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Model i ng (General Concepts)

Modeling is a tool wused by engineers to mneke decisions
regardi ng design and operation of an environnmental system
Model s can be used to forecast future conditions in response
to those decisions, select a best set of decisions based on
sone desired criterion, or determne the nost |ikely
physi cal val ues that explain an observed condition.

Because nost real systens are far too conplicated to node
as they are, a set of sinplifying assunptions is posed to
make the nodeling problem tractable - this is often called
the "conceptual nodel"

On  the basi s of these sinplifying assunpti ons a
"mat hemati cal nodel" (usually bal ance equations) is created.
The solution of the mathenmatical nodel vyields the behavior
of the system being studied.

After the nodel is created, it is "calibrated". This is the
process of adjusting nodel paraneters (transm ssivity,
storativity, etc.), forcing inputs, and geonetry until the
nodel response is identical (within sonme tolerance) to the
observed historical response of the real system Miltiple
cal i brations can produce identical responses, so great care
must be taken in calibrating and testing a nodel before
using it - once acceptably calibrated the nodel can be used
for forecasting.

Finite-Difference Method (I ntroduction)

Most problens in environnental nodeling require the solution
of differential equations, either ordinary or partial. Two
common nunerical mnethods of approximating solutions to ODEs
and PDEs are finite elenment and finite difference nethods.
The finite-difference nmethod (FDVM estimates the val ues of
one or nore functions at characteristic |ocations (nodes) of
the solution domain. The estimation is achieved by
discritization of the space-tinme domain through a two,
three, or four dinensional grid and the approxi mati on of the
differential equation by a difference equation.

The differential problemthus becones an al gebraic problem
and the conputation of the field variable values at the
nodes of the grid is a matter of the solution of the

al gebrai c equations (either linear or non-linear).

One procedure to generate finite difference schenes is based
on Tayl or-series expansi ons:
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g x5 df Dx" d'f

f(X+DX):f(X) + DX& +T . 2 + .. +T . n

dx dx
Rear r ange

2
df f(x+Dx)-f(X) df
dx ~ Dx - Dx .dxz )

Truncate at second term

df - f(x+Dx) - ()
dx U Dx

This expression is called a "first-order” forward finite
di fference approximation. Error is proportional to Dx.

Now consi der a backward discritization:

g x5 df ox" d'f
F(eDO=f() - DGy + 2 s+ £ R g

Rearrange and truncate to obtain:

df f(x)-f(x-Dx)
dx U Dx

This expression is called a "first-order” backward finite
di fference approximation. Error is proportional to Dx.

| f we take the average of these two expressions we obtain

df _ f(x+Dx)-f(x-Dx)
ax U 2Dx

This expression is called a "second-order"” centered finite
. . . . . 2
di fference approximation. FError is proportional to Dx .
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Forward difference

f(x)

Backward difference

Centered difference

Because Dx is supposed to represent snmall purturbations from

) 2 )
the function at x, then Dx < Dx, so that the error in the
centered difference approximation is smaller.

Wiy is the error reduced?

Consider the two difference schenmes (forward and backwar d)

df DXZ d2f x"' df
FD. f(x+Dx)=f(X) + Dxgy + 51 *—5 + .... + = -
dx ’ dx
df DXZ d2f Dx " dnf
BD: f(X'D()zf(X) - D(d_x + 2—| . > + L+ n_| . o
dx dx

The averagi ng schene sinply adds these two series and
divides the result by two. Cbserve that the Dx term
cancel s, leaving the next highest termin the truncated part

as Dx2 which deternmines the truncation error

Common Di fference Schenes

df f(x+Dx) - f (X)
ax U Dx
E(Dx )
df f(x+Dx) - f ( x- DX) 2

ax U 2Dx E(Dx )
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2
arf o 06D - 26 () + (x-Dx)
dx2 Dx2
E(Dx2 )
3
art o - f(x- 2D +2f(x- DX)- 2f (x+Dx) + f (x+2DX)
dx3 2DX3
E(ox° )

The procedure is generic and can be used to construct
approxi mati ons of any accuracy. The resulting al gebraic
equations are then used to relate new values of f to
precedi ng val ues.

When tinme is a variable the evaluation requires the anal yst

to choose which time level to evaluate the functions. | f
the new values are conpletely determ ned by old values the
schenme is called "explicit". If the values are determ ned

by ot her new val ues and sone old values the schene is called
"inplicit".

The quality of the schenes depends on:

Consi stency - does the schene exactly replace the
differential inthelimt as Dx -> 0.

Convergence - do the nunerical values exactly duplicate the
anal yti cal val ues when Dx -> 0.

Stability - does any error in the schenme renmain bounded
(stable) or are errors anplified (unstable).

Practical considerations include:

(1) What is the best discritization (grid, nesh , etc.)
selection and orientation.

(2) What is the best schene for the problem

(3) Initial and boundary conditions: CGeonetry and difference
representations of different boundary types.

(4) How to obtain solutions: FORTRAN, spreadsheets,

gr aphi cal net hods.

Cell Bal ance Met hods

Cell bal ance nmethods are an alternative approach for

devel opi ng nunerical nodels of physical systens - they have
t he advant age of being somewhat nore intuitive to create

al t hough they are roughly equivalent to "integrated finite-
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di fference" devel opnents.

Single Cell WMbdel

The single cell nodel visulaizes an entire groundwater
systemas a single cell.

The single aquifer can be further schemati zed as:
P 1;R

h(t+Dt) A

h(t)

Q»

A (basin area)

Model assumes averaged conditions throughout the entire
system - spatially averaged head, recharge, discharge, etc.

h(t+Dt) - h(t)

AS X = AR+ - P-0Q
wher e

A = aquifer area

S = aquifer storativity

h = averaged aquifer head at tine t

| =

water injection rate
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R = aquifer recharge rate/unit area
P = aquifer punping rate
Q = aquifer discharge rate (to surface)

The nodel al so assunes the the rates of recharge, discharge,
etc. renmmin constant over the tine interval Dt.

The unknown paraneters required for calibration are S and R
(tmplicitly assum ng records of punping, injection, and
average head are available). Sonetines Q= Qh) also

requi res calibration.

Average values for h are obtained fromcontour maps at tine
t and t+ Dt. If Ais large, it is subdivided into

subdomains ( DA ), and h =3 h; DA / A.

[
When groundwater inflow and outfl ow are a conponent of the
wat er bal ance, the single cell nodel is nodified:
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c \ \X\hl‘: \\_ h2
\ N\
/

///—h4"

7

/A/)/\/

h4

Cell Boundary Segme

hg - hy
Qutflow through i-th segment = T, ——— W

Li

where T, = transnmissivity near/at i-th segnent.

| f contours change significantly over Dt, then one needs to
use care to obtain a correct tine-averaged fl ux.

The nodi fied bal ance i s expressed as:

AS h(t+Dt)Dt- h(t)

=AR+|-P-Q+é VYTIJI
[

when justified, other conponents can be added to the single

cell nodel:
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(1) evapo-transpiration
(2) infiltration

(3) drainage

(4) | eakage

(5) irrigation return flow

Despite its apparent sinplicity this type of nodel is very
useful. In fact, the regional nass bal ance obtained with
this nodel should be fairly close to that obtained by nore
conpl ex net hods and single cell nodels serve as nice checks
on nore conpl ex nodel s.

The next step is to join several single cell nodels through
various flux terms - when each cell size is small, and nmany
cells are considered one can obtain a realistic flow node
for many types of problens.

Mul tiple Cell Bal ance Mbdel

The nmultiple cell balance nodel |inks a nunber of single
cell nodels by various representations of hydrualics and
transport theory.

Consi der an aquifer systemthat can be represented by three
cells:
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\—/\
Wdll
g ¢ Dy
Cr l
Cdl 1 Cdl 2 Cdl 3
R
R
Ay |
PR Ak
v
Q Q Q
-
Dx , - Bx ; > Dx 3»
Approach to "nodel" this systemis:
Wite single cell nodels for each cell
h(t+Dt)1 - h(t)l
Al S DX = MR 1l - P - Quer
Q nl
h(t+Dt)2 - h(t)2
Ay Sy Dt = ARy +ly - P - Qo +
Q n2
h(t+Dt)3 - h(t)3
Az S3 DX = A3 Ry *+1l3 - Pg - Quz *
Q n3

Use Darcy's law to link the cells:
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q _ D(Z + DX3 Dy h3 - h2
n2 -

Then "generalize" these expressions for all three cells:

h(t+Dt); - h(t);

T ;. Dy + T Dy
i-1/2 (Dx; 4 + Dx;)/2 i +1/2

(DX 41 + Dx;)/2

Di vide both sides by the cell area A, = Dx; Dy,
h(t+Dt); - h(t);
S DX = R+ /A - PR T A<
. 1 hi-q - .
i-1/2
U2 DO o+ D)2
. 1 his1 -
i +1/ 2 Dx

(Dx; 41 + Dxj)/2
Wer e
Ticy2 =

DX|_1/T|_1+DXI/TI

_ Dxj + DXj 41
Tivyi2 =

DD(i/Ti + DD(i+1/Ti+1

Remar kably, the MCB nethod | eads to identical expressions as
a typical centered finite difference nmethod will if the
cells are rectangul ar.
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However, unli ke FDM MCB does not require a particul ar cell
geonetry - thus it nmay be nore useful for certain
geonetrically chall engi ng problens.

Cell Bal ance Moddel for Steady Confined G oundwater Flow

Single Liquid Phase; Fully Saturated Porous Medium

> Mass Out
Dz T
Mass In
—
Vcelr = DxDyDz Vpore = w DxDyDz
Vsolid = (1-w)DxDyDz Moiid = rs(1-w) DxDyDz

Mass Bal ance Expression:

Rat e of Change of Mass in Cell =
Mass Flow Into Cell - Mass Flow Qut of Cell +
Rate of Mass Transferred

Steady State, No sources or sinks:

O = Mass Flow Into Cell - Mass Flow Qut of Cell

Schematic of Multiple Cells (One-D nensional Flow)




File: D:\Cive6361L ocal\Fall2001\L ecture_O07\Lecture 07.doc Last Edited:08/17/01

Printed: 8/17/01 10:58 AM Page 12 of 30
Celli-1 Celli Celli+1
R S —
Celli-1 Celli Celli+1

Bal ance Expressions for i-th Cell

Mass Flow Into Cell

K DyDz [hj.1 - hj]/Dx
Mass Fl ow Qut of Cell

K DyDz [hi - hj.]/Dx

Conpl ete Bal ance Equation for i-th Cell

0 = KDyDz[hi-l - hi ] [ Dx - KDyDz[hi - hi+1] / Dx
Goup like terns, divide by cell vol une:
0 = K[ hi.1 - 2h; + hj.]/Dx? (i)

Using the definition of partial derivative from cal culus we
can take limts as Dx vanishes and (i) inthe limt is

T Th
Tx 9qx

bserve that this | ast expression is exactly the governing
equation of groundwater flow (Steady State, 1D, Confined
Aqui fer).

0= (ii)

The equation (i) is the algebraic difference approxi mation
to the equation (ii).
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ll h
o onah L gL
K[ hi.1 - 2h; + hj.]/Dx ﬂx[ ﬂx]



File: D:\Cive6361L ocal\Fall2001\L ecture_O07\Lecture 07.doc Last Edited:08/17/01
Printed: 8/17/01 10:58 AM Page 14 of 30

Schematic of Multiple Cells (Two-D nensional Flow)

DX
+“—>

l,,j+1

-1,.] P I,) » i+1,,] Dy
+

l,,J-1

Bal ance Expressions for i,j-th Cell

Mass Flow I nto Cell

K Dy b[hi_l,j - h.l]/DX + KDxb [hi,j—l - h.,]/Dy

Mass Fl ow Qut of Cell

K Dy b[h.l - hi+1,j]/DX + K Dxb [hi,j- hi,j+1]/Dy

Conpl ete Bal ance Equation for i,j-th Cell, Substitute T=Kb

0= TDy [hi-l,j - h.l]/DX + T Dx [hi,j—l - h.,]/Dy
-{T Dy [hi,j - hi+1,j]/DX + T Dx [hi’j- hi,j+1]/Dy}

Goup like terns, divide by cell area:
0 = T[hi-]_’j - 2hi’j + hi+1,j]/DX2+ T[hi,j-l - 2hi’j + hi,j+1]/Dy2

Using the definition of partial derivatives from cal cul us we

can take limts as Dx and Dy vanish and in the limt the
di fference equation is
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ﬂ[Tﬂh+ﬂTﬂh]
Ix Ix Ty Ty

bserve that this last expression is exactly the governing
equation of 2D, steady-state confined aquifer flow

Again the difference equation is the algebraic difference
approximation to the partial differential equation.

T[hi-]_’j - 2hi’j + hi+1,j]/DX2

T ~Th, . T .Th
+ T[hi j-1 - 2hi j + hi ju]/Dy? »ﬂ X[ ™ Ty Ty

The difference equations can be "solved" using a conputer
program (e.g. a spreadsheet) for reasonably conplicated
geonetry and boundary conditi ons.

]

To account for spatially varying formation properties (K or
T) the difference equations are wusually witten using
average values at the cell interfaces.

Mass Flow Into Cell (anisotropic,inhonbgeneous)

[Txi-1j *+ Txi,j 1/2 Dy b[hi.1j - hij]/Dx +
[Ty ij-2+ Tyi,j1/2 Dxb [hij.1 - hi;]/Dy

Mass Fl ow Qut of Cell (anisotropic,inhonbgeneous)

[Txi,j + Txi+,j 1/2 Dy b[hj.qj - hy;]/Dx +
[Tyi,j + Tyi,j+l]/2 Dx b [hi,j' hi,j+1]/Dy

Let

Aj=[Tai-ng + Tui,j 1/2Dx?
Bij=[Txi,j + Txi+j ]/2Dx?
Gi=[Tyi,j-1+ Tyi,j1/2Dy?
Di=[Tyi,j + Tyi e« ]/2Dy?

VWen we wite the conpl ete bal ance equation for i,j-th cell,
collect like terns and divide by the cell volunme we obtain:

0 = Ajhi-1j -(Aj+Bj+Gj+D) hi j + Bijhi+,j+ Gjhi j.1 + Djhi j«a

This difference equation can be witten as an explicit
equation for h as
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hij = [Ajhi.e; + Bijhisj+ Gjhi j.1 + Djhi ja]/ (Aj+Bij+G;+D)
This difference equation represents an approximation to the

governing fl ow equation, the accuracy depending on the cel
Si ze.

Boundary conditions are applied directly into the anal ogs
(another name for the difference equations) at appropriate
| ocations on the conputational grid.

Rect angul ar Aqui fer Exanple

A
11| 21|32 | 41| 51
142
s — ——
o}
T.4
Y S E—
5,5
— >
DX
Aqui f er Domai n Model Donai n
Sinmulate the Aquifer with the 5 x 5 nodel shown. The |eft
and right boundaries wll be treated as specified head
boundaries. The upper and | ower boundary will be treated as

no fl ow boundari es.

The difference equations are entered into spreadsheet cells
corresponding to the appropriate location in the nodel
domai n.

Boundary conditions are incorporated by explicit entering of
t he conditions.

An exanpl e spreadsheet is shown on the next figure.
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AlB|lC|D|E|[F|]G]|H | J K
1 Steady State Head Distribution
2 T= 10|Need Manual Calculation (F9 key)
3 Dx= | 100(Need to select "Iteration's"
4 Dy= | 100|Both options in "Tools-Options-Calculation" Menu
5 H= | 100
6 h,= | 100 : ,
7 he= 60| |7!F(E8=0,0,E9+1) |
8 Reset=| 0 /=612 |
9 Iterations = 0 /
10 Col> 1 2 3 f 5
11 1 100 100 100 100 60 0
12 2| 100| 100/ 100| 100| 60| 100
13 |Row> 3| 100| 1004100| 100/ 60| 200
14 4| 100| 10p| 100| 100/ 60| 300
15 5 100 Y00 100 100 60 400
16 x> 0| /100| 200| 300| 400|y"
17
18
19 , / ,
20 |=IF($E$8=O,$E$5,0.25*(E13+F12+F14+G 13)) |
21 - r r r r 1 |

bserve that the cell fornula depends on the val ue of cell
D8. This feature allows you to reset the calculations in
case sonet hi ng goes wong. Once is changed to non-zero
and you instruct the programto nmake calculations, it wll
automatically update the cell values until the solution
converges. The value in cell D5 is just sone starting val ue
to begin the iterations.

Pl ease observe that the autonmatic recal cul ati on feature nust
be disabled and the iterations feature selected. Both these
options can be selected fromthe "Tool s-Opti ons-Cal cul ati on"”
di al og box in the spreadsheet (EXCEL).

The result for this exanple is shown on the next figure.
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AlB|lC|D|E|[F|]G]|H | K

1 Steady State Head Distribution

2 T= 10|Need Manual Calculation (F9 key)

3 Dx= | 100(Need to select "Iteration's"

4 Dy= | 100|Both options in "Tools-Options-Calculation" Menu

5 H= 100

6 h,= | 100 : .

- he= | 60| |='F(E8=0,0,E9+1) |

8 Reset = /=612 |

9 Iterations =| 100

10 Col> 1 2 3 f 5

11 1 100 90 80 70 60 0

12 2| 100| 90| 80| 70| 60| 100

13 |Row> 3| 100] 904 80| 70| 60| 200

14 4| 100 9 80| 70| 60| 300

15 5 100 /90 80 70 60 400

16 x> 0| /100| 200| 300| 400|y"

17

18

19 , / ,

20 |=IF(SE$8=0,$E$5,0.25*(E13+F12+F14+G13))|

21 - r r r r 1 |

Thus we now have a t ool

solution to

Cel |

Bal ance Mbdel

1 fh, 1 1h

0= [
I x 9x

for Transi ent Confi ned G oundwat er

Ty Ty

]

to allow us to approximate the

FlI ow
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DX
+“—>

l,,j+1

-1,.] P I,) » i+1,,] Dy
2

l,,J-1

Bal ance Expressions for i,j-th Cell

Mass Flow I nto Cell

K Dy b[hi_l,j - h.l]/DX + KDxb [hi,j—l - h.,]/Dy

Mass Fl ow Qut of Cell

K Dy b[hi,j - hi+1,j]/DX + KDxb [hi,j- hi,j+1]/Dy

Rate of Mass Stored in Cell

S DxDy [h*™ ;; - h';;]/Dt

Rate of Internal Mass Transferred (Recharge - Punpage)

R-Q = (r-q)DxDy

(R Qis volunetric rate over entire cell, r,q is rate per
unit area of cell)
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Conpl et e Bal ance Equation for i,j-th Cell, Substitute T=Kb

S DxDy [h"™ i - h';;]/Dt = (r-q)DxDy +
T Dy [hi-l,j - h.l]/DX + T Dx [hi,j—l - h.,]/Dy
- T Dy [hi;j - hisgj]/Dx - T Dx [hij- hij« ]/Dy

Goup like terns, divide by cell area:

S[h™™ i - ht i ]/Dt =
Tl hi-1,; - 2hjj + hi+1,j]/DX2+
T[hi,j-1 - 2hij + hi j.]/Dy®+
(r-a)

Using the definition of partial derivatives from cal cul us we

can take limts as Dx and Dy vanish and in the limt the
difference equation is

sth_ 9 1h 1  1h

Mt Ix 9Ix Ty Ty

I+r-q

(bserve that this last expression is exactly the governing
equation of 2D, confined aquifer flow

Again the difference equation is the algebraic difference
approximation to the partial differential equation.

T[hi_]_,j - 2hi,j + hi+1,j]/DX2

T .Th,. 1 .Th
- B N T + T
+ T[hi j-1 - 2hij + hi j+]/ Dy? »ﬂ X[ Tx Ty Ty

The difference equations can be "solved" using a conputer
program (e.g. a spreadsheet) for reasonably conplicated
geonetry and boundary conditi ons.

]

To account for spatially varying formation properties (K or
T) the difference equations are wusually witten using
average values at the cell interfaces.
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Mass Flow Into Cell (‘anisotropic,inhonmgeneous)

[Txi-1,j + Txi,j 1/2 Dy b[hi.1j - hi;]/Dx +
[Tyij-2+ Tyi,j1/2 Dxb [hij.1 - hij]/Dy

Mass Fl ow Qut of Cell (anisotropic,inhonbgeneous)

[Txi,j + Txi+1,j 1/2 Dy b[hi_1; - hy;]/Dx +
[Tyi,j + Tyi,j+2]1/2 Dxb [hi j- hi j+«1]/Dy

Let

Aj=[Txi-1,; + Txi,j ]/2Dx?
Bij:[Txi,j + Txi+1,j ]/2DX2
Gi=[Tyi,j-1+ Tyi,j1/2Dy?
D=[Tyi, + Tyi,jel/2Dy?

When we wite the conpl ete bal ance equation for i,j-th cell,
collect like terns and divide by the cell volunme we obtain:

S[h™*™ i - h' i ]/Dt
= Ajhi.1j -(Aj+Bij+Gj+D hi j + Bijhi«,j+ Gjhi j.1 + Djhi j+
+r -

This difference equation can be rearranged as an explicit
updat e expression if all the values of h on the right hand
side are evaluates at tinme |evel t.

t +Dt -
h i =

hti,j +Dt/S*{r-q+
[Aj h'i.1j + Bj h'juj+ Gj h'i .1 + D h'
i,j+1]/ (Aj+Bij+CG;+D)}

This difference equation represents an approximation to the
governing fl ow equation, the accuracy depending on the cel
Si ze.

The tinme step Dt depends on the values of T, Dx, Dy and S for
a stable solution. More robust difference equations are
generally used (inplicit, Crank_Ni chol sen; etc.) but the
representation presented here is very sinple to program —
even in a spreadsheet.

Exanpl e

Flowto a Wll in a Leaky-Confined Aquifer
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Concept ual Model

i Q (discharge)
— Observation Well

Pumping Well

Draw dow n || \\ Pre-Development Head
Aquiclude _\_
~——_

Aquifer Piezometric
Surface

Aquifer TS

r (radius)

Aquiclude

Honogeneous-i sotropi c aquifer, well punps at constant rate.

Det er mi ne di st ance-drawdown by nunerical nodel and conpare
to analytical (Theis) solution.

Gid Design

Axes of symmetry
4 /

v

NEDY

Model Quadrant

(bserve that there are two axes of symmetry. The flow
domain is nmapped onto the quadrant shown and only 1/4 of the
flow is considered.
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A spreadsheet nodel of this situation is depicted bel ow
bserve the arrays for material properties (T,S) and
r echar ge/ di schar ge.

Flow to Well In Aquiter .
> 2 ...... from previous sheet
DX 4
Dy 4
T Atray
Column
Row
0 Restart 1
1 Iteration 2917
2 Dt 01
3 Time 2917 [sec
4 Pumpage 11668
5
6 Head (Iteration -1) meters
7 Column
8 Row 0 T 5 0
0 0.0023 0 975 _o75 99.9] 100.0
[Storage Coefficient A 1 575 9] 1000
Column 2 963 99.9] _100.0
Row o 1 3 96.9 99.9] 1000
0 00075 3 992 999 100.0
1] 0.0075 5 994 99.9] 1000
2 6 99.6 100.0] _1000]
3 7 998 100.0[__100]
4 8 99.9 ) 100.0[ _100]
5 0 99.9] _100.0 100.0] __100.0
s Head (teration)
7 Column
8 Row 0
0 0 975
Recharge Atray T metersiday n =
Column > 3
Row 0 1 2 3 2 5 3 7 8 0 = e
0 0 0 0 0 0 0 0 0 0 0 - =
1 0 0 0 0 0 0 0 0 0 0 5 o
2 0 0 0 0 0 0 0 0 0 0 5 =
3 0 0 0 0 0 0 0 0 0 0 7 =
2 g g g g g g g g g g 8 9.9 99.8916| 99.9032 99.9516|
= 3 . . 3 3 . . 3 3 . 0| 998852 100 100 100
0 ) o ) ) ) o ) ) ) 0| ) gzja‘:v’::wn (Iteration) meters
8 0 0 0 o o 0 0 0 o 0 Row 0 T 2 3 7 5 3 7 5 0
0 0 0 0 0 o 0 0 o o 9 0 23] 75 7 T1 08 06 04 02 01 0]
Pumpage Ay cu. meters/day 1 75 75 T7 T oo 06 04] o1 00
Row Column 5 1 > 3 7 3 3 = 5 5 2 17 17 13 10 07 05 04 02 01 0.0
2 S R S| | S| S S S S S ) B | | - B
; g °'°°g g g g g g g g g 5 06 06 05 05 04 03 02 01 01 0.0
3 3 . . 3 3 . . 3 3 . 3 04 04 04 03 03 02 02 01 00 0.0
o 5 5 5 5 5 5 5 5 5 5 7 02 02 02 02 02 01 01 01 0.0 0.0
< 5 5 5 5 5 5 5 5 5 5 8 01 01 01 01 01 01 00 00 0.0 0.0
= 3 . . 3 3 . . 3 3 . 0 01 0.0 00 00 0.0 0.0 00 00 0.0 0.0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
I~ [Inital Head Array. [meters
Column
Row 0 1 2 3 2 5 3 7 8
0 1000] 1000 _100.0] _1000] 1000 _100.0] _100.0| _1000] _100.0
1] 1000] 1000 1000] 100.0] 100.0] _1000] 1000] 100.0] _100.0
2] 1000] 1000] _100.0] 1000 100.0[ _100.0] _100.0] _100.0] _100.0
3] __1000] 1000] _100.0] 1000 _100.0[ _100.0| _100.0| _100.0] _100.0
4] 1000] 1000] 100.0] 1000] 1000| 100.0] _100.0| _100.0] _100.0
5| 1000] 1000] _100.0] 1000 1000] _100.0] _100.0] _100.0] _100.0
6] 1000] 1000| _100.0] _100.0] _100.0[ _100.0| _100.0| _100.0] _100.0
7] 1000] 1000] 100.0] 1000] 1000| 100.0] 100.0| 100.0] 100.0
8| 1000] 1000] 100.0] 1000] 1000] 100.0] _100.0| _100.0] _100.0
0 __1000] _100.0] _100.0] _1000] _100.0] _100.0] _100.0] _100.0] _100.0
continued .....

The next sheet shows a close-up of the conputation portion
of the spreadsheet.
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Restart 1
Iteration 2917
Dt 0.1
Time 291.7|sec
Pumpage 1.1668
Head (Iteration -1) meters
Column
Row 0 1 2 3 4 5 6 7 8 0
0 97.5 97.5 98.3 98.9 99.2 99.4 99.6 99.8 99.9 100.0
1 97.5 97.5 98.3 98.9 99.2 99.4 99.6 99.8 99.9 100.0
2 98.3 98.3 98.7 99.0 99.3 99.5 99.6 99.8 99.9 100.0
3 98.9 98.9 99.0 99.2 99.4 99.5 99.7 99.8 99.9 100.0
4 99.2 99.2 99.3 99.4 99.5 99.6 99.7 99.8 99.9 100.0
5 99.4 99.4 99.5 99.5 99.6 99.7 99.8 99.9 99.9 100.0
6 99.6 99.6 99.6 99.7 99.7 99.8 99.8 99.9 100.0 100.0
7 99.8 99.8 99.8 99.8 99.8 99.9 99.9 99.9 100.0 100.0
8 99.9 99.9 99.9 99.9 99.9 99.9 100.0 100.0 100.0 100.0
0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Head (Iteration) meters
Column
Row 0 1 2 3 4 5 6 7 8 0
0 97.5 97.5 98.3 98.9 99.2 99.4 99.6 99.8 99.9 100.0
1 97.5] 97.4893] 98.3482| 98.8536| 99.1891 99.43| 99.6132| 99.7601| 99.8852 100
2 98.3] 98.3482| 98.6813( 99.0046| 99.2668| 99.4736| 99.6385| 99.7742| 99.8916 100
3 98.9 £536 99.0046( 99.1984| 99.3838| 99.5454( 99.6824| 99.7995| 99.9032 100
4 99.2 ?9.1891 99.2668| 99.3838| 99.5098| 99.629| 99.7362| 99.8316| 99.9181 100
5 99.4 / 99.43| 99.4736| 99.5454| 99.629| 99.7134( 99.7931| 99.8665| 99.9347 100
6 99.6) 99.6132| 99.6385( 99.6824| 99.7362| 99.7931| 99.8488| 99.9016| 99.9516 100
7 99.9] 99.7601| 99.7742( 99.7995| 99.8316| 99.8665| 99.9016| 99.9356| 99.9682 100
8 99/9 99.8852| 99.8916| 99.9032| 99.9181| 99.9347| 99.9516| 99.9682| 99.9843 100
0] 99.8952 100 100 100 100 100 100 100 100 100
< Drawqbwn (Iteration) meters
Colughn
Row / o© 1 2 3 4 5 6 7 8 0
of / 25 2.5 1.7 1.1 0.8 0.6 0.4 0.2 0.1 0.0
1/ 25 2.5 1.7 11 0.8 0.6 0.4 0.2 0.1 0.0
2 / 1.7 1.7 1.3 1.0 0.7 0.5 0.4 0.2 0.1 0.0
3 1.1 11 1.0 0.8 0.6 0.5 0.3 0.2 0.1 0.0
/ 0.8 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
/5 0.6 0.6 0.5 0.5 0.4 0.3 0.2 0.1 0.1 0.0
/ 6 0.4 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.0 0.0
/ 7 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0
/ 8 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0
/ 0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

\\

[ =C82+$B$73%((0.5/$B$4)*((D11+C11)*(D82-C82)-(C11+B11)*
[ (C82-B82))+(0.5/$B$5)*((C10+C11)*(C81-C82)-(C11+C12)*(C82-C83))+
[ (C37-C50)/($B$2*$B$3))/C24
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Finally the results of the nunerical nodel and the
anal ytical nodel are conpared in the spreadsheet bel ow

Q 0.016 |m"3/day Pumping well discharge (L"3/t)
T 0.0023 | m"2/day Aquifer transmissivity (L"2/t)
S 0.0075 Aquifer storage coefficient
K' 0.0000001 |m/day Aquitard vertical hydraulic conductivity (L/t)
b’ 1000000|m Thickness of aquitard (L)
B 151657.5089
Time Drawdown

r (m) r/B t (sec) Numerical Mode|Analytical Model (ft)

2| 1.31876E-05 600 2.8| 2.570356098

4| 2.63752E-05 600 1.9]1.811892648

6| 3.95628E-05 600 14| 1.37775644

8| 5.27504E-05 600 1.0| 1.079606125

10| 6.5938E-05 600 0.7]| 0.858173798

12| 7.91257E-05 600 0.5/ 0.686812466

14| 9.23133E-05 600 0.3/ 0.551067971

16| 0.000105501 600 0.2| 0.442088141

18| 0.000118688 600 0.0| 0.353959906
|| Aquifer with Recharge [
| |10.0 ||
{30 + -
I X ||
iE 9 H

©

—d.1 - _ —
| | X Numerical Model (ft) ||
|| Analytical Model (ft) ||
[ | 0.0 1 [ ]
|| 1 distlz?nce 100 ||
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In the interest of sir,nplicity, some of the more subtle aspects of the use of
the difference notation have not been brought out. It is important to note,

howeovar that if ~ea 2o foa- 23

2owever, inat it one is interesied in evaiuating or examining Af/Ax, the
notation is assumed to imply that one is keeping the y coordinate and the
time coordinate fixed. Obviously, Af/Ax, which is computed for one small
volume, need not have the same value as Af]Ax for a volume located
somewhere else in space.

The most basic of the conservation equations is the conservation-of-mass or
continuity equation, which, for the fluid in the volume of aquifer in Figure

3.3, states:
rate of change of \' / rate of flow of \ / rate of flow of \‘
mass of fluid in ={ fluid mass into } — | fluid mass out (3.5)
\a volume with time / \the volume of the volume
This equation, unlike the general equation (3.1), has no additional terms,

because mass cannot be created within a volume. The next task is to
account mathematically for all the terms in (3.5).

To develop (3.5) mathematically, we will have to make use of the
following quantities:

p = density, the mass of fluid per unit volume of
fluid. It has units of mass divided by length
cubed or M/L3,

u, v = the velocity of the fluid within the pore

space in the x and y directions, respec-

Figure 3.3.
Elemental volume with horizontal mass fluxes indi-
cated.
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tively. Velocity has units of length divided
by time or LiT.

€ = the porosity of the material, the fraction of
the volume considered that is not occupied
by the solid grains. € iS also equal to the
fractional areal surface of a boundary. face
of the volume that is not occupied by the
solid material. Thus, € is a measure of the
fraction of the surface area across which
fluid can flow, as well as a measurc of the
fraction of the volume available for fluid
occupation.

The first term in (3.5) is a measure of the rate of change of fiuid in the
volume. Experimentally, one might measure this term by weighing the
volume at two different times and determining the change in amount of
fluid in the volume during the interval. Thus one must measure the mass

per volume and multiply by the volume 0 obtain the mass, Of

fluid mass

in the volume | = (peb Ax Ay) (3.6)
at time? ,

where € Ax Aybis the volume occupied by the fluid. Then the fluid mass in

the volume at time At later is

fluid mass
in the volume | = (peb AXx Ay) 3.7

attlmet+At e

The rate of change of mass is then equal to the difference in mass at the two
times divided by At or

rate of change of _
fuid mass in the | = (peb Ax Ay = (peb BX BN,

volume with time

_ Apeb Ax 89)
————r (3.8)

The next term that needs to be evaluated in (3.5) is the mass of fluid
flowing into the volume. This is equal to the mass flow per unit area |
multiplied by the arca. This term has three components: on¢ that accounts |
for the x-direction inflow, one that accounts for the y-direction inflow, and

NUMERICAL
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trl

/ rate of flow of \
{ fiuid mass into | = (puep Ay
\ the volume

where b Ayand ep AXxare the areas the x and y components of flow cross, R

is the recharge rate, and Ax Ay is the area through which the recharoe
ocenrse Tha Aweefl_ .

2 4 SRV avelaai g0

- > 10C outliow expression is similar to (3.9) except that terms are

=75 S a15Caa O
net recharoo o ¢ae . o

vt Techarge, a term that accounts for pumping wells is included:

/ rate of Aaw: ~0\

, ,
=Ssv Vi aUW O1 I '
fluid mass out )= (puep Ay) I + (pveb Ax) I +pQ Ax Ay (3.10)
\of the volume_ . | o1

Combination of the terms in (3.8), (3.9), and (3. 10) according to equa-
tion (3.5) yields the mass-balance equation

Al

[
— (pveb Ax)

{pueb Ay) , + (pveb Ax) ’
+1 J

+pRAxAy—pQAxAy 3.11)
JH1

3 Although p, ¢, U, v, and b are assumed to vary spatially and temporally, such
) 3 1 that, for example, these variables may have different values atiand+ |,
s Axand Ay are constants. Thus, equation (3.11) may be divided by Axand

Ay to obtain
» 4
Alped) _ (pueb)|; — (pueb)),,, (pveb)); — (pveb)|,,, _ !
‘ At Ax + Ay +PR=pQ ’

e T ——

T
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relating the final version back to the physically meaningful concept of
conservation of mass. Nevertheless, if the basic physical premise and the
progression of maihematical steps are correct, the final equation derived
must also be correct.

One of the most commonly used modifications to (3.13) involves the
storage coefficient, denoted by S. The storage coefficient is the volume of
water that an aquifer will absorb (or release) from storage per unit planar
area per unit change in head. The storage coefficient is therefore dimen-
sionless. If we denote the head by ¢ and the change in head by A¢, the
quantity pS Ag is the mass of water that an aquifer absorbs (of stores) as a
result of a head change of Ad¢ per unit area. As discussed previously, the
only way that mass can be added to or subtracted from a volume is via
convection or flow of the mass into or out of the volume. Thus the quantity
pS(Ap/At) must equal the left side of equation (3.13), and therefore

AP A(pueb) _ A(pveb)
S = - —
PS 3 - Ay + pR — pQ. (3.14)

In equation (3.14), S and € are properties of the aquifer being considered
while p is the water density. These mustbe specified. The parameter bisthe
thickness of a confined aquifer or the depth of flow in an unconfined aquifer
(and thus directly related to the water-table elevation). The unknowns that

must be solved for in (3.14) are the velocities, « and v, and the head .

3.8. DARCY'S LAW AND THE GROUNDWATER
FLOW EQUATION

In the mid nineteenth century Henri Darcy, a French engineer, performed a
series of classical experiments to investigate the behavior of flow in porous
media. He found that in flow through a pipe packed with porous material,
the flow per unit area is proportional to the head difference between the two
ends of the pipe and inversely proportional to the pipe length. The constant
of proportionality between the flow and the head gradient is the permeabil-
ity, and the relation obtained by Darcy is

A
q=—K—A-(-,;- (3.15)

where

g = the volumetric flow per cross-sectional area,

K = the permeability,
A¢ = the head difference across the length of the pipe, and
Al = the pipe length.
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Equation (3.15), commonly referred to as Darcy’s law, is not strictly a law
but only a useful relation that applies to most (though certainly not all)

naturally occurring flows in porous media. Among the effects that may

. cause non—Darman behawor are high velocity or the presence of more than
one liguid phase (such as oil ﬂnwmo with water).

Although Darcy’s iaw was deveioped from experimeniai evidence for
one-dimensional flows in porous media, it has been extended to two- and
three-dimensionai flows. In sysiems thai have the same permeabiiity in aii
directions, called isotropic media, equation (3.15) is generalized so that the
flow in any direction is proportionai to the head gradient in that direction.
For a two-dimensional system, such as the one that is our primary interest,

A
g = €U = K—A—x' (3.16a)
—e=—xA9
q,=€v K Ay (3.16b)

where g, and g, are the volume of flow per unit time per unit cross-sectional
area in the x and y direction, respectively. The flow components g, and g,
are called Darcy velocities, or superficial velocities, and are smaller than the
actual average velocities in the pores by the factor €.

For media that behave according to equation (3.16), the direction of flow
is always the same as the head gradient direction. However, in some media,

nlhsmnd 4o no maed A 1
referred to as anisotropic media, this is not the case. For example, in a

limestone formation, caverns may exist that follow one predominant direc-
tion. A head gradient not collinear with this direction may still give rise to
flow through the caverns. In an anisotropic material, flow from one point to
another moves along the path of least resistance and not necessarily along
the straight line connecting the two points. Modeling of anisotropic flows
requires that different permeabilities be specified in each direction and that
terms be included that account for flow in one direction due to a gradient in
an orthogonal direction. Thus, the anisotropic analogue to (3.16) would be

A, A
@ . =eu=—K, — Ax - K, Ay (3.17a)
.* ! q,= €v= —ny Ax Kyy A_y (3.17b)

= the permeability in the x direction due to a head gradient in
the x direction,

K,, = the permeability in the x direction due to a head gradientin
the y direction,
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K,, = the permeability in the y direction due to a head gradient in .  3.9. CONSI

the x direction, and

K,, = the permeability in the y direction due to a head gradient in
the y direction.

Availabie data often are not extensive enough to permit modeling .of -
anisotropy with any significance. For purposes of further discussions here,
only the isotropic version of Darcy’s law, asin equation (3.16), will be used.
The reader should keep in mind, however, that directional differences in
permeability, particularly between vertical and horizontal directions, can .
significantly influence a flow pattern and the rai¢ of transport of contami-
nants.

The linear relation between velocities and head gradient as given in
(3.16) makes it possible to eliminate the velocities from equation (3.14).
Substitution of (3.16a) and (3. 16b) into (3.14) for €u and ev results in

A/l AP\, A AP\, o 0 ‘
T e—— —_— — oKb — il /7 s S P {3=18‘
At Ax \pr Ax) Tay\Pay) T T .

Ap _ A Ad A Ad>\) _
S A7 Ax (pT Ax) + Ay (pT Ay + pR — pQ (3.19)
If the problem under consideration is one for which the density does not
vary spatially, then density may be divided out of equation (3.19) to yield

Ab_ A (pAB) A (7A9), g
5= Ax(r Ax)+ Ay(T Ay)+R 0 (3.20)

This balance equation is the form most commonly solved to obtain a head
profile or the flow field in an aquifer. This equation states that per unit area,
the rate of change of fluid volume is equal to the net inflow in the x direction
plus the net inflow in the y direction plus the net recharge due to vertical
leakage minus the net discharge due to pumping wells.

To model an aquifer, one divides it into a number of adjacent subvol-
umes and then applies equation (3.20) to each subvolume. This set of
equations is supplemented by boundary conditions at the periphery of the
aquifer that provide head values or flux conditions. Once this system is
solved for the distribution of head, the velocity field may be computed using
the difference form of Darcy’s law in eauation (3.16). The velocities are
important, as they give an indication of the rate at which contaminants
move, and they are used in the species balance equation to be developed in
the next section.
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} 3.10. EXAMPLE OF APPLICATION OF
| GROUNDWATER FLOW EQUATION

- A computer model applies equations (3. 20) and (3.30) to a groundwater
aquifer that has been subdivided into hundreds or even thousands of smaii
volumes. The computer is important to this model, because it can quickly
perform the large number of arithmetic operations required to obtain the
head or concentration distribution. The computer possesses no inherent
wisdom,; it can perform the necessary manipulations only if they are pre-
scribed by the programmer. Thus the quality of computer results depends

directly on the quah—ty_&' -thc ]{{En;;noﬁhd'ééxiﬁa;& ]-)r;:'-;&e‘gto the

To give the reader a very simplistic view of how equations (3.20) and
(3.30) are solved by the computer, we will apply eguation (3.20) to the

aived SRSy 8Lt ) ~ At AR

el

hypothetical confined aquifer depicied areaily in Figure 3.4. The aquifer
extends 5,000 meters in the x direction and 2,000 meters in the y direction.
The aquifer is bounded beiow by an impermeabie formation (aquiciude) but
above by an aquitard, which recharges the aquifer uniformly at the rate of 50
cm/yr with water that contains no contaminants. The transmissivity, 7,
equals 3,000 m?/day. No flow crosses the northern, southern, or eastern
edges of the aquifer. At the left edge, the hydraulic head ¢ is equal to 3 m
above mean sea level . The aquifer is subdivided such that equations may be
applied to the two square volumes in Figure 3.4.

Because the system is operating at steady state (i.e., conditions at any

point in the aquifer do not vary with time), the time-difference term in
equation (3.20) will be equal to zero. Further, there are no pumping wells in
the system, so (3.20) becomes

e I

This equation is applied to volumes 1 and 2 with reference to Figure 3.5.
In Figure 3.5 values of A¢/Ax at the east and west boundaries of the
volume are indicated, and because g, = 0 on the north and south bound-
aries, A¢p/Ay must be zero on these ends. Note that Ax = 2,000 m. For
volume 1,

s (r) (r2m2) - (r L)
Ax\" Ax 2,000 m

3,w0m2 ¢2—2¢,+3m

~ " day [ (2,000 my ]

(3.32a)
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T =3000m?2/day
R=50cm/yr

q
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] : ! : 2
] H
| |
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Figure 3.4.
Areal view of a hypothetical rectangular confined aquifer discre-
tized into two elements.
bqy=O=Tﬁ—: ba,*0=T ﬁt
po-oomoes 1 i 7
1 | ! |
| Lad d,-8 84 $o-hi 3 R
ad $-3m N - -$
e 1 e arde P MOTE
! i i |
R Yy iy, i
bq,tO*TA—y bq,=o=T-E
Figure 3.5.

Application of groundwater flow equation (3.31) to the two elements of the
horizontal aquifer.

NUMERICAL SI\

3.11. SUMM/
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' A Ad)) _0-0 _
Ay (T Av) = 2000m 0 (3.32b)
R = 50 cm/yr = .00137 m/day (3.32¢)
Insertion of (3.32) into (3.31) yields |
0= 2,007 (P2—2¢, +3m)+.00137 m (3.33)

This single equation contains two unknowns and cannot be solved without a
supplementary condition. The needed extra condition is provided by the

balance over volume 2:
0—T ¢2 _ q')l
A/T%\: 2’000m;—,3’w0m2 rjg_dh ] (3.34a)
Ax\" Ax/ 2,000 m day [(2,000 mp| Y
A (rad)_ 0-0 _, (3.34b)
Ay\" Ay 2,000 m
R =50 cm/yr = .00137 m/day (3.34¢)

Combination of (3.34) into the balance equation (3.31) yields

3,000
(2,000

(b, — é,) +.00137 m (3.35)

Now equations (3.35) and (3.33) are two simple algebraic equations in the
two unknowns ¢, and ¢,, which we may solve simultaneously to obtain

¢, =665m, ¢,=848m

3 Because ¢, is greater than ¢,, which in turn is greater than the western
3 boundary value of 3.0 m, we can see that flow will move toward the west.
Once the solution for ¢ has been obtained, Darcy’s law may be applied
to compute the velocity field. This velocity field is used in equation (3.30)
for computation of the concentration distribution. The differencing of this

equation follows along the same lines as with the flow equation.

1. suMmARY

This chapter has introduced the concepts behind numerical modeling.
Numerical modeling is in no way magical but depends upon basic principles
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Model ing with MODFLOW and rel ated tools (A description of
one of the nore conmon tools in use)

(Adapted from “Mddeling groundwater flow with MDFLOW ..,
S. A Leake, USGS Report FS-121-97)

The nodular finite-difference groundwater flow nodel

(MODFLOW devel oped by the U S. Geol ogical Survey (USGS) is
a conputer program for sinulating comobn features in
groundwat er systens (MDonald and Har- baugh, 1988; Harbaugh
and McDonal d, 1996). The program was constructed in the ear-
ly 1980s and has continually evolved since then wth
devel opnment of many new packages and related progranms for
groundwat er studies. Currently MODFLOW is the nost wdely
used programin the world for simulating ground- water flow

The popul arity of the programis attributed to the follow ng
factors:

e The finite-difference nethod used by MODFLOWis relatively
easy to under- stand and apply to a wide variety of real-
worl d conditions.

« MODDFLOW wor ks on many di fferent conputer systens ranging
from personal conmputers to super conputers.

e MODFLOW can be applied as a one- dinensional, two-
di mensi onal , or

quasi - or full three-di nensional nodel.

e Each sinulation feature of MODFLOW has been evensively
t est ed.

« Data input instructions and theory are well docunent ed.

e The nodular program design of MXDFLOVN allows for new
sinmulation features to be added with rel ative ease.

A wide variety of conputer progranms witten by the USGS

ot her federal agencies, and private conpanies are avail able
to analyze field data and con- struct input data sets for
MODFLOW

A wide variety of prograns are available to read output
from MODFLOW and graphically present nodel results in ways
that are easily understood.

« MXDFLOW has been accepted in nmany court cases in the
United States as a legitimate approach to analysis of
groundwat er systens.

SI MULATI ON CAPABI LI TI ES OF MODFLOW

MODFLOW is designed to sinulate aquifer systenms in which
saturated-flow conditions exist, Darcy's Law applies, the
density of ground water is constant, and the principal
di rections of hori zont al hydraul i c conductivity or
transm ssivity do not vary wthin the system These
conditions are net for many aquifer systens for which there
is an interest in analysis of groundwater flow and
contam nant novenent. For these systens, MODFLOW can si nu-
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late a wide variety of hydrologic features and processes
(Fig. 1).

Steady-state and transient flow can be sinmulated in
unconfi ned aqui fers, confined aquifers, and confining units.
A variety of features and processes such as rivers, streans,
drains, springs, reservoirs, wells, evapotranspiration, and
recharge from precipitation and irrigation also can be
sinmulated. At least four different solution nethods have
been i npl enented for solving the finite-difference equations
that MODFLOW constructs. The avail- ability of different
solution approaches allows nodel users to select the nost
efficient nethod for their problem

APPLI CATI ON OF MCDFLOW

MODFLOW si mul ates groundwater flow in aquifer systenms using
the finite-difference nethod. in this nethod, an aquifer
systemis divided into rectangul ar blocks by a grid (Fig 2.)
The grid of blocks is organized into rows, colums, and
| ayers. Each block is comonly called a cell.

MCODEL | NPUT

For each cell within the volume of the aquifer system the
user nust specify aquifer properties. Aso, the user
specifies information relating to wells, rivers, and other
inflow and outflow features for cells corresponding to the
| ocation of the features. For exanple, if the interaction
between a river and an aquifer sys- temis sinulated, then
for each cell traversed by the river, input information
i ncludes layer, row, and colum indices; river stage; and
hydraul i c properties of the river bed.

MODEL OUTPUT

MODFLOW uses the input to construct and solve equations of
groundwater flow in the aquifer system The solution
consists of head (groundwater level) at every cell in the
aqui fer system (except for cells where head was specified as
known in the input data sets) at intervals called 'tine
steps.' The head can be printed and/or saved on a conputer
storage device for any tine step.

Hydr ol ogi sts conmonly use water |levels froma nodel |ayer to
construct contour maps for conparison with simlar mps
drawn from field data. They also conpare conputed water
levels at individual cells wth neasured water levels from
wells at corresponding locations to determ ne nodel error
(Fig. 3). The process of adjusting the nodel input values to
reduce the nodel error is referred to as nodel calibration.
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In addition to water |evels, MODFLOW prints a water budget
for the entire aquifer sys- tem The budget lists inflow to
and outflow from the aquifer system for all hydrologic
features that add or renove water

O her program out put consists of flow rates for each node
cell. MXODFLOW can wite the flow rates onto a conputer
storage device for any hydrologic feature in a sinulation
These cell-by-cell flow rates conmmonly are read by post-
processing prograns for detailed analysis of the sinulated
groundwat er system

| NVERSE MODELI NG W TH MODFLOWP

In conventional or "forward nodeling," nodel paranmeters
(such as aquifer properties) are specified and water |evels
and flow quantities are conputed (Fig. 4). For nobst aquifer
systens, however, nore information is available from field
data on water levels, flows, and advective transport or
groundwat er age than on input paraneters.

Typically, input paranmeters are adjusted during node
calibration using a trial- and- error process. Thi s
calibration process can yield acceptable agreenent between
conput ed nodel results and field data but is tinme consum ng,
may not produce paraneter values that result in the best fit
of field data, and does not result in quantitative estimates
of uncertainty in nodel results and estinmated paraneter
val ues.

Inverse nodeling is a nore formal approach to node

calibration that includes automatic paranmeter adjustment in
order to match field data. The program MODFLOAP is the USGS
version of MODFLOW that includes autonatic paraneter
estimati on. MODFLOAWP  uses a weighted |east-squares
objective function as a neasure of how well nodel results
agree with field neasurenents. Wights are used to reflect
reliability of individual measurenents.

Parameters that can be estimated by MDFLOAP i nclude
transm ssivity; hydraulic conductivity, storage coefficient;
verti cal | eakance; vertical and horizontal anisotropy,
hydraul i c conduct ance between aquifer systens and rivers,
drains and other features; a real recharge; maxi mum
evapotranspiration; punping; and water |evels at constant-
head boundaries. Measured or extemally estimated information
on paranmeters also can be included. Paraneter values that
mnimze the objective function (Fig' 5) are calculated by
MODFLOAWP using the nodified Gauss-Newton nethod or the
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conjugate-direction nethod. The resulting paraneter val ues
are "best-fit" in that they pro- vide the closest match

bet ween neasured and sinul ated heads and flows, as neasured
by the objective function. The task of the nodeler is to
evaluate how well these calculated values represent the
physi cal system bei ng simul at ed.

Model output includes estinates of paraneters and statistics
relating to the paraneter estimates. The statistics can be
used to quantify the reliability of the resulting nodel
suggest changes in nodel construction, and conpare results
of nodels constructed in different ways, Post-processors can
be used to cal cul ate confidence intervals on predicted heads
and flows to

depict prediction uncertainty. To effectively use MODFLOAP
an under st andi ng of principles of groundwater flow and basic
statistics is needed.

PARTI CLE TRACKI NG W TH MODPATH

Many studies require information such as the average rate of

noveri i ent of gr oundwat er and cont am nant s. Al so,

information often is needed on the recharge or capture areas

for water discharging to wells, springs, streamreaches, and
other features. Although MDD FLOW does not conpute this

information directly, simulation with MODFLOW provi des basic
informati on needed for such analyses. The partide-trackng
program MODPATH, is a post-processing program for MODFLOW
to estimate flow paths (Fig. 6) and tinmes of travel in
groundwat er systens. An acconpanyi ng program MODPATH PLOT,

displays particle paths, contours, and nodel features.

MODPATH can be wused for studies of steady-state and
transient flows. Common applications include studies of

paths and tinme of travel of contam nant novenent; and source
(recharge) areas of wells, springs, rivers, and other

feat ures.

MODPATH can place particles at specified |locations or
generate starting locations of arrays of particles in
selected reoons. Particles can be tracked forward from
starting locations to calculate where water is goin or
backwards to map where it cane from Miltiple particle-
release tinmes can be used to sinmulate "plumes" of
cont am nati on



