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Modeling (General Concepts) 
 
Modeling is a tool used by engineers to make decisions 
regarding design and operation of an environmental system.  
Models can be used to forecast future conditions in response 
to those decisions, select a best set of decisions based on 
some desired criterion, or determine the most likely 
physical values that explain an observed condition. 
 
Because most real systems are far too complicated to model 
as they are, a set of simplifying assumptions is posed to 
make the modeling problem tractable - this is often called 
the "conceptual model".   
 
On the basis of these simplifying assumptions a 
"mathematical model" (usually balance equations) is created.  
The solution of the mathematical model yields the behavior 
of the system being studied. 
 
After the model is created, it is "calibrated".  This is the 
process of adjusting model parameters (transmissivity, 
storativity, etc.), forcing inputs, and geometry until the 
model response is identical (within some tolerance) to the 
observed historical response of the real system.  Multiple 
calibrations can produce identical responses, so great care 
must be taken in calibrating and testing a model before 
using it  - once acceptably calibrated the model can be used 
for forecasting. 
 
Finite-Difference Method (Introduction) 
 
Most problems in environmental modeling require the solution 
of differential equations, either ordinary or partial.  Two 
common numerical methods of approximating solutions to ODEs 
and PDEs are finite element and finite difference methods.  
The finite-difference method (FDM) estimates the values of 
one or more functions at characteristic locations (nodes) of 
the solution domain.  The estimation is achieved by 
discritization of the space-time domain through a two, 
three, or four dimensional grid and the approximation of the 
differential equation by a difference equation. 
 
The differential problem thus becomes an algebraic problem 
and the computation of the field variable values at the 
nodes of the grid is a matter of the solution of the 
algebraic equations (either linear or non-linear). 
 
One procedure to generate finite difference schemes is based 
on Taylor-series expansions: 
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Truncate at second term 
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This expression is called a "first-order" forward finite 
difference approximation.  Error is proportional to Dx. 
 
Now consider a backward discritization: 
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Rearrange and truncate to obtain: 
 
df
dx  � 

 f(x)-f(x-Dx)
Dx       

 
This expression is called a "first-order" backward finite 
difference approximation.  Error is proportional to Dx.  
 
If we take the average of these two expressions we obtain  
 
df
dx  � 

f(x+Dx)-f(x-Dx)
2Dx     

 
This expression is called a "second-order" centered finite 

difference approximation.  Error is proportional to Dx
2
  .  
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Because Dx is supposed to represent small purturbations from 

the function at x, then Dx
2
   < Dx, so that the error in the 

centered difference approximation is smaller. 
 
Why is the error reduced? 
 
Consider the two difference schemes (forward and backward) 
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The averaging scheme simply adds these two series and 
divides the result by two.  Observe that the Dx term 
cancels, leaving the next highest term in the truncated part 

as Dx2  which determines the truncation error! 
 
Common Difference Schemes 
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The procedure is generic and can be used to construct 
approximations of any accuracy.  The resulting algebraic 
equations are then used to relate new values of f to 
preceding values.  
 
When time is a variable the evaluation requires the analyst 
to choose which time level to evaluate the functions.  If 
the new values are completely determined by old values the 
scheme is called "explicit".  If the values are determined 
by other new values and some old values the scheme is called 
"implicit". 
 
The quality of the schemes depends on: 
 
Consistency - does the scheme exactly replace the 
differential in the limit as Dx -> 0. 
Convergence - do the numerical values exactly duplicate the 
analytical values when Dx -> 0. 
Stability - does any error in the scheme remain bounded 
(stable) or are errors amplified (unstable). 
 
Practical considerations include: 
 
(1) What is the best discritization (grid, mesh , etc.) 
selection and orientation. 
(2) What is the best scheme for the problem. 
(3) Initial and boundary conditions: Geometry and difference 
representations of different boundary types. 
(4) How to obtain solutions: FORTRAN, spreadsheets, 
graphical methods. 
 
Cell Balance Methods 
 
Cell balance methods are an alternative approach for 
developing numerical models of physical systems - they have 
the advantage of being somewhat more intuitive to create 
although they are roughly equivalent to "integrated finite-
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difference" developments.  
 
Single Cell Model 
 
The single cell model visulaizes an entire groundwater 
system as a single cell. 

   

P
Ρ Ι

Q
  

 
The single aquifer can be further schematized as: 

     

Q

P I;R

h(t)

h(t+ t)∆

A (basin area)  
 
 
Model assumes averaged conditions throughout the entire 
system - spatially averaged head, recharge, discharge, etc.   
 

 AS
 h(t+Dt) - h(t) 

Dt    =  AR + I - P - Q 

where 
 
 A = aquifer area 
 S = aquifer storativity 
 h = averaged aquifer head at time t 
 I = water injection rate 
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 R = aquifer recharge rate/unit area 
 P = aquifer pumping rate 
 Q = aquifer discharge rate (to surface)  
 
The model also assumes the the rates of recharge, discharge, 
etc. remain constant over the time interval Dt.   
 
The unknown parameters required for calibration are S and R 
(implicitly assuming records of pumping, injection, and 
average head are available).  Sometimes Q = Q(h) also 
requires calibration. 
 
Average values for h are obtained from contour maps at time 
t and t+ Dt.  If A is large, it is subdivided into 

subdomains (  DA
 
i ), and h = ∑

i

 
  h

 
i  DA

 
i / A . 

When groundwater inflow and outflow are a component of the 
water balance, the single cell model is modified: 
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where T
 
i  = transmissivity near/at i-th segment. 

 
If contours change significantly over  Dt, then one needs to 
use care to obtain a correct time-averaged flux. 
 
The modified balance is expressed as: 
 

 AS
 h(t+Dt) - h(t) 

Dt    =  AR + I - P - Q + ∑
i

 
  W

 
i T

 
i J

 
i  

when justified, other components can be added to the single 
cell model: 
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(1) evapo-transpiration 
(2) infiltration 
(3) drainage 
(4) leakage 
(5) irrigation return flow 
 
Despite its apparent simplicity this type of model is very 
useful.  In fact, the regional mass balance obtained with 
this model should be fairly close to that obtained by more 
complex methods and single cell models serve as nice checks 
on more complex models. 
 
The next step is to join several single cell models through 
various flux terms - when each cell size is small, and many 
cells are considered one can obtain a realistic flow model 
for many types of problems. 
 
Multiple Cell Balance Model 
 
The multiple cell balance model links a number of single 
cell models by various representations of hydrualics and 
transport theory. 
 
Consider an aquifer system that can be represented by three 
cells: 
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Approach to "model" this system is: 
 
Write single cell models for each cell 
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Use Darcy's law to link the cells: 
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Then "generalize" these expressions for all three cells: 
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Divide both sides by the cell area A
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Remarkably, the MCB method leads to identical expressions as 
a typical centered finite difference method will if the 
cells are rectangular. 
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However, unlike FDM, MCB does not require a particular cell 
geometry - thus it may be more useful for certain 
geometrically challenging problems. 
 
Cell Balance Model for Steady Confined Groundwater Flow 
 
Single Liquid Phase; Fully Saturated Porous Medium 
 
 
 

∆∆x

∆∆y

∆∆z

Mass In

Mass Out

 
 
Vcell = ∆x∆y∆z   Vpore = ω ∆x∆y∆z 
Vsolid = (1-ω)∆x∆y∆z  Msolid = ρs(1-ω) ∆x∆y∆z 
 
Mass Balance Expression: 
 
Rate of Change of Mass in Cell =  

Mass Flow Into Cell - Mass Flow Out of Cell +  
Rate of Mass Transferred 

 

Steady State, No sources or sinks: 
 
0 = Mass Flow Into Cell - Mass Flow Out of Cell  
 
Schematic of Multiple Cells (One-Dimensional Flow) 
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Cell i-1 Cell i Cell i+1

Cell i-1 Cell i Cell i+1
 

 
Balance Expressions for i-th Cell  
 
Mass Flow Into Cell  
 
K ∆y∆z [hi-1 - hi]/∆x 
 
Mass Flow Out of Cell  
 
K ∆y∆z [hi - hi+1]/∆x 
 
Complete Balance Equation for i-th Cell 
 
0 = K∆y∆z[hi-1 - hi ] /∆x - K∆y∆z[hi  - hi+1] /∆x 
 
Group like terms, divide by cell volume: 
 
0 = K[hi-1 - 2hi + hi+1]/∆x2          (i) 
 
Using the definition of partial derivative from calculus we 
can take limits as ∆x vanishes and (i) in the limit is 
 

]
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Observe that this last expression is exactly the governing 
equation of groundwater flow (Steady State, 1D, Confined 
Aquifer). 
 
The equation (i) is the algebraic difference approximation 
to the equation (ii). 
 



File: D:\Cive6361Local\Fall2001\Lecture_07\Lecture_07.doc  Last Edited:08/17/01 
Printed: 8/17/01 10:58 AM  Page 13 of 30  

K[hi-1 - 2hi + hi+1]/∆x2 ≈ ]
 

 
[

 x

h
K

x ∂
∂

∂
∂

 

 



File: D:\Cive6361Local\Fall2001\Lecture_07\Lecture_07.doc  Last Edited:08/17/01 
Printed: 8/17/01 10:58 AM  Page 14 of 30  

Schematic of Multiple Cells (Two-Dimensional Flow)  
 

i,,ji-1,,j

i,,j-1

i,,j+1

i+1,,j ∆y

∆x

 
 

Balance Expressions for i,j-th Cell  
 
Mass Flow Into Cell  
 
K ∆y b[hi-1,j - hi,j]/∆x + K ∆x b [hi,j-1 - hi,j]/∆y 
 
Mass Flow Out of Cell  
 
K ∆y b[hi,j - hi+1,j]/∆x + K ∆x b [hi,j- hi,j+1]/∆y 
 
Complete Balance Equation for i,j-th Cell, Substitute T=Kb 
 
0 =  T ∆y [hi-1,j - hi,j]/∆x + T ∆x  [hi,j-1 - hi,j]/∆y 
   -{T ∆y [hi,j - hi+1,j]/∆x + T ∆x  [hi,j- hi,j+1]/∆y} 
 
Group like terms, divide by cell area: 
 
0 = T[hi-1,j - 2hi,j + hi+1,j]/∆x2+ T[hi,j-1 - 2hi,j + hi,j+1]/∆y2 
 
Using the definition of partial derivatives from calculus we 
can take limits as ∆x and  ∆y vanish and in the limit the 
difference equation is 
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Observe that this last expression is exactly the governing 
equation of 2D, steady-state confined aquifer flow. 
 
Again the difference equation is the algebraic difference 
approximation to the partial differential equation. 
 
T[hi-1,j - 2hi,j + hi+1,j]/∆x2  
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The difference equations can be "solved" using a computer 
program (e.g. a spreadsheet) for reasonably complicated 
geometry and boundary conditions. 
 
To account for spatially varying formation properties (K or 
T) the difference equations are usually written using 
average values at the cell interfaces. 
 
Mass Flow Into Cell (anisotropic,inhomogeneous)  
 
[Tx i-1,j + Tx i,j ]/2 ∆y b[hi-1,j - hi,j]/∆x +  
[Ty i,j-1 + Ty i,j ]/2 ∆x b [hi,j-1 - hi,j]/∆y 
 
Mass Flow Out of Cell (anisotropic,inhomogeneous)   
 
[Tx i,j + Tx i+1,j ]/2 ∆y b[hi-1,j - hi,j]/∆x +  
[Ty i,j + Ty i,j+1 ]/2 ∆x b [hi,j- hi,j+1]/∆y 
 
Let  
 
Aij=[Tx i-1,j + Tx i,j ]/2∆x2 
Bij=[Tx i,j + Tx i+1,j ]/2∆x2 
Cij=[Ty i,j-1 + Ty i,j ]/2∆y2 
Dij=[Ty i,j + Ty i,j+1 ]/2∆y2 
 
When we write the complete balance equation for i,j-th cell, 
collect like terms and divide by the cell volume we obtain: 
 
0 = Aijhi-1,j -(Aij+Bij+Cij+D)hi,j + Bijhi+1,j+ Cijhi,j-1 + Dijhi,j+1 
 
This difference equation can be written as an explicit 
equation for h as 
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hi,j = [Aijhi-1,j + Bijhi+1,j+ Cijhi,j-1 + Dijhi,j+1]/(Aij+Bij+Cij+D) 
 
This difference equation represents an approximation to the 
governing flow equation, the accuracy depending on the cell 
size. 
 
Boundary conditions are applied directly into the analogs 
(another name for the difference equations) at appropriate 
locations on the computational grid. 
 
Rectangular Aquifer Example 
 
 

 

T,b

 

∆y

∆x

2,1 4,13,1 5,1

1,2

5,5

1,1

 
Aquifer Domain Model Domain 
 
Simulate the Aquifer with the 5 x 5 model shown.  The left 
and right boundaries will be treated as specified head 
boundaries.  The upper and lower boundary will be treated as 
no flow boundaries. 
 
The difference equations are entered into spreadsheet cells 
corresponding to the appropriate location in the model 
domain. 
 
Boundary conditions are incorporated by explicit entering of 
the conditions. 
 
 
An example spreadsheet is shown on the next figure. 
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1
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7

8

9

10

11

12

13

14

15
16
17
18
19
20
21

A B C D E F G H I J K
Steady State Head Distribution
T= 10 Need Manual Calculation (F9 key)
∆x= 100 Need to select "Iteration's"
∆y= 100 Both options in "Tools-Options-Calculation" Menu
H= 100
hL= 100

hR= 60

Reset = 0

Iterations = 0

Col> 1 2 3 4 5

1 100 100 100 100 60 0

2 100 100 100 100 60 100

Row> 3 100 100 100 100 60 200

4 100 100 100 100 60 300

5 100 100 100 100 60 400
x> 0 100 200 300 400 y^

=IF($E$8=0,$E$5,0.25*(E13+F12+F14+G13))

=G12

=IF(E8=0,0,E9+1)

 
 
Observe that the cell formula depends on the value of cell 
D8.  This feature allows you to reset the calculations in 
case something goes wrong.  Once D8 is changed to non-zero 
and you instruct the program to make calculations, it will 
automatically update the cell values until the solution 
converges.  The value in cell D5 is just some starting value 
to begin the iterations. 
 
Please observe that the automatic recalculation feature must 
be disabled and the iterations feature selected.  Both these 
options can be selected from the "Tools-Options-Calculation" 
dialog box in the spreadsheet (EXCEL). 
 
The result for this example is shown on the next figure. 
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A B C D E F G H I J K
Steady State Head Distribution
T= 10 Need Manual Calculation (F9 key)
∆x= 100 Need to select "Iteration's"
∆y= 100 Both options in "Tools-Options-Calculation" Menu
H= 100
hL= 100

hR= 60

Reset = 1

Iterations = 100

Col> 1 2 3 4 5

1 100 90 80 70 60 0

2 100 90 80 70 60 100

Row> 3 100 90 80 70 60 200

4 100 90 80 70 60 300

5 100 90 80 70 60 400
x> 0 100 200 300 400 y^

=IF($E$8=0,$E$5,0.25*(E13+F12+F14+G13))

=G12

=IF(E8=0,0,E9+1)

 
 
Thus we now have a tool to allow us to approximate the 
solution to 
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Cell Balance Model for Transient Confined Groundwater Flow 
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Balance Expressions for i,j-th Cell  
 
Mass Flow Into Cell  
 
K ∆y b[hi-1,j - hi,j]/∆x + K ∆x b [hi,j-1 - hi,j]/∆y 
 
Mass Flow Out of Cell  
 
K ∆y b[hi,j - hi+1,j]/∆x + K ∆x b [hi,j- hi,j+1]/∆y 
 
Rate of Mass Stored in Cell 
 
S ∆x∆y [ht+∆t i,j - h

t i,j]/∆t 
 
Rate of Internal Mass Transferred (Recharge - Pumpage) 
 
R-Q = (r-q)∆x∆y     
 
(R,Q is volumetric rate over entire cell, r,q is rate per 
unit area of cell) 
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Complete Balance Equation for i,j-th Cell, Substitute T=Kb 
 
S ∆x∆y [ht+∆t i,j - h

t i,j]/∆t =  (r-q)∆x∆y  +  
T ∆y [hi-1,j - hi,j]/∆x + T ∆x  [hi,j-1 - hi,j]/∆y 

   - T ∆y [hi,j - hi+1,j]/∆x - T ∆x  [hi,j- hi,j+1  ]/∆y 
 
Group like terms, divide by cell area: 
 
S [ht+∆t i,j - h

t i,j]/∆t =  
T[hi-1,j - 2hi,j + hi+1,j]/∆x2+  
T[hi,j-1 - 2hi,j + hi,j+1]/∆y2+  
(r-q) 

 
Using the definition of partial derivatives from calculus we 
can take limits as ∆x and  ∆y vanish and in the limit the 
difference equation is 
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Observe that this last expression is exactly the governing 
equation of 2D, confined aquifer flow. 
 
Again the difference equation is the algebraic difference 
approximation to the partial differential equation. 
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The difference equations can be "solved" using a computer 
program (e.g. a spreadsheet) for reasonably complicated 
geometry and boundary conditions. 
 
To account for spatially varying formation properties (K or 
T) the difference equations are usually written using 
average values at the cell interfaces. 
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Mass Flow Into Cell (anisotropic,inhomogeneous)  
 
[Tx i-1,j + Tx i,j ]/2 ∆y b[hi-1,j - hi,j]/∆x +  
[Ty i,j-1 + Ty i,j ]/2 ∆x b [hi,j-1 - hi,j]/∆y 
 
Mass Flow Out of Cell (anisotropic,inhomogeneous)   
 
[Tx i,j + Tx i+1,j ]/2 ∆y b[hi-1,j - hi,j]/∆x +  
[Ty i,j + Ty i,j+1 ]/2 ∆x b [hi,j- hi,j+1]/∆y 
 
Let  
 
Aij=[Tx i-1,j + Tx i,j ]/2∆x2 
Bij=[Tx i,j + Tx i+1,j ]/2∆x2 
Cij=[Ty i,j-1 + Ty i,j ]/2∆y2 
Dij=[Ty i,j + Ty i,j+1 ]/2∆y2 
 
When we write the complete balance equation for i,j-th cell, 
collect like terms and divide by the cell volume we obtain: 
 
S [ht+∆t i,j - h

t i,j]/∆t  
= Aijhi-1,j -(Aij+Bij+Cij+D)hi,j + Bijhi+1,j+ Cijhi,j-1 + Dijhi,j+1  

+ r - q 
 
This difference equation can be rearranged as an explicit 
update expression if all the values of h on the right hand 
side are evaluates at time level t. 
 
ht+∆t i,j =  
 
ht i,j  + ∆t/S *{ r - q + 
[Aij h

t
 i-1,j + Bij ht i+1,j+ Cij ht i,j-1 + Dij ht 

i,j+1]/(Aij+Bij+Cij+D)} 
 
This difference equation represents an approximation to the 
governing flow equation, the accuracy depending on the cell 
size. 
 
The time step ∆t depends on the values of T, ∆x, ∆y and S for 
a stable solution.  More robust difference equations are 
generally used (implicit, Crank_Nicholsen; etc.) but the 
representation presented here is very simple to program – 
even in a spreadsheet. 
 
Example 
 
Flow to a Well in a Leaky-Confined Aquifer 
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Conceptual Model 
 

Aquic lude

Aquifer

Aquic lude

Pumping Well
Observation Well

Q (discharge)

r (radius)

Aquifer Piezometric 

Surface

Pre-Development HeadDraw dow n

T,S

 
 
Homogeneous-isotropic aquifer, well pumps at constant rate. 
 
Determine distance-drawdown by numerical model and compare 
to analytical (Theis) solution. 
 
Grid Design 
 

Axes of symmetry

Model Quadrant

 
 
Observe that there are two axes of symmetry.  The flow 
domain is mapped onto the quadrant shown and only 1/4 of the 
flow is considered. 
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A spreadsheet model of this situation is depicted below.  
Observe the arrays for material properties (T,S) and 
recharge/discharge. 
 
Flow to Well in Aquifer
∆x 2
∆y 2
∆x2 4
∆y2 4

Transmissivity Array sq. meters/day
Column

Row 0 1 2 3 4 5 6 7 8 0
0 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023
1 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023
2 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023
3 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023
4 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023
5 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023
6 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023
7 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023
8 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023
0 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023

Storage Coefficient Array
Column

Row 0 1 2 3 4 5 6 7 8 0
0 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075
1 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075
2 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075
3 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075
4 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075
5 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075
6 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075
7 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075
8 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075
0 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075

Recharge  Array cu .meters/day
Column

Row 0 1 2 3 4 5 6 7 8 0
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Pumpage Array cu. meters/day
Column

Row 0 1 2 3 4 5 6 7 8 0
0 0 0 0 0 0 0 0 0 0 0

1 0 0.004 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Initial Head Array meters
Column

Row 0 1 2 3 4 5 6 7 8 0
0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0  

 
continued ..... 

...... from previous sheet  
 
 
Restart 1
Iteration 2917
Dt 0.1
Time 291.7 sec
Pumpage 1.1668

Head (Iteration -1) meters
Column

Row 0 1 2 3 4 5 6 7 8 0
0 97.5 97.5 98.3 98.9 99.2 99.4 99.6 99.8 99.9 100.0

1 97.5 97.5 98.3 98.9 99.2 99.4 99.6 99.8 99.9 100.0
2 98.3 98.3 98.7 99.0 99.3 99.5 99.6 99.8 99.9 100.0
3 98.9 98.9 99.0 99.2 99.4 99.5 99.7 99.8 99.9 100.0
4 99.2 99.2 99.3 99.4 99.5 99.6 99.7 99.8 99.9 100.0
5 99.4 99.4 99.5 99.5 99.6 99.7 99.8 99.9 99.9 100.0
6 99.6 99.6 99.6 99.7 99.7 99.8 99.8 99.9 100.0 100.0
7 99.8 99.8 99.8 99.8 99.8 99.9 99.9 99.9 100.0 100.0
8 99.9 99.9 99.9 99.9 99.9 99.9 100.0 100.0 100.0 100.0
0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Head (Iteration) meters
Column

Row 0 1 2 3 4 5 6 7 8 0
0 97.5 97.5 98.3 98.9 99.2 99.4 99.6 99.8 99.9 100.0

1 97.5 97.4893 98.3482 98.8536 99.1891 99.43 99.6132 99.7601 99.8852 100
2 98.3 98.3482 98.6813 99.0046 99.2668 99.4736 99.6385 99.7742 99.8916 100
3 98.9 98.8536 99.0046 99.1984 99.3838 99.5454 99.6824 99.7995 99.9032 100
4 99.2 99.1891 99.2668 99.3838 99.5098 99.629 99.7362 99.8316 99.9181 100
5 99.4 99.43 99.4736 99.5454 99.629 99.7134 99.7931 99.8665 99.9347 100
6 99.6 99.6132 99.6385 99.6824 99.7362 99.7931 99.8488 99.9016 99.9516 100
7 99.8 99.7601 99.7742 99.7995 99.8316 99.8665 99.9016 99.9356 99.9682 100
8 99.9 99.8852 99.8916 99.9032 99.9181 99.9347 99.9516 99.9682 99.9843 100
0 99.8852 100 100 100 100 100 100 100 100 100

Drawdown (Iteration) meters
Column

Row 0 1 2 3 4 5 6 7 8 0
0 2.5 2.5 1.7 1.1 0.8 0.6 0.4 0.2 0.1 0.0

1 2.5 2.5 1.7 1.1 0.8 0.6 0.4 0.2 0.1 0.0
2 1.7 1.7 1.3 1.0 0.7 0.5 0.4 0.2 0.1 0.0
3 1.1 1.1 1.0 0.8 0.6 0.5 0.3 0.2 0.1 0.0
4 0.8 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
5 0.6 0.6 0.5 0.5 0.4 0.3 0.2 0.1 0.1 0.0
6 0.4 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.0 0.0
7 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0
8 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0
0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  

 
The next sheet shows a close-up of the computation portion  
of the spreadsheet. 
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Restart 1
Iteration 2917
Dt 0.1
Time 291.7 sec
Pumpage 1.1668

Head (Iteration -1) meters
Column

Row 0 1 2 3 4 5 6 7 8 0
0 97.5 97.5 98.3 98.9 99.2 99.4 99.6 99.8 99.9 100.0

1 97.5 97.5 98.3 98.9 99.2 99.4 99.6 99.8 99.9 100.0
2 98.3 98.3 98.7 99.0 99.3 99.5 99.6 99.8 99.9 100.0
3 98.9 98.9 99.0 99.2 99.4 99.5 99.7 99.8 99.9 100.0
4 99.2 99.2 99.3 99.4 99.5 99.6 99.7 99.8 99.9 100.0
5 99.4 99.4 99.5 99.5 99.6 99.7 99.8 99.9 99.9 100.0
6 99.6 99.6 99.6 99.7 99.7 99.8 99.8 99.9 100.0 100.0
7 99.8 99.8 99.8 99.8 99.8 99.9 99.9 99.9 100.0 100.0
8 99.9 99.9 99.9 99.9 99.9 99.9 100.0 100.0 100.0 100.0
0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Head (Iteration) meters
Column

Row 0 1 2 3 4 5 6 7 8 0
0 97.5 97.5 98.3 98.9 99.2 99.4 99.6 99.8 99.9 100.0

1 97.5 97.4893 98.3482 98.8536 99.1891 99.43 99.6132 99.7601 99.8852 100
2 98.3 98.3482 98.6813 99.0046 99.2668 99.4736 99.6385 99.7742 99.8916 100
3 98.9 98.8536 99.0046 99.1984 99.3838 99.5454 99.6824 99.7995 99.9032 100
4 99.2 99.1891 99.2668 99.3838 99.5098 99.629 99.7362 99.8316 99.9181 100
5 99.4 99.43 99.4736 99.5454 99.629 99.7134 99.7931 99.8665 99.9347 100
6 99.6 99.6132 99.6385 99.6824 99.7362 99.7931 99.8488 99.9016 99.9516 100
7 99.8 99.7601 99.7742 99.7995 99.8316 99.8665 99.9016 99.9356 99.9682 100
8 99.9 99.8852 99.8916 99.9032 99.9181 99.9347 99.9516 99.9682 99.9843 100
0 99.8852 100 100 100 100 100 100 100 100 100

Drawdown (Iteration) meters
Column

Row 0 1 2 3 4 5 6 7 8 0
0 2.5 2.5 1.7 1.1 0.8 0.6 0.4 0.2 0.1 0.0

1 2.5 2.5 1.7 1.1 0.8 0.6 0.4 0.2 0.1 0.0
2 1.7 1.7 1.3 1.0 0.7 0.5 0.4 0.2 0.1 0.0
3 1.1 1.1 1.0 0.8 0.6 0.5 0.3 0.2 0.1 0.0
4 0.8 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
5 0.6 0.6 0.5 0.5 0.4 0.3 0.2 0.1 0.1 0.0
6 0.4 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.0 0.0
7 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0
8 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0
0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

=C82+$B$73*((0.5/$B$4)*((D11+C11)*(D82-C82)-(C11+B11)*
    (C82-B82))+(0.5/$B$5)*((C10+C11)*(C81-C82)-(C11+C12)*(C82-C83))+
     (C37-C50)/($B$2*$B$3))/C24
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Finally the results of the numerical model and the 
analytical model are compared in the spreadsheet below: 
 
Q 0.016 m^3/day Pumping well discharge (L^3/t)
T 0.0023 m^2/day Aquifer transmissivity (L^2/t)
S 0.0075 Aquifer storage coefficient
K' 0.0000001 m/day Aquitard vertical hydraulic conductivity (L/t)
b' 1000000 m Thickness of aquitard (L)

B 151657.5089

Time Drawdown
r (m) r/B t (sec) Numerical Model (ft)Analytical Model  (ft)

2 1.31876E-05 600 2.8 2.570356098
4 2.63752E-05 600 1.9 1.811892648
6 3.95628E-05 600 1.4 1.37775644
8 5.27504E-05 600 1.0 1.079606125

10 6.5938E-05 600 0.7 0.858173798
12 7.91257E-05 600 0.5 0.686812466
14 9.23133E-05 600 0.3 0.551067971
16 0.000105501 600 0.2 0.442088141
18 0.000118688 600 0.0 0.353959906

Aquifer with Recharge
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Modeling with MODFLOW and related tools (A description of 
one of the more common tools in use) 
(Adapted from “Modeling groundwater flow with MODFLOW …, 
S.A. Leake, USGS Report FS-121-97) 
 
The modular finite-difference groundwater flow model 
(MODFLOW) developed by the U.S. Geological Survey (USGS) is 
a computer program for simulating common features in 
groundwater systems (McDonald and Har- baugh, 1988; Harbaugh 
and McDonald, 1996). The program was constructed in the ear- 
ly 1980s and has continually evolved since then with 
development of many new packages and related programs for 
groundwater studies. Currently MODFLOW is the most widely 
used program in the world for simulating ground- water flow. 
The popularity of the program is attributed to the following 
factors: 
• The finite-difference method used by MODFLOW is relatively 
easy to under- stand and apply to a wide variety of real-
world conditions. 
• MODDFLOW works on many different computer systems ranging 
from personal computers to super computers. 
• MODFLOW can be applied as a one- dimensional, two-
dimensional, or 
quasi- or full three-dimensional model. 
• Each simulation feature of MODFLOW has been evensively 
tested. 
• Data input instructions and theory are well documented. 
• The modular program design of MODFLOW allows for new 
simulation features to be added with relative ease. 
• A wide variety of computer programs written by the USGS, 
other federal agencies, and private companies are available 
to analyze field data and con- struct input data sets for 
MODFLOW. 
• A wide variety of programs are available to read output 
from MODFLOW and graphically present model results in ways 
that are easily understood. 
• MODFLOW has been accepted in many court cases in the 
United States as a legitimate approach to analysis of 
groundwater systems. 
 
SIMULATION CAPABILITIES OF MODFLOW 
 
MODFLOW is designed to simulate aquifer systems in which 
saturated-flow conditions exist, Darcy's Law applies, the 
density of ground water is constant, and the principal 
directions of horizontal hydraulic conductivity or 
transmissivity do not vary within the system. These 
conditions are met for many aquifer systems for which there 
is an interest in analysis of groundwater flow and 
contaminant movement. For these systems, MODFLOW can simu- 
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late a wide variety of hydrologic features and processes 
(Fig. 1). 
Steady-state and transient flow can be simulated in 
unconfined aquifers, confined aquifers, and confining units. 
A variety of features and processes such as rivers, streams, 
drains, springs, reservoirs, wells, evapotranspiration, and 
recharge from precipitation and irrigation also can be 
simulated. At least four different solution methods have 
been implemented for solving the finite-difference equations 
that MODFLOW constructs. The avail- ability of different 
solution approaches allows model users to select the most 
efficient method for their problem. 
 
APPLICATION OF MODFLOW 
 
MODFLOW simulates groundwater flow in aquifer systems using 
the finite-difference method. in this method, an aquifer 
system is divided into rectangular blocks by a grid (Fig 2.)  
The grid of blocks is organized into rows, columns, and 
layers.  Each block is commonly called a cell. 
 
MODEL INPUT 
 
For each cell within the volume of the aquifer system, the 
user must specify aquifer properties. Also, the user 
specifies information relating to wells, rivers, and other 
inflow and outflow features for cells corresponding to the 
location of the features. For example, if the interaction 
between a river and an aquifer sys- tem is simulated, then 
for each cell traversed by the river, input information 
includes layer, row, and column indices; river stage; and 
hydraulic properties of the river bed. 
 
MODEL OUTPUT 
 
MODFLOW uses the input to construct and solve equations of 
groundwater flow in the aquifer system. The solution 
consists of head (groundwater level) at every cell in the 
aquifer system (except for cells where head was specified as 
known in the input data sets) at intervals called 'time 
steps.' The head can be printed and/or saved on a computer 
storage device for any time step. 
 
Hydrologists commonly use water levels from a model layer to 
construct contour maps for comparison with similar maps 
drawn from field data. They also compare computed water 
levels at individual cells with measured water levels from 
wells at corresponding locations to determine model error 
(Fig. 3). The process of adjusting the model input values to 
reduce the model error is referred to as model calibration. 
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In addition to water levels, MODFLOW prints a water budget 
for the entire aquifer sys- tem. The budget lists inflow to 
and outflow from the aquifer system for all hydrologic 
features that add or remove water. 
 
Other program output consists of flow rates for each model 
cell. MODFLOW can write the flow rates onto a computer 
storage device for any hydrologic feature in a simulation. 
These cell-by-cell flow rates commonly are read by post-
processing programs for detailed analysis of the simulated 
groundwater system. 
 
INVERSE MODELING WITH MODFLOWP 
 
In conventional or "forward modeling," model parameters 
(such as aquifer properties) are specified and water levels 
and flow quantities are computed (Fig. 4). For most aquifer 
systems, however, more information is available from field 
data on water levels, flows, and advective transport or 
groundwater age than on input parameters. 
 
Typically, input parameters are adjusted during model 
calibration using a trial- and-error process. This 
calibration process can yield acceptable agreement between 
computed model results and field data but is time consuming, 
may not produce parameter values that result in the best fit 
of field data, and does not result in quantitative estimates 
of uncertainty in model results and estimated parameter 
values. 
 
Inverse modeling is a more formal approach to model 
calibration that includes automatic parameter adjustment in 
order to match field data. The program MODFLOWP is the USGS 
version of MODFLOW that includes automatic parameter 
estimation.  MODFLOWP uses a weighted least-squares 
objective function as a measure of how well model results 
agree with field measurements. Weights are used to reflect 
reliability of individual measurements. 
 
Parameters that can be estimated by MODFLOWP include 
transmissivity; hydraulic conductivity, storage coefficient; 
vertical leakance; vertical and horizontal anisotropy, 
hydraulic conductance between aquifer systems and rivers, 
drains and other features; a real recharge; maximum 
evapotranspiration; pumping; and water levels at constant-
head boundaries. Measured or extemally estimated information 
on parameters also can be included. Parameter values that 
minimize the objective function (Fig' 5) are calculated by 
MODFLOWP using the modified Gauss-Newton method or the 
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conjugate-direction method. The resulting parameter values 
are "best-fit" in that they pro- vide the closest match 
between measured and simulated heads and flows, as measured 
by the objective function. The task of the modeler is to 
evaluate how well these calculated values represent the 
physical system being simulated. 
 
Model output includes estimates of parameters and statistics 
relating to the parameter estimates. The statistics can be 
used to quantify the reliability of the resulting model, 
suggest changes in model construction, and compare results 
of models constructed in different ways, Post-processors can 
be used to calculate confidence intervals on predicted heads 
and flows to 
depict prediction uncertainty. To effectively use MODFLOWP, 
an understanding of principles of groundwater flow and basic 
statistics is needed.  
 
PARTICLE TRACKING WITH MODPATH  
 
Many studies require information such as the average rate of 
moveriient of groundwater and contaminants. Also, 
information often is needed on the recharge or capture areas 
for water discharging to wells, springs, stream reaches, and 
other features. Although MOD- FLOW does not compute this 
information directly, simulation with MODFLOW provides basic 
information needed for such analyses. The partide-trackng 
program, MODPATH, is a post-processing program for MODFLOW 
to estimate flow paths (Fig. 6) and times of travel in 
groundwater systems. An accompanying program, MODPATH-PLOT, 
displays particle paths, contours, and model features.  
MODPATH can be used for studies of steady-state and 
transient flows. Common applications include studies of 
paths and time of travel of contaminant movement; and source 
(recharge) areas of wells, springs, rivers, and other 
features. 
 
MODPATH can place particles at specified locations or 
generate starting locations of arrays of particles in 
selected reoons. Particles can be tracked forward from 
starting locations to calculate where water is goin or 
backwards to map where it came from. Multiple particle- 
release times can be used to simulate "plumes" of 
contamination.


