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Abstract
A numerical surface-water/groundwater model was developed for the lower San Antonio River Basin to

evaluate the responses of low base flows and groundwater levels within the basin under conditions of reduced
recharge and increased groundwater withdrawals. Batch data assimilation through history matching used a
simulation of historical conditions (2006-2013); this process included history-matching to groundwater levels and
base-flow estimates at several gages, and was completed in a high-dimensional (highly parameterized) framework.
The model was developed in an uncertainty framework such that parameters, observations, and scenarios of interest
are envisioned stochastically as distributions of potential values. Results indicate that groundwater contributions to
surface water during periods of low flow may be reduced from 6% to 25% with a corresponding 25% reduction in
recharge and a 25% increase in groundwater pumping over an 8-year planning period. Furthermore, results indicate
groundwater-level reductions in some hydrostratigraphic units are more likely than in other hydrostratigraphic units
over an 8-year period under drought conditions with the higher groundwater withdrawal scenario.

Introduction
The lower San Antonio River Basin (herein referred

to as “the basin”) includes the main stem of the San
Antonio River downstream from San Antonio, Texas. The
San Antonio River traverses the Texas coastal uplands
aquifer system and the coastal lowlands aquifer system
as it makes its way toward the Gulf of Mexico where
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it eventually flows into the Guadalupe River upstream
from San Antonio Bay. Stakeholders are interested in
understanding the surface-water/groundwater interactions
within the basin. There is concern that streamflow and
groundwater levels could be adversely affected by both
increased groundwater withdrawals and reduced recharge
associated with climate variability. Numerical models are
useful tools for understanding groundwater-flow systems,
estimating specific quantities of interest (such as surface-
water/groundwater interactions) under potential forecast
scenarios and, most importantly, for guiding water-
resource managers in decision making. Furthermore,
numerical models in a stochastic framework provide a
risk-based assessment of different quantities of interest to
guide a more informed decision than a single determin-
istic estimate would provide. In this analysis, a transient
MODFLOW-NWT model (Niswonger et al., 2011)
was developed in a stochastic framework to investigate
surface-water/groundwater interactions and estimate
changes in groundwater levels and low base flows.
Batch data assimilation through history matching (e.g.,
“calibration”) (herein referred to as “data assimilation”) is
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used to condition uncertain model input toward ultimately
reducing uncertainty in the simulated spatial and temporal
surface-water/groundwater exchange patterns.

Several previous investigations have focused on
understanding the hydrology and hydrogeology of the
lower San Antonio River Basin. These include gain/loss
studies, simulations of streamflow and sediment transport,
and simulations of regional groundwater availability.
Lizárraga and Wehmeyer (2012) summarized results
from a gain/loss survey of the lower San Antonio
River from 2006 to 2010 using continuous streamflow
records along with discrete observations and found
segments of the lower San Antonio River and Cibolo
Creek (a main tributary to the lower San Antonio River)
where there were surface-water/groundwater interactions.
Watershed modeling for the basin focused on simulation
of streamflow, evapotranspiration, and groundwater
recharge within the basin (Lizárraga and Ockerman 2010)
as well as suspended-sediment transport (Banta and
Ockerman 2014). Several regional-scale groundwater
availability models that encompass the basin were devel-
oped for regional water-planning purposes, but these
models were not developed with the spatial or temporal
resolution to evaluate groundwater/surface interactions in
the basin, nor does any particular model encompass the
entire basin. These models include the Gulf Coast aquifer
(Waterstone 2003; Chowdhury et al. 2004), the Queen
City and Sparta aquifers (Kelley et al., 2004), the Carrizo-
Wilcox aquifer (Dutton et al. 2003; Kelley et al., 2004),
and the Yegua-Jackson aquifer (Deeds et al. 2010).
The existing models were used to inform the a priori
parameter uncertainty of the model presented herein.

Population for the entire San Antonio River Basin
is expected to increase by 73% between 2020 and 2070,
with a corresponding increase of 34% in the water
demand (South Central Texas Regional Water Planning
Group 2015). Furthermore, the basin is located in a
large oil and gas production area in Texas referred
to as “the Eagle Ford shale play,” which reached a
peak of 5613 issued drilling permits in 2014 (Railroad
Commission of Texas 2019). There is concern that with
increased groundwater withdrawals for both municipal
use and oil and gas production, the lower San Antonio
River and its main tributaries may undergo reductions
in groundwater contributions and increased losses into
the underlying aquifers. With potential future reductions
in recharge attributed to climate variability, streamflow
depletion could be further exacerbated. The numerical
model we developed was designed to simulate low base
flows in the lower San Antonio River and its main
tributaries, as well as groundwater levels, for the period
of 2006 to 2013. Scenarios of interest were developed
to investigate the effects of reduced recharge and
increased groundwater withdrawals on streamflow and
groundwater levels. The history-matching and scenario
simulations were subjected to both linear and nonlinear
uncertainty quantification techniques (e.g., Doherty 2015)
to account for parameter uncertainty in model-generated
outputs.

Description of Study Area
The lower San Antonio River Basin covers about

2150 mi2 as it extends from south of San Antonio to
the Gulf of Mexico. The basin includes about 190 miles
of the San Antonio River from the uppermost gage
(near Elmendorf) to the confluence of the river with the
Guadalupe River, as well as about 75 miles of Cibolo
Creek (from the upstream boundary to its confluence
with the San Antonio River). The main stems of interest
include the lower San Antonio River, Cibolo Creek, and
parts of other smaller tributaries (Figure 1). Continuous
streamflow records from four main streamgages within
the basin (U.S. Geological Survey [USGS] streamgages
08181800 San Antonio River near Elmendorf, Texas,
08183500 San Antonio River near Falls City, Texas,
08186000 Cibolo Creek near Falls City, Texas, and
08188500 San Antonio River at Goliad, Texas) show
that the lower San Antonio River is an overall gaining
system from the uppermost gage near Elmendorf to the
most downstream gage at Goliad. The median of monthly
streamflows for 2006 to 2013 are 7.9 m3/s (or 279 cfs)
for Elmendorf, 8.6 m3/s (or 304 cfs) for San Antonio
River near Falls City, 1.3 m3/s (or 47 cfs) for Cibolo
Creek near Falls City, and 11.0 m3/s (or 387 cfs) for San
Antonio River at Goliad (U.S. Geological Survey 2019).
The Goliad gage is downstream from the confluence of
the Cibolo Creek and the San Antonio River.

The lower San Antonio River traverses several
aquifers and confining units that comprise the coastal
lowlands aquifer system and the Texas coastal uplands
aquifer system (Ryder 1996). The coastal lowlands
aquifer system, also known as the Gulf Coast aquifer
in Texas, consists of five units: the Chicot aquifer,
the Evangeline aquifer, the Burkeville confining unit,
the Jasper aquifer, and the “Catahoula” (Ashworth and
Hopkins 1995), which is regionally known as the
Catahoula confining system (Baker, 1979), but is used in
some areas for groundwater (Ashworth and Hopkins 1995)
and is therefore conceptualized in this investigation as
an aquifer. For this investigation, the Texas coastal
uplands aquifer system in this area, which is composed of
Eocene deposits of the Claiborne Group and Eocene and
Paleocene deposits of the Wilcox Group (Ryder 1996), is
divided into eight units: the Yegua-Jackson aquifer, the
Cook Mountain confining unit (Deeds et al. 2010), the
Sparta aquifer, the Weches confining unit, the Queen City
aquifer, the Reklaw confining unit (Kelley et al., 2004),
the Carrizo aquifer, and the Wilcox Group, which
composes the Wilcox aquifer (Dutton et al. 2003; Mace
et al. 2006). The updip extent of the base of the Wilcox
aquifer (contact with the underlying Tertiary-age Midway
Group) serves as the northwest boundary of the model
extent (Figure 2).

The groundwater conditions in Wilson, Karnes, and
Goliad Counties are of primary concern in this investiga-
tion, as pumping of groundwater in these counties could
have the most immediate effect on streamflow. Groundwa-
ter use in these counties for 2010 was 7.10 mgd municipal,
14.55 mgd irrigation, 1.01 mgd domestic, and 2.83 mgd
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Figure 1. Model extent, lower San Antonio River Basin boundary, surface-water network (blue lines), streamflow gages of
primary concern (red triangles), and other streamflow gages (green triangles). Additional model details are provided in the
Supporting Information.

stock (Maupin et al. 2014). Water use related to oil and
gas production is not reported, but is likely an appreciable
component of the groundwater use in Karnes County.

Model Construction and Stochastic Framework
The surface-water/groundwater model of the basin

was constructed with MODFLOW-NWT Niswonger
et al. (2011) and used the streamflow routing package
SFR to simulate surface-water flow and surface-
water/groundwater interactions. A simulation period for
data assimilation (herein referred to as the “DA simula-
tion”) was developed to reproduce historical conditions
(2006-2013) to facilitate history matching to system state
observations. This time period was chosen because it
includes both a wet year (2007) and the driest year on
record (2011). Two scenario simulations of interest were
also constructed—these scenarios cover the same time
period as the DA simulation, but use modified forcings
as follows:

• Scenario 1: 25% global reduction in recharge and
headwater stream inflows +1% global increase in
groundwater pumping.

• Scenario 2: 25% global reduction in recharge and
headwater stream inflows +25% global increase in
groundwater pumping.

The “global” reduction in recharge was imple-
mented by scaling the spatially and temporally distributed
recharge by the requisite factor. A similar operation
was used to adjust simulated groundwater pumping. In
this way, the historical spatial and temporal patterns of
recharge and groundwater pumping are maintained in the
scenarios.

Spatial and Temporal Discretization
Spatial discretization of 400 m by 400 m cells

was chosen to best optimize simulation of surface-
water/groundwater interactions while maintaining reason-
able model run times to enable incorporation of high-
dimensional data assimilation (e.g., highly parameterized
inversion in Doherty et al. 2010b) and the associated
uncertainty analysis. Model layering was based on the
conceptual hydrostratigraphy of the system (Figure 3), and
the active model depth was set to 5500 feet below land
surface because this represents the extent of the majority
of groundwater withdrawals.
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Figure 2. Model extent, surface-water network (blue lines), locations of pumping wells (black solid circles), and the surficial
exposure of the aquifers and confining units (corresponding to uppermost model layer) (color map). Also shown is the location
of the cross section shown in Figure 3. Additional model details are provided in the Supporting Information.

Figure 3. Cross-sectional figure, along column 151, gray cells are active cells, black cells are no-flow cells, blue cells are
constant-head cells. Aquifers are labeled in blue and confining units are labeled in black.
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MODFLOW-NWT uses a structured grid and does
not allow for discontinuous layers. To accommodate the
need to continue each of the 13 model layers updip
from the outcrop of each unit, layers were carried with a
uniform thickness across the study area to the uppermost
extent of the model domain. Therefore, layer 1 represents
the Chicot aquifer where the Chicot aquifer exists and
updip from the surficial extent of the Chicot aquifer,
the layer is set to a 10 m thickness representative of
the outcrop of each unit it traverses. Layer 2 represents
the Evangeline aquifer where it exists and is set to a
1 m thickness updip from the Evangeline aquifer to
the northernmost model extent. This layering scheme
followed through to the Wilcox aquifer, layer 13, which
is the deepest layer and the farthest updip (Figure 2).
A similar type of model-layering scheme has been
used in other systems with dipping units with distinct
outcrop/subcrop areas (Clark and Hart 2009). More
information on the active model areas of each layer is
provided in the Supporting Information.

The temporal period of the DA simulation encom-
passes the years 2006 to 2013 (Foster 2020) and includes
both a wet year (2007) and the driest year on record in
Texas (2011) (Winters 2013). The DA simulation period is
also representative of the years during which groundwater
withdrawals increased the most for water use related to oil
and gas production in Wilson and Karnes Counties. The
DA simulation was discretized into monthly stress periods
(1) because groundwater pumping estimates, at best, were
provided on a monthly scale and (2) in order to capture
the seasonality in the model forcings and responses.

Representation of Hydrologic Stresses
The recharge (RCH) package used spatially dis-

tributed estimates of recharge based on the national
gridded datasets of annual recharge estimates (Reitz
et al. 2017). Recharge was applied to the layer represent-
ing the surficial extent of the aquifer or confining unit at
that location (see the IRCH array in Figure S14). Annual
rates ranged from 0.0022 m/year (0.087 in/year) in 2011 to
0.0881 m/year (3.47 in/year) in 2007. Recharge was dis-
tributed to monthly values from these annual rates based
on the monthly fractions of annual rainfall in the basin.

Surface-water routing of the lower San Antonio River
and its main tributaries was simulated using the SFR
package (Niswonger and Prudic 2005). Because the model
does not include the entire watershed, specified inflows
for the San Antonio River and Cibolo Creek were set
at the most upstream reach of each stream and were
based on base-flow estimates of the nearest upstream
gaged reach or a nearby gaged reach (scaled based
on the stream reach widths). The SFR was constructed
using NHDPlusV2 based on an arbolate sum threshold
of 20 km (McKay et al. 2012). This yielded 10,873
reaches within 1099 segments. Specified inflows from
wastewater treatment plant effluent data from the U.S.
Environmental Protection Agency were included at known
discharge points (Amy Settemeyer, Texas Commission
on Environmental Quality, 2016, written communication).

Surface-water diversions were implemented at known
diversion points using reported diversion rates (Cesar
Alvarez, Texas Commission on Environmental Quality,
2016, written communication).

Groundwater use included both extraction wells and
injection wells. The WEL package was used for pump-
ing/injection simulation with all well-construction data
compiled from the Texas Water Development Board
(TWDB) Groundwater Database (Texas Water Develop-
ment Board 2018a), the Evergreen Underground Water
Conservation District, the Goliad County Groundwater
Conservation District, and the San Antonio Water Sys-
tem (SAWS). Layer assignment for wells was based on
screening interval depth where available, then well depth
if available, then aquifer code if available. The vol-
umes of groundwater pumped were obtained from TWDB
annual water use survey data (Texas Water Development
Board 2018b), and were distributed to wells, matching the
water-use category of the volumetric rate with the wells
with that water use type as their primary use. Monthly
rates were used when available, but most data were pro-
vided as annual estimates. Annual estimates were dis-
tributed evenly to monthly stress periods except in the case
of irrigation-water use, which was distributed to monthly
rates based on the irrigation factors of Dutton (2004).
Injection well rates for the Twin Oaks Aquifer Storage
and Recovery facility were provided by SAWS (2015,
written communication). Water use related to oil and gas
production activity is not collected or estimated by the
TWDB. Estimates of produced water reported in Frac-
Focus (Ground Water Protection Council and Interstate
Oil and Gas Compact Commission [IOGCC], 2017) for
Karnes and Wilson Counties during 2006-2013 were used
to estimate water use at wells in Karnes and Wilson Coun-
ties in the Eagle Ford Shale region that were provided by
the Evergreen Underground Water Conservation District.
Annual net pumping rates ranged from 5.7075E7 cubic
meters per year (46,272 acre-feet/year) in the wet year of
2007 to 1.20089E8 cubic meters per year (97,358 acre-ft
per year) in the extremely dry year of 2011. Locations of
pumping wells are shown in Figure 2.

The northwest boundary (most updip extent) was an
assumed no-flow boundary. Lateral boundaries were set at
the next closest major rivers (Atascosa/Frio/Nueces Rivers
to the southwest and the Guadalupe River to the northeast)
using general-head boundaries (GHBs) set at an average
river stage along each boundary. Average river stage
elevations were calculated at streamgages with continuous
data during 2006 to 2013 and interpolated between gage
locations. The coastal boundary was set as a constant head
of 0 m.

Data Assimilation and Uncertainty Analysis Approach
For this study, we use combined regularized least-

squares parameter estimation and a First-Order-Second-
Moment (FOSM) based Monte Carlo analysis as a
stochastic data assimilation process to conduct a quan-
titative risk-based assessment. Specifically, we used the
subspace Gauss-Levenberg-Marquardt (GLM) algorithm
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(e.g., Menke 1989; Oliver et al. 2008), augmented
with Tikhonov regularization (e.g., Tikhonov and Ars-
enin 1977; Doherty et al. 2010a, 2010b) to seek the max-
imum a posteriori (MAP) parameter estimate—this algo-
rithm is encoded in the open-source tool PESTPP-GLM
(White et al. 2020). Using FOSM theory, we estimated the
posterior parameter covariance matrix, which, when com-
bined with the MAP parameter estimate, forms a multi-
variate Gaussian posterior parameter distribution. We then
drew an ensemble of realizations from this distribution and
propagated the ensemble through the scenarios, to yield
uncertainty estimates in the important simulated outputs
from the scenarios. Below, each component of this pro-
cess is described. Readers are referred to Doherty (2015),
White et al. (2016), and White et al. (2020) and the ref-
erences cited therein for more background and detailed
treatment of the theory underpinning this process.

Parameterization and the Prior
A complex spatial and temporal parameterization

scheme was used in an attempt to account for many
sources of model-input uncertainty. Parameterization
for aquifer properties, using estimates from existing
numerical groundwater models that cover parts of the
basin, was designed to cover two spatial scales: (1)
uniform parameters applied to each layer for each
property and (2) spatially distributed multiplier pilot
points (Figure S16) applied to each layer for each
property. Parameters representing the uniform value
of aquifer properties (e.g., “constant”) of horizontal
hydraulic conductivity, vertical hydraulic conductivity,
specific yield, and specific storage were used for each
of the 13 aquifers and confining units. Spatial param-
eterization using multiplier pilot points, spaced 4 km
apart complements the uniform-by-layer values to allow
flexibility to capture heterogeneity in each unit for the
aquifer properties. Multiplier pilot points were also used
for spatial adjustment of recharge. Parameters were also
specified for the general-head boundary hydraulic heads

and conductance values. Streambed conductance in the
SFR package was parameterized on the basis of reaches
within the same unit being grouped together (i.e., reaches
in the lower San Antonio River traversing the Chicot
aquifer were in one parameter group, reaches traversing
the surficial exposure of the Evangeline aquifer were in
another parameter group, etc.). The SFR conductance
grouping is based on the assumption that streambed con-
ductances are correlated across the underlying units but
can vary independently of the properties of the underlying
units.

To account for potential uncertainty in groundwater
recharge and groundwater pumping rates, temporal
multiplier parameters were applied to recharge and
groundwater pumping. The use of temporal multiplier
parameters provided flexibility and helped compensate for
any biases in these rates. Annual multiplier parameters
were applied to the groundwater recharge rates and
multiplier parameters at the stress-period scale (monthly)
were applied to the groundwater pumping rates.

The a priori bounds of parameter understanding (see
Table 1 and Anderson et al. 2015 for discussion of the
prior), as well as the prior expected values, are based on
conservative literature values and previous models in the
area (Dutton et al. 2003; Waterstone 2003; Chowdhury
et al. 2004; Kelley et al., 2004; Deeds et al. 2010). Bounds
on spatial and temporal parameters were expanded beyond
reported values to allow for additional potential flexibility
in the data assimilation process.

Observations and the Likelihood Function
The intended use of the model presented herein

is to estimate low base flows and groundwater levels;
therefore, these types of observations were used in the
data assimilation process. A total of 1083 surface-water
discharge observations at 12 sites and 3050 groundwater-
level observations at 317 sites were used toward the goal
of reducing uncertainty in parameters, and, ultimately,
forecasts of low base flows and groundwater levels.

Table 1
A Priori Parameter Summary

Type Count Initial Value Upper Bound Lower Bound St. Deviation

Horizontal hydraulic conductivity (C) 13 [−1.5, 0.57] [1, 3.4] [−6, −2] [1, 2]
Specific storage (C) 13 [−5.7, −2.6] −2.5 −7 1.1
Specific yield (C) 13 [−3.1, −0.42] [−0.78, −0.42] [−4, −2.3] [0.38, 0.90]
Vertical hydraulic conductivity (C) 13 [−4.1, −0.86] [−1.5, 2.7] [−8.5, −4.3] [1.1, 1.8]
GHB conductance 129 [−0.097, 0.04] 2 −2 1
GHB head 226 [−1.1, 0.14] 0.14 −1.1 0.32
Horizontal hydraulic cond. (PP) 631 [−1.1, 2.1] 3 −3 1.5
Recharge 223 [−1.1, 0.14] 0.14 −1.1 0.32
Specific storage (PP) 631 [−0.25, 0.41] 1 −2 0.75
Stream bed cond. (units of m/d) 14 [−0.59, 0.27] 1.5 −4 1.4
Specific yield (PP) 631 [−2, 0.041] 0.041 −2 0.51
Vertical hydraulic conductivity (PP) 423 [−0.63, 0.48] 2 −3 1.3
Well pumping rate 97 [−1.3, 0.30] 0.30 −1.3 0.40

“C” refers to spatially or temporally constant parameters (applied uniformly) and “PP” refers to spatially distributed pilot-point parameters. Square brackets show
range of values. All values are log transformed.
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Given that the DA simulation uses monthly stress
periods and lacks land-surface processes, it would be inap-
propriate to attempt to reproduce surface-water discharge
observations, which represent both low-flow and flood-
ing conditions. Instead, estimating low base flows was
the focus of the DA simulation. Surface-water discharge
time series were passed through a base-flow index (BFI)
filter (Wahl and Wahl 1995) using the USGS Ground-
water Toolbox (Barlow et al. 2015) with the number of
days (N ) equal to 5 days and turning point test factor (f )
equal to 0.9. Additionally, to mitigate the ill-effects of
structural error in the model (e.g., White et al. 2014), we
also included first-order temporal variation observations,
constructed by subtracting each observation in a given
groundwater level times series (or base-flow time series)
from the preceding observation (temporally). This type
of processed observation data can steer the data assimila-
tion algorithm to match changes in observations as well as
the observations themselves. We acknowledge that several
forms of processed surface-water flow observations could
be used to provide historical surface-water/groundwater
exchange information in the data assimilation process. The
approach we selected is well-aligned with the overall goals
of the modeling analysis (prediction of low-flow response
at surface-water observation locations to changes in forc-
ing), which helps to place the scenario-sensitive parame-
ters (and parameter combinations) more into the solution
space of the data assimilation process (e.g., Doherty and
Welter 2010; Doherty and Moore 2019).

We used a subjective likelihood function to focus the
data assimilation process toward reproducing the compo-
nents of observed states that most resemble the outputs
of management interest (e.g., Doherty and Welter 2010).
Drier hydrologic condition replication is of primary con-
cern in this investigation; therefore, it was of primary
importance that the data assimilation process focus on
replicating low base flows, even if this is at the expense of
replicating high-flow conditions. As a result, the weight-
ing scheme used in the data assimilation algorithm was
designed to focus more heavily on streamflow during
drier conditions at the four main gages. Processed base-
flow observations were split into wet (January 2006 to
May 2008) and dry (June 2008 to December 2013) con-
ditions. The observed and processed observations for the
four main gages of interest (Figure 1) were weighted to
contribute more to the composite likelihood function than
the processed base-flow observations at other gages. The
observation types used for data assimilation contributed
to the likelihood function in the following percentages:

• absolute groundwater levels 20% (count = 7711).
• first-order groundwater level temporal differences 20%

(count = 7394).
• dry-season base flow and base-flow temporal differ-

ences at four gages 40% (count = 536).
• wet-season base flow and base-flow temporal differ-

ences at four gages 16% (count = 228).
• base flow and base-flow differences at remaining gage

locations 4% (count = 1390).

This weighting scheme was selected such that the
primary focus of the analysis is well represented (e.g.,
dry-season low base flows and dry-season low base-flow
rates of change). Some additional focus was also placed
on representing groundwater levels and rates of ground-
water change, because the ability to robustly simulate the
relation between groundwater system changes in forcing
and the resulting changes in surface-water/groundwater
exchange must propagate through the groundwater
system.

Uncertainty Analyses
The data assimilation process provides a necessary

parameter set (MAP ) representative of the posterior
central tendency of the DA simulation for the time period
of 2006 to 2013 (e.g., Oliver et al. 2008). This process
allows the model to replicate conditions during the 2006
to 2013 time period, but is not sufficient in itself to
provide a robust analysis of the model’s ability to predict
(i.e., estimate quantities of management interest within
the scenario simulations). Parameter and scenario output
uncertainty analyses (UA) were undertaken so that the
results of our modeling analysis provide stakeholders and
decision makers with an understanding of the reliability
of the important simulated outcomes. We used FOSM
uncertainty analyses to estimate the posterior parameter
covariance matrix (e.g., Menke 1989; Doherty 2015;
White et al. 2016). This covariance matrix was used to
generate a pre-conditioned posterior parameter ensemble
to run through the DA simulation and the two scenarios
of interest.

The FOSM-based posterior parameter covariance
matrix is calculated as:

Σθ = Σθ − ΣθJT [JΣθJT + Σε]−1JΣθ (1)

where Σθ is the prior parameter covariance matrix, Σε is
the epistemic observation noise covariance matrix, and
J is the Jacobian matrix of partial first derivatives of
observations with respect to parameters. We used the final
Jacobian matrix from application of PESTPP-GLM as the
J in Equation 1. In an attempt to account for irreducible
residuals, we applied residual-based reweighting to form
Σε using the final residuals from the data assimilation
process so that the final L2 norm (also known as the
Euclidean norm) of the residuals was equal to the number
of non-zero weighed observations (Bonesky 2008; White
et al. 2020).

A 100-member parameter ensemble was drawn
from the posterior multi-variate Gaussian distribution
N (μθ,Σθ), where μθ are the final parameter values
from the PESTPP-GLM (White et al., 2020) analysis
(the MAP estimate). The realized values for temporal
forcing parameters (those adjusting well pumpage and
recharge in the DA and scenario simulations) were derived
solely from the prior parameter distribution, instead of
the posterior, as these parameters are not conditioned on
observation data from the past and therefore, exhibit a
higher degree of uncertainty than those conditioned in the
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Figure 4. DA simulation 1:1 plots. Generally, the fit to groundwater levels (hydraulic heads) and low base-flow conditions is
unbiased and clustered around the 1:1 line. Some bias is present in the higher base-flow values.

data assimilation process. These prior-based values com-
bined with the maintained spatial and temporal patterns for
recharge and groundwater pumping in the scenario simu-
lations provides a robust and conservative representation
of the expected uncertainty in model forcing inputs.

The posterior parameter ensemble members were then
evaluated with the DA simulation and the two scenario
simulations. The resulting output ensembles were used
to estimate the posterior uncertainty in the low base
flows and groundwater levels under historical forcing
conditions (represented by the DA simulation) as well
as under hypothetical drought conditions (with increased
groundwater withdrawals) represented by the scenarios.
Herein, we refer to the output ensemble from the unaltered
DA simulation as the base ensemble; the output ensembles
from Scenario 1 and Scenario 2 are compared to the base
ensemble for comparative context.

Results of the Data Assimilation and Uncertainty Analysis
Data assimilation with PESTPP-GLM yielded the

MAP parameter set that replicated historical observations
of groundwater levels and low base-flow estimates at
streamgages, especially for drier conditions (Figure 4),
which is well aligned with the predictive goals of the
modeling analysis. Time series of the simulated base flow
at the main gages are included in Supporting Information,
along with the MAP parameter values and posterior
standard deviations for each parameter group.

Some limitations exists in the ability to simulate
higher base-flow values. This is not unexpected because
an imperfect model cannot be expected to simulate all
facets of historical system behavior, and, because of this,
we purposefully focused the data assimilation process

on replicating dry-season base-flow values, meaning the
data assimilation process was given leeway to sacrifice
the ability to reproduce higher base-flow values if it
led to a better reproduction of lower base-flow values.
Additionally, higher base-flow values are associated with
periods of increased precipitation, which results in land-
surface processes becoming increasingly important to
simulate surface-water flow conditions—processes which
are not included in the model and that are not represented
by the temporal discretization that was selected.

The results of the 100-member base ensemble
show variability in model-generated results owing to
uncertainty in the model parameters. The gray-shaded
areas represent the range of results (Figure 5). Higher
variances were observed during times of higher surface-
water flows. Simulated base-flow results at the Elmendorf
gage (Figure 5a) show little variability compared to
results at farther downstream gages at Goliad (Figure 5d).
Variability in the simulated Cibolo Creek base flow at the
Cibolo gage, which is upstream from the confluence of
Cibolo Creek with the San Antonio River, contributes to
the variability in simulated base flow at the Goliad gage
downstream.

Simulated Response to Drought and Increased
Groundwater Withdrawals

The simulated output ensembles from the DA and
scenario simulations were used to stochastically esti-
mate the effects of drought and increased groundwater
withdrawals on the surface-water/groundwater exchange
and on groundwater levels within the basin. Herein, we
define Q95 as the simulated base flow that is equaled
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Figure 5. Simulated base flows from the base ensemble (also known as the posterior DA simulation ensemble). Wider widths
in the ensemble of hydrographs for a given streamgage indicate more variability in simulated base flows compared to narrower
widths in the ensemble of hydrographs.

or exceeded 95% of the time. The changes in surface-
water/groundwater exchange were evaluated by compar-
ing the Q95 distributions of the base ensemble and sce-
nario ensemble results and by comparing the differences
in Q95. The Q95 statistic is considered sufficiently repre-
sentative of low base flows (in this instance). The changes
in groundwater levels were evaluated by mapping the
changes in the surficial layer and comparing results within
different zones where each zone corresponds to the surfi-
cial exposure of an aquifer or confining unit.

Generally, the ensemble of simulated base-flow time
series (Figure 5) show the smallest amount of uncertainty
for the Elmendorf gage which is expected given that this
is the farthest upstream gage in the surface-water system
and reflects effects from fewer (uncertain) parameters.
Time-series differences (e.g., changes) (Figures S22 to
S29) were also calculated because differences tend to
cancel out model error propagated through to results
(White et al. 2014; Knowling et al. 2019). Differences
are calculated by subtracting scenario ensemble members
from the corresponding members of the base ensemble.
Ensembles of differences show greater variation during
times of higher surface-water flow and less variation in
lower-flow conditions; ensembles of differences show the
highest degree of uncertainty at Cibolo Creek and Goliad
gages.

Changes in Low Base Flows
The potential for changes in low base flows at the

four gaging locations of interest was summarized with
the Q95 statistic and changes in the Q95 statistic between
the base scenario and the two drought/pumping scenarios.
The Q95 statistic in this investigation is representative of
the lowest 5% of base flow for the 8-year transient model
period of 2006 to 2013. Both absolute and difference
Q95 statistics were computed to gain understanding of
low base flows and how these low-flow statistics might

change owing to changes in hydrologic stresses. Each
ensemble member has a Q95 value for the 8-year period,
so the 100 ensemble members produced 100 Q95 statistics
for each of the base and scenario runs. The difference
statistics express the expected statistical change in low
base flow resulting from hypothetical drought combined
with increased groundwater withdrawals. The difference
Q95 statistics were calculated by subtracting the scenario
ensemble from the base ensemble and calculating a
Q95 statistic of the difference. Absolute Q95 values and
difference Q95 values were visualized using histograms
and were evaluated based on their median and maximum
values.

In general, absolute Q95 distributions indicate subtle
shifts left from the base to scenario 1 and scenario 2
which are indicative of decreases of the Q95 statistics,
corresponding to lower-flow conditions in the surface-
water network from drought and increases in pumping
(Figure 6 [first three columns]). Subtleties in the shifts
in the distributions in the first three columns are more
apparent in the difference Q95 statistic distributions
(the two rightmost columns of Figure 6). Q95 results
for scenario 1 and 2 were fairly similar to the Q95
statistic from the base ensemble for the Elmendorf gage
(Figure 6)—this is not unexpected, given the upstream
location of this gage within the model domain and the little
variation seen at this gage in the base ensemble results.
The upstream location of the Elmendorf gage means
fewer uncertain parameters contribute to uncertainty of
low base flow here as compared to downstream gages.
The median Q95 reductions for scenario 1 and 2 were
113 and 1160 m3/d, respectively, which correspond to a
0.04% and 0.44% decrease in the median Q95 from the
base ensemble (Table 2). At worst case, low base flow at
Elmendorf might be reduced by 0.62% for scenario 1 and
1.33% for scenario 2. This was an order of magnitude
(or more) smaller than the simulated changes in low
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Figure 6. Q95 distributions and difference of Q95 distributions for base, scenario 1, and scenario 2 ensembles.

base flows at downstream gages. Low base-flow estimates
at the Cibolo Creek gage had the largest percentage
reductions for the two scenarios. Scenario 2 may result
in as large as a 25.03% reduction in low base flow at this
gage (Table 2). Although this was the largest percentage
reduction, the base-flow Q95 changes are smaller than
those seen at the Goliad gage because base flows in
general are higher at the Goliad gage. Simulated low base
flow at the Goliad gage exhibited reductions of as much
as 3.62% for scenario 1 and 5.89% for scenario 2.

The Q95 distributions, just like the ensemble results
they are based on, exhibit varying degrees of uncer-
tainty (Figure 6). In general, the uncertainty of results

from scenario 2 is larger than the uncertainty of results
from scenario 1. In addition, uncertainty in Q95 results
increased in the downstream direction (i.e., from Elmen-
dorf to Goliad), which is expected as downstream sections
of the drainage basin are affected by uncertainty through-
out larger portions of the model domain, and therefore by
more parameters.

Changes in Groundwater Levels
Changes in groundwater levels can affect stream-

flow, and groundwater levels can decrease when there are
reductions in recharge and increases in groundwater with-
drawals. Decreases in groundwater levels (particularly

590 L.K. Foster et al. Groundwater 59, no. 4: 581–596 NGWA.org



Table 2
Q95 Difference Statistics for 2 Scenarios

Gage Scenario

Median
Q95 Change

( m3/d)

Median
Q95%
Change

Max
Q95%
Change

Elmendorf 1 113 0.04 0.62
Elmendorf 2 1160 0.44 1.33
Falls City 1 1148 0.37 1.02
Falls City 2 5319 1.71 3.63
Cibolo Ck 1 4547 11.18 17.80
Cibolo Ck 2 7091 17.84 25.03
Goliad 1 9250 2.29 3.62
Goliad 2 17,662 4.43 5.89

in the shallow groundwater system) are of interest to
stakeholders and decision makers because many industrial
and domestic users rely on shallow groundwater in the
basin. Therefore, an improved understanding of potential
changes in groundwater levels could aid in groundwater
management and water-use planning. Groundwater-level
declines were quantified and visualized through mapping
of declines in the surficial layer and through time series
of groundwater levels at monitoring wells (wells used for
history-matching) (see Figures S30 to S346).

Groundwater-level observations were recorded at
the end of the base ensemble and scenario ensemble
time periods for each active cell of the surficial layer
for each ensemble member. Groundwater levels for the
scenario ensembles were subtracted from those of the base
ensemble to quantify the difference of groundwater levels
for each scenario. These are referred to as the ensembles
of differences. The median and standard deviation of the
groundwater-level difference for each cell in the model
was calculated for each ensemble of difference (Figure 7).
In general, small groundwater-level differences (less than
1 m) are expected for most of the study area for both
scenarios, but median reductions in excess of 5 and 12 m
are seen in certain areas for scenario 1 and scenario 2,
respectively. Areas of higher variance tend to correspond
with areas of larger groundwater-level reductions and
areas of lower variance tend to be in areas of smaller
reductions.

Higher variabilities and larger groundwater-level
reductions are seen in some areas of the basin when
compared to other areas of the basin. To focus on the
individual aquifers that are more prone to groundwater-
level reductions, the surficial exposure of the aquifers
(Figure 2) were used to analyze the results shown
in Figure 7. Median and maximum groundwater-level
reductions were calculated for each aquifer for the shallow
groundwater system (layer 1) and plotted on a log-
scale (Figures 8 and 9). A change of 1 on a log scale
equates to 10 m of change, while a change of −5 is a
very small change of 0.00001 m. Median groundwater-
level differences for scenario 1 are up to 4 m for most
water-bearing units, with the largest differences of more
than 5 m corresponding to groundwater levels in the

Wilcox aquifer (Figure 8a). For scenario 2, most units
experienced substantial reductions in groundwater levels
when compared to scenario 1, except for the Chicot
and the Evangeline aquifers which remained similar
to scenario 1 (Figure 8). For the Jasper, Catahoula,
and Yegua-Jackson aquifers, the upper bound of the
median of the groundwater-level differences increased,
whereas increases for the Sparta, Queen City, Carrizo, and
Wilcox aquifers were seen in the distributions themselves,
not just limited to the upper bounds. In general, the
majority of median groundwater-level differences are
1 m or less. Maximum groundwater-level differences for
each aquifer for the surficial layer indicate the Carrizo
aquifer is expected to have the smallest groundwater-level
reduction when compared to other aquifers (Figure 9).
The largest potential maximum reductions in groundwater
levels are forecast for the Wilcox, Sparta, Yegua-Jackson,
Catahoula, and Evangeline aquifers. Large groundwater-
level reductions are outliers on the violin plots, and
therefore, tend to be derived from localized changes
around individual wells. The majority of maximum
groundwater-level declines, indicative of the unit as a
whole, are 5 m or less. In addition, time series of
groundwater levels at monitoring wells (Figure S30 to
S346) used for history matching show site-specific effects
of the scenarios throughout the study area and at different
depths.

Discussion and Conclusion
The combined DA-uncertainty analysis process pro-

vides a useful tool for the lower San Antonio River Basin
to make estimates of both surface-water/groundwater
exchange and groundwater levels within a stochastic
framework. We have shown that a fair amount of uncer-
tainty exists in simulated outcomes of management inter-
est, namely changes in low base flow and shallow ground-
water levels within the basin during dry conditions. We
have also shown that these critical uncertainties vary both
spatially and temporally. By placing the important sim-
ulated outcomes into a stochastic setting, we can see
how the scenarios change not only the central tendency
of the important simulated outcomes, but also give esti-
mates of the more extreme outcomes, such as the maxi-
mum groundwater-level difference and the maximum Q95
change. These extreme outcomes can be valuable in the
decision making setting as they provide important end-
member outcomes. Difference outcomes were focused on
during this investigation to minimize effects of model
error on the important simulation outcomes.

Results of this investigation are conditional upon the
model itself (and the assumptions therein), the data used
for the data assimilation process, the hydrologic time
period simulated, and the prior parameter uncertainty.
The ensembles were drawn from the posterior, which was
created using FOSM-approximated posterior parameter
distribution. Therefore, the analysis is also somewhat
dependent upon the linearity assumption of FOSM (i.e.,
uncertain parameters linearly related to the historical
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Figure 7. Groundwater-level reductions in the surficial layer. The model grid is rotated 35◦ in the clockwise direction about
the upper left hand corner of the grid at Universal Transverse Mercator zone 14 N easting 497,592 m and northing 3,238,294 m.

estimates of base flow and historical observations of
groundwater levels). Furthermore, some hydrologic com-
ponents (such as surface-water diversions and wastewater
treatment plant effluents into the surface-water) were
assumed to remain the same during scenario conditions
and therefore, were not varied as a part of the scenario
uncertainty analysis.

Difference time series indicate a low-frequency
temporal trend in the differences between scenario

ensemble results and the base ensemble (Figures S22
to S29). There is a temporal component to surface-
water/groundwater exchange and longer planning cycles
may predict larger effects on the surface-water system
owing to reduced recharge and increased groundwater
pumping. Conditions at the end of the predictive period
returning to “normal” would not cause base flows and
groundwater levels to immediately rebound, as delays in
groundwater responses can continue to cause effects on
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Figure 8. Violin plots showing the median groundwater-level differences per aquifer in layer 1. White dots indicate the
median, the black area indicates the 25th to 75th percentile, and the vertical blue bars indicate the extent of the range of
values. Number of values (e.g., n = 5222) plotted in each violin plot is shown underneath figure A and is the same for both
figures.

reducing base flows and groundwater levels for some
time (Barlow and Leake 2012). Therefore, the analyses
presented herein are useful for short-term planning
horizons, no longer than 8 years. Longer transient models
would need to be developed for longer-term planning of
more than 8 years.

The response of the surface-water/groundwater
exchange to a 25% reduction in recharge combined
with a 1% and 25% increase in groundwater pumping
shows varying degrees of reduction of simulated base
flow from the upstream gage near Elmendorf to the
farthest downstream gage of interest at Goliad. Larger
reductions in simulated base flow occur with greater
pumpage and farther downstream in the surface-water
system. The small estimated changes in simulated
base flow at the Elmendorf gage are likely a result
of its location near the upstream end of the basin,
where base flow and groundwater are affected by fewer
parameters, and therefore less uncertainty, inside its
contributing area.

Groundwater levels vary across the study area both
in the shallow groundwater system and in the deeper
system. In the shallow groundwater system, the water

levels are expected to decrease, on average, less than
1 m over an 8-year scenario period, based on the
expected value (i.e., the central tendency of the median
changes). However, localized water-level declines, such
as those near pumping wells, could potentially be much
larger. Variability in results across aquifers in the shallow
groundwater system is appreciable and some aquifers
show similar results for scenario 1 and scenario 2,
whereas other aquifers show sensitivity to the increases
in groundwater withdrawals between scenario 1 and
scenario 2.

The results of this analysis demonstrate that the basin
may be susceptible to drought and increases in ground-
water withdrawals even on a short planning horizon, such
as 8 years. A 25% reduction in recharge, combined with
a 25% increase in groundwater withdrawals could cause
considerable groundwater level reductions and base-flow
reductions downstream in the surface-water system. The
results also demonstrate the applicability and usefulness of
development of the predictive scenarios within a stochas-
tic framework to aid water-resource managers in their
decision making with regards to the potential effects of
hydrologic changes on the system.
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Figure 9. Violin plots showing the maximum groundwater-level differences per aquifer in layer 1. White dots indicate the
median, the black area indicates the 25th to 75th percentile, and the vertical blue bars indicate the extent of the range of
values. Number of values (e.g., n = 5222) plotted in each violin plot is shown underneath figure A and is the same for both
figures.
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