaches to hyperparameter optimization and
variability level prediction. Dynamic and statistical features extracted frommeasured vibration data of two full-scale bridges were considered to
perform the comparative studies and investigate the proposed methods. The results demonstrated that the semiparametric methods provide the
best performance when their unknown parameters are determined appropriately. DOI: 10.1061/(ASCE)CF.1943-5509.0001664. © 2021
American Society of Civil Engineers.

Author keywords: Structural health monitoring; Damage detection; Machine learning; Hyperparameter optimization; Environmental and
operational variability; Bridges.

Introduction

Civil engineering structures are prominent structural systems that
play crucial roles in social life, transportation networks, business,
economic, and so forth. These systems are subjected to permanent
dead and live loads along with temporary external loads caused by
natural or artificial hazards. Some of these structures were designed
and constructed several years ago, in which case aging and material
deterioration are other hazardous factors that threaten their safety
and integrity. To prevent these structures from damage, failure, and
even collapse, structural safety assessment or structural health mon-
itoring (SHM) is an important and real necessity for most civil en-
gineering structures (Agdas et al. 2016; Jeong et al. 2020; Liu et al.
2020; Sarmadi and Yuen 2021; Seo et al. 2016; Sun et al. 2020;
Yekrangnia and Mobarake 2016).

Due to recent advances in sensing and data acquisition systems,
the use of raw measured data and data-driven methods has become
increasingly appealing to researchers and civil engineers. The ma-
jor benefit of these methods is the ability to avoid constructing an

elaborate finite-element model and implementing model updating,
particularly for large-scale structures. Most data-driven methods
used in SHM consist of two main steps, feature extraction and fea-
ture classification (Farrar and Worden 2013). Feature extraction is
intended to extract meaningful information (i.e., damage-sensitive
features) from raw measured data such as acceleration time his-
tories, images (Jeong et al. 2020), and videos (Yang et al. 2017).
Feature classification is a process for decision-making via machine
learning algorithms (Flah et al. 2020). The main objective of this
process is to utilize features extracted from raw measured data to
make a decision about the current status of a structure in terms of
indicating the occurrence of damage or declaring a safe or normal
condition.

In most cases of SHM applications, machine learning algorithms
are often classified as supervised learning and unsupervised learning
(Farrar andWorden 2013). Because supervised learning requires full
labeled data from both the normal and damaged conditions for the
learning process, unsupervised learning is more beneficial to use in
SHM applications. The main reason for this selection is that it is not
reasonable and economical to impose intentional damage patterns in
an effort to provide information about the damaged state of a valu-
able and important civil structure (Sarmadi and Entezami 2021).
The implementation of a SHM strategy by unsupervised learning
methods is carried out in training (baseline) and monitoring (in-
spection) phases (Sarmadi and Karamodin 2020). During the train-
ing period, a statistical model is learned using the features of the
normal condition (i.e., training data). The outputs of this model
then are used to estimate an alarming threshold for decision-mak-
ing. In the monitoring phase, the same feature extraction method is
applied to extract features of the current state (i.e., test data) and
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feed them into the learned model. Any deviation of the outputs of the
model regarding the test samples from the model of interest (i.e., the
alarming threshold) is indicative of damage occurrence (Sarmadi and
Entezami 2021).

Unsupervised learning methods for feature classification can be
divided into nonparametric, semiparametric, and parametric ap-
proaches. A nonparametric method does not need to estimate any
unknown parameter. This is the greatest advantage of this kind of
unsupervised learning method: it is more computationally efficient
than the other techniques. Statistical distance measures (Entezami
et al. 2020b; Sarmadi et al. 2021a), singular value decomposition
(SVD) (Figueiredo et al. 2011), and robust multidimensional scaling
(Entezami et al. 2021) are some effective nonparametric unsuper-
vised learning methods. A parametric method is one that depends
on unknown parameters that affect its performance. Partition-based
clustering techniques such as k-medoids (Sarmadi et al. 2021b),
fuzzy c-means (Yu and Zhu 2017), Gaussian mixture model (GMM)
(Figueiredo et al. 2019), and self-organizing map (Avci and
Abdeljaber 2016), and various artificial neural networks (ANNs)
(Bagchi et al. 2010; Chang et al. 2018; Weinstein et al. 2018),
are popular parametric unsupervised learning methods. In these
approaches, the numbers of clusters, layers, and neurons are un-
known parameters that should be determined properly. A semipara-
metric method is a combination of nonparametric and parametric
algorithms. In other words, this method is developed in a nonpara-
metric manner, and a parametric scheme is added to improve its
performance. Some recent examples of semiparametric methods
are adaptive Mahalanobis squared distance (MSD) and one-class
k-nearest neighbor (Sarmadi and Karamodin 2020), MSD and
GMM (Daneshvar et al. 2021), two distance measures, and robust
principal component analysis (Gharibnezhad et al. 2015).

Despite various studies of SHM of civil structures, some major
challenges still are open problems that should be dealt with prop-
erly. One is related to the negative effects of environmental and/or
operational variability (EOV) (Farrar and Worden 2013) that may
cause false alarm (false positive or Type 1) and false detection (false
negative or Type 2) errors (Sarmadi et al. 2021a). The EOV con-
ditions are major challenges in SHM because they may lead to
changes in inherent physical properties such as mass and stiffness,
as well as the dynamic characteristics of civil structures, which
may be interpreted mistakenly as damage and cause Type 1 errors
and economic losses. On the other hand, these conditions may have
magnitudes of changes that are equal to or larger than those of dam-
age. In this case, one cannot accurately indicate the occurrence of
damage, particularly in minor damage scenarios, leading to safety
losses caused by Type 2 errors. In the context of SHM, these erro-
neous situations are known as outlier masking problems. Therefore,
it is vital to consider the EOV conditions and attempt to remove the
outlier masking effects from features extracted from measured data.

The other major challenge is a methodological issue regarding
semiparametric and parametric methods, for which some unknown
parameters play important roles in their performance. This issue
refers to the problem of hyperparameter optimization. In machine
learning, a hyperparameter is an unknown parameter the value of
which is used to control the learning process. On this basis, hyper-
parameter optimization is a problem of choosing or tuning a set of
optimal unknown parameters for a learning algorithm (Feurer and
Hutter 2019; Yang and Shami 2020). In this problem, two kinds of
parameters can be estimated or optimized during the learning pro-
cess. The first type (i.e., model parameters) can be initialized and
updated through the learning procedure (e.g., the weights of neu-
rons in an artificial neural network). The second type (i.e., hyper-
parameters) designs the configuration of a machine learning model
and strongly affects its performance (e.g., the numbers of clusters

and neurons). Because this type of unknown parameter may not be
estimated directly from the data learning process, it is necessary to
choose hyperparameters before learning the model of interest (Yang
and Shami 2020). This process can be carried out by manual tuning
or gradient-based optimization techniques. Manual tuning (e.g., grid
and random searches) is the simplest method for tuning unknown
parameters of a machine learning model by considering a relatively
large number of sample parameters and finding the most appropriate
sample yielding the best performance of the model. Gradient-based
optimization is based on defining an objective (mathematical) func-
tion and optimizing it to estimate some unknown parameters (Feurer
and Hutter 2019; Yang and Shami 2020). Although both hyperpara-
meter optimization techniques have their advantages and disadvan-
tages, the manual tuning method may prevail against gradient-based
optimization, particularly when there are a few hyperparameters.
Furthermore, it may be difficult to define an objective function for
a special issue (e.g., dealing with the outlier masking problem).
Finally, the last challenge is related to the necessity of conducting
a comprehensive comparative study of different machine learning
methods, feature types, and their dimensions in terms of high-
dimensionality and low-dimensionality, and threshold estimation
techniques.

Accordingly, this article investigated various methods of fea-
ture extraction and feature classification, particularly nonparamet-
ric (i.e., MSD and SVD), semiparametric, and parametric (fuzzy
c-means and GMM) algorithms, and proposed automated ap-
proaches to tuning some important hyperparameters. The com-
binations of MSD and SVD with ANNs made two different
semiparametric methods, so that the neuron sizes of the hidden
layers of the ANNs were the main hyperparameters. The parametric
methods were developed from the fuzzy c-means and GMM clus-
tering algorithms, for which the cluster numbers should be deter-
mined properly. The main reason for proposing the hyperparameter
optimization methods was to deal with the outlier masking problem
caused by the EOV conditions. For this, this article exploited the
median absolute deviation (MAD), which is a robust statistical
measure for computing dispersion and variability in data. The main
innovation of these methods is the development of automated strat-
egies based on the MAD criterion. The great advantage of these
approaches is their ability to tune any unknown parameters without
defining any objective function and solving it by computational
techniques. Due to the great importance of the EOV conditions, on
the other hand, an innovative output-only approach based on the
MAD was proposed to predict the relative levels of EOV in terms
of strong versus weak variability. Development of an automated
output-only algorithm without any EOV data was the main inno-
vation of this approach. Dynamic and statistical features of two
full-scale bridges under actual EOV conditions were utilized to
compare and validate the methods presented in this article. Results
showed that the proposed semiparametric methods provide the best
performance when their hyperparameters are determined properly.
Moreover, the proposed output-only approach is a useful tool for
predicting the levels of EOV conditions.

Nonparametric Machine Learning Methods

MSD-Based Nonparametric Algorithm

The MSD is a statistical distance that measures the dissimilarity
between two multivariate sets by considering the correlation among
variables. In other words, it is a metric for measuring the distance of
a point from the center of a distribution in a multivariate space. The
main advantages of the MSD-based machine learning method are
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its nonparametric property, simplicity, and computational efficiency.
Suppose that X ¼ ½x1;x2; : : : ; xn� ∈ Rp×n is the training set con-
taining some features extracted from measured vibration data of the
normal condition in the training (baseline) phase. The key compo-
nents of the machine learning model derived from the MSD are the
mean vector μx ∈ Rp and covariance matrix Σx ∈ Rp×p of the
training data. These components are normally estimated by the sam-
ple mean and covariance under the Gaussianity assumption of X.
Assume that z is a new p-dimensional feature vector from the test
set Z ∈ Rp×m regarding the remaining features (validation samples)
of the normal condition and all features of the current state of the
structure in the monitoring (inspection) phase. Therefore, the formu-
lation of MSD for damage detection is expressed as follows:

DIm ¼ ðz − μxÞTΣ−1
x ðz − μxÞ ð1Þ

where DIm denotes a damage index (DI) related to the MSD tech-
nique. If the current state of the structure suffered from damage, the
new feature vector z is concerned with the damaged condition. In this
case, the vector will be farther from the mean of the normal features
implying the emergence of damage in the structure (Figueiredo et al.
2011). On the other hand, the feature vectors in X are also used in
Eq. (1) to determine the distance values of the normal condition in
the training phase. These distance quantities are used to estimate an
alarming threshold for damage detection (Sarmadi and Entezami
2021). Therefore, any deviation of the distance value DIm from
the threshold limit is indicative of damage occurrence.

SVD-Based Nonparametric Algorithm

In mathematics and linear algebra, the SVD is a technique for de-
composing a whole matrix into three submatrices. Despite this usual
application, Ruotolo and Surace (1999) proposed a damage detection
method via the fundamental principle of SVD. This method
is based on determining the rank of a state matrixM (where the rank
of a matrix is defined as the maximum number of linearly indepen-
dent columns or rows in the matrix of interest) by using the singular
values of the feature vectors of the training matrix and a new feature
vector related to the test matrix. Simplicity, computational efficiency,
and a nonparametric characteristic are the main advantages of the
SVD-based machine learning method (Figueiredo et al. 2011).

Assume that the rank of the training matrix X ∈ Rp×n corre-
sponds to b, which means that b feature vectors of X are indepen-
dent. Using the new feature vector z of the current condition, the state
matrix is defined as M ¼ ½x1;x2; : : : ;xb; z�. If the feature vector z
comes from the normal condition of the structure, it is expected that
the rank of the state matrix M will not change and it is equal to b.
Conversely, if the feature vector z originates from the damaged con-
dition, it is independent of the b feature vectors x1 : : :xb and the
rank will be bþ 1. Rather than using the concept of the variation
in the rank of the state matrix, which may be problematic when
the outlier masking problem is a key issue, a nonparametric algo-
rithm is presented to define a damage index (DI) for damage detec-
tion. This algorithm utilizes the residual (discrepancy) between the
vectors of the singular values related to the state matrix M and the
training matrixX. Accordingly, the DI or distance value of the SVD-
based machine learning method is expressed as DIs ¼ kδX − δMk2,
where δX and δM are the vectors of the singular values of the training
and state matrices, respectively, and k · k2 indicates the Euclidean or
l2-norm. For each feature vector of the current state, it is possible to
obtain a DIs quantity, in which case the deviation of this quantity
from an alarming threshold implies the occurrence of damage.
The threshold is determined using only the DIs values obtained from
the training phase.

Semiparametric Machine Learning Methods

Although the MSD and SVD methods present nonparametric algo-
rithms for damage detection, the outlier masking problem may seri-
ously affect their performance and cause considerable Type 1 or
Type 2 errors under strong variability. To deal with this issue, the
proposed semiparametric methods ANN-MSD and ANN-SVD are
considered to initially remove potential EOV conditions from the
features of the training and test matrices (X and Z) via ANNs and
then detect damage by the MSD and SVD. For the sake of conven-
ience, Fig. 1 is a flowchart of the decision-making procedure using
either nonparametric or semiparametric approaches. In Figs. 1(a
and b), Steps 1–3 and 4–6 are related to the MSD and SVD meth-
ods in the training and monitoring phases as discussed in the sec-
tions “MSD-Based Nonparametric Algorithm” and “SVD-Based
Nonparametric Algorithm.” Moreover, Fig. 1(c) shows the initial

Training data: X

Step 1

Implement Steps 1-3

Step 2

Step 4

Step 5

Step 6

(a) (b)

Determine DIm and DIs for each 
feature vector of X

Test data: Z

Use the trained models

MSD: x, x, z

SVD: x, z, M, and M

Determine DIm and DIs for each 
feature vector of Z

Train non-parametric models

MSD: x, x, and x

SVD: x, x, M, and M

Estimate two alarming thresholds

(d) (e)

Training data: X

Extract the residual Ex and consider
it as new training data

Test data: Z

Extract the residual Ez and consider
it as new test data

Use the trained ANN

Yes

No

(c)

Train an ANN

Step 3 
No

Step 7 

Yes

Safe

DamageDIm or DIs > Thresholds? Implement Steps 4-7

Decision-making by the non-parametric methods
MSD and SVD

Decision-making by the semi-parametric methods
ANN-MSD and ANN-SVD

Are there large Type I and Type II
errors?

or
Is there a large average ratio of

MAD values in the EOV prediction?

Apply the semi-parametric 
methods

Fig. 1. Flowchart of damage detection by the nonparametric and semiparametric methods: (a) training phase and nonparametric methods;
(b) monitoring phase and nonparametric methods; (c) decision-making process; (d) training phase and semiparametric methods; and (e) monitoring
phase and semiparametric methods.
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decision-making process based on the outputs of the nonparametric
methods and the decision-making criterions; that is, the amounts of
Type 1 and Type 2 errors or the outputs of the EOV level prediction
(section “Prediction of EOV Conditions”). In the case of low errors
or small MAD values, one can utilize the MSD and SVD tech-
niques; otherwise, one should apply the ANN-MSD and ANN-SVD
methods. Generally, it is recommended to apply the semiparametric
methods unless the criterion outputs are inconsiderable.

Because the underlying concept of the proposed semiparametric
methods is to use an effective ANN for addressing the outlier mask-
ing, this article exploited an autoassociative neural network under
a feed-forward configuration for reconstructing the input data
(Kramer 1992). The autoassociative neural network is an ANN that
contains an input layer; three hidden layers called mapping, bottle-
neck, and demapping; and an output layer. The great benefit of this
neural network is its unsupervised learning behavior and its great
capability to filter out noise, outliers, and any type of variations in
data such as the EOV (Figueiredo et al. 2011; Kramer 1992). Be-
cause the number of layers required for configuring the neural net-
work is known (i.e., five layers), the only unknown parameter is the
neuron sizes of the mapping, bottleneck, and demapping layers.
The bottleneck layer of the autoassociative neural network should
have smaller neurons than the other hidden layers (Kramer 1992).
Furthermore, the neuron sizes of the mapping and demapping layers
are often similar. Therefore, the process of hyperparameter optimi-
zation relates to determining the numbers of neurons of mapping
and bottleneck layers (section “Automated Selection of Optimal
Neurons”).

To remove the EOV conditions, the training data is firstly ap-
plied to learn an auto-associative neural network. Subsequently, the
initial features in the training and test matricesX and Z are fed into
the learned neural network as the inputs to obtain the outputs X�
and Z� that have the same sizes as the inputs. Finally, the residuals
or discrepancies between the inputs and outputs are calculated as
Ex ¼ X −X� and Ez ¼ Z − Z� [Figs. 1(d and e)]. These matrices
are then incorporated into the MSD and SVD algorithms instead of
the matrices X and Z.

Parametric Machine Learning Methods

Clustering is an unsupervised learning method that aims to divide
or segment similar data points with small distances into clusters.
Based on this general concept, it is feasible to utilize various clus-
tering methods based on the partition-, density-, graph-based, and
hybrid algorithms (Aggarwal and Reddy 2016). Among them,
partition-based clustering techniques such as k-means, k-medoids,
fuzzy c-means, and GMM are more well-known to SHM applica-
tions. In this article, the fuzzy c-means and GMM were selected as
the main parametric machine learning methods.

Clustering in SHM consists of two main steps. First, one needs to
determine the number of clusters or components by using the train-
ing dataX. The main objective of this step is to obtain the clustering
outputs depending upon the type of clustering algorithm and its
structure. Second, it is necessary to define a DI (in most cases, based
on the Euclidean or Mahalanobis distances) for calculating the dis-
similarity or distance of each feature vector inX from the clustering
outputs. The second step is also implemented by using the feature
vector of Z in the inspection phase (Sarmadi et al. 2021b).

Fuzzy c-Means Clustering

Fuzzy c-means clustering is an unsupervised learning method
based on the concept of fuzzy logic that allows one sample of data
to be put in two or more clusters based on an objective function.

Give the feature vector x from the matrix X ∈ ℜp×n and clusters
v1 : : : vc, fuzzy c-means is based on the minimization of the follow-
ing objective function (Aggarwal and Reddy 2016):

Jf ¼
Xn
i¼1

Xc
j¼1

uβijkxi − vjk22 ð2Þ

where 1 < β < ∞ = weighting fuzziness; and uij = degree of mem-
bership value of ith data in jth cluster, which varies from 0 to 1. The
algorithm of fuzzy clustering is based on iteratively optimizing the
objective function to update the membership uij and the jth cluster
as (Aggarwal and Reddy 2016)

uij ¼
1P

c
k¼1

�kxi−vjk22
kxi−vkk22

�
2=ðβ−1Þ ð3Þ

vj ¼
P

n
i¼1 u

β
ijxiP

n
i¼1 u

β
ij

ð4Þ

The membership uij should satisfy three main conditions:
(1) the variations should be between 0 and 1 (i.e., uij ∈ ½0 1�,
∀ i; j), (2) the membership values for each data sample should
sum to 1 (i.e.,

P
c
j¼1 uij ¼ 1, ∀ i), and (3) the variation of the

sum of all the membership values in a cluster should be between
zero and n (i.e., 0 <

P
c
j¼1 uij < n, ∀ n). The termination of the

iterative algorithm in fuzzy c-means clustering occurs when the
maximum difference between two successive memberships is
smaller than a termination step varying between 0 and 1. Having
determined the cluster number c, the clustering method gives the
clusters v1 : : : vc. These vectors are considered to determine a DIf
value of the feature vector z as follows:

DIf ¼ minðkz − v1k2; : : : ; kz − vck2Þ ð5Þ
The same distance calculation is carried out by using the feature

samples of the training dataX in the training phase, instead of z, to
obtain n values of DIf . These distance values are utilized to esti-
mate an alarming threshold. In this regard, any deviation of DIf of
the feature vector z from this threshold is representative of damage;
otherwise, the structure is safe in its current state.

Gaussian Mixture Model

The GMM is an unsupervised learning method under probability
theory that defines a probability model for clustering under the
assumption that all data samples are generated from a mixture of
r component Gaussian distributions (Aggarwal and Reddy 2016).
In this method, the underlying assumption is that all data samples
to be clustered are drawn from some proper components; hence,
the problem is to estimate the unknown parameters of each compo-
nent to fit the data properly. A GMM as a weighted sum of r
component Gaussian densities is formulated as ρðxjλÞ ¼P

r
i¼1 ωigðxjμi;ΣiÞ, where x is one of the feature vectors of the

training matrix X, ωi is the ith mixture weight, and gðxjμi;ΣiÞ
is the Gaussian density of the ith component. The mixture weights
should satisfy a constraint that

P
r
i¼1 ωi = 1. Each component den-

sity is representative of a Gaussian function in the following form
(Aggarwal and Reddy 2016):

gðxjμi;ΣiÞ ¼
1

ð2πÞn=2jΣijn=2
exp

�
−1

2
ðx−μiÞTΣ−1

i ðx−μiÞ
�

ð6Þ

where μi and Σi = mean vector and covariance matrix of ith com-
ponent, respectively. Apart from the number of components r
(a hyperparameter), the GMM includes some unknown model
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parameters such as the mean vector, the covariance matrix, and the
mixture weights, all of which can be tuned during the clustering pro-
cess. In most cases, the maximum-likelihood estimation based on the
expectation-maximization (EM) algorithm is applied to estimate these
parameters (Daneshvar et al. 2021; McLachlan and Krishnan 2007).
For early damage detection via the GMM, it is only necessary to use
the estimated mean vectors and covariance matrices of all r compo-
nents and determine a distance value for the feature sample z as

DIg ¼ minðd1; : : : ; di; : : : ; drÞ ð7Þ

where di ¼ ðz − μiÞTΣ−1
i ðz − μiÞ. The same distance calculation

can be performed by using the feature vectors of the training matrix
X in the training phase, instead of z, to determine n values of DIg.
These distance values are incorporated to estimate an alarming thresh-
old. Accordingly, any deviation of DIg of the feature vector z from
this threshold is representative of damage; otherwise, the structure is
safe in its current state.

Proposed Hyperparameter Optimization Methods

The selection of hyperparameters is crucial to the semiparametric
and parametric methods due to the direct impact of such parameters
on the performance of these methods. Furthermore, this selection
depends on the main challenge and/or limitation of the problem
under study. As mentioned previously, one of the major demanding
issues in SHM is the problem of outlier masking caused by the
EOV conditions and its negative effects (i.e., Type 1 and 2 errors).
Accordingly, a large rate of any error implies poor performance of
each of the machine learning methods, which may lead to economic
or safety losses. Therefore, this article developed automated ap-
proaches based on the MAD criterion for choosing the hyperpara-
meters of the semiparametric and parametric techniques by dealing
with the outlier masking problem. In ANN-MSD and ANN-SVD,
the hyperparameters include the neuron sizes of the mapping (de-
mapping) and bottleneck layers. Moreover, the cluster numbers c
and r are the main hyperparameters of the fuzzy c-means and
GMM techniques.

Median Absolute Deviation

In statistics, the MAD is a robust indicator for measuring variability
in a univariate set of sampling data and detecting outliers (Dodge
2008). Although the variance and standard deviation of a set of
random samples also measure the dispersion and variability, the ma-
jor merit of theMAD is its suitability for measuring the variability of
non-Gaussian data. Moreover, this measure is more resilient to out-
liers than the variance and standard deviation (Leys et al. 2013). Let
y1; : : : ; yq be a set of q data samples, which are equivalent to the DI
values of the semiparametric and parametric methods. On this basis,
the MAD criterion (η) is defined as (Dodge 2008)

η ¼ 1

q

Xq
i¼1

jyi − ξj ð8Þ

where ξ = median of y1; : : : ; yq; and j · j is the absolute operator.
This value is a measure of central tendency similar to the mean, but
is more resilient to outliers.

Automated Selection of Optimal Neurons

The automated process of choosing the optimal neurons of the hid-
den layers of the autoassociative neural network is based on three
main steps: (1) examining a relatively large number of sample

neurons, (2) filtering out the EOV conditions from the initial train-
ing samples, and (3) computing the MAD values of the DI quan-
tities obtained from the MSD and SVD methods by using the
residual matrix Ex. The criterion for hyperparameter optimization
in this issue is to choose the neuron sizes among all sample neurons
with the minimum MAD values. This means that the selected neu-
rons enable the neural network to provide the smallest rate of vari-
ability in the DI values and filter out the EOV conditions. Because
the hidden layers of the autoassociative neural network can be con-
figured symmetrically, the mapping and demapping layers have the
same neurons. Furthermore, the number of neurons in the bottle-
neck layer (lb) should be smaller than the number of neurons in the
mapping and demapping layers (lm) (Kramer 1992). Because a rel-
atively large number of sample neurons are examined, it is essential
to check the overfitting problem. For this issue, one can utilize the
equations 2lm < pðn − lbÞ=ðpþ lb þ 1Þ and 2lm < n after select-
ing the suitable neurons (Kramer 1992). In these equations, lm
and lb denote the optimal neuron sizes of the mapping (demapping)
and bottleneck layers, respectively. If the occurrence of this prob-
lem is inevitable, one should select the next minimum MAD value.
This procedure continues until the concern about the overfitting
problem is dealt with.

Algorithm 1. Automated Selection of Optimal Neurons of Hidden
Layers
Inputs: Training data X, and the sample neuron numbers lm0

and
lb0 (where lm0

> lb0 )
Iterative process
For i ¼ 1 to lm0

For j ¼ 1 to lb0
1. Train an autoassociative neural network using the ith and
jth neurons of the mapping and bottleneck layers.

2. Extract the network output X�.
3. Compute the residual matrix Ex ¼ X −X�.
4. Set the residual matrix Ex as new training data in each of
the nonparametric methods (i.e., MSD and SVD)

5. Determine n values of DIm and DIs using all feature
vectors of Ex.

6. Compute the MAD values of the n-dimensional DI
quantities of the ith and jth sample neurons.

7. Store this value in the ith row and the jth column of a
matrix.

End for
End for
8. Choose the minimumMAD value in the rows and columns of the
stored matrix obtained from Step 7.

9. Check the overfitting problem via 2lm < ½pðn− lbÞ�=ðpþ lbþ 1Þ
and 2lm < n. If the overfitting problem is inevitable, return to
Step 8 and select the next minimum MAD value until the
concern about the overfitting problem is dealt with.

10. The row and column numbers of the stored matrix regarding the
minimumMAD value are indicative of the optimal neuron sizes
of the mapping or demapping (lm) and bottleneck (lb) layers,
respectively.

Outputs: The optimal neuron numbers lm and lb

For simplicity, Algorithm 1 presents the pseudocode of the main
steps of the automated approach to selecting the optimal neurons of
the hidden layers. The process of choosing the neuron size is car-
ried out under an automated iterative approach. First, one needs to
assign the sample neuron numbers for the mapping or demapping
(lm0

) and bottleneck (lb0 ) layers so that lm0
> lb0 and the training

matrix X as the inputs. Subsequently, the iterative procedure is
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started with the ith neuron of the mapping and demapping layers
and jth neuron of the bottleneck layer, where i ¼ 1; 2; : : : ; lm0

and j ¼ 1; 2; : : : ; lb0 . Using the training data X and the ith and
jth neurons, an autoassociative neural network is trained to obtain
the output data X� and extract the residual matrix Ex. This matrix
subsequently is applied to the MSD and SVD methods to calculate
their DI values (i.e., DIm and DIs) for all feature vectors of Ex. In
the last step of the iterative process, it is necessary to compute the
MAD values of these DI quantities and store them in an lm0

× lb0
matrix. After ensuring that no overfitting problem occurs, the row
and column numbers of the stored matrix regarding the minimum
MAD value are chosen as the optimal neurons of the mapping (de-
mapping) and bottleneck layers, respectively.

Automated Selection of Optimal Cluster Numbers

Similar to the previous hyperparameter optimization strategy, the
process of choosing the proper number of clusters is based on the
main three steps: (1) examining a relatively large number of sample
clusters, (2) dividing the training samples into the predefined sam-
ple clusters, and (3) calculating the MAD values of the DI amounts
of the fuzzy c-means and GMMmethods. The main criterion for the
hyperparameter optimization of the clustering techniques is to find
the sample cluster with the minimum MAD value. Similarly, the
proposed strategy for the optimal cluster selection develops an au-
tomated iterative approach by evaluating the DI values of the clus-
tering methods to remove or reduce the negative effects of the EOV
conditions. The great merit of this approach is its high suitability and
applicability to all partition-based clustering techniques.

Algorithm 2. Automated Selection of Optimal Clusters
Inputs: Training data X and the sample cluster number h
Iterative process
For i ¼ 1 to h

1. Divide the training data into i clusters using the fuzzy c-means
and GMM clustering algorithms.

2. Extract the clustering outputs (i.e., the clusters v1 : : : vi
associated with the fuzzy c-means clustering, and the
mean vectors μ1 : : :μi and covariance matrices Σ1 : : :Σi
for the GMM).

3. Compute n-dimensional DI values for each of the clustering
methods by using all feature vectors of X.

4. Calculate the MAD value of the obtained DI quantities related
to the ith cluster.

5. Store this value in a vector for each of the clustering methods.
End for
6. Choose the minimum MAD value of the stored vector obtained

from Step 5.
7. The optimal cluster number hopt for each of the clustering

methods is the number of elements of the stored vector with
the minimum MAD value.

Output: The optimal cluster number hopt, which can be each of the
numbers c and r.

For the sake of convenience, Algorithm 2 describes the main
steps of the proposed automated approach. In this algorithm, the
inputs are the training matrix X and a sample cluster number (h).
In the iterative process, one needs to divide the training data into i
clusters, where i ¼ 1; 2; : : : ; h. Subsequently, the clustering outputs
(i.e., the clusters v1 : : : vi associated with the fuzzy c-means as well
as the mean vectors μ1 : : :μi and covariance matrices Σ1 : : :Σi for
the GMM) are extracted to calculate the n-dimensional DI values
of the ith sample cluster for each of the clustering methods. Using

these quantities, a MAD value is computed and stored in a vector
(i.e., each clustering algorithm has a vector of the MAD values). In
the following, the number of elements of the h-dimensional stored
vector with the minimum MAD value is set as the optimal cluster
number (hopt). Note that, hopt is equivalent to each of the cluster
numbers c and r associated with the fuzzy c-means and GMM clus-
tering methods.

Prediction of EOV Conditions

In real-world SHM applications, the existence of EOV is inevitable.
Before dealing with this challenge, it is very appropriate to relatively
and qualitatively predict their levels, which may assist civil engi-
neers in realizing the variations in data (features) in terms of strong
or weak variability. Strong variability means that the vibration re-
sponses or features are highly sensitive to EOV, whereas weak vari-
ability refers to low sensitivity to these conditions. For this purpose,
it is possible to utilize input–output and output-only methods. The
first approach is usable when the EOV data (e.g., temperature) are
available and measurable, whereas the second approach is suitable
for cases in which such data are unavailable. The simplest input–
output approach is to measure a correlation between the damage-
sensitive features and EOV data (e.g., the correlation between modal
frequencies and temperature), in which case a high correlation is
indicative of strong variability. For an output-only approach, because
the EOV data are not available, the level prediction is not a trivial
process. Therefore, one should utilize a more rigorous strategy.

Having considered the available data (i.e., the features of the
normal condition), the proposed method develops a nonparametric
algorithm with the aid of the MAD criterion. The underlying steps
of this approach include (1) randomly selecting training samples
from all available features of the normal condition, (2) constructing
a new training matrix using the selected training samples, (3) con-
verting the new matrix into a vector, and (4) measuring the MAD
value of this vector. All these steps are implemented in two stages
using the initial (nonnormalized) and normalized features. The ma-
jor difference between them is that, in contrast to the nonnormal-
ized features, the EOV conditions do not exist in the normalized
ones. The main objective is to compare the distance between the
MAD values obtained from the initial and normalized features
in two stages. In the first stage, the aforementioned steps are per-
formed only on the initial features of the normal condition. In the
second stage, one attempts to remove any EOV from the initial data
and obtain normalized features using a nonparametric covariance-
based technique (Deraemaeker et al. 2008). Although the second
stage of this process can be implemented by an ANN (e.g., the au-
toassociative neural network used in the semiparametric methods)
to filter out the EOV conditions, it is preferable to applying a non-
parametric approach to avoid the difficulty of a hyperparameter op-
timization strategy.

Suppose that ~X ∈ Rp×n is the training matrix generated by ran-
domly choosing the feature samples of the normal condition. Sub-
sequently, its covariance matrix ~Σ ∈ Rp×p is decomposed into two
matrices ~U and ~S by the well-known SVD technique; that is, ~Σ ¼
~U ~S ~UT and ~U ~UT ¼ I, where, the diagonal matrix ~S consists of the
singular values of the covariance matrix. This matrix is then spilt
into two submatrices ~S1 ¼ diagð ~σ1 : : : ~σsÞ, which is a diagonal ma-
trix of the first s singular values ranked in descending order, and
~S2 ¼ diagð ~σsþ1 : : : ~σnÞ. With these descriptions, the only unknown
parameter is the number of singular values (s), which can be de-
termined simply by an indicator in a nonparametric manner as
follows:
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γ ¼
P

s
j¼1 ~σjP
n
i¼1 ~σi

ð9Þ

Based on Eq. (9), the number of singular values s is one in which
the lowest integer γ is larger than a threshold value (e.g., 95%).
By obtaining this number, the matrix ~U is split into the submatrices
~U1 ¼ ½ ~u1; : : : ; ~ui; : : : ; ~us� and ~U2 ¼ ½ ~usþ1; : : : ; ~uj; : : : ; ~un�, where
~ui and ~uj are the ith and jth column vectors of the submatrices.

Using all the submatrices, one can define matrices Λ ¼ ~U1ð ~S1Þ1=2
and Ψ ¼ ~U2

~S2
~UT
2 . To remove the EOV conditions and obtain nor-

malized features, it is necessary to calculate the residual matrix
~E ¼ j ~X − ΛHj, where H is the matrix of the unobservable factors
that should be estimated. In this study, this matrix was determined
by the maximum likelihood approach based on Bartlett’s factor
score (Deraemaeker et al. 2008) as

H ¼ ðΛTΨ−1ΛÞ−1ΛTΨ−1 ~X ð10Þ
After the residual matrix has been obtained, it should be converted

into a vector to calculate its MAD value in the second stage of the
proposed prediction method. The first and second stages are repeated
R times (e.g., R ¼ 1,000) by randomly choosing the feature samples
of the normal condition. Accordingly, one can qualitatively predict
the level of EOV by comparing the MAD values of the first and sec-
ond stages or measuring the average ratio of these MAD quantities.
In this case, a relatively large distance or average ratio is repre-
sentative of strong variability or high sensitivity to the EOV condi-
tions, and vice versa. For convenience, Algorithm 3 lists the main
steps of the pseudocode for the process of the EOV level prediction.

Algorithm 3. Prediction of EOV Conditions
Inputs: All feature samples of the normal condition, and a
repetition number R (e.g., 1,000)
Stage 1
For i ¼ 1 to R

1. Generate a training matrix ~X by randomly choosing the
feature samples of the normal condition and store this
matrix for the second stage.

2. Convert the matrix ~X into a vector.
3. Calculate the MAD value of this vector.
4. Store this value in a vector for the ith iteration.

End for
Stage 2
For i ¼ 1 to R

5. Load the training matrix ~X from the previous stage regarding
the ith iteration.

6. Estimate the covariance matrix ~Σ and decompose it into the
matrices ~U and ~S, where ~Σ ¼ ~U ~S ~UT and ~U ~UT ¼ I.

7. Determine the number of singular values of the matrix ~S via
Eq. (9).

8. Decompose the matrices ~S and ~U into the submatrices ~S1, ~S2,
~U1, and ~U2.

9. Compute the matrices Λ ¼ ~U1ð ~S1Þ1=2, Ψ ¼ ~U2
~S2

~UT
2 , and

H ¼ ðΛTΨ−1ΛÞ−1ΛTΨ−1 ~X.
10. Compute the residual matrix ~E ¼ j ~X − ΛHj.
11. Implement Steps 2–4 using the residual matrix ~E instead

of ~X.
End for

12. Calculate the distance and average ratio between the MAD
values of the first and second stages.

Output: The distance and average ratio of the MAD values
between ~E and ~X.

Performance Evaluation

In this section, the performance and effectiveness of the machine
learning methods and the proposed approaches are compared and
evaluated using two different features extracted from vibration re-
sponses of two full-scale structures. The first structure is the Z24
Bridge, which was described fully by Reynders and De Roeck
(2009), for which modal frequencies of a few modes were used as
the main dynamic features. The second structure is the Tianjin–
Yonghe Bridge, fully discussed by Li et al. (2014), for which the
main statistical features were extracted from the autoregressive
moving average (ARMA) model (Entezami et al. 2020a). For fea-
ture classification, the 95% confidence interval under the central
limit theorem (CLT) and an extreme value theorem (EVT)-based
method developed by Sarmadi and Karamodin (2020) were consid-
ered to estimate two different alarming thresholds.

Z24 Bridge

The Z24 Bridge was a classical post-tensioned concrete box-girder
bridge located in Switzerland. The longitudinal section, the main
dimensions, and the top view of this bridge are shown in Fig. 2.
To construct a new bridge with a larger side span, the Z24 Bridge
was demolished in 1998. Before complete demolition, a long-term
continuous SHM program was conducted to quantify the environ-
mental variability components, including temperature, wind char-
acteristics, and humidity, and acquire acceleration time histories
from some sensors. Furthermore, realistic damage scenarios were
applied gradually to the bridge in a controlled way during the month
before complete demolition.

Using an operational modal analysis (i.e., stochastic subspace
identification), modal frequencies of four modes were identified in
a long-term monitoring scheme. The total number of measurements
was 3,932 samples of modal frequencies, after eliminating some
missing data. On this basis, the first 3,470 samples were related to
the normal condition, and the remaining samples pertained to the
damaged state of the bridge. To evaluate the effects of the environ-
mental variability on the modal frequencies of the Z24 Bridge,
Fig. 3 illustrates the MAD values of the first and second stages
of the proposed output-only approach, in which the number of rep-
etitions (R) for each stage was 1,000. The MAD values of the first
stage were about 2.94, and these values significantly decrease to
0.0005–0.0006 in the second stage. Moreover, the ratio of the aver-
ages of the MAD values of the first to the second stages was 4,604.
This extremely large amount and the distance between the MAD
values of the first and second stages indicate the existence of strong
environmental variability.

To compare the machine learning methods, training and test data
sets were defined. Accordingly, 75% of all samples of the modal
frequencies for the normal condition were considered to produce
the training matrix X ∈ R4×2602. The remaining 25% of the modal
frequencies of the normal condition (Samples 2,603–3,470) served
as the validation data, and all modal frequencies related to the dam-
aged state (Samples 3,471–3,932) were applied to make the test
matrix Z ∈ R4×1330. Using these matrices, the process of damage
detection was initially carried out using the MSD- and SVD-based
methods [Figs. 4(a and b) and Figs. 4(c and d), respectively]. Hori-
zontal dashed lines denote the alarming thresholds estimated by the
EVT [Figs. 4(a and c)] and the 95% confidence interval on the basis
of CLT [Figs. 4(b and d)] at a 5% significance level. In Figs. 4(a
and c), the DI values of the training and validation samples con-
cerning the normal condition of the structure (Samples 1–3,470)
do not exceed the thresholds indicating any Type 1 error. This
proves the great ability of the EVT, the generalized extreme value,
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and the block maxima method to estimate a reliable threshold with-
out any false positive. However, all DI quantities of the damaged
state in Samples 3,471–3,932 mistakenly fall below the threshold
lines implying considerable Type 2 errors.

In Figs. 4(b and d), many DI values for the normal condition
incorrectly deviate from the thresholds and indicate large Type 1
errors. This demonstrates the poor performance of the CLT and
standard confidence interval in estimating a reliable threshold limit.
Moreover, these plots include serious Type 2 errors. Without con-
sidering the alarming thresholds, it is difficult to discriminate the
damaged state from the normal condition. Furthermore, sudden

jumps caused by the strong influence of the environmental variabil-
ity on the identified modal frequencies of the normal condition are
apparent in DI values of Samples 867–1,734. These conclusions
imply the strong influence of environmental variability, which de-
creases the damage detectability of the nonparametric methods.
Therefore, the nonparametric methods fail to accurately detect dam-
age in the presence of strong environmental variations.

Due to the unreliable results of the MSD and SVD methods, the
semiparametric approaches were used to evaluate their performances
in detecting damage under strong environmental variations. First, the
optimal neuron sizes of the mapping and bottleneck layers were de-
termined by the proposed hyperparameter optimization technique
(Algorithm 1). Fig. 5 shows the MAD values required for training
the ANNs of the ANN-MSD and ANN-SVD methods, in which
both sample neurons lm0

and lb0 were set to 30 and 10, respectively.
The optimal neurons of the mapping and demapping layers (lm) for
the ANN-MSD and ANN-SVD methods were 26 and 28, respec-
tively [Figs. 5(a and c)]. Furthermore, the neurons of the bottleneck
layer (lb) for these methods were 4 and 3, respectively [Figs. 5(b
and d)]. By using these optimal neurons in the equations 2lm <
½pðn − lbÞ�=ðpþ lb þ 1Þ and 2lm < n, one can ensure that the over-
fitting problem did not occur. By removing the environmental var-
iations from the feature samples and determining the residual
matrices Ex and Ez, Fig. 6 displays the results of damage detection
by the semiparametric methods, where the horizontal dashed lines
are the thresholds estimated by the EVT [Figs. 6(a and c)] and the
95% confidence interval on the basis of CLT [Figs. 6(b and d)] at a
5% significance level.

In Figs. 6(a and c) there is no violation of the DI values of the
training and validation samples from the thresholds gained by the
EVT, except for two points in Fig. 6(c). In contrast, many exceed-
ances of the DI quantities from the thresholds are apparent in
Figs. 6(b and d) for the CLT. Regardless of the thresholds, there
is a clear difference between the DI quantities of the normal and
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Fig. 3. Prediction of the level of environmental variability in the Z24
Bridge.
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Fig. 2. (a) Longitudinal section of the Z24 Bridge; and (b) top view.
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damaged samples, indicating good damage detectability. The re-
sults in Figs. 4 and 6 indicate that the predicted outputs of the
ANN are less influenced by the environmental variability, in which
case the use of the ANN greatly allows the MSD and SVD tech-
niques to enhance the results of damage detection. On this basis,
the sudden jumps in the DI values of Samples 867–1,734 decrease
significantly, and the detectability of damage increases. These con-
clusions prove the positive effects of applying the ANN and the
automated hyperparameter optimization to the outlier masking
problem and removing the environmental variations from the mo-
dal frequencies.

Finally, the process of damage detection was carried out using
the parametric clustering methods. Based on the proposed auto-
mated hyperparameter optimization described in Algorithm 2, Fig. 7
shows the MAD values for choosing the optimal cluster numbers c
and r for the fuzzy c-means and the GMM clustering. For this prob-
lem, the sample cluster number h was set to 50. Therefore, the clus-
ter numbers c and r were 41 and 44, respectively. Using these
numbers, the results of damage detection by the parametric methods
are illustrated in Fig. 8, where the horizontal dashed lines are the
thresholds estimated by the EVT [Figs. 8(a and c)] and the
95% confidence interval based on the CLT [Figs. 8(b and d)] at
a 5% significance level.

Once again, the EVT succeeded in estimating accurate thresh-
olds with no Type a errors in all three clustering methods [Figs. 8(a
and c)]. Except for the result of damage detection by the GMM in
Fig. 8(d), the CLT was not sufficiently successful in providing an
accurate threshold limit due to serious Type 1 errors [Fig. 8(b)]. The
best performance in the normal condition was that of the GMM
method, which entirely filtered out the environmental variations
and provided DI values with low variability. Therefore, the rates
of Type 1 errors in Figs. 8(c and d) are roughly similar. Concerning
the damage detectability and false negative, the fuzzy c-means
method was not as good as the GMM method, particularly using
the EVT. Because the GMM outperformed the fuzzy c-means clus-
tering in dealing with the outlier masking problem, this approach
also had the best performance in terms of damage detectability. The
values of DIg of the normal and damaged states were distinguish-
able without considering the thresholds.

To summarize the performance of the machine learning meth-
ods, Table 1 lists the numbers and percentages of Type 1, Type 2,
and total (misclassification) errors. The nonparametric methods
(i.e., MSD and SVD) are not suitable for damage detection under
strong environmental variability, owing to the substantial Type 2
and total errors even using the EVT. The best performance in terms
of the smallest Type 1 and total errors was that of the proposed
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Fig. 4.Damage detection of the Z24 Bridge using the nonparametric methods: (a) MSD and EVT; (b) MSD and CLT; (c) SVD and EVT; and (d) SVD
and CLT.
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ANN-MSD method in conjunction with the EVT. The number and
percentage of Type 2 errors in this method also were inconsider-
able. After that, the proposed ANN-SVD method yielded better
outputs than the nonparametric techniques. The clustering methods
using the EVT provided small numbers and percentages of Type 1
error; however, the GMM outperformed the fuzzy c-means cluster-
ing in terms of Type 2 and total errors (Table 1). In the application
of the CLT, the numbers and percentages of Type 2 errors of both
the clustering methods were approximately in the same range and
reasonable, whereas the Type 1 and total errors were considerable. In
summary, the proposed semiparametric methods in conjunction with
the EVTare the best choices for detecting damage under strong envi-
ronmental variability. After them, one can utilize the GMM by con-
sidering the EVT.

Tianjin–Yonghe Bridge

The Tianjin–Yonghe Bridge is one of the earliest cable-stayed
bridges with continuous prestressed box-girder constructed in
China (Fig. 9). The total length of the Tianjin–Yonghe Bridge is
510 m, consisting of a main span of 260 m and two side spans
of 25.15 and 99.85 m. The height of the two concrete towers of
the bridge is 60.5 m, and they are connected by two transverse
beams. After 19 years of operation, in 2005, serious cracks were
found at the bottom of a girder segment over the midspan. More-
over, some cables close to the anchors were corroded severely.

A major rehabilitation program was conducted to replace the dam-
aged girder and all cables over the course of 2 years. In 2007, the
bridge was monitored by a sophisticated SHM system organized
by the Center of Structural Monitoring and Control (SMC) at the
Harbin Institute of Technology in China. Nevertheless, new dam-
age patterns were identified in the girders of the bridge during a
routine inspection in August 2008.

From the report of the SMC group (Li et al. 2014), the vibration
time-domain responses (acceleration time histories) on 12 days
(i.e., January 1, January 17, February 3, March 19, March 30, April
19, May 5, May 18, May 31, June 7, June 16, and July 31) are
available for use in damage detection. The vibration measurements
include 24 sets of 1-h acceleration time histories with 360,000 data
points/measurement (h) acquired from 14 single-axis accelerome-
ters for 24 h. The sampling frequency and time interval of the
acceleration responses were 100 Hz and 0.01 s, respectively. The
initial analysis of the vibration responses indicated that the ac-
celeration time histories of one of the accelerometers (Sensor 10)
were meaningless and should be neglected. Moreover, the data for
3 days—May 31, June 7, and June 16—were excluded from the
comparative study due to poor excitation conditions or lack of sta-
bility in the consecutive sets (Entezami et al. 2020a). In summary,
the vibration responses from Sensors 1–9 and 11–14 for 9 days
(i.e., January 1, January 17, February 3, March 19, March 30, April
19, May 5, May 18, and July 31) were considered in such a way that
the vibration data of the first 8 days were associated with the normal
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Fig. 5. Selection of the neuron sizes of the mapping, bottleneck, and demapping layers via the proposed automated hyperparameter optimization for
the ANN (Algorithm 1): (a) lm for ANN-MSD; (b) lb for ANN-MSD; (c) lm for ANN-SVD; and (d) lb for ANN-SVD.
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condition and those of the last day pertained to the damaged state of
the bridge (Li et al. 2014).

In this case study, the main features of damage detection were
extracted from the ARMA model. These features were the varian-
ces of the model residuals at all sensors and test measurements. The
outputs of the ARMA modeling associated with the Tianjin–
Yonghe Bridge are available in Entezami et al. (2020a). Accord-
ingly, the variances of the ARMA residuals from 13 accelerometers

and 24 test measurements of the first 8 days were calculated to pro-
duce a feature matrix of size 13 × 192 (192 ¼ 24 × 8) for the nor-
mal condition. The orders and coefficients of the ARMA models
obtained from the first 8 days were used to extract the model re-
siduals by considering the vibration responses of Day 9 and then
calculating their variances. Hence, a feature matrix of the damaged
state of the bridge the same size as the corresponding matrix related
to the normal condition was obtained.
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Fig. 6. Damage detection of the Z24 Bridge using the semiparametric methods: (a) ANN-MSD and EVT; (b) ANN-MSD and CLT; (c) ANN-SVD
and EVT; and (d) ANN-SVD and CLT.
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Fig. 7. Selection of the cluster numbers via the proposed automated method of hyperparameter optimization (Algorithm 2): (a) fuzzy c-means; and
(b) GMM.
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Before detecting damage, it is important to predict the level
of the EOV conditions (Fig. 10). For this process, all feature sam-
ples for the normal state (i.e., the feature matrix of size 13 × 192)
and 1,000 sample repetitions were set as the inputs. The MAD

values of the first 1,000 repetitions for the first stage varied in the
range 0.080–0.086, which are relatively small amounts. In the sec-
ond 1,000 repetitions, associated with the second stage, the MAD
values were about 0.014–0.017, close to the corresponding values
of the first stage. The ratio of the averages of the MAD amounts
of the first to the second stages was 5.722. This relatively small
amount and the distance between the MAD values demonstrate that
the EOV conditions were not severe as those of the problem of the
Z24 Bridge. Therefore, there was a weak level of EOVor low sen-
sitivity of the ARMA residual variances to these conditions.

To detect damage via the machine learning methods, the training
data comprised 75% of the residual variances of the normal condi-
tion; that is, X ∈ R4×144. The remaining 25% of the residual var-
iances of the normal condition, along with all variances of the
damaged state, were used to produce the test dataZ ∈ R4×240. Using
these matrices, Fig. 11 indicates the results of damage detection
by the nonparametric methods through the EVT [Figs. 11(a and c)]
and CLT-based [Figs. 11(b and d)] threshold estimation. All DI val-
ues of the training samples fell under the threshold lines, and a few
points of the validation samples exceeded the thresholds. Moreover,
the majority of the DI values of the damaged state in Samples 193–
384 were over the threshold limits, indicating accurate damage de-
tection, except for the two and three points (Type 2) associated with
the MSD and SVD methods, respectively. In contrast, in Figs. 11(b
and d), several DI values of the training and validation samples
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Fig. 8. Damage detection of the Z24 Bridge using the parametric methods: (a) fuzzy c-means clustering and EVT; (b) fuzzy c-means clustering and
CLT; (c) GMM by EVT; and (d) GMM by CLT.

Table 1. Numbers and percentages of Type 1, Type 2, and total errors in
detecting damage of Z24 Bridge using machine learning methods and two
threshold estimation techniques

Method Threshold Type 1 Type 2 Total

MSD EVT 0 (0) 462 (100) 462 (11.74)
CLT 174 (5.01) 210 (45.45) 384 (9.76)

SVD EVT 0 (0) 462 (100) 462 (11.74)
CLT 138 (3.97) 277 (59.95) 415 (10.55)

ANN-MSD EVT 0 (0) 7 (1.51) 7 (0.17)
CLT 229 (6.59) 2 (0.43) 231 (5.87)

ANN-SVD EVT 2 (0.057) 11 (2.38) 13 (0.33)
CLT 145 (4.17) 1 (0.21) 146 (3.71)

Fuzzy c-means EVT 1 (0.03) 129 (27.92) 130 (3.30)
CLT 210 (6.05) 3 (0.65) 213 (5.41)

GMM EVT 7 (0.20) 12 (2.59) 19 (0.48)
CLT 28 (0.80) 9 (1.94) 37 (0.94)

Note: Values in parentheses are percentages (%).
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incorrectly exceeded the threshold lines (Type 1), and there was no
Type 2 error.

Although the results of damage detection via the nonparametric
methods and EVT were reasonable, potentially due to the weak
EOV or low sensitivity of the extracted statistical features (i.e., the
ARMA residual variances) to these conditions, it is appropriate to
investigate the performance of the proposed semiparametric meth-
ods. Using the proposed automated hyperparameter optimization for
the semiparametric methods, Fig. 12 illustrates the MAD values for
training two autoassociative neural networks related to the ANN-
MSD and ANN-SVD methods, in which the sample neurons lm0

and lb0 were set to 30 and 10, respectively. The optimal neurons of
the mapping and demapping layers (lm) for the ANN-MSD and
ANN-SVDmethods were 15 and 13, respectively [Figs. 12(a and c)].

Moreover, the optimal neurons of the bottleneck layer (lb) were 2 for
both methods [Figs. 12(b and d)].

Utilizing these neurons, without any overfitting problem, and
training two autoassociative neural networks, the residual matrices
Ex and Ez were extracted and applied to the MSD and SVD equa-
tions. The results of damage detection using the proposed semipara-
metric methods are shown in Fig. 13, where the horizontal dashed
lines refer to the thresholds estimated by the EVT [Figs. 13(a and c)]
and the 95% confidence interval based on the CLT [Figs. 13(b
and d)] at a 5% significance level. In Figs. 13(a and c), there are no
Type 1 and Type 2 errors. This means that the ANN in conjunction
with the EVT highly assisted the nonparametric techniques to de-
crease the variations in the DI values of the normal condition and
deal with any outlier masking problem, leading to better results than
direct using the MSD and SVD methods. In contrast, in Figs. 13(b
and d), despite proper damage detectability and the removal of EOV,
the semiparametric methods suffered from Type 1 errors when the
threshold estimation was based on the CLT and the standard confi-
dence interval.

For damage detection via the clustering techniques, Fig. 14 dis-
plays the cluster numbers obtained from the proposed automated
approach. On this basis, the optimal cluster numbers c and r as-
sociated with the fuzzy c-means and GMM were 16, and 11, re-
spectively. Using these numbers and implementing the clustering
algorithms, the results of damage detection are shown in Fig. 15,
where the horizontal dashed lines are the thresholds obtained from
the EVT [Figs. 15(a and c)] and the 95% confidence interval based
on the CLT [Figs. 15(b and d)]. In Figs. 15(a and c), no DI values of
the training samples exceeded the threshold lines, and only two DI
quantities of the validation samples associated with the GMM were
over the thresholds. In contrast, the number of Type 1 errors in-
creases in both clustering methods by considering the CLT-based
threshold estimation. Hence, this conclusion confirms the limitation
of this technique for estimating a reliable alarming threshold even
under weak EOV conditions. Regarding the Type 2 error, expect
for the fuzzy c-means [Figs. 15(a and b)], it is seen that all DI values
of Samples 193–384 related to the GMM [Figs. 15(c and d)] were
above the thresholds. This implies the superiority of the GMM over
the fuzzy c-means clustering in the problem of damage detection.
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Fig. 9. Tianjin–Yonghe Bridge: (a) elevation view, main dimensions, and accelerometer labels; and (b) bridge plan and accelerometer locations.
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Fig. 10. Prediction the level of the EOV conditions in the Tianjin–
Yonghe Bridge.
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Fig. 11.Damage detection of the Tianjin–Yonghe Bridge using the nonparametric methods: (a) MSD and EVT; (b) MSD and CLT; (c) SVD and EVT;
and (d) SVD and CLT.
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Fig. 12. Selection of the neuron sizes of the mapping, bottleneck, and demapping layers via the proposed automated hyperparameter optimization for
the ANN (Algorithm 1): (a) lm for ANN-MSD; (b) lb for ANN-MSD; (c) lm for ANN-SVD; and (d) lb for ANN-SVD.
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For further evaluation, Table 2 lists the numbers and percentages
of Type 1, Type 2, and total errors in detecting damage via the non-
parametric, semiparametric, and parametric methods in conjunction
with the EVT and CLT. Unlike in the previous case study, the error
rates in Table 2 for the MSD and SVD methods are small. The ex-
cellent performance was related to the semiparametric methods
based on the EVT, for which there were no errors. Of the clustering

techniques, the GMM outperformed the fuzzy c-means clustering
using the EVT. With the use of the CLT, both the clustering meth-
ods yielded approximately the same results, which were worse than
the corresponding results obtained using the EVT. In summary, the
proposed semiparametric methods with the aid of the EVT are the
best choices for damage detection. The GMM is the next best tech-
nique. This important conclusion is related to the possibility of
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Fig. 13. Damage detection of the Tianjin–Yonghe Bridge using the semiparametric methods: (a) ANN-MSD and EVT; (b) ANN-MSD and CLT;
(c) ANN-SVD and EVT; and (d) ANN-SVD and CLT.
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Fig. 14. Selection of the cluster numbers via the proposed automated method of hyperparameter optimization (Algorithm 2): (a) fuzzy c-means; and
(b) GMM.
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using the nonparametric methods based on the EVT in the weak
EOV conditions. This confirms the importance of predicting the
level of these conditions before SHM.

Conclusions

Due to the importance of SHM for ensuring the safety and in-
tegrity of civil structures, this article conducted a comprehensive

comparative study of various machine learning methods under
unsupervised learning to detect damage under different EOV con-
ditions, and proposed new approaches to the problem of hyperpara-
meter optimization. The machine learning methods included the
nonparametric MSD and SVD, the semiparametric ANN-MSD and
ANN-SVD, and the parametric fuzzy c-means and GMM clustering
algorithms. In the comparative study, two alarming thresholds based
on the EVT using the generalized extreme value distribution and the
CLT with the standard confidence interval were applied to make
decisions about the occurrence of damage. The new approaches
were automated hyperparameter optimization algorithms based on
theMAD criterion for choosing the neuron sizes of the hidden layers
of an autoassociative neural network and the cluster numbers of
the clustering techniques by the focus on dealing with the outlier
masking problem caused by the EOV conditions. An automated
output-only method using the MAD criterion was also proposed
to predict the level of the EOV. Finally, the performance of the ma-
chine learning methods, the proposed approaches, and the threshold
estimation techniques was evaluated and compared in terms of the
dynamic and statistical features of two full-scale bridge structures.

The main conclusions of this article can be summarized as
follows:
1. In all comparisons, the threshold estimation via the CLT and

standard confidence interval was not successful in providing
reliable results. This may be due to the non-Gaussian distribu-
tion of the DI values used for the threshold estimation. Hence,
this technique is not recommended for use in threshold estima-
tion. In contrast, the EVT yielded the best performance in
terms of the smallest rates of Type 1, Type 2, and total errors.
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Fig. 15. Damage detection of the Tianjin–Yonghe Bridge using the parametric methods: (a) Fuzzy c-means clustering and EVT; (b) Fuzzy c-means
clustering and CLT; (c) GMM by EVT; and (d) GMM by CLT.

Table 2. Numbers and percentages of Type 1, Type 2, and total errors
in detecting damage using machine learning methods and two threshold
estimation techniques

Method Threshold Type 1 Type 2 Total

MSD EVT 3 (1.56) 2 (1.04) 5 (1.30)
CLT 19 (9.89) 0 (0) 19 (4.94)

SVD EVT 0 (0) 3 (1.56) 3 (0.78)
CLT 14 (7.29) 0 (0) 14 (3.64)

ANN-MSD EVT 0 (0) 0 (0) 0 (0)
CLT 18 (9.37) 0 (0) 18 (4.68)

ANN-SVD EVT 0 (0) 0 (0) 0 (0)
CLT 21 (10.93) 0 (0) 21 (5.46)

Fuzzy c-means EVT 0 (0) 22 (11.45) 22 (5.72)
CLT 19 (9.89) 6 (3.12) 25 (6.51)

GMM EVT 2 (1.04) 0 (0) 2 (0.52)
CLT 20 (10.41) 0 (0) 20 (5.21)

Note: Values in parentheses are percentages (%).
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Therefore, one can apply it to determine a reliable alarming
threshold.

2. The nonparametric MSD and SVD methods failed to provide
accurate results of damage detection under the strong EOV re-
lated to the Z24 Bridge. However, they were successful under
the weak EOV conditions regarding the SHM problem of the
Tianjin–Yonghe Bridge. This conclusion confirms the impor-
tance of predicting the level of the EOV conditions and analyz-
ing any kind of features extracted from measured vibration data.

3. In both the strong and weak EOV conditions, the best perfor-
mance was that of the proposed semiparametric ANN-MSD and
ANN-SVD methods in conjunction with the EVT. This conclu-
sion also proves the effectiveness of the proposed hyperpara-
meter optimization regarding the neuron size selection and the
application of the autoassociative neural network to properly
addressing the outlier masking problem.

4. Among the parametric methods, the GMM outperformed the
fuzzy c-means clustering in both the strong and weak EOV con-
ditions. However, the semiparametric methods provided better
results than this technique.
For further studies, it is recommended to study advanced

hyperparameter optimization algorithms such as gradient-based,
Bayesian, and multifidelity optimizations, as well as metaheuristic
approaches to addressing the problem of machine learning models
with large hyperparameters. This important subject can be merged
with advanced machine learning algorithms based on the concepts
of semisupervised learning, deep learning, transfer learning, active
learning, ensemble learning, and kernel learning.

Data Availability Statement

Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable
request.
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